Properties

Label 720.2.z.e.163.3
Level $720$
Weight $2$
Character 720.163
Analytic conductor $5.749$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(163,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.z (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 163.3
Root \(-0.671462 + 1.24464i\) of defining polynomial
Character \(\chi\) \(=\) 720.163
Dual form 720.2.z.e.667.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.24464 + 0.671462i) q^{2} +(1.09828 + 1.67146i) q^{4} +(-1.00000 + 2.00000i) q^{5} +(0.146365 - 0.146365i) q^{7} +(0.244644 + 2.81783i) q^{8} +(-2.58757 + 1.81783i) q^{10} +(-0.146365 - 0.146365i) q^{11} +(0.280452 - 0.0838942i) q^{14} +(-1.58757 + 3.67146i) q^{16} +(-3.68585 + 3.68585i) q^{17} +(2.83221 + 2.83221i) q^{19} +(-4.44120 + 0.525096i) q^{20} +(-0.0838942 - 0.280452i) q^{22} +(2.83221 + 2.83221i) q^{23} +(-3.00000 - 4.00000i) q^{25} +(0.405394 + 0.0838942i) q^{28} +(1.00000 - 1.00000i) q^{29} -0.292731i q^{31} +(-4.44120 + 3.50367i) q^{32} +(-7.06247 + 2.11266i) q^{34} +(0.146365 + 0.439096i) q^{35} -9.37169i q^{37} +(1.62337 + 5.42682i) q^{38} +(-5.88030 - 2.32854i) q^{40} -4.00000i q^{41} +9.66442i q^{43} +(0.0838942 - 0.405394i) q^{44} +(1.62337 + 5.42682i) q^{46} +(-7.12494 - 7.12494i) q^{47} +6.95715i q^{49} +(-1.04809 - 6.99296i) q^{50} +11.9572 q^{53} +(0.439096 - 0.146365i) q^{55} +(0.448240 + 0.376625i) q^{56} +(1.91611 - 0.573183i) q^{58} +(9.51806 - 9.51806i) q^{59} +(1.68585 + 1.68585i) q^{61} +(0.196558 - 0.364346i) q^{62} +(-7.88030 + 1.37873i) q^{64} +13.0790i q^{67} +(-10.2088 - 2.11266i) q^{68} +(-0.112663 + 0.644798i) q^{70} +4.58546 q^{71} +(6.37169 - 6.37169i) q^{73} +(6.29273 - 11.6644i) q^{74} +(-1.62337 + 7.84449i) q^{76} -0.0428457 q^{77} +4.58546 q^{79} +(-5.75536 - 6.84660i) q^{80} +(2.68585 - 4.97858i) q^{82} +8.58546 q^{83} +(-3.68585 - 11.0575i) q^{85} +(-6.48929 + 12.0288i) q^{86} +(0.376625 - 0.448240i) q^{88} -3.37169 q^{89} +(-1.62337 + 7.84449i) q^{92} +(-4.08389 - 13.6521i) q^{94} +(-8.49663 + 2.83221i) q^{95} +(-3.58546 + 3.58546i) q^{97} +(-4.67146 + 8.65918i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{4} - 6 q^{5} - 2 q^{7} - 6 q^{8} + 4 q^{10} + 2 q^{11} + 6 q^{14} + 10 q^{16} + 2 q^{17} - 10 q^{19} - 10 q^{20} - 14 q^{22} - 10 q^{23} - 18 q^{25} - 26 q^{28} + 6 q^{29} - 10 q^{32} - 26 q^{34}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.24464 + 0.671462i 0.880096 + 0.474795i
\(3\) 0 0
\(4\) 1.09828 + 1.67146i 0.549139 + 0.835731i
\(5\) −1.00000 + 2.00000i −0.447214 + 0.894427i
\(6\) 0 0
\(7\) 0.146365 0.146365i 0.0553210 0.0553210i −0.678905 0.734226i \(-0.737545\pi\)
0.734226 + 0.678905i \(0.237545\pi\)
\(8\) 0.244644 + 2.81783i 0.0864948 + 0.996252i
\(9\) 0 0
\(10\) −2.58757 + 1.81783i −0.818261 + 0.574847i
\(11\) −0.146365 0.146365i −0.0441309 0.0441309i 0.684697 0.728828i \(-0.259935\pi\)
−0.728828 + 0.684697i \(0.759935\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0.280452 0.0838942i 0.0749539 0.0224217i
\(15\) 0 0
\(16\) −1.58757 + 3.67146i −0.396892 + 0.917865i
\(17\) −3.68585 + 3.68585i −0.893949 + 0.893949i −0.994892 0.100943i \(-0.967814\pi\)
0.100943 + 0.994892i \(0.467814\pi\)
\(18\) 0 0
\(19\) 2.83221 + 2.83221i 0.649754 + 0.649754i 0.952933 0.303180i \(-0.0980482\pi\)
−0.303180 + 0.952933i \(0.598048\pi\)
\(20\) −4.44120 + 0.525096i −0.993083 + 0.117415i
\(21\) 0 0
\(22\) −0.0838942 0.280452i −0.0178863 0.0597925i
\(23\) 2.83221 + 2.83221i 0.590557 + 0.590557i 0.937782 0.347225i \(-0.112876\pi\)
−0.347225 + 0.937782i \(0.612876\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0.405394 + 0.0838942i 0.0766123 + 0.0158545i
\(29\) 1.00000 1.00000i 0.185695 0.185695i −0.608137 0.793832i \(-0.708083\pi\)
0.793832 + 0.608137i \(0.208083\pi\)
\(30\) 0 0
\(31\) 0.292731i 0.0525760i −0.999654 0.0262880i \(-0.991631\pi\)
0.999654 0.0262880i \(-0.00836870\pi\)
\(32\) −4.44120 + 3.50367i −0.785101 + 0.619368i
\(33\) 0 0
\(34\) −7.06247 + 2.11266i −1.21120 + 0.362319i
\(35\) 0.146365 + 0.439096i 0.0247403 + 0.0742208i
\(36\) 0 0
\(37\) 9.37169i 1.54070i −0.637623 0.770348i \(-0.720082\pi\)
0.637623 0.770348i \(-0.279918\pi\)
\(38\) 1.62337 + 5.42682i 0.263346 + 0.880346i
\(39\) 0 0
\(40\) −5.88030 2.32854i −0.929757 0.368174i
\(41\) 4.00000i 0.624695i −0.949968 0.312348i \(-0.898885\pi\)
0.949968 0.312348i \(-0.101115\pi\)
\(42\) 0 0
\(43\) 9.66442i 1.47381i 0.675996 + 0.736905i \(0.263714\pi\)
−0.675996 + 0.736905i \(0.736286\pi\)
\(44\) 0.0838942 0.405394i 0.0126475 0.0611155i
\(45\) 0 0
\(46\) 1.62337 + 5.42682i 0.239354 + 0.800141i
\(47\) −7.12494 7.12494i −1.03928 1.03928i −0.999196 0.0400834i \(-0.987238\pi\)
−0.0400834 0.999196i \(-0.512762\pi\)
\(48\) 0 0
\(49\) 6.95715i 0.993879i
\(50\) −1.04809 6.99296i −0.148222 0.988954i
\(51\) 0 0
\(52\) 0 0
\(53\) 11.9572 1.64244 0.821221 0.570611i \(-0.193293\pi\)
0.821221 + 0.570611i \(0.193293\pi\)
\(54\) 0 0
\(55\) 0.439096 0.146365i 0.0592078 0.0197359i
\(56\) 0.448240 + 0.376625i 0.0598986 + 0.0503287i
\(57\) 0 0
\(58\) 1.91611 0.573183i 0.251597 0.0752626i
\(59\) 9.51806 9.51806i 1.23915 1.23915i 0.278795 0.960351i \(-0.410065\pi\)
0.960351 0.278795i \(-0.0899350\pi\)
\(60\) 0 0
\(61\) 1.68585 + 1.68585i 0.215850 + 0.215850i 0.806747 0.590897i \(-0.201226\pi\)
−0.590897 + 0.806747i \(0.701226\pi\)
\(62\) 0.196558 0.364346i 0.0249628 0.0462720i
\(63\) 0 0
\(64\) −7.88030 + 1.37873i −0.985037 + 0.172341i
\(65\) 0 0
\(66\) 0 0
\(67\) 13.0790i 1.59785i 0.601431 + 0.798925i \(0.294597\pi\)
−0.601431 + 0.798925i \(0.705403\pi\)
\(68\) −10.2088 2.11266i −1.23800 0.256198i
\(69\) 0 0
\(70\) −0.112663 + 0.644798i −0.0134659 + 0.0770681i
\(71\) 4.58546 0.544194 0.272097 0.962270i \(-0.412283\pi\)
0.272097 + 0.962270i \(0.412283\pi\)
\(72\) 0 0
\(73\) 6.37169 6.37169i 0.745750 0.745750i −0.227928 0.973678i \(-0.573195\pi\)
0.973678 + 0.227928i \(0.0731950\pi\)
\(74\) 6.29273 11.6644i 0.731515 1.35596i
\(75\) 0 0
\(76\) −1.62337 + 7.84449i −0.186214 + 0.899825i
\(77\) −0.0428457 −0.00488272
\(78\) 0 0
\(79\) 4.58546 0.515905 0.257952 0.966158i \(-0.416952\pi\)
0.257952 + 0.966158i \(0.416952\pi\)
\(80\) −5.75536 6.84660i −0.643468 0.765473i
\(81\) 0 0
\(82\) 2.68585 4.97858i 0.296602 0.549792i
\(83\) 8.58546 0.942377 0.471188 0.882033i \(-0.343825\pi\)
0.471188 + 0.882033i \(0.343825\pi\)
\(84\) 0 0
\(85\) −3.68585 11.0575i −0.399786 1.19936i
\(86\) −6.48929 + 12.0288i −0.699758 + 1.29710i
\(87\) 0 0
\(88\) 0.376625 0.448240i 0.0401484 0.0477826i
\(89\) −3.37169 −0.357399 −0.178699 0.983904i \(-0.557189\pi\)
−0.178699 + 0.983904i \(0.557189\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.62337 + 7.84449i −0.169249 + 0.817845i
\(93\) 0 0
\(94\) −4.08389 13.6521i −0.421222 1.40811i
\(95\) −8.49663 + 2.83221i −0.871736 + 0.290579i
\(96\) 0 0
\(97\) −3.58546 + 3.58546i −0.364049 + 0.364049i −0.865301 0.501253i \(-0.832873\pi\)
0.501253 + 0.865301i \(0.332873\pi\)
\(98\) −4.67146 + 8.65918i −0.471889 + 0.874710i
\(99\) 0 0
\(100\) 3.39101 9.40750i 0.339101 0.940750i
\(101\) 10.3717 10.3717i 1.03202 1.03202i 0.0325519 0.999470i \(-0.489637\pi\)
0.999470 0.0325519i \(-0.0103634\pi\)
\(102\) 0 0
\(103\) −5.51806 5.51806i −0.543710 0.543710i 0.380904 0.924615i \(-0.375613\pi\)
−0.924615 + 0.380904i \(0.875613\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 14.8824 + 8.02877i 1.44551 + 0.779823i
\(107\) 11.3288 1.09520 0.547600 0.836740i \(-0.315541\pi\)
0.547600 + 0.836740i \(0.315541\pi\)
\(108\) 0 0
\(109\) 10.2713 10.2713i 0.983813 0.983813i −0.0160582 0.999871i \(-0.505112\pi\)
0.999871 + 0.0160582i \(0.00511169\pi\)
\(110\) 0.644798 + 0.112663i 0.0614790 + 0.0107420i
\(111\) 0 0
\(112\) 0.305010 + 0.769740i 0.0288208 + 0.0727336i
\(113\) 1.68585 + 1.68585i 0.158591 + 0.158591i 0.781942 0.623351i \(-0.214229\pi\)
−0.623351 + 0.781942i \(0.714229\pi\)
\(114\) 0 0
\(115\) −8.49663 + 2.83221i −0.792315 + 0.264105i
\(116\) 2.76974 + 0.573183i 0.257164 + 0.0532187i
\(117\) 0 0
\(118\) 18.2376 5.45559i 1.67891 0.502227i
\(119\) 1.07896i 0.0989082i
\(120\) 0 0
\(121\) 10.9572i 0.996105i
\(122\) 0.966298 + 3.23026i 0.0874845 + 0.292454i
\(123\) 0 0
\(124\) 0.489289 0.321500i 0.0439394 0.0288716i
\(125\) 11.0000 2.00000i 0.983870 0.178885i
\(126\) 0 0
\(127\) 3.85363 + 3.85363i 0.341955 + 0.341955i 0.857102 0.515147i \(-0.172263\pi\)
−0.515147 + 0.857102i \(0.672263\pi\)
\(128\) −10.7339 3.57529i −0.948755 0.316014i
\(129\) 0 0
\(130\) 0 0
\(131\) −13.2253 + 13.2253i −1.15550 + 1.15550i −0.170070 + 0.985432i \(0.554399\pi\)
−0.985432 + 0.170070i \(0.945601\pi\)
\(132\) 0 0
\(133\) 0.829076 0.0718900
\(134\) −8.78202 + 16.2787i −0.758651 + 1.40626i
\(135\) 0 0
\(136\) −11.2878 9.48436i −0.967921 0.813277i
\(137\) −12.2713 12.2713i −1.04841 1.04841i −0.998767 0.0496415i \(-0.984192\pi\)
−0.0496415 0.998767i \(-0.515808\pi\)
\(138\) 0 0
\(139\) 6.53948 6.53948i 0.554672 0.554672i −0.373114 0.927786i \(-0.621710\pi\)
0.927786 + 0.373114i \(0.121710\pi\)
\(140\) −0.573183 + 0.726895i −0.0484428 + 0.0614338i
\(141\) 0 0
\(142\) 5.70727 + 3.07896i 0.478943 + 0.258381i
\(143\) 0 0
\(144\) 0 0
\(145\) 1.00000 + 3.00000i 0.0830455 + 0.249136i
\(146\) 12.2088 3.65214i 1.01041 0.302254i
\(147\) 0 0
\(148\) 15.6644 10.2927i 1.28761 0.846057i
\(149\) −8.37169 8.37169i −0.685836 0.685836i 0.275473 0.961309i \(-0.411166\pi\)
−0.961309 + 0.275473i \(0.911166\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −7.28780 + 8.67357i −0.591118 + 0.703519i
\(153\) 0 0
\(154\) −0.0533277 0.0287692i −0.00429727 0.00231829i
\(155\) 0.585462 + 0.292731i 0.0470254 + 0.0235127i
\(156\) 0 0
\(157\) −24.7434 −1.97474 −0.987369 0.158440i \(-0.949353\pi\)
−0.987369 + 0.158440i \(0.949353\pi\)
\(158\) 5.70727 + 3.07896i 0.454046 + 0.244949i
\(159\) 0 0
\(160\) −2.56614 12.3861i −0.202872 0.979205i
\(161\) 0.829076 0.0653403
\(162\) 0 0
\(163\) −7.41454 −0.580751 −0.290376 0.956913i \(-0.593780\pi\)
−0.290376 + 0.956913i \(0.593780\pi\)
\(164\) 6.68585 4.39312i 0.522077 0.343045i
\(165\) 0 0
\(166\) 10.6858 + 5.76481i 0.829383 + 0.447436i
\(167\) −12.2039 + 12.2039i −0.944366 + 0.944366i −0.998532 0.0541655i \(-0.982750\pi\)
0.0541655 + 0.998532i \(0.482750\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 2.83714 16.2376i 0.217599 1.24537i
\(171\) 0 0
\(172\) −16.1537 + 10.6142i −1.23171 + 0.809328i
\(173\) 14.7434i 1.12092i −0.828182 0.560459i \(-0.810625\pi\)
0.828182 0.560459i \(-0.189375\pi\)
\(174\) 0 0
\(175\) −1.02456 0.146365i −0.0774493 0.0110642i
\(176\) 0.769740 0.305010i 0.0580214 0.0229910i
\(177\) 0 0
\(178\) −4.19656 2.26396i −0.314545 0.169691i
\(179\) 9.22533 + 9.22533i 0.689533 + 0.689533i 0.962129 0.272595i \(-0.0878821\pi\)
−0.272595 + 0.962129i \(0.587882\pi\)
\(180\) 0 0
\(181\) −3.68585 + 3.68585i −0.273967 + 0.273967i −0.830695 0.556728i \(-0.812057\pi\)
0.556728 + 0.830695i \(0.312057\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −7.28780 + 8.67357i −0.537264 + 0.639424i
\(185\) 18.7434 + 9.37169i 1.37804 + 0.689021i
\(186\) 0 0
\(187\) 1.07896 0.0789015
\(188\) 4.08389 19.7342i 0.297849 1.43927i
\(189\) 0 0
\(190\) −12.4770 2.18007i −0.905177 0.158159i
\(191\) 6.33558i 0.458426i 0.973376 + 0.229213i \(0.0736153\pi\)
−0.973376 + 0.229213i \(0.926385\pi\)
\(192\) 0 0
\(193\) 0.414538 + 0.414538i 0.0298391 + 0.0298391i 0.721869 0.692030i \(-0.243283\pi\)
−0.692030 + 0.721869i \(0.743283\pi\)
\(194\) −6.87012 + 2.05512i −0.493246 + 0.147549i
\(195\) 0 0
\(196\) −11.6286 + 7.64090i −0.830615 + 0.545778i
\(197\) 8.78623i 0.625993i −0.949754 0.312996i \(-0.898667\pi\)
0.949754 0.312996i \(-0.101333\pi\)
\(198\) 0 0
\(199\) 11.7073i 0.829906i −0.909843 0.414953i \(-0.863798\pi\)
0.909843 0.414953i \(-0.136202\pi\)
\(200\) 10.5374 9.43206i 0.745105 0.666947i
\(201\) 0 0
\(202\) 19.8733 5.94488i 1.39828 0.418280i
\(203\) 0.292731i 0.0205457i
\(204\) 0 0
\(205\) 8.00000 + 4.00000i 0.558744 + 0.279372i
\(206\) −3.16286 10.5732i −0.220367 0.736669i
\(207\) 0 0
\(208\) 0 0
\(209\) 0.829076i 0.0573484i
\(210\) 0 0
\(211\) 12.4966 12.4966i 0.860304 0.860304i −0.131069 0.991373i \(-0.541841\pi\)
0.991373 + 0.131069i \(0.0418411\pi\)
\(212\) 13.1323 + 19.9859i 0.901929 + 1.37264i
\(213\) 0 0
\(214\) 14.1004 + 7.60688i 0.963882 + 0.519996i
\(215\) −19.3288 9.66442i −1.31822 0.659108i
\(216\) 0 0
\(217\) −0.0428457 0.0428457i −0.00290856 0.00290856i
\(218\) 19.6809 5.88734i 1.33296 0.398741i
\(219\) 0 0
\(220\) 0.726895 + 0.573183i 0.0490072 + 0.0386440i
\(221\) 0 0
\(222\) 0 0
\(223\) −17.2253 + 17.2253i −1.15349 + 1.15349i −0.167646 + 0.985847i \(0.553617\pi\)
−0.985847 + 0.167646i \(0.946383\pi\)
\(224\) −0.137222 + 1.16286i −0.00916852 + 0.0776966i
\(225\) 0 0
\(226\) 0.966298 + 3.23026i 0.0642772 + 0.214874i
\(227\) 8.29273i 0.550408i 0.961386 + 0.275204i \(0.0887454\pi\)
−0.961386 + 0.275204i \(0.911255\pi\)
\(228\) 0 0
\(229\) 10.2713 + 10.2713i 0.678747 + 0.678747i 0.959717 0.280970i \(-0.0906560\pi\)
−0.280970 + 0.959717i \(0.590656\pi\)
\(230\) −12.4770 2.18007i −0.822710 0.143749i
\(231\) 0 0
\(232\) 3.06247 + 2.57318i 0.201061 + 0.168938i
\(233\) −8.27131 + 8.27131i −0.541871 + 0.541871i −0.924077 0.382206i \(-0.875165\pi\)
0.382206 + 0.924077i \(0.375165\pi\)
\(234\) 0 0
\(235\) 21.3748 7.12494i 1.39434 0.464780i
\(236\) 26.3625 + 5.45559i 1.71606 + 0.355128i
\(237\) 0 0
\(238\) −0.724481 + 1.34292i −0.0469611 + 0.0870488i
\(239\) 3.41454 0.220868 0.110434 0.993883i \(-0.464776\pi\)
0.110434 + 0.993883i \(0.464776\pi\)
\(240\) 0 0
\(241\) 3.17092 0.204257 0.102129 0.994771i \(-0.467435\pi\)
0.102129 + 0.994771i \(0.467435\pi\)
\(242\) 7.35731 13.6378i 0.472946 0.876668i
\(243\) 0 0
\(244\) −0.966298 + 4.66936i −0.0618609 + 0.298925i
\(245\) −13.9143 6.95715i −0.888953 0.444476i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.824865 0.0716150i 0.0523790 0.00454755i
\(249\) 0 0
\(250\) 15.0340 + 4.89679i 0.950834 + 0.309700i
\(251\) 3.85363 + 3.85363i 0.243239 + 0.243239i 0.818189 0.574950i \(-0.194978\pi\)
−0.574950 + 0.818189i \(0.694978\pi\)
\(252\) 0 0
\(253\) 0.829076i 0.0521236i
\(254\) 2.20884 + 7.38397i 0.138595 + 0.463312i
\(255\) 0 0
\(256\) −10.9593 11.6574i −0.684954 0.728587i
\(257\) −21.6430 + 21.6430i −1.35005 + 1.35005i −0.464458 + 0.885595i \(0.653751\pi\)
−0.885595 + 0.464458i \(0.846249\pi\)
\(258\) 0 0
\(259\) −1.37169 1.37169i −0.0852328 0.0852328i
\(260\) 0 0
\(261\) 0 0
\(262\) −25.3411 + 7.58053i −1.56558 + 0.468327i
\(263\) 14.2467 + 14.2467i 0.878492 + 0.878492i 0.993379 0.114886i \(-0.0366504\pi\)
−0.114886 + 0.993379i \(0.536650\pi\)
\(264\) 0 0
\(265\) −11.9572 + 23.9143i −0.734522 + 1.46904i
\(266\) 1.03190 + 0.556693i 0.0632701 + 0.0341330i
\(267\) 0 0
\(268\) −21.8610 + 14.3643i −1.33537 + 0.877442i
\(269\) −11.7862 + 11.7862i −0.718619 + 0.718619i −0.968322 0.249703i \(-0.919667\pi\)
0.249703 + 0.968322i \(0.419667\pi\)
\(270\) 0 0
\(271\) 11.7073i 0.711166i −0.934645 0.355583i \(-0.884282\pi\)
0.934645 0.355583i \(-0.115718\pi\)
\(272\) −7.68091 19.3840i −0.465724 1.17533i
\(273\) 0 0
\(274\) −7.03370 23.5131i −0.424921 1.42048i
\(275\) −0.146365 + 1.02456i −0.00882617 + 0.0617832i
\(276\) 0 0
\(277\) 18.5426i 1.11412i −0.830473 0.557059i \(-0.811930\pi\)
0.830473 0.557059i \(-0.188070\pi\)
\(278\) 12.5303 3.74832i 0.751520 0.224809i
\(279\) 0 0
\(280\) −1.20149 + 0.519855i −0.0718028 + 0.0310673i
\(281\) 2.62831i 0.156792i 0.996922 + 0.0783958i \(0.0249798\pi\)
−0.996922 + 0.0783958i \(0.975020\pi\)
\(282\) 0 0
\(283\) 22.2499i 1.32262i 0.750113 + 0.661309i \(0.229999\pi\)
−0.750113 + 0.661309i \(0.770001\pi\)
\(284\) 5.03612 + 7.66442i 0.298838 + 0.454800i
\(285\) 0 0
\(286\) 0 0
\(287\) −0.585462 0.585462i −0.0345587 0.0345587i
\(288\) 0 0
\(289\) 10.1709i 0.598290i
\(290\) −0.769740 + 4.40539i −0.0452007 + 0.258694i
\(291\) 0 0
\(292\) 17.6479 + 3.65214i 1.03277 + 0.213726i
\(293\) −21.9143 −1.28025 −0.640124 0.768272i \(-0.721117\pi\)
−0.640124 + 0.768272i \(0.721117\pi\)
\(294\) 0 0
\(295\) 9.51806 + 28.5542i 0.554163 + 1.66249i
\(296\) 26.4078 2.29273i 1.53492 0.133262i
\(297\) 0 0
\(298\) −4.79851 16.0410i −0.277970 0.929233i
\(299\) 0 0
\(300\) 0 0
\(301\) 1.41454 + 1.41454i 0.0815326 + 0.0815326i
\(302\) 0 0
\(303\) 0 0
\(304\) −14.8947 + 5.90203i −0.854269 + 0.338505i
\(305\) −5.05754 + 1.68585i −0.289594 + 0.0965313i
\(306\) 0 0
\(307\) 6.33558i 0.361590i −0.983521 0.180795i \(-0.942133\pi\)
0.983521 0.180795i \(-0.0578671\pi\)
\(308\) −0.0470565 0.0716150i −0.00268130 0.00408064i
\(309\) 0 0
\(310\) 0.532134 + 0.757461i 0.0302232 + 0.0430209i
\(311\) 7.32885 0.415581 0.207790 0.978173i \(-0.433373\pi\)
0.207790 + 0.978173i \(0.433373\pi\)
\(312\) 0 0
\(313\) −3.00000 + 3.00000i −0.169570 + 0.169570i −0.786790 0.617220i \(-0.788259\pi\)
0.617220 + 0.786790i \(0.288259\pi\)
\(314\) −30.7967 16.6142i −1.73796 0.937595i
\(315\) 0 0
\(316\) 5.03612 + 7.66442i 0.283304 + 0.431157i
\(317\) 19.9572 1.12091 0.560453 0.828186i \(-0.310627\pi\)
0.560453 + 0.828186i \(0.310627\pi\)
\(318\) 0 0
\(319\) −0.292731 −0.0163898
\(320\) 5.12284 17.1393i 0.286375 0.958118i
\(321\) 0 0
\(322\) 1.03190 + 0.556693i 0.0575058 + 0.0310233i
\(323\) −20.8782 −1.16169
\(324\) 0 0
\(325\) 0 0
\(326\) −9.22846 4.97858i −0.511117 0.275738i
\(327\) 0 0
\(328\) 11.2713 0.978577i 0.622354 0.0540329i
\(329\) −2.08569 −0.114988
\(330\) 0 0
\(331\) −12.4966 12.4966i −0.686877 0.686877i 0.274663 0.961540i \(-0.411434\pi\)
−0.961540 + 0.274663i \(0.911434\pi\)
\(332\) 9.42923 + 14.3503i 0.517496 + 0.787573i
\(333\) 0 0
\(334\) −23.3840 + 6.99507i −1.27951 + 0.382753i
\(335\) −26.1579 13.0790i −1.42916 0.714580i
\(336\) 0 0
\(337\) −15.5855 + 15.5855i −0.848994 + 0.848994i −0.990008 0.141013i \(-0.954964\pi\)
0.141013 + 0.990008i \(0.454964\pi\)
\(338\) 16.1804 + 8.72900i 0.880096 + 0.474795i
\(339\) 0 0
\(340\) 14.4342 18.3050i 0.782802 0.992729i
\(341\) −0.0428457 + 0.0428457i −0.00232023 + 0.00232023i
\(342\) 0 0
\(343\) 2.04285 + 2.04285i 0.110303 + 0.110303i
\(344\) −27.2327 + 2.36435i −1.46829 + 0.127477i
\(345\) 0 0
\(346\) 9.89962 18.3503i 0.532207 0.986517i
\(347\) 14.7434 0.791466 0.395733 0.918366i \(-0.370491\pi\)
0.395733 + 0.918366i \(0.370491\pi\)
\(348\) 0 0
\(349\) 3.64300 3.64300i 0.195005 0.195005i −0.602850 0.797855i \(-0.705968\pi\)
0.797855 + 0.602850i \(0.205968\pi\)
\(350\) −1.17693 0.870125i −0.0629097 0.0465101i
\(351\) 0 0
\(352\) 1.16286 + 0.137222i 0.0619804 + 0.00731395i
\(353\) −3.68585 3.68585i −0.196178 0.196178i 0.602181 0.798359i \(-0.294298\pi\)
−0.798359 + 0.602181i \(0.794298\pi\)
\(354\) 0 0
\(355\) −4.58546 + 9.17092i −0.243371 + 0.486742i
\(356\) −3.70306 5.63565i −0.196262 0.298689i
\(357\) 0 0
\(358\) 5.28780 + 17.6767i 0.279469 + 0.934243i
\(359\) 32.9933i 1.74132i −0.491887 0.870659i \(-0.663693\pi\)
0.491887 0.870659i \(-0.336307\pi\)
\(360\) 0 0
\(361\) 2.95715i 0.155640i
\(362\) −7.06247 + 2.11266i −0.371195 + 0.111039i
\(363\) 0 0
\(364\) 0 0
\(365\) 6.37169 + 19.1151i 0.333510 + 1.00053i
\(366\) 0 0
\(367\) −18.1035 18.1035i −0.944996 0.944996i 0.0535682 0.998564i \(-0.482941\pi\)
−0.998564 + 0.0535682i \(0.982941\pi\)
\(368\) −14.8947 + 5.90203i −0.776439 + 0.307665i
\(369\) 0 0
\(370\) 17.0361 + 24.2499i 0.885665 + 1.26069i
\(371\) 1.75011 1.75011i 0.0908614 0.0908614i
\(372\) 0 0
\(373\) 13.9143 0.720456 0.360228 0.932864i \(-0.382699\pi\)
0.360228 + 0.932864i \(0.382699\pi\)
\(374\) 1.34292 + 0.724481i 0.0694409 + 0.0374620i
\(375\) 0 0
\(376\) 18.3338 21.8199i 0.945492 1.12528i
\(377\) 0 0
\(378\) 0 0
\(379\) 7.71040 7.71040i 0.396057 0.396057i −0.480783 0.876840i \(-0.659647\pi\)
0.876840 + 0.480783i \(0.159647\pi\)
\(380\) −14.0656 11.0912i −0.721550 0.568969i
\(381\) 0 0
\(382\) −4.25410 + 7.88554i −0.217658 + 0.403459i
\(383\) −14.8322 + 14.8322i −0.757891 + 0.757891i −0.975938 0.218048i \(-0.930031\pi\)
0.218048 + 0.975938i \(0.430031\pi\)
\(384\) 0 0
\(385\) 0.0428457 0.0856914i 0.00218362 0.00436724i
\(386\) 0.237606 + 0.794299i 0.0120938 + 0.0404287i
\(387\) 0 0
\(388\) −9.93080 2.05512i −0.504160 0.104333i
\(389\) −16.3717 16.3717i −0.830078 0.830078i 0.157449 0.987527i \(-0.449673\pi\)
−0.987527 + 0.157449i \(0.949673\pi\)
\(390\) 0 0
\(391\) −20.8782 −1.05586
\(392\) −19.6041 + 1.70203i −0.990154 + 0.0859654i
\(393\) 0 0
\(394\) 5.89962 10.9357i 0.297218 0.550934i
\(395\) −4.58546 + 9.17092i −0.230720 + 0.461439i
\(396\) 0 0
\(397\) 0.628308 0.0315339 0.0157669 0.999876i \(-0.494981\pi\)
0.0157669 + 0.999876i \(0.494981\pi\)
\(398\) 7.86098 14.5714i 0.394035 0.730398i
\(399\) 0 0
\(400\) 19.4485 4.66412i 0.972427 0.233206i
\(401\) 8.54262 0.426598 0.213299 0.976987i \(-0.431579\pi\)
0.213299 + 0.976987i \(0.431579\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 28.7269 + 5.94488i 1.42922 + 0.295769i
\(405\) 0 0
\(406\) 0.196558 0.364346i 0.00975499 0.0180822i
\(407\) −1.37169 + 1.37169i −0.0679923 + 0.0679923i
\(408\) 0 0
\(409\) −38.7005 −1.91362 −0.956809 0.290716i \(-0.906106\pi\)
−0.956809 + 0.290716i \(0.906106\pi\)
\(410\) 7.27131 + 10.3503i 0.359104 + 0.511163i
\(411\) 0 0
\(412\) 3.16286 15.2836i 0.155823 0.752968i
\(413\) 2.78623i 0.137101i
\(414\) 0 0
\(415\) −8.58546 + 17.1709i −0.421444 + 0.842888i
\(416\) 0 0
\(417\) 0 0
\(418\) 0.556693 1.03190i 0.0272287 0.0504721i
\(419\) 9.81079 + 9.81079i 0.479288 + 0.479288i 0.904904 0.425616i \(-0.139942\pi\)
−0.425616 + 0.904904i \(0.639942\pi\)
\(420\) 0 0
\(421\) −20.2713 + 20.2713i −0.987963 + 0.987963i −0.999928 0.0119653i \(-0.996191\pi\)
0.0119653 + 0.999928i \(0.496191\pi\)
\(422\) 23.9449 7.16286i 1.16562 0.348682i
\(423\) 0 0
\(424\) 2.92525 + 33.6932i 0.142063 + 1.63629i
\(425\) 25.8009 + 3.68585i 1.25153 + 0.178790i
\(426\) 0 0
\(427\) 0.493499 0.0238821
\(428\) 12.4422 + 18.9357i 0.601418 + 0.915293i
\(429\) 0 0
\(430\) −17.5682 25.0073i −0.847216 1.20596i
\(431\) 29.0790i 1.40068i −0.713807 0.700342i \(-0.753031\pi\)
0.713807 0.700342i \(-0.246969\pi\)
\(432\) 0 0
\(433\) −8.95715 8.95715i −0.430453 0.430453i 0.458329 0.888783i \(-0.348448\pi\)
−0.888783 + 0.458329i \(0.848448\pi\)
\(434\) −0.0245584 0.0820969i −0.00117884 0.00394078i
\(435\) 0 0
\(436\) 28.4489 + 5.88734i 1.36245 + 0.281952i
\(437\) 16.0428i 0.767433i
\(438\) 0 0
\(439\) 7.03612i 0.335815i 0.985803 + 0.167908i \(0.0537011\pi\)
−0.985803 + 0.167908i \(0.946299\pi\)
\(440\) 0.519855 + 1.20149i 0.0247831 + 0.0572788i
\(441\) 0 0
\(442\) 0 0
\(443\) 33.8652i 1.60898i 0.593964 + 0.804492i \(0.297562\pi\)
−0.593964 + 0.804492i \(0.702438\pi\)
\(444\) 0 0
\(445\) 3.37169 6.74338i 0.159834 0.319667i
\(446\) −33.0055 + 9.87326i −1.56286 + 0.467512i
\(447\) 0 0
\(448\) −0.951605 + 1.35520i −0.0449591 + 0.0640273i
\(449\) 32.1151i 1.51560i 0.652484 + 0.757802i \(0.273727\pi\)
−0.652484 + 0.757802i \(0.726273\pi\)
\(450\) 0 0
\(451\) −0.585462 + 0.585462i −0.0275683 + 0.0275683i
\(452\) −0.966298 + 4.66936i −0.0454508 + 0.219628i
\(453\) 0 0
\(454\) −5.56825 + 10.3215i −0.261331 + 0.484412i
\(455\) 0 0
\(456\) 0 0
\(457\) 4.41454 + 4.41454i 0.206503 + 0.206503i 0.802779 0.596276i \(-0.203354\pi\)
−0.596276 + 0.802779i \(0.703354\pi\)
\(458\) 5.88734 + 19.6809i 0.275097 + 0.919629i
\(459\) 0 0
\(460\) −14.0656 11.0912i −0.655812 0.517132i
\(461\) −4.95715 4.95715i −0.230878 0.230878i 0.582181 0.813059i \(-0.302199\pi\)
−0.813059 + 0.582181i \(0.802199\pi\)
\(462\) 0 0
\(463\) 2.77467 2.77467i 0.128950 0.128950i −0.639686 0.768636i \(-0.720936\pi\)
0.768636 + 0.639686i \(0.220936\pi\)
\(464\) 2.08389 + 5.25903i 0.0967424 + 0.244144i
\(465\) 0 0
\(466\) −15.8487 + 4.74097i −0.734177 + 0.219621i
\(467\) 23.0361i 1.06598i −0.846120 0.532992i \(-0.821068\pi\)
0.846120 0.532992i \(-0.178932\pi\)
\(468\) 0 0
\(469\) 1.91431 + 1.91431i 0.0883946 + 0.0883946i
\(470\) 31.3882 + 5.48436i 1.44783 + 0.252974i
\(471\) 0 0
\(472\) 29.1488 + 24.4917i 1.34168 + 1.12732i
\(473\) 1.41454 1.41454i 0.0650405 0.0650405i
\(474\) 0 0
\(475\) 2.83221 19.8255i 0.129951 0.909655i
\(476\) −1.80344 + 1.18500i −0.0826606 + 0.0543144i
\(477\) 0 0
\(478\) 4.24989 + 2.29273i 0.194385 + 0.104867i
\(479\) 20.5855 0.940574 0.470287 0.882514i \(-0.344150\pi\)
0.470287 + 0.882514i \(0.344150\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 3.94667 + 2.12915i 0.179766 + 0.0969803i
\(483\) 0 0
\(484\) 18.3145 12.0340i 0.832476 0.547000i
\(485\) −3.58546 10.7564i −0.162807 0.488422i
\(486\) 0 0
\(487\) 5.31729 5.31729i 0.240949 0.240949i −0.576293 0.817243i \(-0.695501\pi\)
0.817243 + 0.576293i \(0.195501\pi\)
\(488\) −4.33799 + 5.16286i −0.196372 + 0.233711i
\(489\) 0 0
\(490\) −12.6469 18.0021i −0.571329 0.813252i
\(491\) −21.5181 21.5181i −0.971096 0.971096i 0.0284975 0.999594i \(-0.490928\pi\)
−0.999594 + 0.0284975i \(0.990928\pi\)
\(492\) 0 0
\(493\) 7.37169i 0.332004i
\(494\) 0 0
\(495\) 0 0
\(496\) 1.07475 + 0.464730i 0.0482577 + 0.0208670i
\(497\) 0.671153 0.671153i 0.0301053 0.0301053i
\(498\) 0 0
\(499\) 2.83221 + 2.83221i 0.126787 + 0.126787i 0.767653 0.640866i \(-0.221424\pi\)
−0.640866 + 0.767653i \(0.721424\pi\)
\(500\) 15.4240 + 16.1895i 0.689782 + 0.724017i
\(501\) 0 0
\(502\) 2.20884 + 7.38397i 0.0985852 + 0.329563i
\(503\) −7.32571 7.32571i −0.326637 0.326637i 0.524669 0.851306i \(-0.324189\pi\)
−0.851306 + 0.524669i \(0.824189\pi\)
\(504\) 0 0
\(505\) 10.3717 + 31.1151i 0.461534 + 1.38460i
\(506\) 0.556693 1.03190i 0.0247480 0.0458738i
\(507\) 0 0
\(508\) −2.20884 + 10.6736i −0.0980013 + 0.473563i
\(509\) 10.1709 10.1709i 0.450818 0.450818i −0.444808 0.895626i \(-0.646728\pi\)
0.895626 + 0.444808i \(0.146728\pi\)
\(510\) 0 0
\(511\) 1.86519i 0.0825112i
\(512\) −5.81289 21.8680i −0.256896 0.966439i
\(513\) 0 0
\(514\) −41.4703 + 12.4054i −1.82918 + 0.547178i
\(515\) 16.5542 5.51806i 0.729464 0.243155i
\(516\) 0 0
\(517\) 2.08569i 0.0917286i
\(518\) −0.786230 2.62831i −0.0345450 0.115481i
\(519\) 0 0
\(520\) 0 0
\(521\) 8.11508i 0.355528i 0.984073 + 0.177764i \(0.0568864\pi\)
−0.984073 + 0.177764i \(0.943114\pi\)
\(522\) 0 0
\(523\) 5.07896i 0.222087i 0.993816 + 0.111044i \(0.0354194\pi\)
−0.993816 + 0.111044i \(0.964581\pi\)
\(524\) −36.6307 7.58053i −1.60022 0.331157i
\(525\) 0 0
\(526\) 8.16599 + 27.2983i 0.356054 + 1.19026i
\(527\) 1.07896 + 1.07896i 0.0470003 + 0.0470003i
\(528\) 0 0
\(529\) 6.95715i 0.302485i
\(530\) −30.9399 + 21.7360i −1.34395 + 0.944153i
\(531\) 0 0
\(532\) 0.910557 + 1.38577i 0.0394776 + 0.0600807i
\(533\) 0 0
\(534\) 0 0
\(535\) −11.3288 + 22.6577i −0.489789 + 0.979578i
\(536\) −36.8543 + 3.19969i −1.59186 + 0.138206i
\(537\) 0 0
\(538\) −22.5837 + 6.75566i −0.973651 + 0.291257i
\(539\) 1.01829 1.01829i 0.0438607 0.0438607i
\(540\) 0 0
\(541\) 26.3864 + 26.3864i 1.13444 + 1.13444i 0.989430 + 0.145009i \(0.0463211\pi\)
0.145009 + 0.989430i \(0.453679\pi\)
\(542\) 7.86098 14.5714i 0.337658 0.625895i
\(543\) 0 0
\(544\) 3.45559 29.2836i 0.148157 1.25552i
\(545\) 10.2713 + 30.8139i 0.439974 + 1.31992i
\(546\) 0 0
\(547\) 33.6644i 1.43939i 0.694292 + 0.719693i \(0.255718\pi\)
−0.694292 + 0.719693i \(0.744282\pi\)
\(548\) 7.03370 33.9883i 0.300465 1.45191i
\(549\) 0 0
\(550\) −0.870125 + 1.17693i −0.0371022 + 0.0501845i
\(551\) 5.66442 0.241313
\(552\) 0 0
\(553\) 0.671153 0.671153i 0.0285403 0.0285403i
\(554\) 12.4507 23.0790i 0.528978 0.980531i
\(555\) 0 0
\(556\) 18.1127 + 3.74832i 0.768148 + 0.158964i
\(557\) −8.82908 −0.374100 −0.187050 0.982350i \(-0.559893\pi\)
−0.187050 + 0.982350i \(0.559893\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −1.84449 0.159720i −0.0779440 0.00674940i
\(561\) 0 0
\(562\) −1.76481 + 3.27131i −0.0744439 + 0.137992i
\(563\) −6.74338 −0.284200 −0.142100 0.989852i \(-0.545385\pi\)
−0.142100 + 0.989852i \(0.545385\pi\)
\(564\) 0 0
\(565\) −5.05754 + 1.68585i −0.212772 + 0.0709241i
\(566\) −14.9399 + 27.6932i −0.627973 + 1.16403i
\(567\) 0 0
\(568\) 1.12181 + 12.9210i 0.0470700 + 0.542155i
\(569\) 23.3717 0.979792 0.489896 0.871781i \(-0.337035\pi\)
0.489896 + 0.871781i \(0.337035\pi\)
\(570\) 0 0
\(571\) −22.5395 22.5395i −0.943248 0.943248i 0.0552260 0.998474i \(-0.482412\pi\)
−0.998474 + 0.0552260i \(0.982412\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −0.335577 1.12181i −0.0140067 0.0468233i
\(575\) 2.83221 19.8255i 0.118111 0.826780i
\(576\) 0 0
\(577\) 21.5855 21.5855i 0.898615 0.898615i −0.0966991 0.995314i \(-0.530828\pi\)
0.995314 + 0.0966991i \(0.0308285\pi\)
\(578\) 6.82938 12.6592i 0.284065 0.526553i
\(579\) 0 0
\(580\) −3.91611 + 4.96630i −0.162607 + 0.206214i
\(581\) 1.25662 1.25662i 0.0521332 0.0521332i
\(582\) 0 0
\(583\) −1.75011 1.75011i −0.0724823 0.0724823i
\(584\) 19.5131 + 16.3955i 0.807459 + 0.678452i
\(585\) 0 0
\(586\) −27.2755 14.7146i −1.12674 0.607855i
\(587\) 16.5855 0.684555 0.342278 0.939599i \(-0.388802\pi\)
0.342278 + 0.939599i \(0.388802\pi\)
\(588\) 0 0
\(589\) 0.829076 0.829076i 0.0341615 0.0341615i
\(590\) −7.32643 + 41.9308i −0.301624 + 1.72626i
\(591\) 0 0
\(592\) 34.4078 + 14.8782i 1.41415 + 0.611490i
\(593\) −8.85677 8.85677i −0.363704 0.363704i 0.501471 0.865175i \(-0.332793\pi\)
−0.865175 + 0.501471i \(0.832793\pi\)
\(594\) 0 0
\(595\) −2.15792 1.07896i −0.0884662 0.0442331i
\(596\) 4.79851 23.1874i 0.196555 0.949793i
\(597\) 0 0
\(598\) 0 0
\(599\) 24.9933i 1.02120i −0.859819 0.510599i \(-0.829424\pi\)
0.859819 0.510599i \(-0.170576\pi\)
\(600\) 0 0
\(601\) 39.8286i 1.62464i −0.583210 0.812322i \(-0.698203\pi\)
0.583210 0.812322i \(-0.301797\pi\)
\(602\) 0.810789 + 2.71040i 0.0330453 + 0.110468i
\(603\) 0 0
\(604\) 0 0
\(605\) 21.9143 + 10.9572i 0.890943 + 0.445472i
\(606\) 0 0
\(607\) −16.8469 16.8469i −0.683795 0.683795i 0.277058 0.960853i \(-0.410640\pi\)
−0.960853 + 0.277058i \(0.910640\pi\)
\(608\) −22.5016 2.65528i −0.912559 0.107686i
\(609\) 0 0
\(610\) −7.42682 1.29766i −0.300703 0.0525409i
\(611\) 0 0
\(612\) 0 0
\(613\) 8.62831 0.348494 0.174247 0.984702i \(-0.444251\pi\)
0.174247 + 0.984702i \(0.444251\pi\)
\(614\) 4.25410 7.88554i 0.171681 0.318234i
\(615\) 0 0
\(616\) −0.0104820 0.120732i −0.000422330 0.00486442i
\(617\) −11.0147 11.0147i −0.443435 0.443435i 0.449730 0.893165i \(-0.351520\pi\)
−0.893165 + 0.449730i \(0.851520\pi\)
\(618\) 0 0
\(619\) 6.53948 6.53948i 0.262844 0.262844i −0.563365 0.826208i \(-0.690493\pi\)
0.826208 + 0.563365i \(0.190493\pi\)
\(620\) 0.153712 + 1.30008i 0.00617322 + 0.0522124i
\(621\) 0 0
\(622\) 9.12181 + 4.92104i 0.365751 + 0.197316i
\(623\) −0.493499 + 0.493499i −0.0197716 + 0.0197716i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −5.74832 + 1.71955i −0.229749 + 0.0687270i
\(627\) 0 0
\(628\) −27.1751 41.3576i −1.08441 1.65035i
\(629\) 34.5426 + 34.5426i 1.37730 + 1.37730i
\(630\) 0 0
\(631\) 42.0722 1.67487 0.837435 0.546538i \(-0.184054\pi\)
0.837435 + 0.546538i \(0.184054\pi\)
\(632\) 1.12181 + 12.9210i 0.0446231 + 0.513971i
\(633\) 0 0
\(634\) 24.8396 + 13.4005i 0.986505 + 0.532200i
\(635\) −11.5609 + 3.85363i −0.458780 + 0.152927i
\(636\) 0 0
\(637\) 0 0
\(638\) −0.364346 0.196558i −0.0144246 0.00778179i
\(639\) 0 0
\(640\) 17.8845 17.8926i 0.706947 0.707266i
\(641\) −16.8291 −0.664709 −0.332354 0.943155i \(-0.607843\pi\)
−0.332354 + 0.943155i \(0.607843\pi\)
\(642\) 0 0
\(643\) 38.0722 1.50142 0.750711 0.660631i \(-0.229711\pi\)
0.750711 + 0.660631i \(0.229711\pi\)
\(644\) 0.910557 + 1.38577i 0.0358810 + 0.0546069i
\(645\) 0 0
\(646\) −25.9859 14.0189i −1.02240 0.551566i
\(647\) 1.36856 1.36856i 0.0538035 0.0538035i −0.679693 0.733497i \(-0.737887\pi\)
0.733497 + 0.679693i \(0.237887\pi\)
\(648\) 0 0
\(649\) −2.78623 −0.109369
\(650\) 0 0
\(651\) 0 0
\(652\) −8.14323 12.3931i −0.318913 0.485352i
\(653\) 17.9572i 0.702718i −0.936241 0.351359i \(-0.885720\pi\)
0.936241 0.351359i \(-0.114280\pi\)
\(654\) 0 0
\(655\) −13.2253 39.6760i −0.516756 1.55027i
\(656\) 14.6858 + 6.35027i 0.573386 + 0.247936i
\(657\) 0 0
\(658\) −2.59594 1.40046i −0.101200 0.0545957i
\(659\) 11.1825 + 11.1825i 0.435608 + 0.435608i 0.890531 0.454923i \(-0.150333\pi\)
−0.454923 + 0.890531i \(0.650333\pi\)
\(660\) 0 0
\(661\) −3.01469 + 3.01469i −0.117258 + 0.117258i −0.763301 0.646043i \(-0.776423\pi\)
0.646043 + 0.763301i \(0.276423\pi\)
\(662\) −7.16286 23.9449i −0.278392 0.930644i
\(663\) 0 0
\(664\) 2.10038 + 24.1923i 0.0815107 + 0.938845i
\(665\) −0.829076 + 1.65815i −0.0321502 + 0.0643004i
\(666\) 0 0
\(667\) 5.66442 0.219327
\(668\) −33.8016 6.99507i −1.30782 0.270647i
\(669\) 0 0
\(670\) −23.7753 33.8427i −0.918520 1.30746i
\(671\) 0.493499i 0.0190513i
\(672\) 0 0
\(673\) −12.5725 12.5725i −0.484633 0.484633i 0.421975 0.906608i \(-0.361337\pi\)
−0.906608 + 0.421975i \(0.861337\pi\)
\(674\) −29.8634 + 8.93332i −1.15029 + 0.344099i
\(675\) 0 0
\(676\) 14.2776 + 21.7290i 0.549139 + 0.835731i
\(677\) 16.7862i 0.645147i −0.946544 0.322574i \(-0.895452\pi\)
0.946544 0.322574i \(-0.104548\pi\)
\(678\) 0 0
\(679\) 1.04958i 0.0402790i
\(680\) 30.2565 13.0912i 1.16028 0.502026i
\(681\) 0 0
\(682\) −0.0820969 + 0.0245584i −0.00314365 + 0.000940391i
\(683\) 0.378422i 0.0144799i −0.999974 0.00723997i \(-0.997695\pi\)
0.999974 0.00723997i \(-0.00230457\pi\)
\(684\) 0 0
\(685\) 36.8139 12.2713i 1.40659 0.468863i
\(686\) 1.17092 + 3.91431i 0.0447061 + 0.149449i
\(687\) 0 0
\(688\) −35.4826 15.3429i −1.35276 0.584943i
\(689\) 0 0
\(690\) 0 0
\(691\) 7.79610 7.79610i 0.296577 0.296577i −0.543094 0.839672i \(-0.682747\pi\)
0.839672 + 0.543094i \(0.182747\pi\)
\(692\) 24.6430 16.1923i 0.936786 0.615541i
\(693\) 0 0
\(694\) 18.3503 + 9.89962i 0.696567 + 0.375784i
\(695\) 6.53948 + 19.6184i 0.248057 + 0.744170i
\(696\) 0 0
\(697\) 14.7434 + 14.7434i 0.558446 + 0.558446i
\(698\) 6.98037 2.08810i 0.264211 0.0790359i
\(699\) 0 0
\(700\) −0.880607 1.87326i −0.0332838 0.0708026i
\(701\) 1.78623 + 1.78623i 0.0674650 + 0.0674650i 0.740034 0.672569i \(-0.234809\pi\)
−0.672569 + 0.740034i \(0.734809\pi\)
\(702\) 0 0
\(703\) 26.5426 26.5426i 1.00107 1.00107i
\(704\) 1.35520 + 0.951605i 0.0510761 + 0.0358650i
\(705\) 0 0
\(706\) −2.11266 7.06247i −0.0795111 0.265800i
\(707\) 3.03612i 0.114185i
\(708\) 0 0
\(709\) 21.6858 + 21.6858i 0.814429 + 0.814429i 0.985294 0.170865i \(-0.0546563\pi\)
−0.170865 + 0.985294i \(0.554656\pi\)
\(710\) −11.8652 + 8.33558i −0.445293 + 0.312829i
\(711\) 0 0
\(712\) −0.824865 9.50085i −0.0309131 0.356059i
\(713\) 0.829076 0.829076i 0.0310491 0.0310491i
\(714\) 0 0
\(715\) 0 0
\(716\) −5.28780 + 25.5518i −0.197614 + 0.954914i
\(717\) 0 0
\(718\) 22.1537 41.0649i 0.826769 1.53253i
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) −1.61531 −0.0601572
\(722\) 1.98562 3.68061i 0.0738970 0.136978i
\(723\) 0 0
\(724\) −10.2088 2.11266i −0.379408 0.0785165i
\(725\) −7.00000 1.00000i −0.259973 0.0371391i
\(726\) 0 0
\(727\) 33.6331 33.6331i 1.24738 1.24738i 0.290513 0.956871i \(-0.406174\pi\)
0.956871 0.290513i \(-0.0938259\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −4.90455 + 28.0698i −0.181525 + 1.03891i
\(731\) −35.6216 35.6216i −1.31751 1.31751i
\(732\) 0 0
\(733\) 20.1151i 0.742967i −0.928439 0.371484i \(-0.878849\pi\)
0.928439 0.371484i \(-0.121151\pi\)
\(734\) −10.3766 34.6883i −0.383008 1.28037i
\(735\) 0 0
\(736\) −22.5016 2.65528i −0.829419 0.0978749i
\(737\) 1.91431 1.91431i 0.0705145 0.0705145i
\(738\) 0 0
\(739\) −17.7533 17.7533i −0.653064 0.653064i 0.300666 0.953730i \(-0.402791\pi\)
−0.953730 + 0.300666i \(0.902791\pi\)
\(740\) 4.92104 + 41.6216i 0.180901 + 1.53004i
\(741\) 0 0
\(742\) 3.35341 1.00314i 0.123107 0.0368263i
\(743\) 0.203904 + 0.203904i 0.00748051 + 0.00748051i 0.710837 0.703357i \(-0.248316\pi\)
−0.703357 + 0.710837i \(0.748316\pi\)
\(744\) 0 0
\(745\) 25.1151 8.37169i 0.920145 0.306715i
\(746\) 17.3184 + 9.34292i 0.634070 + 0.342069i
\(747\) 0 0
\(748\) 1.18500 + 1.80344i 0.0433279 + 0.0659404i
\(749\) 1.65815 1.65815i 0.0605876 0.0605876i
\(750\) 0 0
\(751\) 2.45065i 0.0894256i 0.999000 + 0.0447128i \(0.0142373\pi\)
−0.999000 + 0.0447128i \(0.985763\pi\)
\(752\) 37.4703 14.8476i 1.36640 0.541437i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 37.2860i 1.35518i −0.735439 0.677591i \(-0.763024\pi\)
0.735439 0.677591i \(-0.236976\pi\)
\(758\) 14.7740 4.41947i 0.536614 0.160522i
\(759\) 0 0
\(760\) −10.0593 23.2492i −0.364890 0.843336i
\(761\) 12.2008i 0.442278i 0.975242 + 0.221139i \(0.0709774\pi\)
−0.975242 + 0.221139i \(0.929023\pi\)
\(762\) 0 0
\(763\) 3.00673i 0.108851i
\(764\) −10.5897 + 6.95823i −0.383121 + 0.251740i
\(765\) 0 0
\(766\) −28.4201 + 8.50157i −1.02686 + 0.307174i
\(767\) 0 0
\(768\) 0 0
\(769\) 3.21377i 0.115891i −0.998320 0.0579457i \(-0.981545\pi\)
0.998320 0.0579457i \(-0.0184550\pi\)
\(770\) 0.110866 0.0778861i 0.00399534 0.00280682i
\(771\) 0 0
\(772\) −0.237606 + 1.14816i −0.00855163 + 0.0413233i
\(773\) 42.6148 1.53275 0.766375 0.642394i \(-0.222059\pi\)
0.766375 + 0.642394i \(0.222059\pi\)
\(774\) 0 0
\(775\) −1.17092 + 0.878193i −0.0420608 + 0.0315456i
\(776\) −10.9804 9.22605i −0.394172 0.331196i
\(777\) 0 0
\(778\) −9.38397 31.3699i −0.336432 1.12467i
\(779\) 11.3288 11.3288i 0.405898 0.405898i
\(780\) 0 0
\(781\) −0.671153 0.671153i −0.0240158 0.0240158i
\(782\) −25.9859 14.0189i −0.929255 0.501315i
\(783\) 0 0
\(784\) −25.5429 11.0450i −0.912247 0.394463i
\(785\) 24.7434 49.4868i 0.883129 1.76626i
\(786\) 0 0
\(787\) 47.2369i 1.68381i −0.539623 0.841907i \(-0.681433\pi\)
0.539623 0.841907i \(-0.318567\pi\)
\(788\) 14.6858 9.64973i 0.523162 0.343757i
\(789\) 0 0
\(790\) −11.8652 + 8.33558i −0.422145 + 0.296567i
\(791\) 0.493499 0.0175468
\(792\) 0 0
\(793\) 0 0
\(794\) 0.782020 + 0.421884i 0.0277528 + 0.0149721i
\(795\) 0 0
\(796\) 19.5682 12.8578i 0.693578 0.455734i
\(797\) −19.8715 −0.703883 −0.351942 0.936022i \(-0.614478\pi\)
−0.351942 + 0.936022i \(0.614478\pi\)
\(798\) 0 0
\(799\) 52.5229 1.85813
\(800\) 27.3383 + 7.25379i 0.966555 + 0.256460i
\(801\) 0 0
\(802\) 10.6325 + 5.73604i 0.375447 + 0.202547i
\(803\) −1.86519 −0.0658212
\(804\) 0 0
\(805\) −0.829076 + 1.65815i −0.0292211 + 0.0584422i
\(806\) 0 0
\(807\) 0 0
\(808\) 31.7630 + 26.6883i 1.11742 + 0.938890i
\(809\) −38.3158 −1.34711 −0.673557 0.739136i \(-0.735234\pi\)
−0.673557 + 0.739136i \(0.735234\pi\)
\(810\) 0 0
\(811\) 7.50337 + 7.50337i 0.263479 + 0.263479i 0.826466 0.562987i \(-0.190348\pi\)
−0.562987 + 0.826466i \(0.690348\pi\)
\(812\) 0.489289 0.321500i 0.0171707 0.0112824i
\(813\) 0 0
\(814\) −2.62831 + 0.786230i −0.0921221 + 0.0275574i
\(815\) 7.41454 14.8291i 0.259720 0.519440i
\(816\) 0 0
\(817\) −27.3717 + 27.3717i −0.957614 + 0.957614i
\(818\) −48.1684 25.9859i −1.68417 0.908577i
\(819\) 0 0
\(820\) 2.10038 + 17.7648i 0.0733486 + 0.620374i
\(821\) −35.1151 + 35.1151i −1.22552 + 1.22552i −0.259885 + 0.965640i \(0.583685\pi\)
−0.965640 + 0.259885i \(0.916315\pi\)
\(822\) 0 0
\(823\) −30.8041 30.8041i −1.07376 1.07376i −0.997054 0.0767084i \(-0.975559\pi\)
−0.0767084 0.997054i \(-0.524441\pi\)
\(824\) 14.1990 16.8989i 0.494645 0.588701i
\(825\) 0 0
\(826\) 1.87085 3.46787i 0.0650951 0.120662i
\(827\) 23.9143 0.831582 0.415791 0.909460i \(-0.363505\pi\)
0.415791 + 0.909460i \(0.363505\pi\)
\(828\) 0 0
\(829\) −8.47208 + 8.47208i −0.294247 + 0.294247i −0.838756 0.544508i \(-0.816716\pi\)
0.544508 + 0.838756i \(0.316716\pi\)
\(830\) −22.2155 + 15.6069i −0.771110 + 0.541723i
\(831\) 0 0
\(832\) 0 0
\(833\) −25.6430 25.6430i −0.888477 0.888477i
\(834\) 0 0
\(835\) −12.2039 36.6117i −0.422334 1.26700i
\(836\) 1.38577 0.910557i 0.0479278 0.0314923i
\(837\) 0 0
\(838\) 5.62337 + 18.7985i 0.194256 + 0.649384i
\(839\) 49.5787i 1.71165i 0.517267 + 0.855824i \(0.326949\pi\)
−0.517267 + 0.855824i \(0.673051\pi\)
\(840\) 0 0
\(841\) 27.0000i 0.931034i
\(842\) −38.8420 + 11.6192i −1.33858 + 0.400423i
\(843\) 0 0
\(844\) 34.6124 + 7.16286i 1.19141 + 0.246556i
\(845\) −13.0000 + 26.0000i −0.447214 + 0.894427i
\(846\) 0 0
\(847\) −1.60375 1.60375i −0.0551055 0.0551055i
\(848\) −18.9828 + 43.9002i −0.651872 + 1.50754i
\(849\) 0 0
\(850\) 29.6381 + 21.9119i 1.01658 + 0.751572i
\(851\) 26.5426 26.5426i 0.909869 0.909869i
\(852\) 0 0
\(853\) −28.6283 −0.980215 −0.490107 0.871662i \(-0.663042\pi\)
−0.490107 + 0.871662i \(0.663042\pi\)
\(854\) 0.614231 + 0.331366i 0.0210186 + 0.0113391i
\(855\) 0 0
\(856\) 2.77154 + 31.9227i 0.0947292 + 1.09110i
\(857\) 0.899616 + 0.899616i 0.0307303 + 0.0307303i 0.722305 0.691575i \(-0.243083\pi\)
−0.691575 + 0.722305i \(0.743083\pi\)
\(858\) 0 0
\(859\) −38.0754 + 38.0754i −1.29911 + 1.29911i −0.370138 + 0.928977i \(0.620690\pi\)
−0.928977 + 0.370138i \(0.879310\pi\)
\(860\) −5.07475 42.9217i −0.173048 1.46362i
\(861\) 0 0
\(862\) 19.5254 36.1930i 0.665038 1.23274i
\(863\) 3.12494 3.12494i 0.106374 0.106374i −0.651916 0.758291i \(-0.726035\pi\)
0.758291 + 0.651916i \(0.226035\pi\)
\(864\) 0 0
\(865\) 29.4868 + 14.7434i 1.00258 + 0.501290i
\(866\) −5.13409 17.1629i −0.174463 0.583218i
\(867\) 0 0
\(868\) 0.0245584 0.118671i 0.000833567 0.00402797i
\(869\) −0.671153 0.671153i −0.0227673 0.0227673i
\(870\) 0 0
\(871\) 0 0
\(872\) 31.4556 + 26.4300i 1.06522 + 0.895031i
\(873\) 0 0
\(874\) −10.7722 + 19.9676i −0.364374 + 0.675415i
\(875\) 1.31729 1.90275i 0.0445325 0.0643247i
\(876\) 0 0
\(877\) −0.743385 −0.0251023 −0.0125512 0.999921i \(-0.503995\pi\)
−0.0125512 + 0.999921i \(0.503995\pi\)
\(878\) −4.72448 + 8.75746i −0.159444 + 0.295550i
\(879\) 0 0
\(880\) −0.159720 + 1.84449i −0.00538416 + 0.0621778i
\(881\) 35.2860 1.18882 0.594408 0.804164i \(-0.297387\pi\)
0.594408 + 0.804164i \(0.297387\pi\)
\(882\) 0 0
\(883\) 32.9870 1.11010 0.555050 0.831817i \(-0.312699\pi\)
0.555050 + 0.831817i \(0.312699\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −22.7392 + 42.1501i −0.763937 + 1.41606i
\(887\) 5.16779 5.16779i 0.173517 0.173517i −0.615005 0.788523i \(-0.710846\pi\)
0.788523 + 0.615005i \(0.210846\pi\)
\(888\) 0 0
\(889\) 1.12808 0.0378345
\(890\) 8.72448 6.12915i 0.292445 0.205450i
\(891\) 0 0
\(892\) −47.7097 9.87326i −1.59744 0.330581i
\(893\) 40.3587i 1.35055i
\(894\) 0 0
\(895\) −27.6760 + 9.22533i −0.925106 + 0.308369i
\(896\) −2.09438 + 1.04778i −0.0699682 + 0.0350038i
\(897\) 0 0
\(898\) −21.5640 + 39.9718i −0.719601 + 1.33388i
\(899\) −0.292731 0.292731i −0.00976312 0.00976312i
\(900\) 0 0
\(901\) −44.0722 + 44.0722i −1.46826 + 1.46826i
\(902\) −1.12181 + 0.335577i −0.0373521 + 0.0111735i
\(903\) 0 0
\(904\) −4.33799 + 5.16286i −0.144279 + 0.171714i
\(905\) −3.68585 11.0575i −0.122522 0.367565i
\(906\) 0 0
\(907\) −6.74338 −0.223910 −0.111955 0.993713i \(-0.535711\pi\)
−0.111955 + 0.993713i \(0.535711\pi\)
\(908\) −13.8610 + 9.10773i −0.459993 + 0.302251i
\(909\) 0 0
\(910\) 0 0
\(911\) 1.16465i 0.0385867i −0.999814 0.0192933i \(-0.993858\pi\)
0.999814 0.0192933i \(-0.00614164\pi\)
\(912\) 0 0
\(913\) −1.25662 1.25662i −0.0415879 0.0415879i
\(914\) 2.53034 + 8.45872i 0.0836961 + 0.279790i
\(915\) 0 0
\(916\) −5.88734 + 28.4489i −0.194523 + 0.939977i
\(917\) 3.87146i 0.127847i
\(918\) 0 0
\(919\) 25.8652i 0.853214i −0.904437 0.426607i \(-0.859709\pi\)
0.904437 0.426607i \(-0.140291\pi\)
\(920\) −10.0593 23.2492i −0.331646 0.766502i
\(921\) 0 0
\(922\) −2.84136 9.49843i −0.0935751 0.312814i
\(923\) 0 0
\(924\) 0 0
\(925\) −37.4868 + 28.1151i −1.23256 + 0.924418i
\(926\) 5.31657 1.59039i 0.174713 0.0522636i
\(927\) 0 0
\(928\) −0.937529 + 7.94488i −0.0307759 + 0.260803i
\(929\) 37.2003i 1.22050i −0.792208 0.610251i \(-0.791068\pi\)
0.792208 0.610251i \(-0.208932\pi\)
\(930\) 0 0
\(931\) −19.7041 + 19.7041i −0.645777 + 0.645777i
\(932\) −22.9094 4.74097i −0.750422 0.155296i
\(933\) 0 0
\(934\) 15.4679 28.6718i 0.506124 0.938169i
\(935\) −1.07896 + 2.15792i −0.0352858 + 0.0705716i
\(936\) 0 0
\(937\) 20.9143 + 20.9143i 0.683241 + 0.683241i 0.960729 0.277488i \(-0.0895020\pi\)
−0.277488 + 0.960729i \(0.589502\pi\)
\(938\) 1.09725 + 3.66802i 0.0358264 + 0.119765i
\(939\) 0 0
\(940\) 35.3846 + 27.9020i 1.15412 + 0.910064i
\(941\) 5.58546 + 5.58546i 0.182081 + 0.182081i 0.792262 0.610181i \(-0.208903\pi\)
−0.610181 + 0.792262i \(0.708903\pi\)
\(942\) 0 0
\(943\) 11.3288 11.3288i 0.368918 0.368918i
\(944\) 19.8346 + 50.0557i 0.645562 + 1.62918i
\(945\) 0 0
\(946\) 2.71040 0.810789i 0.0881229 0.0263610i
\(947\) 20.7925i 0.675666i −0.941206 0.337833i \(-0.890306\pi\)
0.941206 0.337833i \(-0.109694\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 16.8371 22.7740i 0.546269 0.738885i
\(951\) 0 0
\(952\) −3.04033 + 0.263962i −0.0985375 + 0.00855505i
\(953\) 16.3142 16.3142i 0.528467 0.528467i −0.391648 0.920115i \(-0.628095\pi\)
0.920115 + 0.391648i \(0.128095\pi\)
\(954\) 0 0
\(955\) −12.6712 6.33558i −0.410029 0.205014i
\(956\) 3.75011 + 5.70727i 0.121287 + 0.184586i
\(957\) 0 0
\(958\) 25.6216 + 13.8223i 0.827796 + 0.446580i
\(959\) −3.59219 −0.115998
\(960\) 0 0
\(961\) 30.9143 0.997236
\(962\) 0 0
\(963\) 0 0
\(964\) 3.48256 + 5.30008i 0.112166 + 0.170704i
\(965\) −1.24361 + 0.414538i −0.0400334 + 0.0133445i
\(966\) 0 0
\(967\) −19.5672 + 19.5672i −0.629238 + 0.629238i −0.947876 0.318638i \(-0.896774\pi\)
0.318638 + 0.947876i \(0.396774\pi\)
\(968\) 30.8754 2.68061i 0.992372 0.0861579i
\(969\) 0 0
\(970\) 2.75987 15.7954i 0.0886142 0.507159i
\(971\) −12.8469 12.8469i −0.412277 0.412277i 0.470254 0.882531i \(-0.344162\pi\)
−0.882531 + 0.470254i \(0.844162\pi\)
\(972\) 0 0
\(973\) 1.91431i 0.0613699i
\(974\) 10.1885 3.04778i 0.326460 0.0976571i
\(975\) 0 0
\(976\) −8.86591 + 3.51313i −0.283791 + 0.112452i
\(977\) 27.6430 27.6430i 0.884378 0.884378i −0.109598 0.993976i \(-0.534956\pi\)
0.993976 + 0.109598i \(0.0349564\pi\)
\(978\) 0 0
\(979\) 0.493499 + 0.493499i 0.0157723 + 0.0157723i
\(980\) −3.65317 30.8981i −0.116696 0.987004i
\(981\) 0 0
\(982\) −12.3338 41.2309i −0.393587 1.31573i
\(983\) 22.1611 + 22.1611i 0.706828 + 0.706828i 0.965867 0.259039i \(-0.0834058\pi\)
−0.259039 + 0.965867i \(0.583406\pi\)
\(984\) 0 0
\(985\) 17.5725 + 8.78623i 0.559905 + 0.279953i
\(986\) −4.94981 + 9.17513i −0.157634 + 0.292196i
\(987\) 0 0
\(988\) 0 0
\(989\) −27.3717 + 27.3717i −0.870369 + 0.870369i
\(990\) 0 0
\(991\) 50.9504i 1.61849i 0.587469 + 0.809247i \(0.300124\pi\)
−0.587469 + 0.809247i \(0.699876\pi\)
\(992\) 1.02563 + 1.30008i 0.0325639 + 0.0412775i
\(993\) 0 0
\(994\) 1.28600 0.384694i 0.0407895 0.0122017i
\(995\) 23.4145 + 11.7073i 0.742291 + 0.371145i
\(996\) 0 0
\(997\) 19.9143i 0.630692i 0.948977 + 0.315346i \(0.102121\pi\)
−0.948977 + 0.315346i \(0.897879\pi\)
\(998\) 1.62337 + 5.42682i 0.0513870 + 0.171783i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.z.e.163.3 6
3.2 odd 2 240.2.y.d.163.1 6
5.2 odd 4 720.2.bd.e.307.1 6
12.11 even 2 960.2.y.d.943.2 6
15.2 even 4 240.2.bc.d.67.3 yes 6
16.11 odd 4 720.2.bd.e.523.1 6
24.5 odd 2 1920.2.y.g.223.2 6
24.11 even 2 1920.2.y.h.223.2 6
48.5 odd 4 960.2.bc.d.463.2 6
48.11 even 4 240.2.bc.d.43.3 yes 6
48.29 odd 4 1920.2.bc.h.1183.2 6
48.35 even 4 1920.2.bc.g.1183.2 6
60.47 odd 4 960.2.bc.d.367.2 6
80.27 even 4 inner 720.2.z.e.667.3 6
120.77 even 4 1920.2.bc.g.607.2 6
120.107 odd 4 1920.2.bc.h.607.2 6
240.77 even 4 1920.2.y.h.1567.2 6
240.107 odd 4 240.2.y.d.187.1 yes 6
240.197 even 4 960.2.y.d.847.2 6
240.227 odd 4 1920.2.y.g.1567.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.d.163.1 6 3.2 odd 2
240.2.y.d.187.1 yes 6 240.107 odd 4
240.2.bc.d.43.3 yes 6 48.11 even 4
240.2.bc.d.67.3 yes 6 15.2 even 4
720.2.z.e.163.3 6 1.1 even 1 trivial
720.2.z.e.667.3 6 80.27 even 4 inner
720.2.bd.e.307.1 6 5.2 odd 4
720.2.bd.e.523.1 6 16.11 odd 4
960.2.y.d.847.2 6 240.197 even 4
960.2.y.d.943.2 6 12.11 even 2
960.2.bc.d.367.2 6 60.47 odd 4
960.2.bc.d.463.2 6 48.5 odd 4
1920.2.y.g.223.2 6 24.5 odd 2
1920.2.y.g.1567.2 6 240.227 odd 4
1920.2.y.h.223.2 6 24.11 even 2
1920.2.y.h.1567.2 6 240.77 even 4
1920.2.bc.g.607.2 6 120.77 even 4
1920.2.bc.g.1183.2 6 48.35 even 4
1920.2.bc.h.607.2 6 120.107 odd 4
1920.2.bc.h.1183.2 6 48.29 odd 4