Properties

Label 725.2.p.a.399.4
Level $725$
Weight $2$
Character 725.399
Analytic conductor $5.789$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(149,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.p (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 399.4
Character \(\chi\) \(=\) 725.399
Dual form 725.2.p.a.149.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.504621 + 2.21089i) q^{2} +(-2.55926 - 1.23248i) q^{3} +(-2.83146 + 1.36356i) q^{4} +(1.43341 - 6.28018i) q^{6} +(0.677709 - 1.40728i) q^{7} +(-1.61565 - 2.02596i) q^{8} +(3.16036 + 3.96297i) q^{9} +(3.10613 + 2.47705i) q^{11} +8.92699 q^{12} +(-0.316631 - 0.252504i) q^{13} +(3.45332 + 0.788198i) q^{14} +(-0.254963 + 0.319714i) q^{16} -5.16843 q^{17} +(-7.16690 + 8.98701i) q^{18} +(1.49728 + 3.10914i) q^{19} +(-3.46887 + 2.76633i) q^{21} +(-3.90908 + 8.11728i) q^{22} +(-0.224414 - 0.0512209i) q^{23} +(1.63793 + 7.17623i) q^{24} +(0.398481 - 0.827455i) q^{26} +(-1.30768 - 5.72931i) q^{27} +4.90874i q^{28} +(-5.00751 - 1.98113i) q^{29} +(-4.21005 + 0.960917i) q^{31} +(-5.50488 - 2.65101i) q^{32} +(-4.89649 - 10.1677i) q^{33} +(-2.60810 - 11.4268i) q^{34} +(-14.3522 - 6.91164i) q^{36} +(3.34857 + 4.19898i) q^{37} +(-6.11841 + 4.87927i) q^{38} +(0.499135 + 1.03647i) q^{39} -1.46294i q^{41} +(-7.86653 - 6.27335i) q^{42} +(-1.44264 + 6.32061i) q^{43} +(-12.1725 - 2.77829i) q^{44} -0.522001i q^{46} +(-5.96928 + 7.48524i) q^{47} +(1.04656 - 0.503996i) q^{48} +(2.84329 + 3.56537i) q^{49} +(13.2274 + 6.36997i) q^{51} +(1.24083 + 0.283211i) q^{52} +(-1.74395 + 0.398044i) q^{53} +(12.0070 - 5.78226i) q^{54} +(-3.94604 + 0.900657i) q^{56} -9.80247i q^{57} +(1.85317 - 12.0708i) q^{58} +1.05216 q^{59} +(1.38382 - 2.87352i) q^{61} +(-4.24897 - 8.82307i) q^{62} +(7.71880 - 1.76177i) q^{63} +(2.90123 - 12.7111i) q^{64} +(20.0087 - 15.9564i) q^{66} +(-8.50052 + 6.77893i) q^{67} +(14.6342 - 7.04745i) q^{68} +(0.511205 + 0.407672i) q^{69} +(-8.38773 + 10.5179i) q^{71} +(2.92279 - 12.8056i) q^{72} +(-1.56113 + 6.83974i) q^{73} +(-7.59372 + 9.52223i) q^{74} +(-8.47898 - 6.76176i) q^{76} +(5.59095 - 2.69246i) q^{77} +(-2.03964 + 1.62656i) q^{78} +(-3.74078 + 2.98318i) q^{79} +(-0.330785 + 1.44926i) q^{81} +(3.23440 - 0.738232i) q^{82} +(-3.65480 - 7.58927i) q^{83} +(6.04990 - 12.5628i) q^{84} -14.7022 q^{86} +(10.3738 + 11.2419i) q^{87} -10.2950i q^{88} +(-1.10427 + 0.252043i) q^{89} +(-0.569927 + 0.274462i) q^{91} +(0.705260 - 0.160971i) q^{92} +(11.9589 + 2.72955i) q^{93} +(-19.5613 - 9.42022i) q^{94} +(10.8211 + 13.5693i) q^{96} +(15.5085 - 7.46850i) q^{97} +(-6.44786 + 8.08536i) q^{98} +20.1379i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{4} - 6 q^{6} + 6 q^{9} + 14 q^{11} + 14 q^{14} + 18 q^{16} + 14 q^{19} - 14 q^{21} + 50 q^{24} - 42 q^{26} + 30 q^{29} - 42 q^{31} + 26 q^{34} - 80 q^{36} - 42 q^{39} - 84 q^{44} - 26 q^{49}+ \cdots + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{13}{14}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.504621 + 2.21089i 0.356821 + 1.56334i 0.761060 + 0.648682i \(0.224679\pi\)
−0.404239 + 0.914654i \(0.632463\pi\)
\(3\) −2.55926 1.23248i −1.47759 0.711571i −0.490457 0.871465i \(-0.663170\pi\)
−0.987134 + 0.159895i \(0.948885\pi\)
\(4\) −2.83146 + 1.36356i −1.41573 + 0.681779i
\(5\) 0 0
\(6\) 1.43341 6.28018i 0.585188 2.56387i
\(7\) 0.677709 1.40728i 0.256150 0.531901i −0.732747 0.680501i \(-0.761762\pi\)
0.988897 + 0.148600i \(0.0474766\pi\)
\(8\) −1.61565 2.02596i −0.571220 0.716287i
\(9\) 3.16036 + 3.96297i 1.05345 + 1.32099i
\(10\) 0 0
\(11\) 3.10613 + 2.47705i 0.936533 + 0.746860i 0.967555 0.252659i \(-0.0813051\pi\)
−0.0310229 + 0.999519i \(0.509876\pi\)
\(12\) 8.92699 2.57700
\(13\) −0.316631 0.252504i −0.0878175 0.0700321i 0.578597 0.815614i \(-0.303600\pi\)
−0.666415 + 0.745581i \(0.732172\pi\)
\(14\) 3.45332 + 0.788198i 0.922939 + 0.210655i
\(15\) 0 0
\(16\) −0.254963 + 0.319714i −0.0637408 + 0.0799285i
\(17\) −5.16843 −1.25353 −0.626764 0.779209i \(-0.715621\pi\)
−0.626764 + 0.779209i \(0.715621\pi\)
\(18\) −7.16690 + 8.98701i −1.68926 + 2.11826i
\(19\) 1.49728 + 3.10914i 0.343500 + 0.713286i 0.999126 0.0418005i \(-0.0133094\pi\)
−0.655626 + 0.755086i \(0.727595\pi\)
\(20\) 0 0
\(21\) −3.46887 + 2.76633i −0.756970 + 0.603663i
\(22\) −3.90908 + 8.11728i −0.833418 + 1.73061i
\(23\) −0.224414 0.0512209i −0.0467935 0.0106803i 0.199060 0.979987i \(-0.436211\pi\)
−0.245854 + 0.969307i \(0.579068\pi\)
\(24\) 1.63793 + 7.17623i 0.334341 + 1.46484i
\(25\) 0 0
\(26\) 0.398481 0.827455i 0.0781486 0.162277i
\(27\) −1.30768 5.72931i −0.251663 1.10261i
\(28\) 4.90874i 0.927664i
\(29\) −5.00751 1.98113i −0.929870 0.367887i
\(30\) 0 0
\(31\) −4.21005 + 0.960917i −0.756148 + 0.172586i −0.583182 0.812342i \(-0.698192\pi\)
−0.172967 + 0.984928i \(0.555335\pi\)
\(32\) −5.50488 2.65101i −0.973135 0.468637i
\(33\) −4.89649 10.1677i −0.852369 1.76996i
\(34\) −2.60810 11.4268i −0.447285 1.95968i
\(35\) 0 0
\(36\) −14.3522 6.91164i −2.39203 1.15194i
\(37\) 3.34857 + 4.19898i 0.550502 + 0.690308i 0.976770 0.214289i \(-0.0687434\pi\)
−0.426268 + 0.904597i \(0.640172\pi\)
\(38\) −6.11841 + 4.87927i −0.992536 + 0.791521i
\(39\) 0.499135 + 1.03647i 0.0799256 + 0.165967i
\(40\) 0 0
\(41\) 1.46294i 0.228473i −0.993454 0.114237i \(-0.963558\pi\)
0.993454 0.114237i \(-0.0364422\pi\)
\(42\) −7.86653 6.27335i −1.21383 0.967998i
\(43\) −1.44264 + 6.32061i −0.220000 + 0.963884i 0.737476 + 0.675373i \(0.236017\pi\)
−0.957477 + 0.288511i \(0.906840\pi\)
\(44\) −12.1725 2.77829i −1.83507 0.418842i
\(45\) 0 0
\(46\) 0.522001i 0.0769648i
\(47\) −5.96928 + 7.48524i −0.870709 + 1.09184i 0.124319 + 0.992242i \(0.460325\pi\)
−0.995028 + 0.0995928i \(0.968246\pi\)
\(48\) 1.04656 0.503996i 0.151058 0.0727455i
\(49\) 2.84329 + 3.56537i 0.406184 + 0.509339i
\(50\) 0 0
\(51\) 13.2274 + 6.36997i 1.85220 + 0.891974i
\(52\) 1.24083 + 0.283211i 0.172072 + 0.0392743i
\(53\) −1.74395 + 0.398044i −0.239549 + 0.0546756i −0.340610 0.940205i \(-0.610634\pi\)
0.101061 + 0.994880i \(0.467776\pi\)
\(54\) 12.0070 5.78226i 1.63394 0.786866i
\(55\) 0 0
\(56\) −3.94604 + 0.900657i −0.527311 + 0.120355i
\(57\) 9.80247i 1.29837i
\(58\) 1.85317 12.0708i 0.243333 1.58497i
\(59\) 1.05216 0.136980 0.0684900 0.997652i \(-0.478182\pi\)
0.0684900 + 0.997652i \(0.478182\pi\)
\(60\) 0 0
\(61\) 1.38382 2.87352i 0.177179 0.367917i −0.793399 0.608702i \(-0.791691\pi\)
0.970578 + 0.240785i \(0.0774049\pi\)
\(62\) −4.24897 8.82307i −0.539619 1.12053i
\(63\) 7.71880 1.76177i 0.972478 0.221962i
\(64\) 2.90123 12.7111i 0.362653 1.58889i
\(65\) 0 0
\(66\) 20.0087 15.9564i 2.46290 1.96410i
\(67\) −8.50052 + 6.77893i −1.03850 + 0.828179i −0.985373 0.170409i \(-0.945491\pi\)
−0.0531298 + 0.998588i \(0.516920\pi\)
\(68\) 14.6342 7.04745i 1.77465 0.854628i
\(69\) 0.511205 + 0.407672i 0.0615418 + 0.0490780i
\(70\) 0 0
\(71\) −8.38773 + 10.5179i −0.995440 + 1.24824i −0.0268346 + 0.999640i \(0.508543\pi\)
−0.968606 + 0.248603i \(0.920029\pi\)
\(72\) 2.92279 12.8056i 0.344454 1.50915i
\(73\) −1.56113 + 6.83974i −0.182716 + 0.800531i 0.797615 + 0.603167i \(0.206095\pi\)
−0.980330 + 0.197363i \(0.936762\pi\)
\(74\) −7.59372 + 9.52223i −0.882752 + 1.10694i
\(75\) 0 0
\(76\) −8.47898 6.76176i −0.972605 0.775627i
\(77\) 5.59095 2.69246i 0.637148 0.306834i
\(78\) −2.03964 + 1.62656i −0.230943 + 0.184171i
\(79\) −3.74078 + 2.98318i −0.420871 + 0.335634i −0.810916 0.585162i \(-0.801031\pi\)
0.390045 + 0.920796i \(0.372459\pi\)
\(80\) 0 0
\(81\) −0.330785 + 1.44926i −0.0367539 + 0.161029i
\(82\) 3.23440 0.738232i 0.357180 0.0815241i
\(83\) −3.65480 7.58927i −0.401166 0.833030i −0.999495 0.0317796i \(-0.989883\pi\)
0.598329 0.801251i \(-0.295832\pi\)
\(84\) 6.04990 12.5628i 0.660099 1.37071i
\(85\) 0 0
\(86\) −14.7022 −1.58537
\(87\) 10.3738 + 11.2419i 1.11219 + 1.20526i
\(88\) 10.2950i 1.09745i
\(89\) −1.10427 + 0.252043i −0.117053 + 0.0267165i −0.280646 0.959811i \(-0.590549\pi\)
0.163593 + 0.986528i \(0.447692\pi\)
\(90\) 0 0
\(91\) −0.569927 + 0.274462i −0.0597446 + 0.0287715i
\(92\) 0.705260 0.160971i 0.0735284 0.0167824i
\(93\) 11.9589 + 2.72955i 1.24009 + 0.283041i
\(94\) −19.5613 9.42022i −2.01759 0.971621i
\(95\) 0 0
\(96\) 10.8211 + 13.5693i 1.10443 + 1.38491i
\(97\) 15.5085 7.46850i 1.57465 0.758311i 0.576383 0.817180i \(-0.304464\pi\)
0.998266 + 0.0588689i \(0.0187494\pi\)
\(98\) −6.44786 + 8.08536i −0.651332 + 0.816745i
\(99\) 20.1379i 2.02393i
\(100\) 0 0
\(101\) −6.08315 1.38844i −0.605296 0.138155i −0.0911203 0.995840i \(-0.529045\pi\)
−0.514175 + 0.857685i \(0.671902\pi\)
\(102\) −7.40848 + 32.4587i −0.733549 + 3.21389i
\(103\) 10.3284 + 8.23659i 1.01768 + 0.811576i 0.982208 0.187795i \(-0.0601340\pi\)
0.0354755 + 0.999371i \(0.488705\pi\)
\(104\) 1.04944i 0.102906i
\(105\) 0 0
\(106\) −1.76006 3.65481i −0.170953 0.354987i
\(107\) 7.24619 5.77864i 0.700516 0.558642i −0.207164 0.978306i \(-0.566423\pi\)
0.907680 + 0.419664i \(0.137852\pi\)
\(108\) 11.5149 + 14.4392i 1.10802 + 1.38941i
\(109\) 5.18545 + 2.49718i 0.496676 + 0.239187i 0.665414 0.746474i \(-0.268255\pi\)
−0.168738 + 0.985661i \(0.553969\pi\)
\(110\) 0 0
\(111\) −3.39474 14.8733i −0.322215 1.41171i
\(112\) 0.277135 + 0.575477i 0.0261868 + 0.0543775i
\(113\) 7.26385 + 3.49809i 0.683326 + 0.329072i 0.743139 0.669137i \(-0.233336\pi\)
−0.0598131 + 0.998210i \(0.519050\pi\)
\(114\) 21.6722 4.94654i 2.02979 0.463286i
\(115\) 0 0
\(116\) 16.8799 1.21853i 1.56726 0.113138i
\(117\) 2.05280i 0.189782i
\(118\) 0.530944 + 2.32622i 0.0488774 + 0.214146i
\(119\) −3.50269 + 7.27341i −0.321091 + 0.666753i
\(120\) 0 0
\(121\) 1.06450 + 4.66388i 0.0967727 + 0.423989i
\(122\) 7.05135 + 1.60942i 0.638399 + 0.145710i
\(123\) −1.80304 + 3.74405i −0.162575 + 0.337590i
\(124\) 10.6103 8.46144i 0.952834 0.759860i
\(125\) 0 0
\(126\) 7.79014 + 16.1764i 0.694001 + 1.44111i
\(127\) −10.9570 + 13.7396i −0.972277 + 1.21920i 0.00340252 + 0.999994i \(0.498917\pi\)
−0.975679 + 0.219202i \(0.929654\pi\)
\(128\) 17.3469 1.53327
\(129\) 11.4821 14.3981i 1.01094 1.26768i
\(130\) 0 0
\(131\) −3.26398 0.744983i −0.285176 0.0650895i 0.0775403 0.996989i \(-0.475293\pi\)
−0.362716 + 0.931900i \(0.618150\pi\)
\(132\) 27.7284 + 22.1126i 2.41345 + 1.92466i
\(133\) 5.39014 0.467385
\(134\) −19.2770 15.3729i −1.66528 1.32802i
\(135\) 0 0
\(136\) 8.35039 + 10.4711i 0.716040 + 0.897885i
\(137\) 3.44204 + 4.31618i 0.294073 + 0.368756i 0.906816 0.421526i \(-0.138505\pi\)
−0.612743 + 0.790282i \(0.709934\pi\)
\(138\) −0.643354 + 1.33594i −0.0547659 + 0.113723i
\(139\) −0.132958 + 0.582528i −0.0112774 + 0.0494094i −0.980254 0.197745i \(-0.936638\pi\)
0.968976 + 0.247154i \(0.0794954\pi\)
\(140\) 0 0
\(141\) 24.5024 11.7997i 2.06347 0.993715i
\(142\) −27.4865 13.2368i −2.30662 1.11081i
\(143\) −0.358028 1.56862i −0.0299398 0.131175i
\(144\) −2.07279 −0.172733
\(145\) 0 0
\(146\) −15.9097 −1.31669
\(147\) −2.88249 12.6290i −0.237744 1.04162i
\(148\) −15.2069 7.32325i −1.25000 0.601968i
\(149\) −4.60312 + 2.21675i −0.377102 + 0.181603i −0.612827 0.790217i \(-0.709968\pi\)
0.235725 + 0.971820i \(0.424254\pi\)
\(150\) 0 0
\(151\) −1.73572 + 7.60469i −0.141251 + 0.618861i 0.853894 + 0.520446i \(0.174234\pi\)
−0.995145 + 0.0984149i \(0.968623\pi\)
\(152\) 3.87992 8.05673i 0.314703 0.653487i
\(153\) −16.3341 20.4823i −1.32053 1.65590i
\(154\) 8.77405 + 11.0023i 0.707033 + 0.886591i
\(155\) 0 0
\(156\) −2.82656 2.25411i −0.226306 0.180473i
\(157\) 18.8577 1.50501 0.752504 0.658588i \(-0.228846\pi\)
0.752504 + 0.658588i \(0.228846\pi\)
\(158\) −8.48315 6.76509i −0.674884 0.538202i
\(159\) 4.95380 + 1.13067i 0.392862 + 0.0896681i
\(160\) 0 0
\(161\) −0.224169 + 0.281099i −0.0176670 + 0.0221537i
\(162\) −3.37109 −0.264858
\(163\) 1.41033 1.76850i 0.110466 0.138520i −0.723525 0.690298i \(-0.757479\pi\)
0.833991 + 0.551779i \(0.186051\pi\)
\(164\) 1.99481 + 4.14226i 0.155768 + 0.323456i
\(165\) 0 0
\(166\) 14.9347 11.9101i 1.15916 0.924400i
\(167\) 5.09159 10.5728i 0.393999 0.818147i −0.605748 0.795656i \(-0.707126\pi\)
0.999747 0.0224905i \(-0.00715956\pi\)
\(168\) 11.2090 + 2.55838i 0.864792 + 0.197383i
\(169\) −2.85628 12.5142i −0.219714 0.962628i
\(170\) 0 0
\(171\) −7.58947 + 15.7597i −0.580381 + 1.20517i
\(172\) −4.53375 19.8636i −0.345695 1.51459i
\(173\) 19.2889i 1.46651i −0.679954 0.733254i \(-0.738000\pi\)
0.679954 0.733254i \(-0.262000\pi\)
\(174\) −19.6197 + 28.6083i −1.48737 + 2.16879i
\(175\) 0 0
\(176\) −1.58390 + 0.361514i −0.119391 + 0.0272501i
\(177\) −2.69276 1.29677i −0.202401 0.0974710i
\(178\) −1.11448 2.31424i −0.0835337 0.173460i
\(179\) −0.202580 0.887562i −0.0151416 0.0663395i 0.966793 0.255562i \(-0.0822604\pi\)
−0.981934 + 0.189222i \(0.939403\pi\)
\(180\) 0 0
\(181\) −4.74107 2.28318i −0.352401 0.169707i 0.249305 0.968425i \(-0.419798\pi\)
−0.601706 + 0.798718i \(0.705512\pi\)
\(182\) −0.894404 1.12155i −0.0662976 0.0831346i
\(183\) −7.08310 + 5.64858i −0.523598 + 0.417555i
\(184\) 0.258803 + 0.537409i 0.0190792 + 0.0396183i
\(185\) 0 0
\(186\) 27.8173i 2.03966i
\(187\) −16.0538 12.8025i −1.17397 0.936210i
\(188\) 6.69520 29.3336i 0.488298 2.13937i
\(189\) −8.94895 2.04254i −0.650940 0.148573i
\(190\) 0 0
\(191\) 10.3088i 0.745920i 0.927847 + 0.372960i \(0.121657\pi\)
−0.927847 + 0.372960i \(0.878343\pi\)
\(192\) −23.0911 + 28.9554i −1.66646 + 2.08967i
\(193\) 2.44160 1.17581i 0.175750 0.0846368i −0.343940 0.938992i \(-0.611762\pi\)
0.519690 + 0.854355i \(0.326047\pi\)
\(194\) 24.3379 + 30.5188i 1.74736 + 2.19112i
\(195\) 0 0
\(196\) −12.9122 6.21820i −0.922302 0.444157i
\(197\) −14.4081 3.28855i −1.02653 0.234300i −0.324080 0.946030i \(-0.605055\pi\)
−0.702453 + 0.711730i \(0.747912\pi\)
\(198\) −44.5226 + 10.1620i −3.16409 + 0.722182i
\(199\) 13.5173 6.50959i 0.958216 0.461453i 0.111657 0.993747i \(-0.464384\pi\)
0.846560 + 0.532294i \(0.178670\pi\)
\(200\) 0 0
\(201\) 30.1099 6.87240i 2.12379 0.484741i
\(202\) 14.1498i 0.995577i
\(203\) −6.18163 + 5.70432i −0.433866 + 0.400365i
\(204\) −46.1385 −3.23034
\(205\) 0 0
\(206\) −12.9983 + 26.9912i −0.905634 + 1.88057i
\(207\) −0.506241 1.05122i −0.0351862 0.0730649i
\(208\) 0.161458 0.0368518i 0.0111951 0.00255521i
\(209\) −3.05076 + 13.3662i −0.211025 + 0.924562i
\(210\) 0 0
\(211\) 9.36088 7.46505i 0.644430 0.513916i −0.245863 0.969305i \(-0.579071\pi\)
0.890293 + 0.455389i \(0.150500\pi\)
\(212\) 4.39515 3.50501i 0.301860 0.240725i
\(213\) 34.4294 16.5803i 2.35907 1.13607i
\(214\) 16.4325 + 13.1045i 1.12330 + 0.895805i
\(215\) 0 0
\(216\) −9.49462 + 11.9059i −0.646027 + 0.810093i
\(217\) −1.50091 + 6.57594i −0.101889 + 0.446404i
\(218\) −2.90430 + 12.7246i −0.196704 + 0.861818i
\(219\) 12.4251 15.5806i 0.839613 1.05284i
\(220\) 0 0
\(221\) 1.63648 + 1.30505i 0.110082 + 0.0877872i
\(222\) 31.1703 15.0108i 2.09201 1.00746i
\(223\) −10.4541 + 8.33685i −0.700057 + 0.558277i −0.907542 0.419962i \(-0.862044\pi\)
0.207485 + 0.978238i \(0.433472\pi\)
\(224\) −7.46142 + 5.95028i −0.498537 + 0.397570i
\(225\) 0 0
\(226\) −4.06839 + 17.8248i −0.270625 + 1.18569i
\(227\) 2.06910 0.472258i 0.137331 0.0313448i −0.153303 0.988179i \(-0.548991\pi\)
0.290634 + 0.956834i \(0.406134\pi\)
\(228\) 13.3662 + 27.7553i 0.885200 + 1.83814i
\(229\) 11.8839 24.6772i 0.785312 1.63072i 0.00933352 0.999956i \(-0.497029\pi\)
0.775978 0.630760i \(-0.217257\pi\)
\(230\) 0 0
\(231\) −17.6271 −1.15978
\(232\) 4.07669 + 13.3459i 0.267648 + 0.876198i
\(233\) 17.4774i 1.14498i 0.819910 + 0.572492i \(0.194023\pi\)
−0.819910 + 0.572492i \(0.805977\pi\)
\(234\) 4.53852 1.03589i 0.296692 0.0677181i
\(235\) 0 0
\(236\) −2.97915 + 1.43468i −0.193926 + 0.0933900i
\(237\) 13.2503 3.02431i 0.860703 0.196450i
\(238\) −17.8482 4.07375i −1.15693 0.264062i
\(239\) 15.5439 + 7.48555i 1.00545 + 0.484200i 0.862785 0.505571i \(-0.168718\pi\)
0.142667 + 0.989771i \(0.454432\pi\)
\(240\) 0 0
\(241\) −13.7085 17.1899i −0.883040 1.10730i −0.993547 0.113422i \(-0.963819\pi\)
0.110507 0.993875i \(-0.464753\pi\)
\(242\) −9.77415 + 4.70698i −0.628306 + 0.302576i
\(243\) −8.35934 + 10.4823i −0.536252 + 0.672439i
\(244\) 10.0232i 0.641667i
\(245\) 0 0
\(246\) −9.18755 2.09700i −0.585777 0.133700i
\(247\) 0.310986 1.36252i 0.0197876 0.0866950i
\(248\) 8.74877 + 6.97691i 0.555548 + 0.443034i
\(249\) 23.9274i 1.51634i
\(250\) 0 0
\(251\) −4.23936 8.80311i −0.267586 0.555648i 0.723271 0.690564i \(-0.242638\pi\)
−0.990857 + 0.134917i \(0.956923\pi\)
\(252\) −19.4532 + 15.5134i −1.22544 + 0.977252i
\(253\) −0.570180 0.714983i −0.0358469 0.0449506i
\(254\) −35.9060 17.2914i −2.25294 1.08496i
\(255\) 0 0
\(256\) 2.95119 + 12.9300i 0.184449 + 0.808124i
\(257\) −6.68278 13.8769i −0.416861 0.865620i −0.998633 0.0522684i \(-0.983355\pi\)
0.581772 0.813352i \(-0.302359\pi\)
\(258\) 37.6267 + 18.1201i 2.34254 + 1.12811i
\(259\) 8.17849 1.86669i 0.508187 0.115990i
\(260\) 0 0
\(261\) −7.97437 26.1057i −0.493601 1.61590i
\(262\) 7.59225i 0.469050i
\(263\) 6.89666 + 30.2162i 0.425266 + 1.86321i 0.500026 + 0.866010i \(0.333324\pi\)
−0.0747599 + 0.997202i \(0.523819\pi\)
\(264\) −12.6883 + 26.3475i −0.780911 + 1.62158i
\(265\) 0 0
\(266\) 2.71998 + 11.9170i 0.166773 + 0.730679i
\(267\) 3.13676 + 0.715945i 0.191967 + 0.0438151i
\(268\) 14.8254 30.7852i 0.905603 1.88050i
\(269\) −10.8322 + 8.63841i −0.660453 + 0.526693i −0.895371 0.445322i \(-0.853089\pi\)
0.234918 + 0.972015i \(0.424518\pi\)
\(270\) 0 0
\(271\) 11.6447 + 24.1804i 0.707362 + 1.46885i 0.875565 + 0.483100i \(0.160489\pi\)
−0.168203 + 0.985752i \(0.553796\pi\)
\(272\) 1.31776 1.65242i 0.0799009 0.100193i
\(273\) 1.79686 0.108751
\(274\) −7.80567 + 9.78800i −0.471558 + 0.591315i
\(275\) 0 0
\(276\) −2.00334 0.457249i −0.120587 0.0275232i
\(277\) 17.6352 + 14.0636i 1.05960 + 0.845002i 0.988311 0.152454i \(-0.0487175\pi\)
0.0712885 + 0.997456i \(0.477289\pi\)
\(278\) −1.35500 −0.0812675
\(279\) −17.1134 13.6475i −1.02455 0.817053i
\(280\) 0 0
\(281\) −2.05756 2.58010i −0.122744 0.153916i 0.716663 0.697420i \(-0.245669\pi\)
−0.839406 + 0.543504i \(0.817097\pi\)
\(282\) 38.4523 + 48.2176i 2.28980 + 2.87132i
\(283\) 7.66611 15.9189i 0.455703 0.946277i −0.538885 0.842380i \(-0.681154\pi\)
0.994588 0.103898i \(-0.0331315\pi\)
\(284\) 9.40775 41.2180i 0.558247 2.44584i
\(285\) 0 0
\(286\) 3.28738 1.58312i 0.194387 0.0936118i
\(287\) −2.05877 0.991449i −0.121525 0.0585234i
\(288\) −6.89155 30.1938i −0.406088 1.77919i
\(289\) 9.71265 0.571332
\(290\) 0 0
\(291\) −48.8951 −2.86628
\(292\) −4.90611 21.4951i −0.287109 1.25790i
\(293\) −12.1939 5.87226i −0.712374 0.343061i 0.0423508 0.999103i \(-0.486515\pi\)
−0.754725 + 0.656042i \(0.772230\pi\)
\(294\) 26.4668 12.7457i 1.54357 0.743346i
\(295\) 0 0
\(296\) 3.09685 13.5682i 0.180001 0.788635i
\(297\) 10.1300 21.0351i 0.587802 1.22058i
\(298\) −7.22382 9.05838i −0.418464 0.524738i
\(299\) 0.0581227 + 0.0728835i 0.00336132 + 0.00421496i
\(300\) 0 0
\(301\) 7.91716 + 6.31373i 0.456338 + 0.363917i
\(302\) −17.6890 −1.01789
\(303\) 13.8572 + 11.0507i 0.796073 + 0.634847i
\(304\) −1.37579 0.314014i −0.0789068 0.0180100i
\(305\) 0 0
\(306\) 37.0416 46.4487i 2.11753 2.65530i
\(307\) −6.51865 −0.372039 −0.186020 0.982546i \(-0.559559\pi\)
−0.186020 + 0.982546i \(0.559559\pi\)
\(308\) −12.1592 + 15.2472i −0.692835 + 0.868788i
\(309\) −16.2816 33.8091i −0.926227 1.92333i
\(310\) 0 0
\(311\) 19.1908 15.3042i 1.08821 0.867820i 0.0963761 0.995345i \(-0.469275\pi\)
0.991835 + 0.127525i \(0.0407034\pi\)
\(312\) 1.29341 2.68580i 0.0732251 0.152053i
\(313\) −1.92496 0.439360i −0.108805 0.0248341i 0.167772 0.985826i \(-0.446343\pi\)
−0.276577 + 0.960992i \(0.589200\pi\)
\(314\) 9.51599 + 41.6923i 0.537019 + 2.35283i
\(315\) 0 0
\(316\) 6.52413 13.5475i 0.367011 0.762107i
\(317\) 6.60459 + 28.9366i 0.370951 + 1.62524i 0.724114 + 0.689680i \(0.242249\pi\)
−0.353163 + 0.935562i \(0.614894\pi\)
\(318\) 11.5229i 0.646170i
\(319\) −10.6466 18.5575i −0.596094 1.03902i
\(320\) 0 0
\(321\) −25.6669 + 5.85831i −1.43259 + 0.326979i
\(322\) −0.734600 0.353765i −0.0409377 0.0197145i
\(323\) −7.73860 16.0694i −0.430587 0.894123i
\(324\) −1.03955 4.55457i −0.0577529 0.253032i
\(325\) 0 0
\(326\) 4.62165 + 2.22567i 0.255969 + 0.123268i
\(327\) −10.1932 12.7819i −0.563686 0.706840i
\(328\) −2.96387 + 2.36361i −0.163652 + 0.130508i
\(329\) 6.48838 + 13.4733i 0.357716 + 0.742805i
\(330\) 0 0
\(331\) 28.3740i 1.55958i −0.626044 0.779788i \(-0.715327\pi\)
0.626044 0.779788i \(-0.284673\pi\)
\(332\) 20.6968 + 16.5051i 1.13588 + 0.905838i
\(333\) −6.05772 + 26.5406i −0.331961 + 1.45442i
\(334\) 25.9446 + 5.92168i 1.41963 + 0.324020i
\(335\) 0 0
\(336\) 1.81436i 0.0989814i
\(337\) −2.50472 + 3.14082i −0.136441 + 0.171091i −0.845358 0.534201i \(-0.820613\pi\)
0.708917 + 0.705292i \(0.249184\pi\)
\(338\) 26.2261 12.6298i 1.42651 0.686972i
\(339\) −14.2788 17.9051i −0.775518 0.972469i
\(340\) 0 0
\(341\) −15.4572 7.44380i −0.837055 0.403104i
\(342\) −38.6728 8.82681i −2.09118 0.477299i
\(343\) 17.6040 4.01799i 0.950525 0.216951i
\(344\) 15.1361 7.28918i 0.816086 0.393006i
\(345\) 0 0
\(346\) 42.6457 9.73360i 2.29265 0.523281i
\(347\) 3.55272i 0.190720i −0.995443 0.0953601i \(-0.969600\pi\)
0.995443 0.0953601i \(-0.0304003\pi\)
\(348\) −44.7020 17.6856i −2.39628 0.948045i
\(349\) −3.34203 −0.178895 −0.0894473 0.995992i \(-0.528510\pi\)
−0.0894473 + 0.995992i \(0.528510\pi\)
\(350\) 0 0
\(351\) −1.03263 + 2.14427i −0.0551175 + 0.114453i
\(352\) −10.5322 21.8703i −0.561366 1.16569i
\(353\) −12.2016 + 2.78493i −0.649424 + 0.148227i −0.534528 0.845151i \(-0.679511\pi\)
−0.114896 + 0.993378i \(0.536653\pi\)
\(354\) 1.50818 6.60778i 0.0801590 0.351200i
\(355\) 0 0
\(356\) 2.78302 2.21939i 0.147500 0.117627i
\(357\) 17.9286 14.2976i 0.948883 0.756709i
\(358\) 1.86008 0.895765i 0.0983080 0.0473426i
\(359\) 14.3825 + 11.4697i 0.759080 + 0.605346i 0.924635 0.380855i \(-0.124370\pi\)
−0.165555 + 0.986201i \(0.552942\pi\)
\(360\) 0 0
\(361\) 4.42141 5.54428i 0.232706 0.291804i
\(362\) 2.65541 11.6341i 0.139566 0.611476i
\(363\) 3.02378 13.2481i 0.158708 0.695343i
\(364\) 1.23948 1.55426i 0.0649663 0.0814652i
\(365\) 0 0
\(366\) −16.0627 12.8096i −0.839609 0.669566i
\(367\) 8.85669 4.26516i 0.462316 0.222639i −0.188202 0.982130i \(-0.560266\pi\)
0.650518 + 0.759491i \(0.274552\pi\)
\(368\) 0.0735933 0.0586887i 0.00383631 0.00305936i
\(369\) 5.79760 4.62343i 0.301811 0.240686i
\(370\) 0 0
\(371\) −0.621729 + 2.72397i −0.0322786 + 0.141422i
\(372\) −37.5831 + 8.57810i −1.94859 + 0.444754i
\(373\) −9.62338 19.9832i −0.498280 1.03469i −0.986771 0.162120i \(-0.948167\pi\)
0.488491 0.872569i \(-0.337547\pi\)
\(374\) 20.2038 41.9536i 1.04471 2.16937i
\(375\) 0 0
\(376\) 24.8091 1.27943
\(377\) 1.08528 + 1.89170i 0.0558950 + 0.0974277i
\(378\) 20.8159i 1.07065i
\(379\) 8.48209 1.93598i 0.435696 0.0994447i 0.000953214 1.00000i \(-0.499697\pi\)
0.434742 + 0.900555i \(0.356839\pi\)
\(380\) 0 0
\(381\) 44.9757 21.6591i 2.30417 1.10963i
\(382\) −22.7917 + 5.20205i −1.16612 + 0.266160i
\(383\) 4.95869 + 1.13179i 0.253377 + 0.0578317i 0.347323 0.937746i \(-0.387091\pi\)
−0.0939456 + 0.995577i \(0.529948\pi\)
\(384\) −44.3954 21.3797i −2.26554 1.09103i
\(385\) 0 0
\(386\) 3.83167 + 4.80477i 0.195027 + 0.244556i
\(387\) −29.6076 + 14.2583i −1.50504 + 0.724790i
\(388\) −33.7279 + 42.2934i −1.71227 + 2.14712i
\(389\) 29.8408i 1.51299i −0.654000 0.756494i \(-0.726910\pi\)
0.654000 0.756494i \(-0.273090\pi\)
\(390\) 0 0
\(391\) 1.15987 + 0.264732i 0.0586569 + 0.0133881i
\(392\) 2.62955 11.5208i 0.132812 0.581888i
\(393\) 7.43522 + 5.92939i 0.375057 + 0.299098i
\(394\) 33.5142i 1.68842i
\(395\) 0 0
\(396\) −27.4591 57.0195i −1.37987 2.86534i
\(397\) −2.28497 + 1.82220i −0.114679 + 0.0914537i −0.679150 0.733999i \(-0.737652\pi\)
0.564471 + 0.825453i \(0.309080\pi\)
\(398\) 21.2131 + 26.6004i 1.06332 + 1.33336i
\(399\) −13.7948 6.64322i −0.690604 0.332577i
\(400\) 0 0
\(401\) 4.54850 + 19.9283i 0.227141 + 0.995171i 0.951958 + 0.306229i \(0.0990674\pi\)
−0.724817 + 0.688942i \(0.758075\pi\)
\(402\) 30.3882 + 63.1018i 1.51563 + 3.14723i
\(403\) 1.57567 + 0.758802i 0.0784896 + 0.0377986i
\(404\) 19.1174 4.36341i 0.951125 0.217088i
\(405\) 0 0
\(406\) −15.7310 10.7884i −0.780717 0.535419i
\(407\) 21.3372i 1.05764i
\(408\) −8.46551 37.0898i −0.419105 1.83622i
\(409\) −14.5837 + 30.2833i −0.721116 + 1.49741i 0.140625 + 0.990063i \(0.455089\pi\)
−0.861741 + 0.507349i \(0.830626\pi\)
\(410\) 0 0
\(411\) −3.48949 15.2885i −0.172124 0.754124i
\(412\) −40.4754 9.23824i −1.99408 0.455135i
\(413\) 0.713061 1.48069i 0.0350874 0.0728598i
\(414\) 2.06867 1.64971i 0.101670 0.0810789i
\(415\) 0 0
\(416\) 1.07362 + 2.22940i 0.0526387 + 0.109305i
\(417\) 1.05823 1.32698i 0.0518216 0.0649823i
\(418\) −31.0907 −1.52070
\(419\) −4.69488 + 5.88719i −0.229360 + 0.287608i −0.883173 0.469048i \(-0.844597\pi\)
0.653813 + 0.756656i \(0.273168\pi\)
\(420\) 0 0
\(421\) 19.8646 + 4.53398i 0.968144 + 0.220972i 0.677226 0.735775i \(-0.263182\pi\)
0.290918 + 0.956748i \(0.406039\pi\)
\(422\) 21.2281 + 16.9289i 1.03337 + 0.824084i
\(423\) −48.5289 −2.35956
\(424\) 3.62403 + 2.89007i 0.175999 + 0.140354i
\(425\) 0 0
\(426\) 54.0312 + 67.7529i 2.61782 + 3.28264i
\(427\) −3.10602 3.89482i −0.150311 0.188484i
\(428\) −12.6378 + 26.2426i −0.610869 + 1.26848i
\(429\) −1.01700 + 4.45578i −0.0491013 + 0.215127i
\(430\) 0 0
\(431\) −10.6631 + 5.13509i −0.513625 + 0.247349i −0.672697 0.739918i \(-0.734864\pi\)
0.159072 + 0.987267i \(0.449150\pi\)
\(432\) 2.16515 + 1.04268i 0.104171 + 0.0501660i
\(433\) −3.80447 16.6685i −0.182831 0.801037i −0.980274 0.197642i \(-0.936672\pi\)
0.797443 0.603394i \(-0.206186\pi\)
\(434\) −15.2961 −0.734235
\(435\) 0 0
\(436\) −18.0874 −0.866230
\(437\) −0.176758 0.774425i −0.00845546 0.0370458i
\(438\) 40.7171 + 19.6083i 1.94554 + 0.936921i
\(439\) −16.8940 + 8.13573i −0.806308 + 0.388297i −0.791176 0.611588i \(-0.790531\pi\)
−0.0151314 + 0.999886i \(0.504817\pi\)
\(440\) 0 0
\(441\) −5.14363 + 22.5357i −0.244935 + 1.07313i
\(442\) −2.05952 + 4.27664i −0.0979614 + 0.203419i
\(443\) −2.12225 2.66122i −0.100831 0.126438i 0.728856 0.684667i \(-0.240052\pi\)
−0.829687 + 0.558229i \(0.811481\pi\)
\(444\) 29.8927 + 37.4843i 1.41864 + 1.77892i
\(445\) 0 0
\(446\) −23.7072 18.9059i −1.12257 0.895219i
\(447\) 14.5127 0.686427
\(448\) −15.9219 12.6973i −0.752237 0.599889i
\(449\) −0.135791 0.0309934i −0.00640836 0.00146267i 0.219316 0.975654i \(-0.429618\pi\)
−0.225724 + 0.974191i \(0.572475\pi\)
\(450\) 0 0
\(451\) 3.62379 4.54408i 0.170637 0.213973i
\(452\) −25.3371 −1.19176
\(453\) 13.8148 17.3232i 0.649075 0.813914i
\(454\) 2.08822 + 4.33623i 0.0980050 + 0.203509i
\(455\) 0 0
\(456\) −19.8595 + 15.8374i −0.930005 + 0.741654i
\(457\) 13.9188 28.9026i 0.651093 1.35201i −0.270073 0.962840i \(-0.587048\pi\)
0.921166 0.389169i \(-0.127238\pi\)
\(458\) 60.5555 + 13.8214i 2.82957 + 0.645831i
\(459\) 6.75864 + 29.6115i 0.315466 + 1.38215i
\(460\) 0 0
\(461\) −0.314786 + 0.653661i −0.0146611 + 0.0304440i −0.908171 0.418600i \(-0.862521\pi\)
0.893510 + 0.449044i \(0.148235\pi\)
\(462\) −8.89502 38.9716i −0.413834 1.81312i
\(463\) 9.14813i 0.425150i 0.977145 + 0.212575i \(0.0681849\pi\)
−0.977145 + 0.212575i \(0.931815\pi\)
\(464\) 1.91013 1.09585i 0.0886753 0.0508737i
\(465\) 0 0
\(466\) −38.6407 + 8.81948i −1.78999 + 0.408554i
\(467\) 27.6274 + 13.3047i 1.27844 + 0.615667i 0.944990 0.327099i \(-0.106071\pi\)
0.333455 + 0.942766i \(0.391785\pi\)
\(468\) 2.79911 + 5.81242i 0.129389 + 0.268679i
\(469\) 3.77897 + 16.5567i 0.174496 + 0.764519i
\(470\) 0 0
\(471\) −48.2618 23.2417i −2.22379 1.07092i
\(472\) −1.69993 2.13165i −0.0782457 0.0981170i
\(473\) −20.1375 + 16.0591i −0.925924 + 0.738399i
\(474\) 13.3728 + 27.7689i 0.614234 + 1.27547i
\(475\) 0 0
\(476\) 25.3705i 1.16285i
\(477\) −7.08894 5.65324i −0.324580 0.258844i
\(478\) −8.70595 + 38.1433i −0.398201 + 1.74463i
\(479\) 5.16447 + 1.17876i 0.235971 + 0.0538588i 0.338871 0.940833i \(-0.389955\pi\)
−0.102900 + 0.994692i \(0.532812\pi\)
\(480\) 0 0
\(481\) 2.17506i 0.0991740i
\(482\) 31.0873 38.9823i 1.41599 1.77559i
\(483\) 0.920156 0.443124i 0.0418686 0.0201628i
\(484\) −9.37355 11.7541i −0.426070 0.534275i
\(485\) 0 0
\(486\) −27.3935 13.1920i −1.24259 0.598401i
\(487\) −3.39429 0.774725i −0.153810 0.0351062i 0.144922 0.989443i \(-0.453707\pi\)
−0.298733 + 0.954337i \(0.596564\pi\)
\(488\) −8.05742 + 1.83905i −0.364742 + 0.0832500i
\(489\) −5.78905 + 2.78786i −0.261790 + 0.126071i
\(490\) 0 0
\(491\) 5.70489 1.30210i 0.257458 0.0587631i −0.0918437 0.995773i \(-0.529276\pi\)
0.349302 + 0.937010i \(0.386419\pi\)
\(492\) 13.0597i 0.588776i
\(493\) 25.8809 + 10.2393i 1.16562 + 0.461157i
\(494\) 3.16931 0.142594
\(495\) 0 0
\(496\) 0.766191 1.59101i 0.0344030 0.0714385i
\(497\) 9.11713 + 18.9319i 0.408959 + 0.849213i
\(498\) −52.9008 + 12.0743i −2.37054 + 0.541061i
\(499\) 5.27783 23.1237i 0.236268 1.03516i −0.708060 0.706152i \(-0.750429\pi\)
0.944328 0.329005i \(-0.106713\pi\)
\(500\) 0 0
\(501\) −26.0614 + 20.7833i −1.16434 + 0.928529i
\(502\) 17.3234 13.8150i 0.773183 0.616593i
\(503\) −17.4212 + 8.38962i −0.776774 + 0.374075i −0.779887 0.625920i \(-0.784723\pi\)
0.00311266 + 0.999995i \(0.499009\pi\)
\(504\) −16.0402 12.7916i −0.714487 0.569784i
\(505\) 0 0
\(506\) 1.29302 1.62140i 0.0574819 0.0720801i
\(507\) −8.11345 + 35.5473i −0.360331 + 1.57871i
\(508\) 12.2895 53.8437i 0.545257 2.38893i
\(509\) −24.2136 + 30.3629i −1.07325 + 1.34581i −0.138555 + 0.990355i \(0.544246\pi\)
−0.934693 + 0.355456i \(0.884326\pi\)
\(510\) 0 0
\(511\) 8.56742 + 6.83229i 0.379000 + 0.302243i
\(512\) 4.16055 2.00362i 0.183872 0.0885482i
\(513\) 15.8553 12.6441i 0.700027 0.558253i
\(514\) 27.3081 21.7775i 1.20451 0.960565i
\(515\) 0 0
\(516\) −12.8784 + 56.4240i −0.566941 + 2.48393i
\(517\) −37.0827 + 8.46389i −1.63090 + 0.372241i
\(518\) 8.25408 + 17.1398i 0.362663 + 0.753078i
\(519\) −23.7731 + 49.3654i −1.04352 + 2.16690i
\(520\) 0 0
\(521\) 33.3472 1.46097 0.730484 0.682930i \(-0.239294\pi\)
0.730484 + 0.682930i \(0.239294\pi\)
\(522\) 53.6928 30.8039i 2.35007 1.34825i
\(523\) 31.8103i 1.39097i 0.718542 + 0.695484i \(0.244810\pi\)
−0.718542 + 0.695484i \(0.755190\pi\)
\(524\) 10.2577 2.34124i 0.448108 0.102278i
\(525\) 0 0
\(526\) −63.3246 + 30.4955i −2.76108 + 1.32967i
\(527\) 21.7594 4.96643i 0.947853 0.216341i
\(528\) 4.49917 + 1.02691i 0.195801 + 0.0446903i
\(529\) −20.6745 9.95634i −0.898893 0.432884i
\(530\) 0 0
\(531\) 3.32522 + 4.16969i 0.144302 + 0.180949i
\(532\) −15.2620 + 7.34977i −0.661689 + 0.318653i
\(533\) −0.369399 + 0.463212i −0.0160005 + 0.0200640i
\(534\) 7.29632i 0.315742i
\(535\) 0 0
\(536\) 27.4678 + 6.26934i 1.18643 + 0.270794i
\(537\) −0.575443 + 2.52118i −0.0248322 + 0.108797i
\(538\) −24.5648 19.5897i −1.05906 0.844574i
\(539\) 18.1175i 0.780375i
\(540\) 0 0
\(541\) 16.8087 + 34.9037i 0.722664 + 1.50063i 0.860105 + 0.510117i \(0.170398\pi\)
−0.137441 + 0.990510i \(0.543888\pi\)
\(542\) −47.5840 + 37.9470i −2.04391 + 1.62996i
\(543\) 9.31969 + 11.6865i 0.399946 + 0.501517i
\(544\) 28.4516 + 13.7016i 1.21985 + 0.587450i
\(545\) 0 0
\(546\) 0.906735 + 3.97267i 0.0388047 + 0.170014i
\(547\) 2.59920 + 5.39730i 0.111134 + 0.230772i 0.949117 0.314925i \(-0.101979\pi\)
−0.837983 + 0.545697i \(0.816265\pi\)
\(548\) −15.6313 7.52765i −0.667737 0.321565i
\(549\) 15.7610 3.59735i 0.672665 0.153531i
\(550\) 0 0
\(551\) −1.33803 18.5353i −0.0570022 0.789632i
\(552\) 1.69434i 0.0721159i
\(553\) 1.66299 + 7.28605i 0.0707176 + 0.309834i
\(554\) −22.1940 + 46.0864i −0.942934 + 1.95802i
\(555\) 0 0
\(556\) −0.417845 1.83070i −0.0177206 0.0776389i
\(557\) −1.83032 0.417760i −0.0775533 0.0177010i 0.183568 0.983007i \(-0.441235\pi\)
−0.261122 + 0.965306i \(0.584092\pi\)
\(558\) 21.5373 44.7226i 0.911746 1.89326i
\(559\) 2.05277 1.63703i 0.0868227 0.0692388i
\(560\) 0 0
\(561\) 25.3071 + 52.5508i 1.06847 + 2.21870i
\(562\) 4.66602 5.85101i 0.196824 0.246810i
\(563\) −26.4739 −1.11574 −0.557872 0.829927i \(-0.688382\pi\)
−0.557872 + 0.829927i \(0.688382\pi\)
\(564\) −53.2877 + 66.8207i −2.24382 + 2.81366i
\(565\) 0 0
\(566\) 39.0633 + 8.91595i 1.64195 + 0.374765i
\(567\) 1.81534 + 1.44769i 0.0762372 + 0.0607971i
\(568\) 34.8605 1.46271
\(569\) 9.99580 + 7.97139i 0.419046 + 0.334178i 0.810207 0.586144i \(-0.199355\pi\)
−0.391161 + 0.920322i \(0.627926\pi\)
\(570\) 0 0
\(571\) −23.7265 29.7521i −0.992924 1.24509i −0.969431 0.245363i \(-0.921093\pi\)
−0.0234924 0.999724i \(-0.507479\pi\)
\(572\) 3.15264 + 3.95329i 0.131819 + 0.165295i
\(573\) 12.7054 26.3830i 0.530775 1.10216i
\(574\) 1.15309 5.05201i 0.0481290 0.210867i
\(575\) 0 0
\(576\) 59.5426 28.6742i 2.48094 1.19476i
\(577\) −0.0921290 0.0443670i −0.00383538 0.00184702i 0.431965 0.901890i \(-0.357820\pi\)
−0.435800 + 0.900043i \(0.643535\pi\)
\(578\) 4.90121 + 21.4736i 0.203863 + 0.893184i
\(579\) −7.69786 −0.319912
\(580\) 0 0
\(581\) −13.1571 −0.545848
\(582\) −24.6735 108.102i −1.02275 4.48096i
\(583\) −6.40289 3.08347i −0.265181 0.127704i
\(584\) 16.3793 7.88785i 0.677780 0.326402i
\(585\) 0 0
\(586\) 6.82964 29.9226i 0.282130 1.23609i
\(587\) 0.319039 0.662492i 0.0131682 0.0273440i −0.894281 0.447506i \(-0.852312\pi\)
0.907449 + 0.420162i \(0.138027\pi\)
\(588\) 25.3820 + 31.8280i 1.04674 + 1.31257i
\(589\) −9.29127 11.6509i −0.382840 0.480066i
\(590\) 0 0
\(591\) 32.8210 + 26.1739i 1.35008 + 1.07665i
\(592\) −2.19624 −0.0902647
\(593\) −34.9913 27.9046i −1.43692 1.14590i −0.964356 0.264607i \(-0.914758\pi\)
−0.472562 0.881297i \(-0.656671\pi\)
\(594\) 51.6182 + 11.7815i 2.11792 + 0.483402i
\(595\) 0 0
\(596\) 10.0109 12.5532i 0.410061 0.514201i
\(597\) −42.6173 −1.74421
\(598\) −0.131808 + 0.165281i −0.00539001 + 0.00675886i
\(599\) −1.76159 3.65797i −0.0719764 0.149461i 0.861876 0.507119i \(-0.169290\pi\)
−0.933853 + 0.357658i \(0.883575\pi\)
\(600\) 0 0
\(601\) −34.7392 + 27.7036i −1.41704 + 1.13005i −0.444921 + 0.895570i \(0.646768\pi\)
−0.972120 + 0.234483i \(0.924660\pi\)
\(602\) −9.96379 + 20.6900i −0.406094 + 0.843262i
\(603\) −53.7294 12.2634i −2.18803 0.499404i
\(604\) −5.45481 23.8991i −0.221953 0.972441i
\(605\) 0 0
\(606\) −17.4393 + 36.2131i −0.708423 + 1.47106i
\(607\) 2.15884 + 9.45849i 0.0876246 + 0.383908i 0.999656 0.0262110i \(-0.00834417\pi\)
−0.912032 + 0.410119i \(0.865487\pi\)
\(608\) 21.0848i 0.855100i
\(609\) 22.8509 6.98013i 0.925964 0.282849i
\(610\) 0 0
\(611\) 3.78012 0.862787i 0.152927 0.0349046i
\(612\) 74.1781 + 35.7223i 2.99847 + 1.44399i
\(613\) −0.774505 1.60828i −0.0312820 0.0649576i 0.884742 0.466081i \(-0.154334\pi\)
−0.916024 + 0.401123i \(0.868620\pi\)
\(614\) −3.28945 14.4120i −0.132751 0.581622i
\(615\) 0 0
\(616\) −14.4879 6.97699i −0.583733 0.281111i
\(617\) 5.43065 + 6.80982i 0.218630 + 0.274153i 0.879036 0.476756i \(-0.158187\pi\)
−0.660406 + 0.750909i \(0.729616\pi\)
\(618\) 66.5321 53.0576i 2.67631 2.13429i
\(619\) 6.16293 + 12.7975i 0.247709 + 0.514373i 0.987336 0.158644i \(-0.0507122\pi\)
−0.739627 + 0.673017i \(0.764998\pi\)
\(620\) 0 0
\(621\) 1.35272i 0.0542826i
\(622\) 43.5199 + 34.7060i 1.74499 + 1.39158i
\(623\) −0.393681 + 1.72483i −0.0157725 + 0.0691038i
\(624\) −0.458633 0.104680i −0.0183600 0.00419056i
\(625\) 0 0
\(626\) 4.47759i 0.178961i
\(627\) 24.2813 30.4477i 0.969700 1.21597i
\(628\) −53.3947 + 25.7135i −2.13068 + 1.02608i
\(629\) −17.3069 21.7021i −0.690070 0.865320i
\(630\) 0 0
\(631\) 14.9293 + 7.18958i 0.594327 + 0.286213i 0.706768 0.707446i \(-0.250153\pi\)
−0.112441 + 0.993658i \(0.535867\pi\)
\(632\) 12.0876 + 2.75892i 0.480820 + 0.109744i
\(633\) −33.1575 + 7.56798i −1.31789 + 0.300800i
\(634\) −60.6429 + 29.2041i −2.40844 + 1.15984i
\(635\) 0 0
\(636\) −15.5682 + 3.55334i −0.617319 + 0.140899i
\(637\) 1.84685i 0.0731748i
\(638\) 35.6561 32.9029i 1.41164 1.30264i
\(639\) −68.1903 −2.69757
\(640\) 0 0
\(641\) 3.16628 6.57486i 0.125061 0.259691i −0.829033 0.559200i \(-0.811108\pi\)
0.954094 + 0.299509i \(0.0968227\pi\)
\(642\) −25.9042 53.7906i −1.02236 2.12294i
\(643\) 33.0214 7.53691i 1.30224 0.297227i 0.485499 0.874237i \(-0.338638\pi\)
0.816737 + 0.577010i \(0.195781\pi\)
\(644\) 0.251430 1.10159i 0.00990774 0.0434086i
\(645\) 0 0
\(646\) 31.6225 25.2181i 1.24417 0.992194i
\(647\) −26.1482 + 20.8525i −1.02799 + 0.819795i −0.983807 0.179228i \(-0.942640\pi\)
−0.0441829 + 0.999023i \(0.514068\pi\)
\(648\) 3.47059 1.67135i 0.136338 0.0656568i
\(649\) 3.26815 + 2.60627i 0.128286 + 0.102305i
\(650\) 0 0
\(651\) 11.9459 14.9797i 0.468198 0.587101i
\(652\) −1.58184 + 6.93051i −0.0619497 + 0.271420i
\(653\) 5.28615 23.1601i 0.206863 0.906326i −0.759776 0.650184i \(-0.774692\pi\)
0.966639 0.256141i \(-0.0824512\pi\)
\(654\) 23.1156 28.9861i 0.903893 1.13345i
\(655\) 0 0
\(656\) 0.467723 + 0.372997i 0.0182615 + 0.0145631i
\(657\) −32.0394 + 15.4294i −1.24998 + 0.601956i
\(658\) −26.5137 + 21.1440i −1.03361 + 0.824278i
\(659\) 3.85540 3.07458i 0.150185 0.119769i −0.545515 0.838101i \(-0.683666\pi\)
0.695700 + 0.718333i \(0.255094\pi\)
\(660\) 0 0
\(661\) 5.22326 22.8846i 0.203161 0.890107i −0.765836 0.643036i \(-0.777675\pi\)
0.968997 0.247071i \(-0.0794682\pi\)
\(662\) 62.7318 14.3181i 2.43814 0.556489i
\(663\) −2.57975 5.35690i −0.100189 0.208045i
\(664\) −9.47070 + 19.6661i −0.367535 + 0.763193i
\(665\) 0 0
\(666\) −61.7352 −2.39219
\(667\) 1.02228 + 0.701082i 0.0395827 + 0.0271460i
\(668\) 36.8790i 1.42689i
\(669\) 37.0297 8.45179i 1.43165 0.326765i
\(670\) 0 0
\(671\) 11.4162 5.49774i 0.440717 0.212238i
\(672\) 26.4293 6.03232i 1.01953 0.232702i
\(673\) 29.1789 + 6.65990i 1.12477 + 0.256720i 0.744150 0.668013i \(-0.232855\pi\)
0.380616 + 0.924733i \(0.375712\pi\)
\(674\) −8.20794 3.95274i −0.316158 0.152254i
\(675\) 0 0
\(676\) 25.1512 + 31.5386i 0.967353 + 1.21302i
\(677\) −19.8360 + 9.55250i −0.762358 + 0.367132i −0.774318 0.632796i \(-0.781907\pi\)
0.0119603 + 0.999928i \(0.496193\pi\)
\(678\) 32.3807 40.6041i 1.24357 1.55939i
\(679\) 26.8862i 1.03180i
\(680\) 0 0
\(681\) −5.87741 1.34148i −0.225223 0.0514056i
\(682\) 8.65739 37.9305i 0.331508 1.45243i
\(683\) −3.60979 2.87871i −0.138125 0.110151i 0.551990 0.833851i \(-0.313869\pi\)
−0.690115 + 0.723700i \(0.742440\pi\)
\(684\) 54.9715i 2.10189i
\(685\) 0 0
\(686\) 17.7667 + 36.8929i 0.678335 + 1.40858i
\(687\) −60.8282 + 48.5088i −2.32074 + 1.85073i
\(688\) −1.65297 2.07275i −0.0630188 0.0790230i
\(689\) 0.652694 + 0.314321i 0.0248657 + 0.0119747i
\(690\) 0 0
\(691\) 7.95421 + 34.8497i 0.302592 + 1.32574i 0.866199 + 0.499700i \(0.166556\pi\)
−0.563606 + 0.826044i \(0.690586\pi\)
\(692\) 26.3015 + 54.6157i 0.999834 + 2.07618i
\(693\) 28.3396 + 13.6476i 1.07653 + 0.518430i
\(694\) 7.85468 1.79278i 0.298160 0.0680530i
\(695\) 0 0
\(696\) 6.01513 39.1800i 0.228003 1.48511i
\(697\) 7.56111i 0.286398i
\(698\) −1.68646 7.38886i −0.0638334 0.279672i
\(699\) 21.5405 44.7293i 0.814737 1.69182i
\(700\) 0 0
\(701\) −0.811010 3.55327i −0.0306314 0.134205i 0.957300 0.289096i \(-0.0933546\pi\)
−0.987932 + 0.154891i \(0.950497\pi\)
\(702\) −5.26183 1.20098i −0.198595 0.0453280i
\(703\) −8.04145 + 16.6982i −0.303289 + 0.629786i
\(704\) 40.4976 32.2958i 1.52631 1.21719i
\(705\) 0 0
\(706\) −12.3143 25.5710i −0.463457 0.962377i
\(707\) −6.07652 + 7.61972i −0.228531 + 0.286569i
\(708\) 9.39266 0.352998
\(709\) −13.0877 + 16.4114i −0.491518 + 0.616344i −0.964293 0.264839i \(-0.914681\pi\)
0.472774 + 0.881184i \(0.343253\pi\)
\(710\) 0 0
\(711\) −23.6445 5.39670i −0.886737 0.202392i
\(712\) 2.29475 + 1.83000i 0.0859994 + 0.0685822i
\(713\) 0.994013 0.0372261
\(714\) 40.6576 + 32.4233i 1.52157 + 1.21341i
\(715\) 0 0
\(716\) 1.78384 + 2.23686i 0.0666651 + 0.0835954i
\(717\) −30.5552 38.3150i −1.14110 1.43090i
\(718\) −18.1005 + 37.5860i −0.675503 + 1.40270i
\(719\) 5.39677 23.6448i 0.201266 0.881803i −0.768902 0.639367i \(-0.779197\pi\)
0.970167 0.242436i \(-0.0779463\pi\)
\(720\) 0 0
\(721\) 18.5908 8.95286i 0.692357 0.333422i
\(722\) 14.4889 + 6.97750i 0.539222 + 0.259676i
\(723\) 13.8975 + 60.8888i 0.516852 + 2.26448i
\(724\) 16.5374 0.614607
\(725\) 0 0
\(726\) 30.8159 1.14368
\(727\) 6.88385 + 30.1601i 0.255308 + 1.11858i 0.926203 + 0.377025i \(0.123053\pi\)
−0.670895 + 0.741552i \(0.734090\pi\)
\(728\) 1.47686 + 0.711216i 0.0547359 + 0.0263594i
\(729\) 38.3309 18.4592i 1.41966 0.683673i
\(730\) 0 0
\(731\) 7.45617 32.6676i 0.275776 1.20826i
\(732\) 12.3533 25.6519i 0.456591 0.948122i
\(733\) 11.5408 + 14.4717i 0.426268 + 0.534523i 0.947866 0.318668i \(-0.103235\pi\)
−0.521598 + 0.853191i \(0.674664\pi\)
\(734\) 13.8991 + 17.4289i 0.513024 + 0.643312i
\(735\) 0 0
\(736\) 1.09958 + 0.876889i 0.0405312 + 0.0323225i
\(737\) −43.1955 −1.59113
\(738\) 13.1475 + 10.4848i 0.483966 + 0.385950i
\(739\) 33.1954 + 7.57663i 1.22111 + 0.278711i 0.784037 0.620714i \(-0.213157\pi\)
0.437075 + 0.899425i \(0.356014\pi\)
\(740\) 0 0
\(741\) −2.47517 + 3.10376i −0.0909276 + 0.114020i
\(742\) −6.33614 −0.232607
\(743\) 21.7142 27.2288i 0.796618 0.998927i −0.203187 0.979140i \(-0.565130\pi\)
0.999804 0.0197868i \(-0.00629873\pi\)
\(744\) −13.7915 28.6384i −0.505622 1.04994i
\(745\) 0 0
\(746\) 39.3244 31.3602i 1.43977 1.14818i
\(747\) 18.5255 38.4687i 0.677814 1.40750i
\(748\) 62.9125 + 14.3594i 2.30031 + 0.525030i
\(749\) −3.22135 14.1136i −0.117705 0.515701i
\(750\) 0 0
\(751\) −21.0818 + 43.7769i −0.769287 + 1.59744i 0.0322376 + 0.999480i \(0.489737\pi\)
−0.801525 + 0.597961i \(0.795978\pi\)
\(752\) −0.871188 3.81692i −0.0317690 0.139189i
\(753\) 27.7544i 1.01143i
\(754\) −3.63469 + 3.35404i −0.132368 + 0.122147i
\(755\) 0 0
\(756\) 28.1237 6.41904i 1.02285 0.233458i
\(757\) −27.1118 13.0563i −0.985394 0.474541i −0.129437 0.991588i \(-0.541317\pi\)
−0.855957 + 0.517047i \(0.827031\pi\)
\(758\) 8.56048 + 17.7760i 0.310931 + 0.645654i
\(759\) 0.578041 + 2.53256i 0.0209816 + 0.0919262i
\(760\) 0 0
\(761\) 8.85531 + 4.26449i 0.321005 + 0.154588i 0.587446 0.809263i \(-0.300133\pi\)
−0.266441 + 0.963851i \(0.585848\pi\)
\(762\) 70.5816 + 88.5066i 2.55690 + 3.20625i
\(763\) 7.02845 5.60500i 0.254447 0.202915i
\(764\) −14.0567 29.1890i −0.508552 1.05602i
\(765\) 0 0
\(766\) 11.5342i 0.416749i
\(767\) −0.333147 0.265676i −0.0120292 0.00959300i
\(768\) 8.38305 36.7285i 0.302497 1.32533i
\(769\) 29.2236 + 6.67010i 1.05383 + 0.240530i 0.714137 0.700006i \(-0.246819\pi\)
0.339694 + 0.940536i \(0.389677\pi\)
\(770\) 0 0
\(771\) 43.7511i 1.57566i
\(772\) −5.30999 + 6.65852i −0.191111 + 0.239645i
\(773\) 15.2398 7.33911i 0.548138 0.263969i −0.139253 0.990257i \(-0.544470\pi\)
0.687391 + 0.726287i \(0.258756\pi\)
\(774\) −46.4642 58.2642i −1.67012 2.09426i
\(775\) 0 0
\(776\) −40.1872 19.3532i −1.44264 0.694738i
\(777\) −23.2316 5.30245i −0.833427 0.190224i
\(778\) 65.9747 15.0583i 2.36531 0.539866i
\(779\) 4.54849 2.19044i 0.162967 0.0784806i
\(780\) 0 0
\(781\) −52.1067 + 11.8930i −1.86452 + 0.425565i
\(782\) 2.69792i 0.0964776i
\(783\) −4.80232 + 31.2802i −0.171621 + 1.11786i
\(784\) −1.86483 −0.0666012
\(785\) 0 0
\(786\) −9.35726 + 19.4306i −0.333763 + 0.693065i
\(787\) 8.67579 + 18.0155i 0.309259 + 0.642182i 0.996440 0.0843036i \(-0.0268665\pi\)
−0.687181 + 0.726486i \(0.741152\pi\)
\(788\) 45.2800 10.3349i 1.61303 0.368164i
\(789\) 19.5904 85.8312i 0.697437 3.05567i
\(790\) 0 0
\(791\) 9.84556 7.85157i 0.350068 0.279170i
\(792\) 40.7986 32.5358i 1.44972 1.15611i
\(793\) −1.16374 + 0.560425i −0.0413255 + 0.0199013i
\(794\) −5.18173 4.13230i −0.183893 0.146650i
\(795\) 0 0
\(796\) −29.3975 + 36.8632i −1.04197 + 1.30658i
\(797\) 8.96777 39.2904i 0.317655 1.39174i −0.523999 0.851719i \(-0.675560\pi\)
0.841654 0.540017i \(-0.181582\pi\)
\(798\) 7.72629 33.8511i 0.273508 1.19832i
\(799\) 30.8518 38.6869i 1.09146 1.36865i
\(800\) 0 0
\(801\) −4.48874 3.57965i −0.158602 0.126481i
\(802\) −41.7640 + 20.1125i −1.47474 + 0.710196i
\(803\) −21.7914 + 17.3781i −0.769003 + 0.613260i
\(804\) −75.8840 + 60.5155i −2.67622 + 2.13422i
\(805\) 0 0
\(806\) −0.882512 + 3.86654i −0.0310851 + 0.136193i
\(807\) 38.3692 8.75751i 1.35066 0.308279i
\(808\) 7.01532 + 14.5675i 0.246798 + 0.512482i
\(809\) −21.7442 + 45.1522i −0.764484 + 1.58747i 0.0440579 + 0.999029i \(0.485971\pi\)
−0.808542 + 0.588439i \(0.799743\pi\)
\(810\) 0 0
\(811\) 24.7764 0.870017 0.435009 0.900426i \(-0.356745\pi\)
0.435009 + 0.900426i \(0.356745\pi\)
\(812\) 9.72486 24.5805i 0.341276 0.862608i
\(813\) 76.2357i 2.67370i
\(814\) −47.1741 + 10.7672i −1.65345 + 0.377390i
\(815\) 0 0
\(816\) −5.40906 + 2.60487i −0.189355 + 0.0911885i
\(817\) −21.8117 + 4.97838i −0.763095 + 0.174171i
\(818\) −74.3122 16.9613i −2.59827 0.593037i
\(819\) −2.88886 1.39120i −0.100945 0.0486126i
\(820\) 0 0
\(821\) 22.1885 + 27.8235i 0.774384 + 0.971047i 0.999995 0.00317052i \(-0.00100921\pi\)
−0.225611 + 0.974218i \(0.572438\pi\)
\(822\) 32.0402 15.4298i 1.11753 0.538175i
\(823\) −9.60419 + 12.0433i −0.334781 + 0.419802i −0.920519 0.390699i \(-0.872233\pi\)
0.585738 + 0.810501i \(0.300805\pi\)
\(824\) 34.2324i 1.19254i
\(825\) 0 0
\(826\) 3.63346 + 0.829313i 0.126424 + 0.0288555i
\(827\) 9.21841 40.3885i 0.320556 1.40445i −0.516012 0.856581i \(-0.672584\pi\)
0.836567 0.547864i \(-0.184559\pi\)
\(828\) 2.86680 + 2.28620i 0.0996282 + 0.0794508i
\(829\) 4.64043i 0.161169i −0.996748 0.0805844i \(-0.974321\pi\)
0.996748 0.0805844i \(-0.0256787\pi\)
\(830\) 0 0
\(831\) −27.8001 57.7276i −0.964376 2.00255i
\(832\) −4.12823 + 3.29215i −0.143120 + 0.114135i
\(833\) −14.6953 18.4274i −0.509163 0.638470i
\(834\) 3.46780 + 1.67000i 0.120080 + 0.0578275i
\(835\) 0 0
\(836\) −9.58754 42.0058i −0.331592 1.45280i
\(837\) 11.0108 + 22.8641i 0.380588 + 0.790300i
\(838\) −15.3851 7.40906i −0.531468 0.255942i
\(839\) −34.5374 + 7.88295i −1.19237 + 0.272150i −0.772248 0.635321i \(-0.780868\pi\)
−0.420117 + 0.907470i \(0.638011\pi\)
\(840\) 0 0
\(841\) 21.1502 + 19.8411i 0.729318 + 0.684175i
\(842\) 46.2065i 1.59238i
\(843\) 2.08593 + 9.13904i 0.0718431 + 0.314765i
\(844\) −16.3259 + 33.9011i −0.561960 + 1.16692i
\(845\) 0 0
\(846\) −24.4887 107.292i −0.841939 3.68878i
\(847\) 7.28479 + 1.66271i 0.250308 + 0.0571313i
\(848\) 0.317382 0.659050i 0.0108989 0.0226319i
\(849\) −39.2392 + 31.2922i −1.34669 + 1.07395i
\(850\) 0 0
\(851\) −0.536390 1.11383i −0.0183872 0.0381814i
\(852\) −74.8772 + 93.8930i −2.56525 + 3.21672i
\(853\) 25.5045 0.873256 0.436628 0.899642i \(-0.356173\pi\)
0.436628 + 0.899642i \(0.356173\pi\)
\(854\) 7.04367 8.83248i 0.241029 0.302241i
\(855\) 0 0
\(856\) −23.4147 5.34424i −0.800296 0.182662i
\(857\) 27.9793 + 22.3127i 0.955754 + 0.762189i 0.971341 0.237690i \(-0.0763902\pi\)
−0.0155868 + 0.999879i \(0.504962\pi\)
\(858\) −10.3644 −0.353836
\(859\) −23.1233 18.4402i −0.788956 0.629171i 0.143830 0.989602i \(-0.454058\pi\)
−0.932786 + 0.360431i \(0.882630\pi\)
\(860\) 0 0
\(861\) 4.04699 + 5.07476i 0.137921 + 0.172947i
\(862\) −16.7340 20.9837i −0.569961 0.714709i
\(863\) 17.4446 36.2241i 0.593822 1.23308i −0.360068 0.932926i \(-0.617246\pi\)
0.953890 0.300158i \(-0.0970393\pi\)
\(864\) −7.98986 + 35.0058i −0.271820 + 1.19092i
\(865\) 0 0
\(866\) 34.9324 16.8225i 1.18705 0.571654i
\(867\) −24.8572 11.9706i −0.844196 0.406543i
\(868\) −4.71689 20.6661i −0.160102 0.701452i
\(869\) −19.0088 −0.644831
\(870\) 0 0
\(871\) 4.40323 0.149198
\(872\) −3.31869 14.5401i −0.112385 0.492390i
\(873\) 78.6099 + 37.8565i 2.66054 + 1.28125i
\(874\) 1.62297 0.781583i 0.0548979 0.0264374i
\(875\) 0 0
\(876\) −13.9362 + 61.0583i −0.470859 + 2.06297i
\(877\) 22.6064 46.9427i 0.763364 1.58514i −0.0467750 0.998905i \(-0.514894\pi\)
0.810139 0.586237i \(-0.199391\pi\)
\(878\) −26.5123 33.2454i −0.894747 1.12198i
\(879\) 23.9699 + 30.0573i 0.808485 + 1.01381i
\(880\) 0 0
\(881\) 35.3863 + 28.2196i 1.19219 + 0.950743i 0.999534 0.0305225i \(-0.00971713\pi\)
0.192660 + 0.981266i \(0.438289\pi\)
\(882\) −52.4196 −1.76506
\(883\) 26.5025 + 21.1350i 0.891880 + 0.711251i 0.958063 0.286557i \(-0.0925107\pi\)
−0.0661830 + 0.997808i \(0.521082\pi\)
\(884\) −6.41314 1.46376i −0.215697 0.0492315i
\(885\) 0 0
\(886\) 4.81273 6.03497i 0.161687 0.202749i
\(887\) −30.4108 −1.02110 −0.510548 0.859850i \(-0.670557\pi\)
−0.510548 + 0.859850i \(0.670557\pi\)
\(888\) −24.6481 + 30.9078i −0.827137 + 1.03720i
\(889\) 11.9098 + 24.7310i 0.399443 + 0.829452i
\(890\) 0 0
\(891\) −4.61737 + 3.68223i −0.154688 + 0.123359i
\(892\) 18.2325 37.8601i 0.610469 1.26765i
\(893\) −32.2104 7.35181i −1.07788 0.246019i
\(894\) 7.32341 + 32.0860i 0.244932 + 1.07312i
\(895\) 0 0
\(896\) 11.7562 24.4120i 0.392746 0.815546i
\(897\) −0.0589240 0.258163i −0.00196742 0.00861981i
\(898\) 0.315858i 0.0105403i
\(899\) 22.9856 + 3.52888i 0.766612 + 0.117695i
\(900\) 0 0
\(901\) 9.01346 2.05726i 0.300282 0.0685374i
\(902\) 11.8751 + 5.71875i 0.395398 + 0.190414i
\(903\) −12.4806 25.9162i −0.415328 0.862437i
\(904\) −4.64886 20.3680i −0.154619 0.677430i
\(905\) 0 0
\(906\) 45.2709 + 21.8013i 1.50402 + 0.724300i
\(907\) 9.90255 + 12.4174i 0.328809 + 0.412313i 0.918566 0.395267i \(-0.129348\pi\)
−0.589757 + 0.807580i \(0.700777\pi\)
\(908\) −5.21460 + 4.15851i −0.173053 + 0.138005i
\(909\) −13.7226 28.4953i −0.455150 0.945129i
\(910\) 0 0
\(911\) 24.9672i 0.827199i −0.910459 0.413600i \(-0.864271\pi\)
0.910459 0.413600i \(-0.135729\pi\)
\(912\) 3.13399 + 2.49927i 0.103777 + 0.0827591i
\(913\) 7.44675 32.6264i 0.246452 1.07977i
\(914\) 70.9243 + 16.1880i 2.34597 + 0.535452i
\(915\) 0 0
\(916\) 86.0768i 2.84406i
\(917\) −3.26043 + 4.08845i −0.107669 + 0.135012i
\(918\) −62.0573 + 29.8852i −2.04819 + 0.986359i
\(919\) −8.39456 10.5264i −0.276911 0.347236i 0.623855 0.781540i \(-0.285566\pi\)
−0.900766 + 0.434305i \(0.856994\pi\)
\(920\) 0 0
\(921\) 16.6830 + 8.03409i 0.549722 + 0.264732i
\(922\) −1.60402 0.366107i −0.0528256 0.0120571i
\(923\) 5.31162 1.21234i 0.174834 0.0399048i
\(924\) 49.9104 24.0356i 1.64193 0.790712i
\(925\) 0 0
\(926\) −20.2255 + 4.61634i −0.664651 + 0.151702i
\(927\) 66.9616i 2.19931i
\(928\) 22.3137 + 24.1809i 0.732484 + 0.793776i
\(929\) −7.53667 −0.247270 −0.123635 0.992328i \(-0.539455\pi\)
−0.123635 + 0.992328i \(0.539455\pi\)
\(930\) 0 0
\(931\) −6.82803 + 14.1785i −0.223780 + 0.464683i
\(932\) −23.8315 49.4865i −0.780625 1.62099i
\(933\) −67.9764 + 15.5152i −2.22545 + 0.507944i
\(934\) −15.4738 + 67.7950i −0.506317 + 2.21832i
\(935\) 0 0
\(936\) −4.15891 + 3.31662i −0.135938 + 0.108407i
\(937\) 28.5083 22.7346i 0.931326 0.742708i −0.0351723 0.999381i \(-0.511198\pi\)
0.966498 + 0.256674i \(0.0826266\pi\)
\(938\) −34.6982 + 16.7098i −1.13294 + 0.545593i
\(939\) 4.38499 + 3.49691i 0.143099 + 0.114117i
\(940\) 0 0
\(941\) 21.9323 27.5023i 0.714973 0.896548i −0.283068 0.959100i \(-0.591352\pi\)
0.998042 + 0.0625515i \(0.0199238\pi\)
\(942\) 27.0308 118.430i 0.880712 3.85865i
\(943\) −0.0749333 + 0.328304i −0.00244016 + 0.0106911i
\(944\) −0.268263 + 0.336391i −0.00873122 + 0.0109486i
\(945\) 0 0
\(946\) −45.6668 36.4180i −1.48476 1.18405i
\(947\) −9.36711 + 4.51096i −0.304390 + 0.146587i −0.579843 0.814728i \(-0.696886\pi\)
0.275453 + 0.961314i \(0.411172\pi\)
\(948\) −33.3940 + 26.6308i −1.08459 + 0.864928i
\(949\) 2.22136 1.77148i 0.0721085 0.0575046i
\(950\) 0 0
\(951\) 18.7608 82.1964i 0.608361 2.66540i
\(952\) 20.3948 4.65498i 0.660999 0.150869i
\(953\) −23.3495 48.4858i −0.756366 1.57061i −0.819818 0.572625i \(-0.805925\pi\)
0.0634519 0.997985i \(-0.479789\pi\)
\(954\) 8.92146 18.5256i 0.288843 0.599789i
\(955\) 0 0
\(956\) −54.2189 −1.75356
\(957\) 4.37571 + 60.6152i 0.141446 + 1.95941i
\(958\) 12.0129i 0.388119i
\(959\) 8.40676 1.91879i 0.271468 0.0619609i
\(960\) 0 0
\(961\) −11.1288 + 5.35937i −0.358995 + 0.172883i
\(962\) 4.80881 1.09758i 0.155042 0.0353874i
\(963\) 45.8012 + 10.4538i 1.47592 + 0.336870i
\(964\) 62.2543 + 29.9801i 2.00508 + 0.965594i
\(965\) 0 0
\(966\) 1.44403 + 1.81075i 0.0464609 + 0.0582601i
\(967\) 10.7168 5.16092i 0.344628 0.165964i −0.253561 0.967319i \(-0.581602\pi\)
0.598188 + 0.801356i \(0.295887\pi\)
\(968\) 7.72899 9.69185i 0.248419 0.311508i
\(969\) 50.6634i 1.62754i
\(970\) 0 0
\(971\) −48.8341 11.1461i −1.56716 0.357694i −0.651183 0.758921i \(-0.725727\pi\)
−0.915979 + 0.401226i \(0.868584\pi\)
\(972\) 9.37591 41.0785i 0.300732 1.31759i
\(973\) 0.729672 + 0.581894i 0.0233922 + 0.0186547i
\(974\) 7.89535i 0.252983i
\(975\) 0 0
\(976\) 0.565883 + 1.17507i 0.0181135 + 0.0376130i
\(977\) 10.7983 8.61138i 0.345469 0.275502i −0.435348 0.900262i \(-0.643375\pi\)
0.780817 + 0.624760i \(0.214803\pi\)
\(978\) −9.08493 11.3921i −0.290504 0.364281i
\(979\) −4.05433 1.95246i −0.129577 0.0624010i
\(980\) 0 0
\(981\) 6.49165 + 28.4418i 0.207262 + 0.908076i
\(982\) 5.75762 + 11.9558i 0.183733 + 0.381525i
\(983\) 10.5011 + 5.05705i 0.334932 + 0.161295i 0.593789 0.804621i \(-0.297631\pi\)
−0.258857 + 0.965916i \(0.583346\pi\)
\(984\) 10.4984 2.39619i 0.334677 0.0763879i
\(985\) 0 0
\(986\) −9.57799 + 62.3869i −0.305025 + 1.98680i
\(987\) 42.4784i 1.35210i
\(988\) 0.977329 + 4.28196i 0.0310930 + 0.136227i
\(989\) 0.647495 1.34454i 0.0205891 0.0427538i
\(990\) 0 0
\(991\) 1.54324 + 6.76136i 0.0490225 + 0.214782i 0.993506 0.113776i \(-0.0362946\pi\)
−0.944484 + 0.328558i \(0.893437\pi\)
\(992\) 25.7233 + 5.87117i 0.816715 + 0.186410i
\(993\) −34.9703 + 72.6165i −1.10975 + 2.30442i
\(994\) −37.2557 + 29.7104i −1.18168 + 0.942358i
\(995\) 0 0
\(996\) −32.6264 67.7493i −1.03381 2.14672i
\(997\) −14.9450 + 18.7405i −0.473314 + 0.593516i −0.959979 0.280072i \(-0.909642\pi\)
0.486665 + 0.873588i \(0.338213\pi\)
\(998\) 53.7872 1.70260
\(999\) 19.6784 24.6759i 0.622597 0.780712i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.p.a.399.4 24
5.2 odd 4 29.2.e.a.22.1 yes 12
5.3 odd 4 725.2.q.a.51.2 12
5.4 even 2 inner 725.2.p.a.399.1 24
15.2 even 4 261.2.o.a.109.2 12
20.7 even 4 464.2.y.d.225.2 12
29.4 even 14 inner 725.2.p.a.149.1 24
145.2 even 28 841.2.a.k.1.2 12
145.4 even 14 inner 725.2.p.a.149.4 24
145.7 odd 28 841.2.e.e.63.2 12
145.12 even 4 841.2.d.m.645.1 24
145.17 even 4 841.2.d.m.645.4 24
145.22 odd 28 841.2.e.f.63.1 12
145.27 even 28 841.2.a.k.1.11 12
145.32 even 28 841.2.d.k.778.1 24
145.33 odd 28 725.2.q.a.526.2 12
145.37 even 28 841.2.d.l.190.1 24
145.42 odd 28 841.2.e.e.267.2 12
145.47 even 28 841.2.d.k.574.4 24
145.52 odd 28 841.2.e.h.270.2 12
145.57 odd 4 841.2.e.i.196.2 12
145.62 odd 28 29.2.e.a.4.1 12
145.67 odd 28 841.2.e.h.651.2 12
145.72 even 28 841.2.d.l.571.4 24
145.77 even 28 841.2.d.m.605.4 24
145.82 odd 28 841.2.b.e.840.2 12
145.92 odd 28 841.2.b.e.840.11 12
145.97 even 28 841.2.d.m.605.1 24
145.102 even 28 841.2.d.l.571.1 24
145.107 odd 28 841.2.e.a.651.1 12
145.112 odd 28 841.2.e.i.236.2 12
145.122 odd 28 841.2.e.a.270.1 12
145.127 even 28 841.2.d.k.574.1 24
145.132 odd 28 841.2.e.f.267.1 12
145.137 even 28 841.2.d.l.190.4 24
145.142 even 28 841.2.d.k.778.4 24
435.2 odd 28 7569.2.a.bp.1.11 12
435.62 even 28 261.2.o.a.91.2 12
435.317 odd 28 7569.2.a.bp.1.2 12
580.207 even 28 464.2.y.d.33.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.e.a.4.1 12 145.62 odd 28
29.2.e.a.22.1 yes 12 5.2 odd 4
261.2.o.a.91.2 12 435.62 even 28
261.2.o.a.109.2 12 15.2 even 4
464.2.y.d.33.2 12 580.207 even 28
464.2.y.d.225.2 12 20.7 even 4
725.2.p.a.149.1 24 29.4 even 14 inner
725.2.p.a.149.4 24 145.4 even 14 inner
725.2.p.a.399.1 24 5.4 even 2 inner
725.2.p.a.399.4 24 1.1 even 1 trivial
725.2.q.a.51.2 12 5.3 odd 4
725.2.q.a.526.2 12 145.33 odd 28
841.2.a.k.1.2 12 145.2 even 28
841.2.a.k.1.11 12 145.27 even 28
841.2.b.e.840.2 12 145.82 odd 28
841.2.b.e.840.11 12 145.92 odd 28
841.2.d.k.574.1 24 145.127 even 28
841.2.d.k.574.4 24 145.47 even 28
841.2.d.k.778.1 24 145.32 even 28
841.2.d.k.778.4 24 145.142 even 28
841.2.d.l.190.1 24 145.37 even 28
841.2.d.l.190.4 24 145.137 even 28
841.2.d.l.571.1 24 145.102 even 28
841.2.d.l.571.4 24 145.72 even 28
841.2.d.m.605.1 24 145.97 even 28
841.2.d.m.605.4 24 145.77 even 28
841.2.d.m.645.1 24 145.12 even 4
841.2.d.m.645.4 24 145.17 even 4
841.2.e.a.270.1 12 145.122 odd 28
841.2.e.a.651.1 12 145.107 odd 28
841.2.e.e.63.2 12 145.7 odd 28
841.2.e.e.267.2 12 145.42 odd 28
841.2.e.f.63.1 12 145.22 odd 28
841.2.e.f.267.1 12 145.132 odd 28
841.2.e.h.270.2 12 145.52 odd 28
841.2.e.h.651.2 12 145.67 odd 28
841.2.e.i.196.2 12 145.57 odd 4
841.2.e.i.236.2 12 145.112 odd 28
7569.2.a.bp.1.2 12 435.317 odd 28
7569.2.a.bp.1.11 12 435.2 odd 28