Properties

Label 841.2.e.h.270.2
Level $841$
Weight $2$
Character 841.270
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(63,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.e (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{14})\)
Coefficient field: 12.0.7877952219361.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + 13x^{9} - 18x^{8} - 14x^{7} + 57x^{6} - 28x^{5} - 72x^{4} + 104x^{3} - 96x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 270.2
Root \(0.639551 + 1.26134i\) of defining polynomial
Character \(\chi\) \(=\) 841.270
Dual form 841.2.e.h.651.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.983939 + 2.04317i) q^{2} +(2.22085 - 1.77107i) q^{3} +(-1.95943 + 2.45704i) q^{4} +(0.0521506 - 0.0251144i) q^{5} +(5.80376 + 2.79495i) q^{6} +(-0.973866 - 1.22119i) q^{7} +(-2.52634 - 0.576620i) q^{8} +(1.12792 - 4.94174i) q^{9} +(0.102626 + 0.0818415i) q^{10} +(3.87328 - 0.884050i) q^{11} +8.92699i q^{12} +(0.0901178 + 0.394832i) q^{13} +(1.53687 - 3.19135i) q^{14} +(0.0713392 - 0.148137i) q^{15} +(0.0909953 + 0.398677i) q^{16} -5.16843i q^{17} +(11.2066 - 2.55784i) q^{18} +(2.69801 + 2.15159i) q^{19} +(-0.0404781 + 0.177346i) q^{20} +(-4.32561 - 0.987293i) q^{21} +(5.61733 + 7.04391i) q^{22} +(-0.207389 - 0.0998734i) q^{23} +(-6.63184 + 3.19372i) q^{24} +(-3.11536 + 3.90654i) q^{25} +(-0.718038 + 0.572616i) q^{26} +(-2.54978 - 5.29468i) q^{27} +4.90874 q^{28} +0.372863 q^{30} +(1.87365 + 3.89068i) q^{31} +(-4.77696 + 3.80950i) q^{32} +(7.03624 - 8.82317i) q^{33} +(10.5600 - 5.08542i) q^{34} +(-0.0814572 - 0.0392277i) q^{35} +(9.93200 + 12.4543i) q^{36} +(-5.23604 - 1.19509i) q^{37} +(-1.74139 + 7.62953i) q^{38} +(0.899411 + 0.717256i) q^{39} +(-0.146231 + 0.0333764i) q^{40} -1.46294i q^{41} +(-2.23893 - 9.80940i) q^{42} +(-2.81294 + 5.84112i) q^{43} +(-5.41726 + 11.2490i) q^{44} +(-0.0652872 - 0.286042i) q^{45} -0.522001i q^{46} +(-9.33395 + 2.13041i) q^{47} +(0.908169 + 0.724241i) q^{48} +(1.01476 - 4.44595i) q^{49} +(-11.0470 - 2.52142i) q^{50} +(-9.15362 - 11.4783i) q^{51} +(-1.14670 - 0.552221i) q^{52} +(1.61165 - 0.776129i) q^{53} +(8.30909 - 10.4193i) q^{54} +(0.179791 - 0.143379i) q^{55} +(1.75615 + 3.64669i) q^{56} +9.80247 q^{57} -1.05216 q^{59} +(0.224196 + 0.465548i) q^{60} +(-2.49355 + 1.98854i) q^{61} +(-6.10575 + 7.65637i) q^{62} +(-7.13325 + 3.43519i) q^{63} +(-11.7468 - 5.65697i) q^{64} +(0.0146157 + 0.0183275i) q^{65} +(24.9505 + 5.69478i) q^{66} +(2.41937 - 10.6000i) q^{67} +(12.6991 + 10.1272i) q^{68} +(-0.637462 + 0.145497i) q^{69} -0.205028i q^{70} +(2.99355 + 13.1156i) q^{71} +(-5.69901 + 11.8341i) q^{72} +(-3.04397 + 6.32087i) q^{73} +(-2.71017 - 11.8740i) q^{74} +14.1933i q^{75} +(-10.5731 + 2.41324i) q^{76} +(-4.85165 - 3.86906i) q^{77} +(-0.580511 + 2.54339i) q^{78} +(4.66468 + 1.06468i) q^{79} +(0.0147580 + 0.0185059i) q^{80} +(-1.33932 - 0.644983i) q^{81} +(2.98904 - 1.43945i) q^{82} +(5.25194 - 6.58572i) q^{83} +(10.9015 - 8.69370i) q^{84} +(-0.129802 - 0.269537i) q^{85} -14.7022 q^{86} -10.2950 q^{88} +(-0.491447 - 1.02050i) q^{89} +(0.520194 - 0.414841i) q^{90} +(0.394402 - 0.494564i) q^{91} +(0.651758 - 0.313870i) q^{92} +(11.0517 + 5.32223i) q^{93} +(-13.5368 - 16.9746i) q^{94} +(0.194739 + 0.0444479i) q^{95} +(-3.86202 + 16.9206i) q^{96} +(-13.4578 - 10.7322i) q^{97} +(10.0823 - 2.30121i) q^{98} -20.1379i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 7 q^{2} - q^{4} + 6 q^{5} + 11 q^{6} - 4 q^{7} - 7 q^{8} - 10 q^{9} - 14 q^{10} + 14 q^{11} + 2 q^{13} - 7 q^{14} - 14 q^{15} - 33 q^{16} + 14 q^{19} - 32 q^{20} - 42 q^{21} + 10 q^{22} + 2 q^{23}+ \cdots + 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.983939 + 2.04317i 0.695750 + 1.44474i 0.886324 + 0.463066i \(0.153251\pi\)
−0.190574 + 0.981673i \(0.561035\pi\)
\(3\) 2.22085 1.77107i 1.28221 1.02253i 0.284241 0.958753i \(-0.408258\pi\)
0.997964 0.0637723i \(-0.0203131\pi\)
\(4\) −1.95943 + 2.45704i −0.979714 + 1.22852i
\(5\) 0.0521506 0.0251144i 0.0233225 0.0112315i −0.422186 0.906509i \(-0.638737\pi\)
0.445509 + 0.895278i \(0.353023\pi\)
\(6\) 5.80376 + 2.79495i 2.36938 + 1.14103i
\(7\) −0.973866 1.22119i −0.368087 0.461566i 0.562950 0.826491i \(-0.309666\pi\)
−0.931037 + 0.364924i \(0.881095\pi\)
\(8\) −2.52634 0.576620i −0.893195 0.203866i
\(9\) 1.12792 4.94174i 0.375973 1.64725i
\(10\) 0.102626 + 0.0818415i 0.0324532 + 0.0258806i
\(11\) 3.87328 0.884050i 1.16784 0.266551i 0.405724 0.913996i \(-0.367019\pi\)
0.762113 + 0.647444i \(0.224162\pi\)
\(12\) 8.92699i 2.57700i
\(13\) 0.0901178 + 0.394832i 0.0249942 + 0.109507i 0.985886 0.167416i \(-0.0535424\pi\)
−0.960892 + 0.276923i \(0.910685\pi\)
\(14\) 1.53687 3.19135i 0.410747 0.852924i
\(15\) 0.0713392 0.148137i 0.0184197 0.0382489i
\(16\) 0.0909953 + 0.398677i 0.0227488 + 0.0996692i
\(17\) 5.16843i 1.25353i −0.779209 0.626764i \(-0.784379\pi\)
0.779209 0.626764i \(-0.215621\pi\)
\(18\) 11.2066 2.55784i 2.64143 0.602888i
\(19\) 2.69801 + 2.15159i 0.618966 + 0.493609i 0.882045 0.471165i \(-0.156167\pi\)
−0.263079 + 0.964774i \(0.584738\pi\)
\(20\) −0.0404781 + 0.177346i −0.00905118 + 0.0396558i
\(21\) −4.32561 0.987293i −0.943926 0.215445i
\(22\) 5.61733 + 7.04391i 1.19762 + 1.50177i
\(23\) −0.207389 0.0998734i −0.0432437 0.0208251i 0.412137 0.911122i \(-0.364783\pi\)
−0.455381 + 0.890297i \(0.650497\pi\)
\(24\) −6.63184 + 3.19372i −1.35372 + 0.651916i
\(25\) −3.11536 + 3.90654i −0.623072 + 0.781308i
\(26\) −0.718038 + 0.572616i −0.140819 + 0.112299i
\(27\) −2.54978 5.29468i −0.490706 1.01896i
\(28\) 4.90874 0.927664
\(29\) 0 0
\(30\) 0.372863 0.0680752
\(31\) 1.87365 + 3.89068i 0.336518 + 0.698786i 0.998722 0.0505371i \(-0.0160933\pi\)
−0.662205 + 0.749323i \(0.730379\pi\)
\(32\) −4.77696 + 3.80950i −0.844455 + 0.673430i
\(33\) 7.03624 8.82317i 1.22485 1.53592i
\(34\) 10.5600 5.08542i 1.81102 0.872142i
\(35\) −0.0814572 0.0392277i −0.0137688 0.00663069i
\(36\) 9.93200 + 12.4543i 1.65533 + 2.07572i
\(37\) −5.23604 1.19509i −0.860800 0.196472i −0.230737 0.973016i \(-0.574114\pi\)
−0.630063 + 0.776544i \(0.716971\pi\)
\(38\) −1.74139 + 7.62953i −0.282491 + 1.23767i
\(39\) 0.899411 + 0.717256i 0.144021 + 0.114853i
\(40\) −0.146231 + 0.0333764i −0.0231212 + 0.00527727i
\(41\) 1.46294i 0.228473i −0.993454 0.114237i \(-0.963558\pi\)
0.993454 0.114237i \(-0.0364422\pi\)
\(42\) −2.23893 9.80940i −0.345475 1.51362i
\(43\) −2.81294 + 5.84112i −0.428969 + 0.890763i 0.568702 + 0.822544i \(0.307446\pi\)
−0.997670 + 0.0682189i \(0.978268\pi\)
\(44\) −5.41726 + 11.2490i −0.816682 + 1.69586i
\(45\) −0.0652872 0.286042i −0.00973244 0.0426406i
\(46\) 0.522001i 0.0769648i
\(47\) −9.33395 + 2.13041i −1.36150 + 0.310753i −0.840040 0.542525i \(-0.817468\pi\)
−0.521457 + 0.853278i \(0.674611\pi\)
\(48\) 0.908169 + 0.724241i 0.131083 + 0.104535i
\(49\) 1.01476 4.44595i 0.144965 0.635135i
\(50\) −11.0470 2.52142i −1.56229 0.356582i
\(51\) −9.15362 11.4783i −1.28176 1.60728i
\(52\) −1.14670 0.552221i −0.159019 0.0765793i
\(53\) 1.61165 0.776129i 0.221377 0.106609i −0.319908 0.947448i \(-0.603652\pi\)
0.541285 + 0.840839i \(0.317938\pi\)
\(54\) 8.30909 10.4193i 1.13072 1.41788i
\(55\) 0.179791 0.143379i 0.0242431 0.0193332i
\(56\) 1.75615 + 3.64669i 0.234676 + 0.487309i
\(57\) 9.80247 1.29837
\(58\) 0 0
\(59\) −1.05216 −0.136980 −0.0684900 0.997652i \(-0.521818\pi\)
−0.0684900 + 0.997652i \(0.521818\pi\)
\(60\) 0.224196 + 0.465548i 0.0289436 + 0.0601020i
\(61\) −2.49355 + 1.98854i −0.319266 + 0.254606i −0.769988 0.638058i \(-0.779738\pi\)
0.450722 + 0.892664i \(0.351167\pi\)
\(62\) −6.10575 + 7.65637i −0.775431 + 0.972360i
\(63\) −7.13325 + 3.43519i −0.898705 + 0.432793i
\(64\) −11.7468 5.65697i −1.46835 0.707121i
\(65\) 0.0146157 + 0.0183275i 0.00181285 + 0.00227324i
\(66\) 24.9505 + 5.69478i 3.07119 + 0.700979i
\(67\) 2.41937 10.6000i 0.295574 1.29499i −0.581071 0.813853i \(-0.697366\pi\)
0.876644 0.481139i \(-0.159777\pi\)
\(68\) 12.6991 + 10.1272i 1.53999 + 1.22810i
\(69\) −0.637462 + 0.145497i −0.0767414 + 0.0175157i
\(70\) 0.205028i 0.0245056i
\(71\) 2.99355 + 13.1156i 0.355268 + 1.55653i 0.764819 + 0.644245i \(0.222828\pi\)
−0.409550 + 0.912288i \(0.634314\pi\)
\(72\) −5.69901 + 11.8341i −0.671635 + 1.39466i
\(73\) −3.04397 + 6.32087i −0.356270 + 0.739801i −0.999669 0.0257293i \(-0.991809\pi\)
0.643399 + 0.765531i \(0.277523\pi\)
\(74\) −2.71017 11.8740i −0.315051 1.38033i
\(75\) 14.1933i 1.63890i
\(76\) −10.5731 + 2.41324i −1.21282 + 0.276818i
\(77\) −4.85165 3.86906i −0.552896 0.440920i
\(78\) −0.580511 + 2.54339i −0.0657299 + 0.287982i
\(79\) 4.66468 + 1.06468i 0.524818 + 0.119786i 0.476718 0.879056i \(-0.341826\pi\)
0.0480998 + 0.998843i \(0.484683\pi\)
\(80\) 0.0147580 + 0.0185059i 0.00164999 + 0.00206903i
\(81\) −1.33932 0.644983i −0.148814 0.0716648i
\(82\) 2.98904 1.43945i 0.330084 0.158960i
\(83\) 5.25194 6.58572i 0.576475 0.722877i −0.405032 0.914302i \(-0.632740\pi\)
0.981507 + 0.191426i \(0.0613111\pi\)
\(84\) 10.9015 8.69370i 1.18946 0.948560i
\(85\) −0.129802 0.269537i −0.0140790 0.0292354i
\(86\) −14.7022 −1.58537
\(87\) 0 0
\(88\) −10.2950 −1.09745
\(89\) −0.491447 1.02050i −0.0520933 0.108173i 0.873297 0.487188i \(-0.161977\pi\)
−0.925391 + 0.379015i \(0.876263\pi\)
\(90\) 0.520194 0.414841i 0.0548332 0.0437280i
\(91\) 0.394402 0.494564i 0.0413446 0.0518444i
\(92\) 0.651758 0.313870i 0.0679505 0.0327232i
\(93\) 11.0517 + 5.32223i 1.14601 + 0.551890i
\(94\) −13.5368 16.9746i −1.39622 1.75080i
\(95\) 0.194739 + 0.0444479i 0.0199798 + 0.00456025i
\(96\) −3.86202 + 16.9206i −0.394166 + 1.72695i
\(97\) −13.4578 10.7322i −1.36643 1.08969i −0.986337 0.164742i \(-0.947321\pi\)
−0.380092 0.924949i \(-0.624108\pi\)
\(98\) 10.0823 2.30121i 1.01846 0.232458i
\(99\) 20.1379i 2.02393i
\(100\) −3.49422 15.3092i −0.349422 1.53092i
\(101\) 2.70725 5.62167i 0.269382 0.559377i −0.721766 0.692137i \(-0.756670\pi\)
0.991148 + 0.132759i \(0.0423838\pi\)
\(102\) 14.4455 29.9963i 1.43031 2.97008i
\(103\) −2.93961 12.8793i −0.289648 1.26903i −0.885010 0.465573i \(-0.845848\pi\)
0.595362 0.803458i \(-0.297009\pi\)
\(104\) 1.04944i 0.102906i
\(105\) −0.250379 + 0.0571473i −0.0244345 + 0.00557700i
\(106\) 3.17153 + 2.52921i 0.308046 + 0.245658i
\(107\) −2.06237 + 9.03585i −0.199377 + 0.873529i 0.771931 + 0.635706i \(0.219291\pi\)
−0.971309 + 0.237823i \(0.923566\pi\)
\(108\) 18.0054 + 4.10961i 1.73257 + 0.395447i
\(109\) 3.58844 + 4.49976i 0.343710 + 0.430999i 0.923401 0.383838i \(-0.125398\pi\)
−0.579690 + 0.814837i \(0.696826\pi\)
\(110\) 0.469851 + 0.226268i 0.0447985 + 0.0215738i
\(111\) −13.7450 + 6.61926i −1.30462 + 0.628272i
\(112\) 0.398242 0.499380i 0.0376304 0.0471870i
\(113\) −6.30333 + 5.02674i −0.592968 + 0.472876i −0.873404 0.486997i \(-0.838092\pi\)
0.280436 + 0.959873i \(0.409521\pi\)
\(114\) 9.64503 + 20.0281i 0.903340 + 1.87581i
\(115\) −0.0133237 −0.00124245
\(116\) 0 0
\(117\) 2.05280 0.189782
\(118\) −1.03526 2.14975i −0.0953038 0.197900i
\(119\) −6.31163 + 5.03336i −0.578586 + 0.461407i
\(120\) −0.265646 + 0.333109i −0.0242500 + 0.0304086i
\(121\) 4.31007 2.07562i 0.391825 0.188693i
\(122\) −6.51642 3.13814i −0.589969 0.284114i
\(123\) −2.59097 3.24897i −0.233620 0.292950i
\(124\) −13.2308 3.01985i −1.18817 0.271191i
\(125\) −0.128758 + 0.564127i −0.0115165 + 0.0504570i
\(126\) −14.0374 11.1944i −1.25055 0.997278i
\(127\) −17.1331 + 3.91051i −1.52031 + 0.347002i −0.899487 0.436947i \(-0.856060\pi\)
−0.620826 + 0.783948i \(0.713203\pi\)
\(128\) 17.3469i 1.53327i
\(129\) 4.09791 + 17.9541i 0.360801 + 1.58077i
\(130\) −0.0230652 + 0.0478954i −0.00202295 + 0.00420070i
\(131\) 1.45261 3.01638i 0.126915 0.263542i −0.827823 0.560989i \(-0.810421\pi\)
0.954738 + 0.297447i \(0.0961352\pi\)
\(132\) 7.89191 + 34.5767i 0.686903 + 3.00952i
\(133\) 5.39014i 0.467385i
\(134\) 24.0381 5.48653i 2.07657 0.473964i
\(135\) −0.265945 0.212084i −0.0228889 0.0182533i
\(136\) −2.98022 + 13.0572i −0.255552 + 1.11964i
\(137\) −5.38219 1.22845i −0.459831 0.104953i −0.0136709 0.999907i \(-0.504352\pi\)
−0.446160 + 0.894953i \(0.647209\pi\)
\(138\) −0.924498 1.15928i −0.0786985 0.0986848i
\(139\) 0.538337 + 0.259249i 0.0456612 + 0.0219893i 0.456575 0.889685i \(-0.349076\pi\)
−0.410914 + 0.911674i \(0.634790\pi\)
\(140\) 0.255994 0.123280i 0.0216354 0.0104191i
\(141\) −16.9562 + 21.2623i −1.42797 + 1.79061i
\(142\) −23.8519 + 19.0212i −2.00161 + 1.59623i
\(143\) 0.698102 + 1.44962i 0.0583783 + 0.121224i
\(144\) 2.07279 0.172733
\(145\) 0 0
\(146\) −15.9097 −1.31669
\(147\) −5.62044 11.6710i −0.463566 0.962605i
\(148\) 13.1960 10.5235i 1.08471 0.865026i
\(149\) −3.18546 + 3.99444i −0.260963 + 0.327237i −0.895001 0.446065i \(-0.852825\pi\)
0.634038 + 0.773302i \(0.281396\pi\)
\(150\) −28.9994 + 13.9654i −2.36779 + 1.14027i
\(151\) −7.02779 3.38441i −0.571914 0.275419i 0.125493 0.992094i \(-0.459949\pi\)
−0.697407 + 0.716675i \(0.745663\pi\)
\(152\) −5.57543 6.99137i −0.452227 0.567075i
\(153\) −25.5410 5.82958i −2.06487 0.471293i
\(154\) 3.13142 13.7197i 0.252337 1.10556i
\(155\) 0.195424 + 0.155845i 0.0156968 + 0.0125178i
\(156\) −3.52466 + 0.804481i −0.282199 + 0.0644100i
\(157\) 18.8577i 1.50501i 0.658588 + 0.752504i \(0.271154\pi\)
−0.658588 + 0.752504i \(0.728846\pi\)
\(158\) 2.41443 + 10.5783i 0.192082 + 0.841566i
\(159\) 2.20465 4.57800i 0.174840 0.363059i
\(160\) −0.153448 + 0.318638i −0.0121311 + 0.0251906i
\(161\) 0.0800051 + 0.350525i 0.00630528 + 0.0276252i
\(162\) 3.37109i 0.264858i
\(163\) −2.20529 + 0.503342i −0.172731 + 0.0394248i −0.308012 0.951383i \(-0.599664\pi\)
0.135280 + 0.990807i \(0.456806\pi\)
\(164\) 3.59451 + 2.86653i 0.280684 + 0.223838i
\(165\) 0.145356 0.636844i 0.0113159 0.0495783i
\(166\) 18.6233 + 4.25065i 1.44545 + 0.329915i
\(167\) −7.31660 9.17472i −0.566175 0.709961i 0.413511 0.910499i \(-0.364302\pi\)
−0.979686 + 0.200538i \(0.935731\pi\)
\(168\) 10.3587 + 4.98847i 0.799188 + 0.384869i
\(169\) 11.5648 5.56933i 0.889602 0.428410i
\(170\) 0.422992 0.530415i 0.0324420 0.0406810i
\(171\) 13.6757 10.9060i 1.04581 0.834006i
\(172\) −8.84015 18.3568i −0.674055 1.39969i
\(173\) −19.2889 −1.46651 −0.733254 0.679954i \(-0.762000\pi\)
−0.733254 + 0.679954i \(0.762000\pi\)
\(174\) 0 0
\(175\) 7.80457 0.589970
\(176\) 0.704900 + 1.46374i 0.0531339 + 0.110334i
\(177\) −2.33669 + 1.86345i −0.175637 + 0.140066i
\(178\) 1.60150 2.00822i 0.120038 0.150523i
\(179\) 0.820230 0.395002i 0.0613069 0.0295238i −0.402979 0.915209i \(-0.632025\pi\)
0.464286 + 0.885685i \(0.346311\pi\)
\(180\) 0.830743 + 0.400065i 0.0619200 + 0.0298191i
\(181\) 3.28092 + 4.11415i 0.243869 + 0.305802i 0.888669 0.458549i \(-0.151631\pi\)
−0.644800 + 0.764351i \(0.723059\pi\)
\(182\) 1.39855 + 0.319209i 0.103667 + 0.0236613i
\(183\) −2.01596 + 8.83248i −0.149024 + 0.652916i
\(184\) 0.466346 + 0.371899i 0.0343795 + 0.0274167i
\(185\) −0.303077 + 0.0691753i −0.0222827 + 0.00508587i
\(186\) 27.8173i 2.03966i
\(187\) −4.56915 20.0188i −0.334129 1.46392i
\(188\) 13.0547 27.1083i 0.952110 1.97708i
\(189\) −3.98266 + 8.27007i −0.289696 + 0.601559i
\(190\) 0.100797 + 0.441618i 0.00731255 + 0.0320384i
\(191\) 10.3088i 0.745920i 0.927847 + 0.372960i \(0.121657\pi\)
−0.927847 + 0.372960i \(0.878343\pi\)
\(192\) −36.1067 + 8.24113i −2.60578 + 0.594752i
\(193\) 2.11874 + 1.68964i 0.152510 + 0.121623i 0.696772 0.717292i \(-0.254619\pi\)
−0.544262 + 0.838915i \(0.683190\pi\)
\(194\) 8.68611 38.0563i 0.623626 2.73229i
\(195\) 0.0649183 + 0.0148172i 0.00464889 + 0.00106108i
\(196\) 8.93554 + 11.2048i 0.638253 + 0.800344i
\(197\) 13.3151 + 6.41220i 0.948660 + 0.456850i 0.843216 0.537575i \(-0.180659\pi\)
0.105444 + 0.994425i \(0.466374\pi\)
\(198\) 41.1451 19.8144i 2.92405 1.40815i
\(199\) 9.35427 11.7299i 0.663106 0.831509i −0.330571 0.943781i \(-0.607241\pi\)
0.993678 + 0.112272i \(0.0358128\pi\)
\(200\) 10.1230 8.07285i 0.715807 0.570837i
\(201\) −13.4002 27.8258i −0.945176 1.96268i
\(202\) 14.1498 0.995577
\(203\) 0 0
\(204\) 46.1385 3.23034
\(205\) −0.0367409 0.0762933i −0.00256610 0.00532856i
\(206\) 23.4221 18.6785i 1.63190 1.30139i
\(207\) −0.727467 + 0.912215i −0.0505625 + 0.0634033i
\(208\) −0.149210 + 0.0718557i −0.0103458 + 0.00498230i
\(209\) 12.3523 + 5.94853i 0.854423 + 0.411469i
\(210\) −0.363119 0.455337i −0.0250576 0.0314212i
\(211\) 11.6728 + 2.66425i 0.803591 + 0.183414i 0.604540 0.796575i \(-0.293357\pi\)
0.199051 + 0.979989i \(0.436214\pi\)
\(212\) −1.25092 + 5.48066i −0.0859139 + 0.376413i
\(213\) 29.8768 + 23.8259i 2.04712 + 1.63252i
\(214\) −20.4910 + 4.67694i −1.40074 + 0.319709i
\(215\) 0.375263i 0.0255927i
\(216\) 3.38859 + 14.8464i 0.230564 + 1.01017i
\(217\) 2.92657 6.07708i 0.198668 0.412539i
\(218\) −5.66298 + 11.7593i −0.383545 + 0.796440i
\(219\) 4.43448 + 19.4287i 0.299655 + 1.31287i
\(220\) 0.722696i 0.0487241i
\(221\) 2.04066 0.465767i 0.137270 0.0313309i
\(222\) −27.0485 21.5705i −1.81538 1.44772i
\(223\) −2.97539 + 13.0360i −0.199247 + 0.872956i 0.772140 + 0.635452i \(0.219186\pi\)
−0.971387 + 0.237504i \(0.923671\pi\)
\(224\) 9.30424 + 2.12363i 0.621666 + 0.141891i
\(225\) 15.7912 + 19.8016i 1.05275 + 1.32010i
\(226\) −16.4726 7.93278i −1.09574 0.527680i
\(227\) 1.91213 0.920834i 0.126913 0.0611179i −0.369350 0.929290i \(-0.620420\pi\)
0.496263 + 0.868172i \(0.334705\pi\)
\(228\) −19.2072 + 24.0851i −1.27203 + 1.59508i
\(229\) 21.4141 17.0772i 1.41508 1.12849i 0.442274 0.896880i \(-0.354172\pi\)
0.972809 0.231611i \(-0.0743996\pi\)
\(230\) −0.0131097 0.0272227i −0.000864431 0.00179501i
\(231\) −17.6271 −1.15978
\(232\) 0 0
\(233\) 17.4774 1.14498 0.572492 0.819910i \(-0.305977\pi\)
0.572492 + 0.819910i \(0.305977\pi\)
\(234\) 2.01983 + 4.19423i 0.132041 + 0.274185i
\(235\) −0.433267 + 0.345519i −0.0282632 + 0.0225392i
\(236\) 2.06164 2.58521i 0.134201 0.168283i
\(237\) 12.2452 5.89696i 0.795409 0.383049i
\(238\) −16.4943 7.94322i −1.06916 0.514882i
\(239\) 10.7567 + 13.4885i 0.695794 + 0.872499i 0.996702 0.0811549i \(-0.0258608\pi\)
−0.300907 + 0.953653i \(0.597289\pi\)
\(240\) 0.0655504 + 0.0149615i 0.00423126 + 0.000965758i
\(241\) 4.89250 21.4354i 0.315153 1.38078i −0.530790 0.847504i \(-0.678105\pi\)
0.845943 0.533273i \(-0.179038\pi\)
\(242\) 8.48169 + 6.76392i 0.545224 + 0.434802i
\(243\) 13.0712 2.98341i 0.838517 0.191386i
\(244\) 10.0232i 0.641667i
\(245\) −0.0587370 0.257344i −0.00375257 0.0164411i
\(246\) 4.08884 8.49057i 0.260695 0.541339i
\(247\) −0.606378 + 1.25916i −0.0385829 + 0.0801182i
\(248\) −2.49003 10.9095i −0.158117 0.692756i
\(249\) 23.9274i 1.51634i
\(250\) −1.27930 + 0.291991i −0.0809098 + 0.0184671i
\(251\) 7.63906 + 6.09194i 0.482173 + 0.384520i 0.834193 0.551472i \(-0.185934\pi\)
−0.352020 + 0.935992i \(0.614505\pi\)
\(252\) 5.53667 24.2577i 0.348777 1.52809i
\(253\) −0.891569 0.203495i −0.0560525 0.0127936i
\(254\) −24.8477 31.1581i −1.55908 1.95503i
\(255\) −0.765637 0.368711i −0.0479461 0.0230896i
\(256\) 11.9491 5.75439i 0.746819 0.359649i
\(257\) −9.60314 + 12.0420i −0.599028 + 0.751157i −0.985226 0.171259i \(-0.945217\pi\)
0.386198 + 0.922416i \(0.373788\pi\)
\(258\) −32.6512 + 26.0385i −2.03278 + 1.62109i
\(259\) 3.63977 + 7.55806i 0.226164 + 0.469635i
\(260\) −0.0736698 −0.00456880
\(261\) 0 0
\(262\) 7.59225 0.469050
\(263\) −13.4475 27.9240i −0.829207 1.72187i −0.680195 0.733032i \(-0.738105\pi\)
−0.149013 0.988835i \(-0.547610\pi\)
\(264\) −22.8635 + 18.2331i −1.40715 + 1.12217i
\(265\) 0.0645564 0.0809512i 0.00396567 0.00497279i
\(266\) 11.0130 5.30357i 0.675249 0.325183i
\(267\) −2.89880 1.39599i −0.177404 0.0854332i
\(268\) 21.3040 + 26.7144i 1.30135 + 1.63184i
\(269\) 13.5076 + 3.08301i 0.823571 + 0.187975i 0.613483 0.789708i \(-0.289768\pi\)
0.210088 + 0.977683i \(0.432625\pi\)
\(270\) 0.171650 0.752050i 0.0104463 0.0457683i
\(271\) −20.9829 16.7333i −1.27462 1.01648i −0.998466 0.0553650i \(-0.982368\pi\)
−0.276157 0.961113i \(-0.589061\pi\)
\(272\) 2.06053 0.470303i 0.124938 0.0285163i
\(273\) 1.79686i 0.108751i
\(274\) −2.78581 12.2054i −0.168297 0.737357i
\(275\) −8.61308 + 17.8852i −0.519388 + 1.07852i
\(276\) 0.891569 1.85136i 0.0536662 0.111439i
\(277\) 5.01925 + 21.9908i 0.301578 + 1.32130i 0.867746 + 0.497009i \(0.165568\pi\)
−0.566168 + 0.824290i \(0.691575\pi\)
\(278\) 1.35500i 0.0812675i
\(279\) 21.3400 4.87073i 1.27759 0.291603i
\(280\) 0.183169 + 0.146072i 0.0109464 + 0.00872948i
\(281\) 0.734334 3.21733i 0.0438067 0.191930i −0.948290 0.317405i \(-0.897188\pi\)
0.992097 + 0.125475i \(0.0400456\pi\)
\(282\) −60.1264 13.7235i −3.58048 0.817220i
\(283\) 11.0162 + 13.8139i 0.654844 + 0.821149i 0.992771 0.120024i \(-0.0382970\pi\)
−0.337927 + 0.941172i \(0.609726\pi\)
\(284\) −38.0912 18.3438i −2.26030 1.08850i
\(285\) 0.511205 0.246183i 0.0302812 0.0145826i
\(286\) −2.27494 + 2.85268i −0.134520 + 0.168683i
\(287\) −1.78653 + 1.42471i −0.105456 + 0.0840980i
\(288\) 13.4375 + 27.9033i 0.791814 + 1.64422i
\(289\) −9.71265 −0.571332
\(290\) 0 0
\(291\) −48.8951 −2.86628
\(292\) −9.56621 19.8644i −0.559820 1.16248i
\(293\) 10.5814 8.43842i 0.618175 0.492978i −0.263610 0.964629i \(-0.584913\pi\)
0.881785 + 0.471651i \(0.156342\pi\)
\(294\) 18.3156 22.9670i 1.06819 1.33946i
\(295\) −0.0548710 + 0.0264245i −0.00319471 + 0.00153849i
\(296\) 12.5389 + 6.03841i 0.728808 + 0.350976i
\(297\) −14.5568 18.2536i −0.844670 1.05918i
\(298\) −11.2956 2.57815i −0.654337 0.149348i
\(299\) 0.0207437 0.0908843i 0.00119964 0.00525597i
\(300\) −34.8736 27.8108i −2.01343 1.60566i
\(301\) 9.87254 2.25334i 0.569044 0.129881i
\(302\) 17.6890i 1.01789i
\(303\) −3.94395 17.2796i −0.226574 0.992687i
\(304\) −0.612283 + 1.27142i −0.0351168 + 0.0729208i
\(305\) −0.0800991 + 0.166328i −0.00458646 + 0.00952389i
\(306\) −13.2200 57.9206i −0.755737 3.31110i
\(307\) 6.51865i 0.372039i −0.982546 0.186020i \(-0.940441\pi\)
0.982546 0.186020i \(-0.0595588\pi\)
\(308\) 19.0129 4.33957i 1.08336 0.247270i
\(309\) −29.3384 23.3966i −1.66900 1.33099i
\(310\) −0.126133 + 0.552627i −0.00716390 + 0.0313871i
\(311\) 23.9306 + 5.46199i 1.35698 + 0.309721i 0.838282 0.545238i \(-0.183561\pi\)
0.518696 + 0.854959i \(0.326418\pi\)
\(312\) −1.85863 2.33065i −0.105224 0.131947i
\(313\) −1.77893 0.856690i −0.100551 0.0484230i 0.382932 0.923777i \(-0.374914\pi\)
−0.483483 + 0.875354i \(0.660629\pi\)
\(314\) −38.5295 + 18.5548i −2.17434 + 1.04711i
\(315\) −0.285730 + 0.358295i −0.0160991 + 0.0201876i
\(316\) −11.7561 + 9.37516i −0.661331 + 0.527394i
\(317\) 12.8780 + 26.7415i 0.723301 + 1.50195i 0.859427 + 0.511258i \(0.170820\pi\)
−0.136126 + 0.990691i \(0.543465\pi\)
\(318\) 11.5229 0.646170
\(319\) 0 0
\(320\) −0.754675 −0.0421876
\(321\) 11.4229 + 23.7198i 0.637562 + 1.32391i
\(322\) −0.637462 + 0.508359i −0.0355244 + 0.0283297i
\(323\) 11.1203 13.9445i 0.618753 0.775891i
\(324\) 4.20906 2.02698i 0.233837 0.112610i
\(325\) −1.82318 0.877995i −0.101132 0.0487024i
\(326\) −3.19828 4.01052i −0.177136 0.222122i
\(327\) 15.9388 + 3.63792i 0.881415 + 0.201177i
\(328\) −0.843562 + 3.69588i −0.0465779 + 0.204071i
\(329\) 11.6917 + 9.32378i 0.644582 + 0.514037i
\(330\) 1.44420 0.329630i 0.0795007 0.0181455i
\(331\) 28.3740i 1.55958i −0.626044 0.779788i \(-0.715327\pi\)
0.626044 0.779788i \(-0.284673\pi\)
\(332\) 5.89062 + 25.8085i 0.323290 + 1.41642i
\(333\) −11.8117 + 24.5272i −0.647276 + 1.34408i
\(334\) 11.5464 23.9764i 0.631793 1.31193i
\(335\) −0.140040 0.613556i −0.00765121 0.0335221i
\(336\) 1.81436i 0.0989814i
\(337\) −3.91654 + 0.893924i −0.213347 + 0.0486951i −0.327859 0.944727i \(-0.606327\pi\)
0.114511 + 0.993422i \(0.463470\pi\)
\(338\) 22.7582 + 18.1490i 1.23788 + 0.987177i
\(339\) −5.09605 + 22.3272i −0.276779 + 1.21265i
\(340\) 0.916601 + 0.209208i 0.0497097 + 0.0113459i
\(341\) 10.6967 + 13.4133i 0.579260 + 0.726369i
\(342\) 35.7390 + 17.2110i 1.93254 + 0.930664i
\(343\) −16.2685 + 7.83451i −0.878418 + 0.423024i
\(344\) 10.4745 13.1346i 0.564749 0.708173i
\(345\) −0.0295900 + 0.0235972i −0.00159307 + 0.00127043i
\(346\) −18.9791 39.4105i −1.02032 2.11872i
\(347\) 3.55272 0.190720 0.0953601 0.995443i \(-0.469600\pi\)
0.0953601 + 0.995443i \(0.469600\pi\)
\(348\) 0 0
\(349\) 3.34203 0.178895 0.0894473 0.995992i \(-0.471490\pi\)
0.0894473 + 0.995992i \(0.471490\pi\)
\(350\) 7.67922 + 15.9461i 0.410471 + 0.852353i
\(351\) 1.86073 1.48388i 0.0993182 0.0792036i
\(352\) −15.1347 + 18.9783i −0.806682 + 1.01155i
\(353\) 11.2759 5.43021i 0.600158 0.289021i −0.109032 0.994038i \(-0.534775\pi\)
0.709190 + 0.705017i \(0.249061\pi\)
\(354\) −6.10651 2.94074i −0.324557 0.156299i
\(355\) 0.485505 + 0.608804i 0.0257679 + 0.0323120i
\(356\) 3.47037 + 0.792090i 0.183929 + 0.0419807i
\(357\) −5.10275 + 22.3566i −0.270066 + 1.18324i
\(358\) 1.61411 + 1.28721i 0.0853085 + 0.0680313i
\(359\) −17.9347 + 4.09348i −0.946557 + 0.216045i −0.667821 0.744322i \(-0.732773\pi\)
−0.278736 + 0.960368i \(0.589916\pi\)
\(360\) 0.760284i 0.0400705i
\(361\) −1.57798 6.91360i −0.0830518 0.363874i
\(362\) −5.17768 + 10.7516i −0.272133 + 0.565089i
\(363\) 5.89594 12.2431i 0.309457 0.642594i
\(364\) 0.442365 + 1.93813i 0.0231862 + 0.101585i
\(365\) 0.406084i 0.0212554i
\(366\) −20.0298 + 4.57168i −1.04698 + 0.238965i
\(367\) −7.68555 6.12902i −0.401182 0.319932i 0.402028 0.915627i \(-0.368305\pi\)
−0.803211 + 0.595695i \(0.796877\pi\)
\(368\) 0.0209457 0.0917693i 0.00109187 0.00478381i
\(369\) −7.22948 1.65008i −0.376352 0.0858999i
\(370\) −0.439546 0.551173i −0.0228509 0.0286541i
\(371\) −2.51733 1.21228i −0.130693 0.0629386i
\(372\) −34.7320 + 16.7261i −1.80077 + 0.867206i
\(373\) 13.8288 17.3407i 0.716027 0.897869i −0.282079 0.959391i \(-0.591024\pi\)
0.998106 + 0.0615219i \(0.0195954\pi\)
\(374\) 36.4059 29.0328i 1.88251 1.50125i
\(375\) 0.713153 + 1.48088i 0.0368271 + 0.0764722i
\(376\) 24.8091 1.27943
\(377\) 0 0
\(378\) −20.8159 −1.07065
\(379\) 3.77488 + 7.83863i 0.193903 + 0.402643i 0.975140 0.221592i \(-0.0711252\pi\)
−0.781237 + 0.624235i \(0.785411\pi\)
\(380\) −0.490787 + 0.391390i −0.0251768 + 0.0200779i
\(381\) −31.1241 + 39.0284i −1.59454 + 1.99949i
\(382\) −21.0627 + 10.1432i −1.07766 + 0.518974i
\(383\) 4.58252 + 2.20682i 0.234156 + 0.112763i 0.547283 0.836948i \(-0.315662\pi\)
−0.313127 + 0.949711i \(0.601377\pi\)
\(384\) −30.7226 38.5249i −1.56780 1.96596i
\(385\) −0.350185 0.0799275i −0.0178471 0.00407348i
\(386\) −1.36751 + 5.99145i −0.0696044 + 0.304957i
\(387\) 25.6926 + 20.4891i 1.30603 + 1.04152i
\(388\) 52.7390 12.0373i 2.67742 0.611103i
\(389\) 29.8408i 1.51299i 0.654000 + 0.756494i \(0.273090\pi\)
−0.654000 + 0.756494i \(0.726910\pi\)
\(390\) 0.0336016 + 0.147218i 0.00170148 + 0.00745469i
\(391\) −0.516189 + 1.07188i −0.0261048 + 0.0542071i
\(392\) −5.12724 + 10.6468i −0.258965 + 0.537746i
\(393\) −2.11618 9.27157i −0.106747 0.467689i
\(394\) 33.5142i 1.68842i
\(395\) 0.270005 0.0616269i 0.0135854 0.00310078i
\(396\) 49.4797 + 39.4587i 2.48645 + 1.98287i
\(397\) 0.650337 2.84931i 0.0326395 0.143003i −0.955983 0.293423i \(-0.905206\pi\)
0.988622 + 0.150420i \(0.0480627\pi\)
\(398\) 33.1702 + 7.57087i 1.66267 + 0.379494i
\(399\) −9.54630 11.9707i −0.477913 0.599283i
\(400\) −1.84093 0.886544i −0.0920464 0.0443272i
\(401\) 18.4165 8.86892i 0.919676 0.442893i 0.0867208 0.996233i \(-0.472361\pi\)
0.832956 + 0.553340i \(0.186647\pi\)
\(402\) 43.6678 54.7577i 2.17795 2.73107i
\(403\) −1.36731 + 1.09040i −0.0681107 + 0.0543165i
\(404\) 8.50803 + 17.6671i 0.423290 + 0.878971i
\(405\) −0.0860448 −0.00427560
\(406\) 0 0
\(407\) −21.3372 −1.05764
\(408\) 16.5065 + 34.2762i 0.817195 + 1.69692i
\(409\) −26.2788 + 20.9567i −1.29941 + 1.03624i −0.302873 + 0.953031i \(0.597946\pi\)
−0.996532 + 0.0832103i \(0.973483\pi\)
\(410\) 0.119729 0.150136i 0.00591301 0.00741468i
\(411\) −14.1287 + 6.80401i −0.696916 + 0.335617i
\(412\) 37.4049 + 18.0132i 1.84281 + 0.887448i
\(413\) 1.02467 + 1.28489i 0.0504205 + 0.0632254i
\(414\) −2.57959 0.588776i −0.126780 0.0289367i
\(415\) 0.108495 0.475349i 0.00532582 0.0233339i
\(416\) −1.93460 1.54279i −0.0948516 0.0756416i
\(417\) 1.65471 0.377677i 0.0810316 0.0184949i
\(418\) 31.0907i 1.52070i
\(419\) −1.67558 7.34121i −0.0818576 0.358642i 0.917366 0.398045i \(-0.130311\pi\)
−0.999223 + 0.0394037i \(0.987454\pi\)
\(420\) 0.350185 0.727167i 0.0170873 0.0354821i
\(421\) −8.84060 + 18.3577i −0.430865 + 0.894699i 0.566631 + 0.823972i \(0.308246\pi\)
−0.997496 + 0.0707278i \(0.977468\pi\)
\(422\) 6.04184 + 26.4710i 0.294112 + 1.28859i
\(423\) 48.5289i 2.35956i
\(424\) −4.51910 + 1.03145i −0.219467 + 0.0500918i
\(425\) 20.1907 + 16.1015i 0.979391 + 0.781038i
\(426\) −19.2835 + 84.4865i −0.934288 + 4.09339i
\(427\) 4.85677 + 1.10853i 0.235035 + 0.0536453i
\(428\) −18.1604 22.7724i −0.877817 1.10075i
\(429\) 4.11776 + 1.98301i 0.198807 + 0.0957405i
\(430\) −0.766727 + 0.369236i −0.0369748 + 0.0178061i
\(431\) 7.37912 9.25312i 0.355440 0.445707i −0.571678 0.820478i \(-0.693707\pi\)
0.927117 + 0.374771i \(0.122279\pi\)
\(432\) 1.87885 1.49833i 0.0903960 0.0720884i
\(433\) 7.41818 + 15.4040i 0.356495 + 0.740269i 0.999676 0.0254447i \(-0.00810019\pi\)
−0.643181 + 0.765714i \(0.722386\pi\)
\(434\) 15.2961 0.734235
\(435\) 0 0
\(436\) −18.0874 −0.866230
\(437\) −0.344652 0.715677i −0.0164869 0.0342355i
\(438\) −35.3329 + 28.1771i −1.68827 + 1.34635i
\(439\) −11.6910 + 14.6601i −0.557982 + 0.699688i −0.978183 0.207743i \(-0.933388\pi\)
0.420201 + 0.907431i \(0.361960\pi\)
\(440\) −0.536889 + 0.258552i −0.0255952 + 0.0123260i
\(441\) −20.8261 10.0293i −0.991721 0.477588i
\(442\) 2.95953 + 3.71113i 0.140770 + 0.176520i
\(443\) −3.31849 0.757423i −0.157666 0.0359862i 0.142959 0.989729i \(-0.454338\pi\)
−0.300625 + 0.953742i \(0.597195\pi\)
\(444\) 10.6686 46.7421i 0.506308 2.21828i
\(445\) −0.0512586 0.0408773i −0.00242989 0.00193777i
\(446\) −29.5624 + 6.74742i −1.39982 + 0.319500i
\(447\) 14.5127i 0.686427i
\(448\) 4.53160 + 19.8542i 0.214098 + 0.938024i
\(449\) −0.0604326 + 0.125490i −0.00285199 + 0.00592222i −0.902390 0.430920i \(-0.858189\pi\)
0.899538 + 0.436843i \(0.143903\pi\)
\(450\) −24.9204 + 51.7477i −1.17476 + 2.43941i
\(451\) −1.29331 5.66638i −0.0608998 0.266819i
\(452\) 25.3371i 1.19176i
\(453\) −21.6017 + 4.93044i −1.01493 + 0.231652i
\(454\) 3.76284 + 3.00077i 0.176599 + 0.140833i
\(455\) 0.00814761 0.0356970i 0.000381966 0.00167350i
\(456\) −24.7643 5.65230i −1.15970 0.264693i
\(457\) −20.0012 25.0808i −0.935619 1.17323i −0.984669 0.174433i \(-0.944191\pi\)
0.0490501 0.998796i \(-0.484381\pi\)
\(458\) 55.9617 + 26.9497i 2.61492 + 1.25928i
\(459\) −27.3652 + 13.1784i −1.27730 + 0.615113i
\(460\) 0.0261069 0.0327370i 0.00121724 0.00152637i
\(461\) 0.567225 0.452347i 0.0264183 0.0210679i −0.610192 0.792254i \(-0.708908\pi\)
0.636610 + 0.771186i \(0.280336\pi\)
\(462\) −17.3440 36.0152i −0.806916 1.67558i
\(463\) 9.14813 0.425150 0.212575 0.977145i \(-0.431815\pi\)
0.212575 + 0.977145i \(0.431815\pi\)
\(464\) 0 0
\(465\) 0.710019 0.0329263
\(466\) 17.1967 + 35.7093i 0.796622 + 1.65420i
\(467\) 23.9742 19.1188i 1.10939 0.884711i 0.115309 0.993330i \(-0.463214\pi\)
0.994084 + 0.108618i \(0.0346426\pi\)
\(468\) −4.02232 + 5.04383i −0.185932 + 0.233151i
\(469\) −15.3007 + 7.36844i −0.706521 + 0.340243i
\(470\) −1.13226 0.545269i −0.0522273 0.0251514i
\(471\) 33.3982 + 41.8800i 1.53891 + 1.92973i
\(472\) 2.65812 + 0.606698i 0.122350 + 0.0279256i
\(473\) −5.73144 + 25.1111i −0.263532 + 1.15461i
\(474\) 24.0970 + 19.2167i 1.10681 + 0.882652i
\(475\) −16.8105 + 3.83690i −0.771321 + 0.176049i
\(476\) 25.3705i 1.16285i
\(477\) −2.01762 8.83976i −0.0923804 0.404745i
\(478\) −16.9753 + 35.2497i −0.776434 + 1.61228i
\(479\) 2.29841 4.77269i 0.105017 0.218070i −0.841838 0.539730i \(-0.818526\pi\)
0.946855 + 0.321660i \(0.104241\pi\)
\(480\) 0.223545 + 0.979413i 0.0102034 + 0.0447039i
\(481\) 2.17506i 0.0991740i
\(482\) 48.6101 11.0949i 2.21413 0.505361i
\(483\) 0.798482 + 0.636768i 0.0363322 + 0.0289739i
\(484\) −3.34538 + 14.6571i −0.152063 + 0.666230i
\(485\) −0.971364 0.221707i −0.0441074 0.0100672i
\(486\) 18.9569 + 23.7712i 0.859901 + 1.07828i
\(487\) 3.13680 + 1.51060i 0.142142 + 0.0684519i 0.503603 0.863935i \(-0.332008\pi\)
−0.361461 + 0.932387i \(0.617722\pi\)
\(488\) 7.44618 3.58589i 0.337073 0.162326i
\(489\) −4.00615 + 5.02355i −0.181164 + 0.227173i
\(490\) 0.468003 0.373220i 0.0211422 0.0168604i
\(491\) −2.53891 5.27211i −0.114580 0.237927i 0.835791 0.549048i \(-0.185010\pi\)
−0.950370 + 0.311121i \(0.899295\pi\)
\(492\) 13.0597 0.588776
\(493\) 0 0
\(494\) −3.16931 −0.142594
\(495\) −0.505751 1.05020i −0.0227318 0.0472031i
\(496\) −1.38063 + 1.10101i −0.0619920 + 0.0494370i
\(497\) 13.1013 16.4285i 0.587673 0.736919i
\(498\) 48.8877 23.5431i 2.19071 1.05499i
\(499\) −21.3695 10.2910i −0.956630 0.460689i −0.110624 0.993862i \(-0.535285\pi\)
−0.846006 + 0.533174i \(0.820999\pi\)
\(500\) −1.13379 1.42173i −0.0507047 0.0635817i
\(501\) −32.4981 7.41747i −1.45191 0.331388i
\(502\) −4.93051 + 21.6020i −0.220060 + 0.964144i
\(503\) −15.1176 12.0559i −0.674059 0.537545i 0.225554 0.974231i \(-0.427581\pi\)
−0.899614 + 0.436686i \(0.856152\pi\)
\(504\) 20.0018 4.56528i 0.890950 0.203354i
\(505\) 0.361165i 0.0160716i
\(506\) −0.461475 2.02185i −0.0205151 0.0898824i
\(507\) 15.8201 32.8507i 0.702593 1.45895i
\(508\) 23.9627 49.7591i 1.06317 2.20770i
\(509\) −8.64173 37.8619i −0.383038 1.67820i −0.687903 0.725803i \(-0.741468\pi\)
0.304865 0.952396i \(-0.401389\pi\)
\(510\) 1.92712i 0.0853342i
\(511\) 10.6834 2.43841i 0.472605 0.107869i
\(512\) −3.61039 2.87919i −0.159558 0.127243i
\(513\) 4.51264 19.7712i 0.199238 0.872919i
\(514\) −34.0527 7.77230i −1.50200 0.342822i
\(515\) −0.476757 0.597835i −0.0210084 0.0263437i
\(516\) −52.1437 25.1111i −2.29550 1.10545i
\(517\) −34.2696 + 16.5034i −1.50717 + 0.725817i
\(518\) −11.8611 + 14.8733i −0.521146 + 0.653497i
\(519\) −42.8377 + 34.1619i −1.88037 + 1.49954i
\(520\) −0.0263561 0.0547290i −0.00115579 0.00240003i
\(521\) 33.3472 1.46097 0.730484 0.682930i \(-0.239294\pi\)
0.730484 + 0.682930i \(0.239294\pi\)
\(522\) 0 0
\(523\) 31.8103 1.39097 0.695484 0.718542i \(-0.255190\pi\)
0.695484 + 0.718542i \(0.255190\pi\)
\(524\) 4.56509 + 9.47950i 0.199427 + 0.414114i
\(525\) 17.3327 13.8224i 0.756463 0.603259i
\(526\) 43.8219 54.9510i 1.91073 2.39598i
\(527\) 20.1087 9.68383i 0.875948 0.421834i
\(528\) 4.15785 + 2.00232i 0.180947 + 0.0871397i
\(529\) −14.3072 17.9407i −0.622053 0.780030i
\(530\) 0.228917 + 0.0522487i 0.00994350 + 0.00226954i
\(531\) −1.18676 + 5.19952i −0.0515009 + 0.225640i
\(532\) 13.2438 + 10.5616i 0.574193 + 0.457903i
\(533\) 0.577616 0.131837i 0.0250193 0.00571050i
\(534\) 7.29632i 0.315742i
\(535\) 0.119376 + 0.523020i 0.00516107 + 0.0226121i
\(536\) −12.2243 + 25.3840i −0.528010 + 1.09642i
\(537\) 1.12203 2.32992i 0.0484192 0.100543i
\(538\) 6.99150 + 30.6318i 0.301425 + 1.32063i
\(539\) 18.1175i 0.780375i
\(540\) 1.04220 0.237876i 0.0448492 0.0102365i
\(541\) −30.2883 24.1541i −1.30220 1.03847i −0.996259 0.0864142i \(-0.972459\pi\)
−0.305936 0.952052i \(-0.598969\pi\)
\(542\) 13.5431 59.3363i 0.581727 2.54871i
\(543\) 14.5729 + 3.32616i 0.625381 + 0.142739i
\(544\) 19.6891 + 24.6894i 0.844164 + 1.05855i
\(545\) 0.300148 + 0.144544i 0.0128569 + 0.00619158i
\(546\) 3.67130 1.76800i 0.157117 0.0756635i
\(547\) 3.73505 4.68360i 0.159699 0.200256i −0.695544 0.718484i \(-0.744836\pi\)
0.855243 + 0.518227i \(0.173408\pi\)
\(548\) 13.5644 10.8172i 0.579441 0.462089i
\(549\) 7.01432 + 14.5654i 0.299364 + 0.621636i
\(550\) −45.0173 −1.91954
\(551\) 0 0
\(552\) 1.69434 0.0721159
\(553\) −3.24260 6.73332i −0.137889 0.286330i
\(554\) −39.9923 + 31.8928i −1.69911 + 1.35499i
\(555\) −0.550573 + 0.690397i −0.0233705 + 0.0293057i
\(556\) −1.69182 + 0.814738i −0.0717492 + 0.0345526i
\(557\) 1.69147 + 0.814571i 0.0716700 + 0.0345145i 0.469375 0.882999i \(-0.344479\pi\)
−0.397705 + 0.917513i \(0.630193\pi\)
\(558\) 30.9490 + 38.8088i 1.31018 + 1.64291i
\(559\) −2.55976 0.584248i −0.108266 0.0247110i
\(560\) 0.00822695 0.0360446i 0.000347652 0.00152316i
\(561\) −45.6019 36.3663i −1.92531 1.53539i
\(562\) 7.29609 1.66528i 0.307767 0.0702458i
\(563\) 26.4739i 1.11574i 0.829927 + 0.557872i \(0.188382\pi\)
−0.829927 + 0.557872i \(0.811618\pi\)
\(564\) −19.0182 83.3241i −0.800810 3.50858i
\(565\) −0.202479 + 0.420452i −0.00851836 + 0.0176886i
\(566\) −17.3848 + 36.0999i −0.730738 + 1.51739i
\(567\) 0.516673 + 2.26369i 0.0216982 + 0.0950662i
\(568\) 34.8605i 1.46271i
\(569\) −12.4646 + 2.84495i −0.522542 + 0.119267i −0.475652 0.879633i \(-0.657788\pi\)
−0.0468893 + 0.998900i \(0.514931\pi\)
\(570\) 1.00599 + 0.802249i 0.0421362 + 0.0336025i
\(571\) 8.46789 37.1003i 0.354370 1.55260i −0.412598 0.910913i \(-0.635379\pi\)
0.766968 0.641685i \(-0.221764\pi\)
\(572\) −4.92967 1.12517i −0.206120 0.0470456i
\(573\) 18.2576 + 22.8943i 0.762722 + 0.956423i
\(574\) −4.66876 2.24836i −0.194870 0.0938446i
\(575\) 1.03625 0.499033i 0.0432147 0.0208111i
\(576\) −41.2048 + 51.6691i −1.71687 + 2.15288i
\(577\) −0.0799466 + 0.0637553i −0.00332822 + 0.00265417i −0.625152 0.780503i \(-0.714963\pi\)
0.621824 + 0.783157i \(0.286392\pi\)
\(578\) −9.55665 19.8446i −0.397504 0.825426i
\(579\) 7.69786 0.319912
\(580\) 0 0
\(581\) −13.1571 −0.545848
\(582\) −48.1097 99.9009i −1.99421 4.14103i
\(583\) 5.55622 4.43094i 0.230115 0.183511i
\(584\) 11.3348 14.2134i 0.469038 0.588156i
\(585\) 0.107055 0.0515549i 0.00442618 0.00213153i
\(586\) 27.6526 + 13.3168i 1.14232 + 0.550112i
\(587\) −0.458459 0.574889i −0.0189226 0.0237282i 0.772280 0.635282i \(-0.219116\pi\)
−0.791203 + 0.611554i \(0.790545\pi\)
\(588\) 39.6889 + 9.05874i 1.63674 + 0.373576i
\(589\) −3.31602 + 14.5284i −0.136634 + 0.598633i
\(590\) −0.107979 0.0861106i −0.00444544 0.00354512i
\(591\) 40.9272 9.34136i 1.68352 0.384252i
\(592\) 2.19624i 0.0902647i
\(593\) 9.95904 + 43.6334i 0.408969 + 1.79181i 0.588984 + 0.808145i \(0.299528\pi\)
−0.180016 + 0.983664i \(0.557615\pi\)
\(594\) 22.9723 47.7024i 0.942563 1.95725i
\(595\) −0.202746 + 0.421005i −0.00831176 + 0.0172595i
\(596\) −3.57284 15.6536i −0.146349 0.641198i
\(597\) 42.6173i 1.74421i
\(598\) 0.206103 0.0470416i 0.00842816 0.00192367i
\(599\) −3.17427 2.53139i −0.129697 0.103430i 0.556493 0.830852i \(-0.312147\pi\)
−0.686190 + 0.727422i \(0.740718\pi\)
\(600\) 8.18415 35.8571i 0.334117 1.46386i
\(601\) −43.3191 9.88729i −1.76702 0.403311i −0.789433 0.613837i \(-0.789625\pi\)
−0.977588 + 0.210525i \(0.932483\pi\)
\(602\) 14.3179 + 17.9541i 0.583556 + 0.731756i
\(603\) −49.6535 23.9118i −2.02205 0.973766i
\(604\) 22.0861 10.6361i 0.898670 0.432777i
\(605\) 0.172645 0.216490i 0.00701901 0.00880156i
\(606\) 31.4245 25.0602i 1.27653 1.01800i
\(607\) 4.20943 + 8.74096i 0.170855 + 0.354785i 0.968760 0.247998i \(-0.0797727\pi\)
−0.797905 + 0.602783i \(0.794058\pi\)
\(608\) −21.0848 −0.855100
\(609\) 0 0
\(610\) −0.418648 −0.0169506
\(611\) −1.68231 3.49335i −0.0680590 0.141326i
\(612\) 64.3694 51.3328i 2.60198 2.07501i
\(613\) 1.11296 1.39561i 0.0449521 0.0563681i −0.758847 0.651269i \(-0.774237\pi\)
0.803799 + 0.594900i \(0.202809\pi\)
\(614\) 13.3187 6.41396i 0.537500 0.258846i
\(615\) −0.216716 0.104365i −0.00873885 0.00420841i
\(616\) 10.0259 + 12.5721i 0.403956 + 0.506544i
\(617\) −8.49171 1.93818i −0.341863 0.0780280i 0.0481425 0.998840i \(-0.484670\pi\)
−0.390006 + 0.920812i \(0.627527\pi\)
\(618\) 18.9360 82.9642i 0.761719 3.33731i
\(619\) 11.1052 + 8.85612i 0.446357 + 0.355957i 0.820726 0.571322i \(-0.193569\pi\)
−0.374369 + 0.927280i \(0.622141\pi\)
\(620\) −0.765839 + 0.174798i −0.0307568 + 0.00702004i
\(621\) 1.35272i 0.0542826i
\(622\) 12.3864 + 54.2685i 0.496650 + 2.17597i
\(623\) −0.767621 + 1.59398i −0.0307541 + 0.0638615i
\(624\) −0.204111 + 0.423841i −0.00817098 + 0.0169672i
\(625\) −5.55184 24.3242i −0.222074 0.972968i
\(626\) 4.47759i 0.178961i
\(627\) 37.9677 8.66588i 1.51628 0.346082i
\(628\) −46.3342 36.9503i −1.84894 1.47448i
\(629\) −6.17675 + 27.0621i −0.246283 + 1.07904i
\(630\) −1.01320 0.231256i −0.0403668 0.00921345i
\(631\) −10.3314 12.9552i −0.411287 0.515738i 0.532438 0.846469i \(-0.321276\pi\)
−0.943725 + 0.330731i \(0.892705\pi\)
\(632\) −11.1706 5.37950i −0.444344 0.213985i
\(633\) 30.6421 14.7565i 1.21791 0.586517i
\(634\) −41.9662 + 52.6239i −1.66669 + 2.08996i
\(635\) −0.795289 + 0.634222i −0.0315601 + 0.0251683i
\(636\) 6.92850 + 14.3872i 0.274733 + 0.570488i
\(637\) 1.84685 0.0731748
\(638\) 0 0
\(639\) 68.1903 2.69757
\(640\) −0.435658 0.904654i −0.0172209 0.0357596i
\(641\) −5.70545 + 4.54994i −0.225352 + 0.179712i −0.729657 0.683814i \(-0.760320\pi\)
0.504305 + 0.863526i \(0.331749\pi\)
\(642\) −37.2242 + 46.6777i −1.46912 + 1.84222i
\(643\) −30.5163 + 14.6959i −1.20345 + 0.579550i −0.924656 0.380802i \(-0.875648\pi\)
−0.278791 + 0.960352i \(0.589934\pi\)
\(644\) −1.01802 0.490253i −0.0401156 0.0193187i
\(645\) 0.664616 + 0.833402i 0.0261692 + 0.0328152i
\(646\) 39.4327 + 9.00025i 1.55146 + 0.354110i
\(647\) 7.44216 32.6062i 0.292581 1.28188i −0.588337 0.808616i \(-0.700217\pi\)
0.880919 0.473267i \(-0.156926\pi\)
\(648\) 3.01167 + 2.40172i 0.118309 + 0.0943487i
\(649\) −4.07532 + 0.930165i −0.159970 + 0.0365122i
\(650\) 4.58895i 0.179993i
\(651\) −4.26345 18.6794i −0.167098 0.732103i
\(652\) 3.08437 6.40475i 0.120793 0.250829i
\(653\) 10.3072 21.4032i 0.403353 0.837571i −0.596048 0.802949i \(-0.703263\pi\)
0.999400 0.0346217i \(-0.0110226\pi\)
\(654\) 8.24988 + 36.1451i 0.322596 + 1.41338i
\(655\) 0.193787i 0.00757189i
\(656\) 0.583241 0.133121i 0.0227717 0.00519750i
\(657\) 27.8027 + 22.1719i 1.08469 + 0.865010i
\(658\) −7.54620 + 33.0621i −0.294182 + 1.28889i
\(659\) −4.80760 1.09730i −0.187278 0.0427449i 0.127853 0.991793i \(-0.459191\pi\)
−0.315131 + 0.949048i \(0.602048\pi\)
\(660\) 1.27994 + 1.60500i 0.0498217 + 0.0624744i
\(661\) 21.1485 + 10.1846i 0.822583 + 0.396135i 0.797328 0.603546i \(-0.206246\pi\)
0.0252546 + 0.999681i \(0.491960\pi\)
\(662\) 57.9729 27.9183i 2.25318 1.08507i
\(663\) 3.70709 4.64854i 0.143971 0.180534i
\(664\) −17.0656 + 13.6094i −0.662274 + 0.528146i
\(665\) −0.135370 0.281099i −0.00524943 0.0109006i
\(666\) −61.7352 −2.39219
\(667\) 0 0
\(668\) 36.8790 1.42689
\(669\) 16.4798 + 34.2206i 0.637145 + 1.32304i
\(670\) 1.11581 0.889827i 0.0431074 0.0343770i
\(671\) −7.90024 + 9.90659i −0.304985 + 0.382439i
\(672\) 24.4244 11.7622i 0.942190 0.453735i
\(673\) 26.9654 + 12.9859i 1.03944 + 0.500568i 0.874139 0.485675i \(-0.161426\pi\)
0.165301 + 0.986243i \(0.447141\pi\)
\(674\) −5.68007 7.12258i −0.218788 0.274352i
\(675\) 28.6273 + 6.53400i 1.10187 + 0.251494i
\(676\) −8.97636 + 39.3280i −0.345244 + 1.51261i
\(677\) 17.2130 + 13.7269i 0.661550 + 0.527568i 0.895715 0.444629i \(-0.146664\pi\)
−0.234165 + 0.972197i \(0.575236\pi\)
\(678\) −50.6325 + 11.5565i −1.94453 + 0.443826i
\(679\) 26.8862i 1.03180i
\(680\) 0.172503 + 0.755787i 0.00661520 + 0.0289831i
\(681\) 2.61569 5.43154i 0.100234 0.208137i
\(682\) −16.8807 + 35.0530i −0.646394 + 1.34225i
\(683\) 1.02740 + 4.50134i 0.0393124 + 0.172239i 0.990773 0.135532i \(-0.0432742\pi\)
−0.951461 + 0.307771i \(0.900417\pi\)
\(684\) 54.9715i 2.10189i
\(685\) −0.311536 + 0.0711061i −0.0119032 + 0.00271682i
\(686\) −32.0145 25.5307i −1.22232 0.974766i
\(687\) 17.3126 75.8515i 0.660517 2.89391i
\(688\) −2.58468 0.589937i −0.0985401 0.0224911i
\(689\) 0.451679 + 0.566387i 0.0172076 + 0.0215776i
\(690\) −0.0773278 0.0372391i −0.00294382 0.00141767i
\(691\) 32.2059 15.5096i 1.22517 0.590011i 0.294424 0.955675i \(-0.404872\pi\)
0.930747 + 0.365663i \(0.119158\pi\)
\(692\) 37.7952 47.3937i 1.43676 1.80164i
\(693\) −24.5922 + 19.6116i −0.934179 + 0.744983i
\(694\) 3.49566 + 7.25882i 0.132694 + 0.275541i
\(695\) 0.0345855 0.00131190
\(696\) 0 0
\(697\) −7.56111 −0.286398
\(698\) 3.28835 + 6.82833i 0.124466 + 0.258456i
\(699\) 38.8147 30.9537i 1.46810 1.17077i
\(700\) −15.2925 + 19.1762i −0.578002 + 0.724791i
\(701\) −3.28371 + 1.58135i −0.124024 + 0.0597269i −0.494867 0.868969i \(-0.664783\pi\)
0.370843 + 0.928696i \(0.379069\pi\)
\(702\) 4.86266 + 2.34173i 0.183529 + 0.0883830i
\(703\) −11.5555 14.4902i −0.435826 0.546508i
\(704\) −50.4997 11.5262i −1.90328 0.434411i
\(705\) −0.350283 + 1.53469i −0.0131924 + 0.0577997i
\(706\) 22.1897 + 17.6957i 0.835120 + 0.665986i
\(707\) −9.50163 + 2.16869i −0.357346 + 0.0815618i
\(708\) 9.39266i 0.352998i
\(709\) −4.67094 20.4647i −0.175421 0.768569i −0.983707 0.179779i \(-0.942462\pi\)
0.808286 0.588790i \(-0.200395\pi\)
\(710\) −0.766183 + 1.59100i −0.0287543 + 0.0597090i
\(711\) 10.5228 21.8508i 0.394635 0.819468i
\(712\) 0.653120 + 2.86151i 0.0244767 + 0.107240i
\(713\) 0.994013i 0.0372261i
\(714\) −50.6992 + 11.5718i −1.89737 + 0.433062i
\(715\) 0.0728129 + 0.0580664i 0.00272305 + 0.00217156i
\(716\) −0.636644 + 2.78932i −0.0237925 + 0.104242i
\(717\) 47.7780 + 10.9050i 1.78430 + 0.407256i
\(718\) −26.0103 32.6159i −0.970696 1.21721i
\(719\) −21.8511 10.5229i −0.814908 0.392439i −0.0204747 0.999790i \(-0.506518\pi\)
−0.794433 + 0.607351i \(0.792232\pi\)
\(720\) 0.108097 0.0520570i 0.00402855 0.00194005i
\(721\) −12.8652 + 16.1325i −0.479126 + 0.600805i
\(722\) 12.5730 10.0266i 0.467919 0.373153i
\(723\) −27.0981 56.2697i −1.00779 2.09269i
\(724\) −16.5374 −0.614607
\(725\) 0 0
\(726\) 30.8159 1.14368
\(727\) 13.4225 + 27.8721i 0.497813 + 1.03372i 0.986877 + 0.161472i \(0.0516242\pi\)
−0.489064 + 0.872248i \(0.662661\pi\)
\(728\) −1.28157 + 1.02202i −0.0474980 + 0.0378784i
\(729\) 26.5258 33.2623i 0.982437 1.23194i
\(730\) −0.829700 + 0.399562i −0.0307086 + 0.0147885i
\(731\) 30.1894 + 14.5385i 1.11660 + 0.537724i
\(732\) −17.7517 22.2599i −0.656121 0.822749i
\(733\) 18.0459 + 4.11885i 0.666540 + 0.152133i 0.542386 0.840130i \(-0.317521\pi\)
0.124154 + 0.992263i \(0.460378\pi\)
\(734\) 4.96052 21.7335i 0.183096 0.802197i
\(735\) −0.586219 0.467494i −0.0216230 0.0172438i
\(736\) 1.37116 0.312958i 0.0505416 0.0115358i
\(737\) 43.1955i 1.59113i
\(738\) −3.74197 16.3946i −0.137744 0.603495i
\(739\) 14.7733 30.6771i 0.543446 1.12848i −0.430687 0.902501i \(-0.641729\pi\)
0.974133 0.225976i \(-0.0725569\pi\)
\(740\) 0.423890 0.880217i 0.0155825 0.0323574i
\(741\) 0.883377 + 3.87033i 0.0324517 + 0.142180i
\(742\) 6.33614i 0.232607i
\(743\) −33.9537 + 7.74972i −1.24564 + 0.284309i −0.794015 0.607898i \(-0.792013\pi\)
−0.451626 + 0.892207i \(0.649156\pi\)
\(744\) −24.8515 19.8184i −0.911100 0.726578i
\(745\) −0.0658056 + 0.288313i −0.00241093 + 0.0105630i
\(746\) 49.0367 + 11.1923i 1.79536 + 0.409780i
\(747\) −26.6212 33.3819i −0.974017 1.22138i
\(748\) 58.1399 + 27.9987i 2.12581 + 1.02373i
\(749\) 13.0430 6.28116i 0.476579 0.229509i
\(750\) −2.32399 + 2.91419i −0.0848599 + 0.106411i
\(751\) 37.9882 30.2946i 1.38621 1.10546i 0.404613 0.914488i \(-0.367406\pi\)
0.981595 0.190976i \(-0.0611653\pi\)
\(752\) −1.69869 3.52737i −0.0619449 0.128630i
\(753\) 27.7544 1.01143
\(754\) 0 0
\(755\) −0.451501 −0.0164318
\(756\) −12.5162 25.9902i −0.455210 0.945254i
\(757\) −23.5267 + 18.7619i −0.855093 + 0.681914i −0.949550 0.313615i \(-0.898460\pi\)
0.0944571 + 0.995529i \(0.469888\pi\)
\(758\) −12.3014 + 15.4255i −0.446807 + 0.560278i
\(759\) −2.34044 + 1.12710i −0.0849526 + 0.0409110i
\(760\) −0.466346 0.224581i −0.0169162 0.00814639i
\(761\) −6.12807 7.68435i −0.222142 0.278558i 0.658255 0.752795i \(-0.271295\pi\)
−0.880397 + 0.474238i \(0.842724\pi\)
\(762\) −110.366 25.1903i −3.99813 0.912548i
\(763\) 2.00040 8.76434i 0.0724194 0.317290i
\(764\) −25.3292 20.1994i −0.916379 0.730788i
\(765\) −1.47839 + 0.337432i −0.0534512 + 0.0121999i
\(766\) 11.5342i 0.416749i
\(767\) −0.0948187 0.415428i −0.00342370 0.0150002i
\(768\) 16.3457 33.9423i 0.589826 1.22479i
\(769\) 13.0057 27.0067i 0.468999 0.973886i −0.523545 0.851998i \(-0.675391\pi\)
0.992544 0.121888i \(-0.0388948\pi\)
\(770\) −0.181255 0.794132i −0.00653199 0.0286185i
\(771\) 43.7511i 1.57566i
\(772\) −8.30304 + 1.89511i −0.298833 + 0.0682066i
\(773\) 13.2246 + 10.5463i 0.475657 + 0.379323i 0.831771 0.555119i \(-0.187327\pi\)
−0.356114 + 0.934442i \(0.615899\pi\)
\(774\) −16.5829 + 72.6543i −0.596059 + 2.61150i
\(775\) −21.0362 4.80137i −0.755641 0.172470i
\(776\) 27.8104 + 34.8732i 0.998336 + 1.25187i
\(777\) 21.4692 + 10.3390i 0.770203 + 0.370910i
\(778\) −60.9698 + 29.3615i −2.18587 + 1.05266i
\(779\) 3.14765 3.94703i 0.112776 0.141417i
\(780\) −0.163609 + 0.130474i −0.00585815 + 0.00467172i
\(781\) 23.1897 + 48.1538i 0.829791 + 1.72308i
\(782\) −2.69792 −0.0964776
\(783\) 0 0
\(784\) 1.86483 0.0666012
\(785\) 0.473600 + 0.983440i 0.0169035 + 0.0351005i
\(786\) 16.8612 13.4464i 0.601419 0.479616i
\(787\) 12.4671 15.6332i 0.444404 0.557265i −0.508294 0.861184i \(-0.669724\pi\)
0.952698 + 0.303919i \(0.0982951\pi\)
\(788\) −41.8450 + 20.1515i −1.49067 + 0.717867i
\(789\) −79.3200 38.1985i −2.82387 1.35990i
\(790\) 0.391582 + 0.491029i 0.0139319 + 0.0174700i
\(791\) 12.2772 + 2.80219i 0.436527 + 0.0996345i
\(792\) −11.6119 + 50.8750i −0.412611 + 1.80777i
\(793\) −1.00985 0.805330i −0.0358609 0.0285981i
\(794\) 6.46152 1.47480i 0.229311 0.0523387i
\(795\) 0.294114i 0.0104311i
\(796\) 10.4918 + 45.9677i 0.371873 + 1.62928i
\(797\) −17.4859 + 36.3098i −0.619381 + 1.28616i 0.321336 + 0.946965i \(0.395868\pi\)
−0.940717 + 0.339193i \(0.889846\pi\)
\(798\) 15.0652 31.2831i 0.533301 1.10741i
\(799\) 11.0109 + 48.2418i 0.389537 + 1.70667i
\(800\) 30.5293i 1.07937i
\(801\) −5.59737 + 1.27756i −0.197773 + 0.0451404i
\(802\) 36.2414 + 28.9016i 1.27973 + 1.02055i
\(803\) −6.20217 + 27.1735i −0.218870 + 0.958932i
\(804\) 94.6258 + 21.5977i 3.33720 + 0.761693i
\(805\) 0.0129755 + 0.0162708i 0.000457328 + 0.000573471i
\(806\) −3.57322 1.72077i −0.125861 0.0606116i
\(807\) 35.4584 17.0759i 1.24820 0.601100i
\(808\) −10.0810 + 12.6412i −0.354648 + 0.444715i
\(809\) −39.1816 + 31.2463i −1.37755 + 1.09856i −0.393768 + 0.919210i \(0.628829\pi\)
−0.983785 + 0.179352i \(0.942600\pi\)
\(810\) −0.0846628 0.175804i −0.00297475 0.00617713i
\(811\) 24.7764 0.870017 0.435009 0.900426i \(-0.356745\pi\)
0.435009 + 0.900426i \(0.356745\pi\)
\(812\) 0 0
\(813\) −76.2357 −2.67370
\(814\) −20.9945 43.5954i −0.735856 1.52802i
\(815\) −0.102366 + 0.0816341i −0.00358572 + 0.00285952i
\(816\) 3.74319 4.69381i 0.131038 0.164316i
\(817\) −20.1570 + 9.70712i −0.705206 + 0.339609i
\(818\) −68.6748 33.0721i −2.40116 1.15634i
\(819\) −1.99916 2.50686i −0.0698561 0.0875968i
\(820\) 0.259447 + 0.0592172i 0.00906029 + 0.00206795i
\(821\) −7.91899 + 34.6953i −0.276374 + 1.21088i 0.625965 + 0.779851i \(0.284705\pi\)
−0.902340 + 0.431025i \(0.858152\pi\)
\(822\) −27.8035 22.1725i −0.969758 0.773356i
\(823\) 15.0177 3.42770i 0.523485 0.119482i 0.0473908 0.998876i \(-0.484909\pi\)
0.476094 + 0.879394i \(0.342052\pi\)
\(824\) 34.2324i 1.19254i
\(825\) 12.5476 + 54.9747i 0.436852 + 1.91397i
\(826\) −1.61704 + 3.35782i −0.0562641 + 0.116834i
\(827\) −17.9746 + 37.3246i −0.625037 + 1.29790i 0.312467 + 0.949929i \(0.398845\pi\)
−0.937504 + 0.347974i \(0.886870\pi\)
\(828\) −0.815934 3.57484i −0.0283557 0.124234i
\(829\) 4.64043i 0.161169i 0.996748 + 0.0805844i \(0.0256787\pi\)
−0.996748 + 0.0805844i \(0.974321\pi\)
\(830\) 1.07797 0.246040i 0.0374169 0.00854016i
\(831\) 50.0941 + 39.9487i 1.73775 + 1.38581i
\(832\) 1.17495 5.14781i 0.0407342 0.178468i
\(833\) −22.9785 5.24470i −0.796159 0.181718i
\(834\) 2.39979 + 3.00925i 0.0830980 + 0.104202i
\(835\) −0.611983 0.294715i −0.0211785 0.0101990i
\(836\) −38.8192 + 18.6943i −1.34259 + 0.646557i
\(837\) 15.8225 19.8407i 0.546905 0.685797i
\(838\) 13.3507 10.6468i 0.461191 0.367788i
\(839\) −15.3706 31.9174i −0.530652 1.10191i −0.978203 0.207652i \(-0.933418\pi\)
0.447550 0.894259i \(-0.352297\pi\)
\(840\) 0.665493 0.0229617
\(841\) 0 0
\(842\) −46.2065 −1.59238
\(843\) −4.06726 8.44574i −0.140084 0.290887i
\(844\) −29.4182 + 23.4603i −1.01262 + 0.807536i
\(845\) 0.463242 0.580887i 0.0159360 0.0199831i
\(846\) −99.1528 + 47.7495i −3.40894 + 1.64166i
\(847\) −6.73216 3.24204i −0.231320 0.111398i
\(848\) 0.456077 + 0.571902i 0.0156617 + 0.0196392i
\(849\) 48.9305 + 11.1681i 1.67929 + 0.383287i
\(850\) −13.0318 + 57.0959i −0.446986 + 1.95837i
\(851\) 0.966541 + 0.770791i 0.0331326 + 0.0264224i
\(852\) −117.083 + 26.7234i −4.01119 + 0.915527i
\(853\) 25.5045i 0.873256i −0.899642 0.436628i \(-0.856173\pi\)
0.899642 0.436628i \(-0.143827\pi\)
\(854\) 2.51386 + 11.0139i 0.0860224 + 0.376889i
\(855\) 0.439300 0.912215i 0.0150237 0.0311971i
\(856\) 10.4205 21.6384i 0.356165 0.739585i
\(857\) 7.96332 + 34.8896i 0.272022 + 1.19181i 0.907622 + 0.419788i \(0.137896\pi\)
−0.635600 + 0.772018i \(0.719247\pi\)
\(858\) 10.3644i 0.353836i
\(859\) 28.8342 6.58123i 0.983812 0.224549i 0.299786 0.954006i \(-0.403085\pi\)
0.684026 + 0.729458i \(0.260228\pi\)
\(860\) −0.922039 0.735301i −0.0314413 0.0250736i
\(861\) −1.44435 + 6.32812i −0.0492234 + 0.215662i
\(862\) 26.1663 + 5.97229i 0.891227 + 0.203417i
\(863\) 25.0679 + 31.4341i 0.853321 + 1.07003i 0.996765 + 0.0803718i \(0.0256108\pi\)
−0.143444 + 0.989658i \(0.545818\pi\)
\(864\) 32.3503 + 15.5791i 1.10058 + 0.530011i
\(865\) −1.00593 + 0.484430i −0.0342026 + 0.0164711i
\(866\) −24.1740 + 30.3132i −0.821465 + 1.03008i
\(867\) −21.5703 + 17.2017i −0.732566 + 0.584202i
\(868\) 9.19726 + 19.0983i 0.312175 + 0.648239i
\(869\) 19.0088 0.644831
\(870\) 0 0
\(871\) 4.40323 0.149198
\(872\) −6.47096 13.4371i −0.219134 0.455037i
\(873\) −68.2151 + 54.3997i −2.30873 + 1.84115i
\(874\) 1.12313 1.40836i 0.0379905 0.0476386i
\(875\) 0.814299 0.392146i 0.0275283 0.0132569i
\(876\) −56.4263 27.1735i −1.90647 0.918107i
\(877\) −32.4854 40.7354i −1.09695 1.37554i −0.920278 0.391266i \(-0.872037\pi\)
−0.176675 0.984269i \(-0.556534\pi\)
\(878\) −41.4563 9.46213i −1.39908 0.319331i
\(879\) 8.55477 37.4809i 0.288545 1.26420i
\(880\) 0.0735220 + 0.0586318i 0.00247842 + 0.00197648i
\(881\) 44.1260 10.0715i 1.48664 0.339316i 0.599336 0.800498i \(-0.295431\pi\)
0.887306 + 0.461181i \(0.152574\pi\)
\(882\) 52.4196i 1.76506i
\(883\) −7.54301 33.0481i −0.253842 1.11216i −0.927709 0.373304i \(-0.878225\pi\)
0.673867 0.738853i \(-0.264632\pi\)
\(884\) −2.85412 + 5.92663i −0.0959943 + 0.199334i
\(885\) −0.0750605 + 0.155865i −0.00252313 + 0.00523934i
\(886\) −1.71764 7.52549i −0.0577054 0.252824i
\(887\) 30.4108i 1.02110i −0.859850 0.510548i \(-0.829443\pi\)
0.859850 0.510548i \(-0.170557\pi\)
\(888\) 38.5414 8.79681i 1.29336 0.295202i
\(889\) 21.4608 + 17.1144i 0.719771 + 0.573999i
\(890\) 0.0330841 0.144951i 0.00110898 0.00485876i
\(891\) −5.75776 1.31417i −0.192892 0.0440264i
\(892\) −26.2000 32.8538i −0.877242 1.10003i
\(893\) −29.7669 14.3350i −0.996110 0.479701i
\(894\) −29.6519 + 14.2796i −0.991707 + 0.477581i
\(895\) 0.0328553 0.0411992i 0.00109823 0.00137714i
\(896\) −21.1839 + 16.8936i −0.707705 + 0.564376i
\(897\) −0.114893 0.238579i −0.00383618 0.00796591i
\(898\) −0.315858 −0.0105403
\(899\) 0 0
\(900\) −79.5951 −2.65317
\(901\) −4.01137 8.32969i −0.133638 0.277502i
\(902\) 10.3048 8.21783i 0.343113 0.273624i
\(903\) 17.9346 22.4892i 0.596825 0.748395i
\(904\) 18.8229 9.06461i 0.626039 0.301485i
\(905\) 0.274427 + 0.132157i 0.00912225 + 0.00439304i
\(906\) −31.3284 39.2846i −1.04082 1.30514i
\(907\) −15.4842 3.53418i −0.514146 0.117350i −0.0424273 0.999100i \(-0.513509\pi\)
−0.471719 + 0.881749i \(0.656366\pi\)
\(908\) −1.48415 + 6.50250i −0.0492534 + 0.215793i
\(909\) −24.7273 19.7194i −0.820152 0.654050i
\(910\) 0.0809518 0.0184767i 0.00268353 0.000612497i
\(911\) 24.9672i 0.827199i −0.910459 0.413600i \(-0.864271\pi\)
0.910459 0.413600i \(-0.135729\pi\)
\(912\) 0.891979 + 3.90802i 0.0295364 + 0.129407i
\(913\) 14.5201 30.1513i 0.480545 0.997862i
\(914\) 31.5643 65.5439i 1.04405 2.16800i
\(915\) 0.116689 + 0.511249i 0.00385762 + 0.0169014i
\(916\) 86.0768i 2.84406i
\(917\) −5.09821 + 1.16363i −0.168358 + 0.0384266i
\(918\) −53.8513 42.9450i −1.77736 1.41739i
\(919\) −2.99598 + 13.1263i −0.0988284 + 0.432996i −1.00000 0.000467182i \(-0.999851\pi\)
0.901171 + 0.433463i \(0.142708\pi\)
\(920\) 0.0336603 + 0.00768273i 0.00110975 + 0.000253292i
\(921\) −11.5450 14.4769i −0.380419 0.477031i
\(922\) 1.48234 + 0.713856i 0.0488182 + 0.0235096i
\(923\) −4.90868 + 2.36389i −0.161571 + 0.0778085i
\(924\) 34.5391 43.3106i 1.13625 1.42481i
\(925\) 20.9808 16.7317i 0.689845 0.550133i
\(926\) 9.00120 + 18.6912i 0.295798 + 0.614230i
\(927\) −66.9616 −2.19931
\(928\) 0 0
\(929\) 7.53667 0.247270 0.123635 0.992328i \(-0.460545\pi\)
0.123635 + 0.992328i \(0.460545\pi\)
\(930\) 0.698615 + 1.45069i 0.0229085 + 0.0475700i
\(931\) 12.3037 9.81186i 0.403237 0.321571i
\(932\) −34.2457 + 42.9428i −1.12176 + 1.40664i
\(933\) 62.8196 30.2523i 2.05662 0.990417i
\(934\) 62.6520 + 30.1716i 2.05004 + 0.987246i
\(935\) −0.741043 0.929239i −0.0242347 0.0303894i
\(936\) −5.18607 1.18369i −0.169512 0.0386900i
\(937\) −8.11389 + 35.5493i −0.265069 + 1.16134i 0.650603 + 0.759418i \(0.274516\pi\)
−0.915672 + 0.401926i \(0.868341\pi\)
\(938\) −30.1099 24.0119i −0.983124 0.784015i
\(939\) −5.46799 + 1.24803i −0.178441 + 0.0407280i
\(940\) 1.74158i 0.0568039i
\(941\) −7.82756 34.2948i −0.255171 1.11798i −0.926345 0.376677i \(-0.877067\pi\)
0.671174 0.741300i \(-0.265791\pi\)
\(942\) −52.7062 + 109.446i −1.71726 + 3.56593i
\(943\) −0.146109 + 0.303399i −0.00475797 + 0.00988002i
\(944\) −0.0957420 0.419473i −0.00311614 0.0136527i
\(945\) 0.531311i 0.0172836i
\(946\) −56.9455 + 12.9974i −1.85146 + 0.422584i
\(947\) 8.12847 + 6.48224i 0.264140 + 0.210644i 0.746600 0.665274i \(-0.231685\pi\)
−0.482460 + 0.875918i \(0.660257\pi\)
\(948\) −9.50442 + 41.6416i −0.308689 + 1.35246i
\(949\) −2.77000 0.632233i −0.0899179 0.0205232i
\(950\) −24.3800 30.5715i −0.790991 0.991871i
\(951\) 75.9609 + 36.5809i 2.46320 + 1.18622i
\(952\) 18.8476 9.07654i 0.610855 0.294172i
\(953\) 33.5532 42.0744i 1.08690 1.36292i 0.160211 0.987083i \(-0.448782\pi\)
0.926684 0.375841i \(-0.122646\pi\)
\(954\) 16.0759 12.8201i 0.520477 0.415067i
\(955\) 0.258900 + 0.537611i 0.00837780 + 0.0173967i
\(956\) −54.2189 −1.75356
\(957\) 0 0
\(958\) 12.0129 0.388119
\(959\) 3.74136 + 7.76901i 0.120815 + 0.250875i
\(960\) −1.67602 + 1.33658i −0.0540932 + 0.0431379i
\(961\) 7.70139 9.65724i 0.248432 0.311524i
\(962\) 4.44401 2.14012i 0.143281 0.0690003i
\(963\) 42.3266 + 20.3834i 1.36396 + 0.656847i
\(964\) 43.0813 + 54.0222i 1.38756 + 1.73994i
\(965\) 0.152928 + 0.0349048i 0.00492292 + 0.00112362i
\(966\) −0.515368 + 2.25797i −0.0165817 + 0.0726491i
\(967\) −9.29965 7.41623i −0.299057 0.238490i 0.462452 0.886644i \(-0.346970\pi\)
−0.761509 + 0.648154i \(0.775541\pi\)
\(968\) −12.0855 + 2.75844i −0.388444 + 0.0886598i
\(969\) 50.6634i 1.62754i
\(970\) −0.502776 2.20281i −0.0161432 0.0707279i
\(971\) 21.7332 45.1295i 0.697453 1.44828i −0.187342 0.982295i \(-0.559987\pi\)
0.884795 0.465981i \(-0.154298\pi\)
\(972\) −18.2817 + 37.9623i −0.586385 + 1.21764i
\(973\) −0.207675 0.909886i −0.00665777 0.0291696i
\(974\) 7.89535i 0.252983i
\(975\) −5.60398 + 1.27907i −0.179471 + 0.0409631i
\(976\) −1.01969 0.813172i −0.0326393 0.0260290i
\(977\) −3.07336 + 13.4653i −0.0983257 + 0.430793i −0.999999 0.00162566i \(-0.999483\pi\)
0.901673 + 0.432419i \(0.142340\pi\)
\(978\) −14.2058 3.24238i −0.454251 0.103680i
\(979\) −2.80569 3.51822i −0.0896701 0.112443i
\(980\) 0.747396 + 0.359927i 0.0238747 + 0.0114974i
\(981\) 26.2842 12.6578i 0.839188 0.404132i
\(982\) 8.27368 10.3749i 0.264024 0.331075i
\(983\) −9.11248 + 7.26696i −0.290643 + 0.231780i −0.757946 0.652317i \(-0.773797\pi\)
0.467303 + 0.884097i \(0.345226\pi\)
\(984\) 4.67223 + 9.70199i 0.148945 + 0.309288i
\(985\) 0.855428 0.0272562
\(986\) 0 0
\(987\) 42.4784 1.35210
\(988\) −1.90565 3.95713i −0.0606268 0.125893i
\(989\) 1.16675 0.930449i 0.0371004 0.0295866i
\(990\) 1.64811 2.06667i 0.0523805 0.0656831i
\(991\) 6.24844 3.00909i 0.198488 0.0955869i −0.331999 0.943280i \(-0.607723\pi\)
0.530488 + 0.847693i \(0.322009\pi\)
\(992\) −23.7719 11.4479i −0.754758 0.363472i
\(993\) −50.2522 63.0143i −1.59471 1.99970i
\(994\) 46.4571 + 10.6035i 1.47353 + 0.336324i
\(995\) 0.193242 0.846647i 0.00612617 0.0268405i
\(996\) 58.7907 + 46.8840i 1.86285 + 1.48558i
\(997\) −23.3690 + 5.33382i −0.740103 + 0.168924i −0.575920 0.817506i \(-0.695356\pi\)
−0.164183 + 0.986430i \(0.552499\pi\)
\(998\) 53.7872i 1.70260i
\(999\) 7.02314 + 30.7704i 0.222202 + 0.973532i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.e.h.270.2 12
29.2 odd 28 841.2.d.m.645.4 24
29.3 odd 28 841.2.d.k.574.1 24
29.4 even 14 841.2.b.e.840.11 12
29.5 even 14 841.2.e.i.196.2 12
29.6 even 14 841.2.e.f.63.1 12
29.7 even 7 841.2.e.f.267.1 12
29.8 odd 28 841.2.d.m.605.1 24
29.9 even 14 29.2.e.a.4.1 12
29.10 odd 28 841.2.a.k.1.11 12
29.11 odd 28 841.2.d.l.190.4 24
29.12 odd 4 841.2.d.l.571.1 24
29.13 even 14 inner 841.2.e.h.651.2 12
29.14 odd 28 841.2.d.k.778.1 24
29.15 odd 28 841.2.d.k.778.4 24
29.16 even 7 841.2.e.a.651.1 12
29.17 odd 4 841.2.d.l.571.4 24
29.18 odd 28 841.2.d.l.190.1 24
29.19 odd 28 841.2.a.k.1.2 12
29.20 even 7 841.2.e.i.236.2 12
29.21 odd 28 841.2.d.m.605.4 24
29.22 even 14 841.2.e.e.267.2 12
29.23 even 7 841.2.e.e.63.2 12
29.24 even 7 29.2.e.a.22.1 yes 12
29.25 even 7 841.2.b.e.840.2 12
29.26 odd 28 841.2.d.k.574.4 24
29.27 odd 28 841.2.d.m.645.1 24
29.28 even 2 841.2.e.a.270.1 12
87.38 odd 14 261.2.o.a.91.2 12
87.53 odd 14 261.2.o.a.109.2 12
87.68 even 28 7569.2.a.bp.1.2 12
87.77 even 28 7569.2.a.bp.1.11 12
116.67 odd 14 464.2.y.d.33.2 12
116.111 odd 14 464.2.y.d.225.2 12
145.9 even 14 725.2.q.a.526.2 12
145.24 even 14 725.2.q.a.51.2 12
145.38 odd 28 725.2.p.a.149.1 24
145.53 odd 28 725.2.p.a.399.4 24
145.67 odd 28 725.2.p.a.149.4 24
145.82 odd 28 725.2.p.a.399.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.e.a.4.1 12 29.9 even 14
29.2.e.a.22.1 yes 12 29.24 even 7
261.2.o.a.91.2 12 87.38 odd 14
261.2.o.a.109.2 12 87.53 odd 14
464.2.y.d.33.2 12 116.67 odd 14
464.2.y.d.225.2 12 116.111 odd 14
725.2.p.a.149.1 24 145.38 odd 28
725.2.p.a.149.4 24 145.67 odd 28
725.2.p.a.399.1 24 145.82 odd 28
725.2.p.a.399.4 24 145.53 odd 28
725.2.q.a.51.2 12 145.24 even 14
725.2.q.a.526.2 12 145.9 even 14
841.2.a.k.1.2 12 29.19 odd 28
841.2.a.k.1.11 12 29.10 odd 28
841.2.b.e.840.2 12 29.25 even 7
841.2.b.e.840.11 12 29.4 even 14
841.2.d.k.574.1 24 29.3 odd 28
841.2.d.k.574.4 24 29.26 odd 28
841.2.d.k.778.1 24 29.14 odd 28
841.2.d.k.778.4 24 29.15 odd 28
841.2.d.l.190.1 24 29.18 odd 28
841.2.d.l.190.4 24 29.11 odd 28
841.2.d.l.571.1 24 29.12 odd 4
841.2.d.l.571.4 24 29.17 odd 4
841.2.d.m.605.1 24 29.8 odd 28
841.2.d.m.605.4 24 29.21 odd 28
841.2.d.m.645.1 24 29.27 odd 28
841.2.d.m.645.4 24 29.2 odd 28
841.2.e.a.270.1 12 29.28 even 2
841.2.e.a.651.1 12 29.16 even 7
841.2.e.e.63.2 12 29.23 even 7
841.2.e.e.267.2 12 29.22 even 14
841.2.e.f.63.1 12 29.6 even 14
841.2.e.f.267.1 12 29.7 even 7
841.2.e.h.270.2 12 1.1 even 1 trivial
841.2.e.h.651.2 12 29.13 even 14 inner
841.2.e.i.196.2 12 29.5 even 14
841.2.e.i.236.2 12 29.20 even 7
7569.2.a.bp.1.2 12 87.68 even 28
7569.2.a.bp.1.11 12 87.77 even 28