Properties

Label 841.2.a.k.1.11
Level $841$
Weight $2$
Character 841.1
Self dual yes
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(1,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.12.32268092290502656.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 78x^{8} - 169x^{6} + 148x^{4} - 36x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-0.572821\) of defining polynomial
Character \(\chi\) \(=\) 841.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.26775 q^{2} +2.84057 q^{3} +3.14268 q^{4} +0.0578828 q^{5} +6.44169 q^{6} -1.56196 q^{7} +2.59131 q^{8} +5.06883 q^{9} +0.131264 q^{10} -3.97289 q^{11} +8.92699 q^{12} +0.404986 q^{13} -3.54213 q^{14} +0.164420 q^{15} -0.408929 q^{16} +5.16843 q^{17} +11.4948 q^{18} -3.45088 q^{19} +0.181907 q^{20} -4.43685 q^{21} -9.00950 q^{22} +0.230185 q^{23} +7.36078 q^{24} -4.99665 q^{25} +0.918405 q^{26} +5.87665 q^{27} -4.90874 q^{28} +0.372863 q^{30} +4.31832 q^{31} -6.10996 q^{32} -11.2853 q^{33} +11.7207 q^{34} -0.0904106 q^{35} +15.9297 q^{36} +5.37070 q^{37} -7.82573 q^{38} +1.15039 q^{39} +0.149992 q^{40} -1.46294 q^{41} -10.0617 q^{42} +6.48316 q^{43} -12.4855 q^{44} +0.293398 q^{45} +0.522001 q^{46} -9.57399 q^{47} -1.16159 q^{48} -4.56028 q^{49} -11.3311 q^{50} +14.6813 q^{51} +1.27274 q^{52} -1.78879 q^{53} +13.3268 q^{54} -0.229962 q^{55} -4.04752 q^{56} -9.80247 q^{57} -1.05216 q^{59} +0.516719 q^{60} -3.18937 q^{61} +9.79287 q^{62} -7.91731 q^{63} -13.0380 q^{64} +0.0234417 q^{65} -25.5921 q^{66} +10.8726 q^{67} +16.2427 q^{68} +0.653856 q^{69} -0.205028 q^{70} +13.4529 q^{71} +13.1349 q^{72} -7.01563 q^{73} +12.1794 q^{74} -14.1933 q^{75} -10.8450 q^{76} +6.20549 q^{77} +2.60879 q^{78} +4.78464 q^{79} -0.0236700 q^{80} +1.48654 q^{81} -3.31758 q^{82} +8.42345 q^{83} -13.9436 q^{84} +0.299163 q^{85} +14.7022 q^{86} -10.2950 q^{88} -1.13267 q^{89} +0.665353 q^{90} -0.632571 q^{91} +0.723397 q^{92} +12.2665 q^{93} -21.7114 q^{94} -0.199747 q^{95} -17.3558 q^{96} -17.2131 q^{97} -10.3416 q^{98} -20.1379 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{4} + 8 q^{5} + 24 q^{6} + 10 q^{7} + 10 q^{9} + 12 q^{13} + 16 q^{16} + 24 q^{20} - 38 q^{22} + 30 q^{23} + 10 q^{24} - 8 q^{25} - 12 q^{28} + 2 q^{30} - 4 q^{33} + 6 q^{34} + 44 q^{35} + 16 q^{36}+ \cdots - 58 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.26775 1.60354 0.801770 0.597633i \(-0.203892\pi\)
0.801770 + 0.597633i \(0.203892\pi\)
\(3\) 2.84057 1.64000 0.820001 0.572361i \(-0.193973\pi\)
0.820001 + 0.572361i \(0.193973\pi\)
\(4\) 3.14268 1.57134
\(5\) 0.0578828 0.0258860 0.0129430 0.999916i \(-0.495880\pi\)
0.0129430 + 0.999916i \(0.495880\pi\)
\(6\) 6.44169 2.62981
\(7\) −1.56196 −0.590365 −0.295183 0.955441i \(-0.595381\pi\)
−0.295183 + 0.955441i \(0.595381\pi\)
\(8\) 2.59131 0.916165
\(9\) 5.06883 1.68961
\(10\) 0.131264 0.0415092
\(11\) −3.97289 −1.19787 −0.598935 0.800798i \(-0.704409\pi\)
−0.598935 + 0.800798i \(0.704409\pi\)
\(12\) 8.92699 2.57700
\(13\) 0.404986 0.112323 0.0561614 0.998422i \(-0.482114\pi\)
0.0561614 + 0.998422i \(0.482114\pi\)
\(14\) −3.54213 −0.946674
\(15\) 0.164420 0.0424531
\(16\) −0.408929 −0.102232
\(17\) 5.16843 1.25353 0.626764 0.779209i \(-0.284379\pi\)
0.626764 + 0.779209i \(0.284379\pi\)
\(18\) 11.4948 2.70936
\(19\) −3.45088 −0.791687 −0.395844 0.918318i \(-0.629548\pi\)
−0.395844 + 0.918318i \(0.629548\pi\)
\(20\) 0.181907 0.0406757
\(21\) −4.43685 −0.968201
\(22\) −9.00950 −1.92083
\(23\) 0.230185 0.0479968 0.0239984 0.999712i \(-0.492360\pi\)
0.0239984 + 0.999712i \(0.492360\pi\)
\(24\) 7.36078 1.50251
\(25\) −4.99665 −0.999330
\(26\) 0.918405 0.180114
\(27\) 5.87665 1.13096
\(28\) −4.90874 −0.927664
\(29\) 0 0
\(30\) 0.372863 0.0680752
\(31\) 4.31832 0.775594 0.387797 0.921745i \(-0.373236\pi\)
0.387797 + 0.921745i \(0.373236\pi\)
\(32\) −6.10996 −1.08010
\(33\) −11.2853 −1.96451
\(34\) 11.7207 2.01008
\(35\) −0.0904106 −0.0152822
\(36\) 15.9297 2.65495
\(37\) 5.37070 0.882937 0.441469 0.897277i \(-0.354458\pi\)
0.441469 + 0.897277i \(0.354458\pi\)
\(38\) −7.82573 −1.26950
\(39\) 1.15039 0.184210
\(40\) 0.149992 0.0237158
\(41\) −1.46294 −0.228473 −0.114237 0.993454i \(-0.536442\pi\)
−0.114237 + 0.993454i \(0.536442\pi\)
\(42\) −10.0617 −1.55255
\(43\) 6.48316 0.988672 0.494336 0.869271i \(-0.335411\pi\)
0.494336 + 0.869271i \(0.335411\pi\)
\(44\) −12.4855 −1.88226
\(45\) 0.293398 0.0437372
\(46\) 0.522001 0.0769648
\(47\) −9.57399 −1.39651 −0.698255 0.715849i \(-0.746040\pi\)
−0.698255 + 0.715849i \(0.746040\pi\)
\(48\) −1.16159 −0.167661
\(49\) −4.56028 −0.651469
\(50\) −11.3311 −1.60247
\(51\) 14.6813 2.05579
\(52\) 1.27274 0.176497
\(53\) −1.78879 −0.245710 −0.122855 0.992425i \(-0.539205\pi\)
−0.122855 + 0.992425i \(0.539205\pi\)
\(54\) 13.3268 1.81354
\(55\) −0.229962 −0.0310080
\(56\) −4.04752 −0.540872
\(57\) −9.80247 −1.29837
\(58\) 0 0
\(59\) −1.05216 −0.136980 −0.0684900 0.997652i \(-0.521818\pi\)
−0.0684900 + 0.997652i \(0.521818\pi\)
\(60\) 0.516719 0.0667082
\(61\) −3.18937 −0.408357 −0.204178 0.978934i \(-0.565452\pi\)
−0.204178 + 0.978934i \(0.565452\pi\)
\(62\) 9.79287 1.24370
\(63\) −7.91731 −0.997487
\(64\) −13.0380 −1.62975
\(65\) 0.0234417 0.00290759
\(66\) −25.5921 −3.15017
\(67\) 10.8726 1.32830 0.664148 0.747601i \(-0.268795\pi\)
0.664148 + 0.747601i \(0.268795\pi\)
\(68\) 16.2427 1.96972
\(69\) 0.653856 0.0787150
\(70\) −0.205028 −0.0245056
\(71\) 13.4529 1.59656 0.798281 0.602285i \(-0.205743\pi\)
0.798281 + 0.602285i \(0.205743\pi\)
\(72\) 13.1349 1.54796
\(73\) −7.01563 −0.821118 −0.410559 0.911834i \(-0.634666\pi\)
−0.410559 + 0.911834i \(0.634666\pi\)
\(74\) 12.1794 1.41582
\(75\) −14.1933 −1.63890
\(76\) −10.8450 −1.24401
\(77\) 6.20549 0.707181
\(78\) 2.60879 0.295388
\(79\) 4.78464 0.538314 0.269157 0.963096i \(-0.413255\pi\)
0.269157 + 0.963096i \(0.413255\pi\)
\(80\) −0.0236700 −0.00264638
\(81\) 1.48654 0.165171
\(82\) −3.31758 −0.366366
\(83\) 8.42345 0.924594 0.462297 0.886725i \(-0.347025\pi\)
0.462297 + 0.886725i \(0.347025\pi\)
\(84\) −13.9436 −1.52137
\(85\) 0.299163 0.0324488
\(86\) 14.7022 1.58537
\(87\) 0 0
\(88\) −10.2950 −1.09745
\(89\) −1.13267 −0.120063 −0.0600314 0.998196i \(-0.519120\pi\)
−0.0600314 + 0.998196i \(0.519120\pi\)
\(90\) 0.665353 0.0701343
\(91\) −0.632571 −0.0663115
\(92\) 0.723397 0.0754193
\(93\) 12.2665 1.27198
\(94\) −21.7114 −2.23936
\(95\) −0.199747 −0.0204936
\(96\) −17.3558 −1.77136
\(97\) −17.2131 −1.74773 −0.873864 0.486170i \(-0.838393\pi\)
−0.873864 + 0.486170i \(0.838393\pi\)
\(98\) −10.3416 −1.04466
\(99\) −20.1379 −2.02393
\(100\) −15.7029 −1.57029
\(101\) −6.23958 −0.620862 −0.310431 0.950596i \(-0.600473\pi\)
−0.310431 + 0.950596i \(0.600473\pi\)
\(102\) 33.2934 3.29654
\(103\) 13.2105 1.30167 0.650833 0.759221i \(-0.274420\pi\)
0.650833 + 0.759221i \(0.274420\pi\)
\(104\) 1.04944 0.102906
\(105\) −0.256818 −0.0250628
\(106\) −4.05653 −0.394005
\(107\) 9.26822 0.895993 0.447996 0.894035i \(-0.352138\pi\)
0.447996 + 0.894035i \(0.352138\pi\)
\(108\) 18.4684 1.77712
\(109\) −5.75542 −0.551269 −0.275634 0.961263i \(-0.588888\pi\)
−0.275634 + 0.961263i \(0.588888\pi\)
\(110\) −0.521495 −0.0497226
\(111\) 15.2558 1.44802
\(112\) 0.638731 0.0603544
\(113\) 8.06227 0.758434 0.379217 0.925308i \(-0.376193\pi\)
0.379217 + 0.925308i \(0.376193\pi\)
\(114\) −22.2295 −2.08199
\(115\) 0.0133237 0.00124245
\(116\) 0 0
\(117\) 2.05280 0.189782
\(118\) −2.38604 −0.219653
\(119\) −8.07288 −0.740039
\(120\) 0.426063 0.0388940
\(121\) 4.78382 0.434893
\(122\) −7.23268 −0.654816
\(123\) −4.15559 −0.374697
\(124\) 13.5711 1.21872
\(125\) −0.578634 −0.0517546
\(126\) −17.9545 −1.59951
\(127\) 17.5737 1.55941 0.779706 0.626146i \(-0.215369\pi\)
0.779706 + 0.626146i \(0.215369\pi\)
\(128\) −17.3469 −1.53327
\(129\) 18.4158 1.62143
\(130\) 0.0531599 0.00466243
\(131\) 3.34792 0.292509 0.146255 0.989247i \(-0.453278\pi\)
0.146255 + 0.989247i \(0.453278\pi\)
\(132\) −35.4659 −3.08691
\(133\) 5.39014 0.467385
\(134\) 24.6562 2.12997
\(135\) 0.340157 0.0292760
\(136\) 13.3930 1.14844
\(137\) −5.52060 −0.471657 −0.235828 0.971795i \(-0.575780\pi\)
−0.235828 + 0.971795i \(0.575780\pi\)
\(138\) 1.48278 0.126223
\(139\) −0.597509 −0.0506801 −0.0253400 0.999679i \(-0.508067\pi\)
−0.0253400 + 0.999679i \(0.508067\pi\)
\(140\) −0.284132 −0.0240135
\(141\) −27.1956 −2.29028
\(142\) 30.5077 2.56015
\(143\) −1.60896 −0.134548
\(144\) −2.07279 −0.172733
\(145\) 0 0
\(146\) −15.9097 −1.31669
\(147\) −12.9538 −1.06841
\(148\) 16.8784 1.38739
\(149\) 5.10908 0.418552 0.209276 0.977857i \(-0.432889\pi\)
0.209276 + 0.977857i \(0.432889\pi\)
\(150\) −32.1869 −2.62805
\(151\) −7.80026 −0.634776 −0.317388 0.948296i \(-0.602806\pi\)
−0.317388 + 0.948296i \(0.602806\pi\)
\(152\) −8.94230 −0.725316
\(153\) 26.1979 2.11797
\(154\) 14.0725 1.13399
\(155\) 0.249957 0.0200770
\(156\) 3.61530 0.289456
\(157\) 18.8577 1.50501 0.752504 0.658588i \(-0.228846\pi\)
0.752504 + 0.658588i \(0.228846\pi\)
\(158\) 10.8504 0.863208
\(159\) −5.08119 −0.402965
\(160\) −0.353662 −0.0279594
\(161\) −0.359539 −0.0283357
\(162\) 3.37109 0.264858
\(163\) −2.26200 −0.177173 −0.0885867 0.996068i \(-0.528235\pi\)
−0.0885867 + 0.996068i \(0.528235\pi\)
\(164\) −4.59756 −0.359009
\(165\) −0.653222 −0.0508533
\(166\) 19.1023 1.48262
\(167\) 11.7349 0.908075 0.454037 0.890983i \(-0.349983\pi\)
0.454037 + 0.890983i \(0.349983\pi\)
\(168\) −11.4972 −0.887032
\(169\) −12.8360 −0.987384
\(170\) 0.678426 0.0520329
\(171\) −17.4919 −1.33764
\(172\) 20.3745 1.55354
\(173\) 19.2889 1.46651 0.733254 0.679954i \(-0.238000\pi\)
0.733254 + 0.679954i \(0.238000\pi\)
\(174\) 0 0
\(175\) 7.80457 0.589970
\(176\) 1.62463 0.122461
\(177\) −2.98874 −0.224648
\(178\) −2.56861 −0.192526
\(179\) 0.910387 0.0680455 0.0340228 0.999421i \(-0.489168\pi\)
0.0340228 + 0.999421i \(0.489168\pi\)
\(180\) 0.922056 0.0687260
\(181\) 5.26219 0.391136 0.195568 0.980690i \(-0.437345\pi\)
0.195568 + 0.980690i \(0.437345\pi\)
\(182\) −1.43451 −0.106333
\(183\) −9.05962 −0.669706
\(184\) 0.596479 0.0439730
\(185\) 0.310871 0.0228557
\(186\) 27.8173 2.03966
\(187\) −20.5336 −1.50156
\(188\) −30.0880 −2.19439
\(189\) −9.17909 −0.667680
\(190\) −0.452975 −0.0328623
\(191\) −10.3088 −0.745920 −0.372960 0.927847i \(-0.621657\pi\)
−0.372960 + 0.927847i \(0.621657\pi\)
\(192\) −37.0353 −2.67279
\(193\) −2.70997 −0.195068 −0.0975340 0.995232i \(-0.531095\pi\)
−0.0975340 + 0.995232i \(0.531095\pi\)
\(194\) −39.0350 −2.80255
\(195\) 0.0665878 0.00476845
\(196\) −14.3315 −1.02368
\(197\) −14.7786 −1.05293 −0.526466 0.850196i \(-0.676483\pi\)
−0.526466 + 0.850196i \(0.676483\pi\)
\(198\) −45.6676 −3.24546
\(199\) 15.0031 1.06354 0.531770 0.846889i \(-0.321527\pi\)
0.531770 + 0.846889i \(0.321527\pi\)
\(200\) −12.9478 −0.915551
\(201\) 30.8843 2.17841
\(202\) −14.1498 −0.995577
\(203\) 0 0
\(204\) 46.1385 3.23034
\(205\) −0.0846792 −0.00591425
\(206\) 29.9580 2.08727
\(207\) 1.16677 0.0810959
\(208\) −0.165611 −0.0114830
\(209\) 13.7100 0.948338
\(210\) −0.582397 −0.0401892
\(211\) −11.9730 −0.824257 −0.412128 0.911126i \(-0.635214\pi\)
−0.412128 + 0.911126i \(0.635214\pi\)
\(212\) −5.62161 −0.386093
\(213\) 38.2138 2.61837
\(214\) 21.0180 1.43676
\(215\) 0.375263 0.0255927
\(216\) 15.2282 1.03615
\(217\) −6.74505 −0.457884
\(218\) −13.0518 −0.883981
\(219\) −19.9284 −1.34664
\(220\) −0.722696 −0.0487241
\(221\) 2.09314 0.140800
\(222\) 34.5964 2.32196
\(223\) 13.3713 0.895406 0.447703 0.894182i \(-0.352242\pi\)
0.447703 + 0.894182i \(0.352242\pi\)
\(224\) 9.54351 0.637653
\(225\) −25.3272 −1.68848
\(226\) 18.2832 1.21618
\(227\) −2.12231 −0.140862 −0.0704312 0.997517i \(-0.522438\pi\)
−0.0704312 + 0.997517i \(0.522438\pi\)
\(228\) −30.8060 −2.04018
\(229\) −27.3896 −1.80996 −0.904979 0.425456i \(-0.860114\pi\)
−0.904979 + 0.425456i \(0.860114\pi\)
\(230\) 0.0302149 0.00199231
\(231\) 17.6271 1.15978
\(232\) 0 0
\(233\) 17.4774 1.14498 0.572492 0.819910i \(-0.305977\pi\)
0.572492 + 0.819910i \(0.305977\pi\)
\(234\) 4.65524 0.304322
\(235\) −0.554169 −0.0361500
\(236\) −3.30661 −0.215242
\(237\) 13.5911 0.882837
\(238\) −18.3072 −1.18668
\(239\) 17.2524 1.11597 0.557984 0.829852i \(-0.311575\pi\)
0.557984 + 0.829852i \(0.311575\pi\)
\(240\) −0.0672362 −0.00434008
\(241\) 21.9867 1.41629 0.708143 0.706069i \(-0.249533\pi\)
0.708143 + 0.706069i \(0.249533\pi\)
\(242\) 10.8485 0.697368
\(243\) −13.4073 −0.860081
\(244\) −10.0232 −0.641667
\(245\) −0.263962 −0.0168639
\(246\) −9.42382 −0.600841
\(247\) −1.39756 −0.0889245
\(248\) 11.1901 0.710572
\(249\) 23.9274 1.51634
\(250\) −1.31220 −0.0829906
\(251\) −9.77072 −0.616722 −0.308361 0.951269i \(-0.599781\pi\)
−0.308361 + 0.951269i \(0.599781\pi\)
\(252\) −24.8815 −1.56739
\(253\) −0.914498 −0.0574940
\(254\) 39.8526 2.50058
\(255\) 0.849793 0.0532161
\(256\) −13.2625 −0.828907
\(257\) −15.4022 −0.960766 −0.480383 0.877059i \(-0.659502\pi\)
−0.480383 + 0.877059i \(0.659502\pi\)
\(258\) 41.7625 2.60002
\(259\) −8.38881 −0.521256
\(260\) 0.0736698 0.00456880
\(261\) 0 0
\(262\) 7.59225 0.469050
\(263\) −30.9933 −1.91113 −0.955564 0.294784i \(-0.904752\pi\)
−0.955564 + 0.294784i \(0.904752\pi\)
\(264\) −29.2435 −1.79982
\(265\) −0.103540 −0.00636044
\(266\) 12.2235 0.749470
\(267\) −3.21743 −0.196903
\(268\) 34.1690 2.08720
\(269\) −13.8549 −0.844751 −0.422375 0.906421i \(-0.638804\pi\)
−0.422375 + 0.906421i \(0.638804\pi\)
\(270\) 0.771390 0.0469453
\(271\) −26.8382 −1.63030 −0.815152 0.579247i \(-0.803347\pi\)
−0.815152 + 0.579247i \(0.803347\pi\)
\(272\) −2.11352 −0.128151
\(273\) −1.79686 −0.108751
\(274\) −12.5193 −0.756320
\(275\) 19.8511 1.19707
\(276\) 2.05486 0.123688
\(277\) −22.5563 −1.35528 −0.677639 0.735395i \(-0.736997\pi\)
−0.677639 + 0.735395i \(0.736997\pi\)
\(278\) −1.35500 −0.0812675
\(279\) 21.8888 1.31045
\(280\) −0.234282 −0.0140010
\(281\) −3.30007 −0.196866 −0.0984328 0.995144i \(-0.531383\pi\)
−0.0984328 + 0.995144i \(0.531383\pi\)
\(282\) −61.6727 −3.67255
\(283\) −17.6686 −1.05029 −0.525144 0.851013i \(-0.675989\pi\)
−0.525144 + 0.851013i \(0.675989\pi\)
\(284\) 42.2780 2.50874
\(285\) −0.567395 −0.0336096
\(286\) −3.64872 −0.215753
\(287\) 2.28506 0.134883
\(288\) −30.9703 −1.82494
\(289\) 9.71265 0.571332
\(290\) 0 0
\(291\) −48.8951 −2.86628
\(292\) −22.0479 −1.29025
\(293\) 13.5342 0.790675 0.395338 0.918536i \(-0.370628\pi\)
0.395338 + 0.918536i \(0.370628\pi\)
\(294\) −29.3759 −1.71324
\(295\) −0.0609022 −0.00354586
\(296\) 13.9171 0.808916
\(297\) −23.3472 −1.35474
\(298\) 11.5861 0.671165
\(299\) 0.0932216 0.00539114
\(300\) −44.6051 −2.57527
\(301\) −10.1264 −0.583678
\(302\) −17.6890 −1.01789
\(303\) −17.7240 −1.01822
\(304\) 1.41117 0.0809360
\(305\) −0.184610 −0.0105707
\(306\) 59.4102 3.39625
\(307\) 6.51865 0.372039 0.186020 0.982546i \(-0.440441\pi\)
0.186020 + 0.982546i \(0.440441\pi\)
\(308\) 19.5019 1.11122
\(309\) 37.5252 2.13474
\(310\) 0.566839 0.0321943
\(311\) 24.5460 1.39187 0.695937 0.718102i \(-0.254989\pi\)
0.695937 + 0.718102i \(0.254989\pi\)
\(312\) 2.98101 0.168767
\(313\) 1.97447 0.111604 0.0558018 0.998442i \(-0.482229\pi\)
0.0558018 + 0.998442i \(0.482229\pi\)
\(314\) 42.7645 2.41334
\(315\) −0.458276 −0.0258209
\(316\) 15.0366 0.845875
\(317\) −29.6808 −1.66704 −0.833519 0.552491i \(-0.813678\pi\)
−0.833519 + 0.552491i \(0.813678\pi\)
\(318\) −11.5229 −0.646170
\(319\) 0 0
\(320\) −0.754675 −0.0421876
\(321\) 26.3270 1.46943
\(322\) −0.815345 −0.0454374
\(323\) −17.8356 −0.992402
\(324\) 4.67170 0.259539
\(325\) −2.02357 −0.112248
\(326\) −5.12964 −0.284105
\(327\) −16.3486 −0.904082
\(328\) −3.79093 −0.209319
\(329\) 14.9542 0.824451
\(330\) −1.48134 −0.0815452
\(331\) −28.3740 −1.55958 −0.779788 0.626044i \(-0.784673\pi\)
−0.779788 + 0.626044i \(0.784673\pi\)
\(332\) 26.4722 1.45285
\(333\) 27.2231 1.49182
\(334\) 26.6118 1.45613
\(335\) 0.629335 0.0343842
\(336\) 1.81436 0.0989814
\(337\) −4.01726 −0.218834 −0.109417 0.993996i \(-0.534898\pi\)
−0.109417 + 0.993996i \(0.534898\pi\)
\(338\) −29.1088 −1.58331
\(339\) 22.9014 1.24383
\(340\) 0.940173 0.0509881
\(341\) −17.1562 −0.929061
\(342\) −39.6673 −2.14496
\(343\) 18.0567 0.974970
\(344\) 16.7998 0.905787
\(345\) 0.0378470 0.00203761
\(346\) 43.7424 2.35160
\(347\) −3.55272 −0.190720 −0.0953601 0.995443i \(-0.530400\pi\)
−0.0953601 + 0.995443i \(0.530400\pi\)
\(348\) 0 0
\(349\) 3.34203 0.178895 0.0894473 0.995992i \(-0.471490\pi\)
0.0894473 + 0.995992i \(0.471490\pi\)
\(350\) 17.6988 0.946040
\(351\) 2.37996 0.127033
\(352\) 24.2742 1.29382
\(353\) 12.5154 0.666125 0.333063 0.942905i \(-0.391918\pi\)
0.333063 + 0.942905i \(0.391918\pi\)
\(354\) −6.77771 −0.360231
\(355\) 0.778690 0.0413286
\(356\) −3.55962 −0.188659
\(357\) −22.9316 −1.21367
\(358\) 2.06453 0.109114
\(359\) 18.3959 0.970899 0.485450 0.874265i \(-0.338656\pi\)
0.485450 + 0.874265i \(0.338656\pi\)
\(360\) 0.760284 0.0400705
\(361\) −7.09140 −0.373231
\(362\) 11.9333 0.627202
\(363\) 13.5888 0.713225
\(364\) −1.98797 −0.104198
\(365\) −0.406084 −0.0212554
\(366\) −20.5449 −1.07390
\(367\) 9.83019 0.513132 0.256566 0.966527i \(-0.417409\pi\)
0.256566 + 0.966527i \(0.417409\pi\)
\(368\) −0.0941293 −0.00490683
\(369\) −7.41540 −0.386030
\(370\) 0.704977 0.0366500
\(371\) 2.79403 0.145059
\(372\) 38.5496 1.99871
\(373\) 22.1796 1.14842 0.574209 0.818709i \(-0.305310\pi\)
0.574209 + 0.818709i \(0.305310\pi\)
\(374\) −46.5650 −2.40782
\(375\) −1.64365 −0.0848777
\(376\) −24.8091 −1.27943
\(377\) 0 0
\(378\) −20.8159 −1.07065
\(379\) 8.70022 0.446900 0.223450 0.974715i \(-0.428268\pi\)
0.223450 + 0.974715i \(0.428268\pi\)
\(380\) −0.627740 −0.0322024
\(381\) 49.9192 2.55744
\(382\) −23.3778 −1.19611
\(383\) 5.08621 0.259893 0.129947 0.991521i \(-0.458519\pi\)
0.129947 + 0.991521i \(0.458519\pi\)
\(384\) −49.2752 −2.51456
\(385\) 0.359191 0.0183061
\(386\) −6.14553 −0.312799
\(387\) 32.8620 1.67047
\(388\) −54.0953 −2.74627
\(389\) 29.8408 1.51299 0.756494 0.654000i \(-0.226910\pi\)
0.756494 + 0.654000i \(0.226910\pi\)
\(390\) 0.151004 0.00764640
\(391\) 1.18969 0.0601654
\(392\) −11.8171 −0.596853
\(393\) 9.51001 0.479716
\(394\) −33.5142 −1.68842
\(395\) 0.276949 0.0139348
\(396\) −63.2869 −3.18028
\(397\) −2.92259 −0.146680 −0.0733402 0.997307i \(-0.523366\pi\)
−0.0733402 + 0.997307i \(0.523366\pi\)
\(398\) 34.0232 1.70543
\(399\) 15.3111 0.766512
\(400\) 2.04328 0.102164
\(401\) −20.4408 −1.02076 −0.510382 0.859948i \(-0.670496\pi\)
−0.510382 + 0.859948i \(0.670496\pi\)
\(402\) 70.0377 3.49316
\(403\) 1.74886 0.0871169
\(404\) −19.6090 −0.975585
\(405\) 0.0860448 0.00427560
\(406\) 0 0
\(407\) −21.3372 −1.05764
\(408\) 38.0437 1.88344
\(409\) −33.6119 −1.66200 −0.831001 0.556271i \(-0.812232\pi\)
−0.831001 + 0.556271i \(0.812232\pi\)
\(410\) −0.192031 −0.00948374
\(411\) −15.6816 −0.773518
\(412\) 41.5163 2.04536
\(413\) 1.64344 0.0808683
\(414\) 2.64593 0.130041
\(415\) 0.487573 0.0239340
\(416\) −2.47445 −0.121320
\(417\) −1.69727 −0.0831154
\(418\) 31.0907 1.52070
\(419\) −7.53000 −0.367865 −0.183932 0.982939i \(-0.558883\pi\)
−0.183932 + 0.982939i \(0.558883\pi\)
\(420\) −0.807095 −0.0393822
\(421\) −20.3755 −0.993041 −0.496521 0.868025i \(-0.665389\pi\)
−0.496521 + 0.868025i \(0.665389\pi\)
\(422\) −27.1518 −1.32173
\(423\) −48.5289 −2.35956
\(424\) −4.63531 −0.225111
\(425\) −25.8248 −1.25269
\(426\) 86.6592 4.19865
\(427\) 4.98167 0.241080
\(428\) 29.1270 1.40791
\(429\) −4.57037 −0.220659
\(430\) 0.851002 0.0410390
\(431\) 11.8352 0.570081 0.285040 0.958516i \(-0.407993\pi\)
0.285040 + 0.958516i \(0.407993\pi\)
\(432\) −2.40313 −0.115621
\(433\) −17.0972 −0.821637 −0.410818 0.911717i \(-0.634757\pi\)
−0.410818 + 0.911717i \(0.634757\pi\)
\(434\) −15.2961 −0.734235
\(435\) 0 0
\(436\) −18.0874 −0.866230
\(437\) −0.794341 −0.0379985
\(438\) −45.1925 −2.15938
\(439\) 18.7510 0.894934 0.447467 0.894300i \(-0.352326\pi\)
0.447467 + 0.894300i \(0.352326\pi\)
\(440\) −0.595901 −0.0284085
\(441\) −23.1153 −1.10073
\(442\) 4.74671 0.225778
\(443\) 3.40383 0.161721 0.0808603 0.996725i \(-0.474233\pi\)
0.0808603 + 0.996725i \(0.474233\pi\)
\(444\) 47.9442 2.27533
\(445\) −0.0655622 −0.00310794
\(446\) 30.3227 1.43582
\(447\) 14.5127 0.686427
\(448\) 20.3648 0.962147
\(449\) 0.139283 0.00657317 0.00328658 0.999995i \(-0.498954\pi\)
0.00328658 + 0.999995i \(0.498954\pi\)
\(450\) −57.4356 −2.70754
\(451\) 5.81210 0.273681
\(452\) 25.3371 1.19176
\(453\) −22.1572 −1.04104
\(454\) −4.81285 −0.225878
\(455\) −0.0366150 −0.00171654
\(456\) −25.4012 −1.18952
\(457\) 32.0795 1.50062 0.750308 0.661088i \(-0.229905\pi\)
0.750308 + 0.661088i \(0.229905\pi\)
\(458\) −62.1128 −2.90234
\(459\) 30.3730 1.41769
\(460\) 0.0418722 0.00195230
\(461\) −0.725509 −0.0337903 −0.0168952 0.999857i \(-0.505378\pi\)
−0.0168952 + 0.999857i \(0.505378\pi\)
\(462\) 39.9738 1.85975
\(463\) −9.14813 −0.425150 −0.212575 0.977145i \(-0.568185\pi\)
−0.212575 + 0.977145i \(0.568185\pi\)
\(464\) 0 0
\(465\) 0.710019 0.0329263
\(466\) 39.6344 1.83603
\(467\) 30.6641 1.41897 0.709483 0.704722i \(-0.248928\pi\)
0.709483 + 0.704722i \(0.248928\pi\)
\(468\) 6.45130 0.298211
\(469\) −16.9825 −0.784180
\(470\) −1.25672 −0.0579680
\(471\) 53.5666 2.46822
\(472\) −2.72648 −0.125496
\(473\) −25.7568 −1.18430
\(474\) 30.8212 1.41566
\(475\) 17.2429 0.791157
\(476\) −25.3705 −1.16285
\(477\) −9.06709 −0.415154
\(478\) 39.1242 1.78950
\(479\) 5.29729 0.242039 0.121020 0.992650i \(-0.461384\pi\)
0.121020 + 0.992650i \(0.461384\pi\)
\(480\) −1.00460 −0.0458535
\(481\) 2.17506 0.0991740
\(482\) 49.8602 2.27107
\(483\) −1.02130 −0.0464706
\(484\) 15.0340 0.683364
\(485\) −0.996344 −0.0452417
\(486\) −30.4045 −1.37917
\(487\) −3.48158 −0.157766 −0.0788828 0.996884i \(-0.525135\pi\)
−0.0788828 + 0.996884i \(0.525135\pi\)
\(488\) −8.26463 −0.374122
\(489\) −6.42536 −0.290565
\(490\) −0.598599 −0.0270419
\(491\) 5.85160 0.264079 0.132039 0.991244i \(-0.457847\pi\)
0.132039 + 0.991244i \(0.457847\pi\)
\(492\) −13.0597 −0.588776
\(493\) 0 0
\(494\) −3.16931 −0.142594
\(495\) −1.16564 −0.0523915
\(496\) −1.76589 −0.0792908
\(497\) −21.0128 −0.942555
\(498\) 54.2613 2.43151
\(499\) −23.7183 −1.06178 −0.530889 0.847441i \(-0.678142\pi\)
−0.530889 + 0.847441i \(0.678142\pi\)
\(500\) −1.81846 −0.0813240
\(501\) 33.3338 1.48924
\(502\) −22.1575 −0.988939
\(503\) −19.3361 −0.862154 −0.431077 0.902315i \(-0.641866\pi\)
−0.431077 + 0.902315i \(0.641866\pi\)
\(504\) −20.5162 −0.913863
\(505\) −0.361165 −0.0160716
\(506\) −2.07385 −0.0921939
\(507\) −36.4615 −1.61931
\(508\) 55.2284 2.45036
\(509\) 38.8356 1.72136 0.860678 0.509149i \(-0.170040\pi\)
0.860678 + 0.509149i \(0.170040\pi\)
\(510\) 1.92712 0.0853342
\(511\) 10.9581 0.484759
\(512\) 4.61786 0.204083
\(513\) −20.2796 −0.895368
\(514\) −34.9284 −1.54063
\(515\) 0.764659 0.0336949
\(516\) 57.8751 2.54781
\(517\) 38.0364 1.67284
\(518\) −19.0237 −0.835854
\(519\) 54.7915 2.40508
\(520\) 0.0607446 0.00266383
\(521\) −33.3472 −1.46097 −0.730484 0.682930i \(-0.760706\pi\)
−0.730484 + 0.682930i \(0.760706\pi\)
\(522\) 0 0
\(523\) 31.8103 1.39097 0.695484 0.718542i \(-0.255190\pi\)
0.695484 + 0.718542i \(0.255190\pi\)
\(524\) 10.5214 0.459632
\(525\) 22.1694 0.967552
\(526\) −70.2849 −3.06457
\(527\) 22.3189 0.972229
\(528\) 4.61487 0.200836
\(529\) −22.9470 −0.997696
\(530\) −0.234804 −0.0101992
\(531\) −5.33324 −0.231443
\(532\) 16.9395 0.734420
\(533\) −0.592471 −0.0256628
\(534\) −7.29632 −0.315742
\(535\) 0.536471 0.0231937
\(536\) 28.1741 1.21694
\(537\) 2.58602 0.111595
\(538\) −31.4195 −1.35459
\(539\) 18.1175 0.780375
\(540\) 1.06900 0.0460026
\(541\) 38.7402 1.66557 0.832785 0.553596i \(-0.186745\pi\)
0.832785 + 0.553596i \(0.186745\pi\)
\(542\) −60.8622 −2.61426
\(543\) 14.9476 0.641464
\(544\) −31.5789 −1.35393
\(545\) −0.333140 −0.0142701
\(546\) −4.07483 −0.174387
\(547\) 5.99056 0.256138 0.128069 0.991765i \(-0.459122\pi\)
0.128069 + 0.991765i \(0.459122\pi\)
\(548\) −17.3495 −0.741132
\(549\) −16.1664 −0.689964
\(550\) 45.0173 1.91954
\(551\) 0 0
\(552\) 1.69434 0.0721159
\(553\) −7.47342 −0.317802
\(554\) −51.1520 −2.17324
\(555\) 0.883050 0.0374834
\(556\) −1.87778 −0.0796356
\(557\) 1.87739 0.0795478 0.0397739 0.999209i \(-0.487336\pi\)
0.0397739 + 0.999209i \(0.487336\pi\)
\(558\) 49.6384 2.10136
\(559\) 2.62559 0.111050
\(560\) 0.0369716 0.00156233
\(561\) −58.3270 −2.46257
\(562\) −7.48372 −0.315682
\(563\) 26.4739 1.11574 0.557872 0.829927i \(-0.311618\pi\)
0.557872 + 0.829927i \(0.311618\pi\)
\(564\) −85.4669 −3.59881
\(565\) 0.466667 0.0196328
\(566\) −40.0679 −1.68418
\(567\) −2.32191 −0.0975110
\(568\) 34.8605 1.46271
\(569\) −12.7851 −0.535980 −0.267990 0.963422i \(-0.586359\pi\)
−0.267990 + 0.963422i \(0.586359\pi\)
\(570\) −1.28671 −0.0538943
\(571\) −38.0544 −1.59253 −0.796263 0.604951i \(-0.793193\pi\)
−0.796263 + 0.604951i \(0.793193\pi\)
\(572\) −5.05645 −0.211421
\(573\) −29.2829 −1.22331
\(574\) 5.18193 0.216290
\(575\) −1.15015 −0.0479647
\(576\) −66.0873 −2.75364
\(577\) 0.102256 0.00425695 0.00212848 0.999998i \(-0.499322\pi\)
0.00212848 + 0.999998i \(0.499322\pi\)
\(578\) 22.0258 0.916154
\(579\) −7.69786 −0.319912
\(580\) 0 0
\(581\) −13.1571 −0.545848
\(582\) −110.882 −4.59619
\(583\) 7.10668 0.294328
\(584\) −18.1796 −0.752279
\(585\) 0.118822 0.00491269
\(586\) 30.6921 1.26788
\(587\) −0.735311 −0.0303495 −0.0151748 0.999885i \(-0.504830\pi\)
−0.0151748 + 0.999885i \(0.504830\pi\)
\(588\) −40.7096 −1.67884
\(589\) −14.9020 −0.614028
\(590\) −0.138111 −0.00568593
\(591\) −41.9797 −1.72681
\(592\) −2.19624 −0.0902647
\(593\) 44.7555 1.83789 0.918944 0.394388i \(-0.129043\pi\)
0.918944 + 0.394388i \(0.129043\pi\)
\(594\) −52.9457 −2.17239
\(595\) −0.467281 −0.0191566
\(596\) 16.0562 0.657687
\(597\) 42.6173 1.74421
\(598\) 0.211403 0.00864491
\(599\) 4.06004 0.165889 0.0829444 0.996554i \(-0.473568\pi\)
0.0829444 + 0.996554i \(0.473568\pi\)
\(600\) −36.7792 −1.50151
\(601\) −44.4331 −1.81246 −0.906232 0.422781i \(-0.861054\pi\)
−0.906232 + 0.422781i \(0.861054\pi\)
\(602\) −22.9642 −0.935950
\(603\) 55.1112 2.24430
\(604\) −24.5137 −0.997449
\(605\) 0.276901 0.0112576
\(606\) −40.1935 −1.63275
\(607\) −9.70174 −0.393781 −0.196891 0.980425i \(-0.563084\pi\)
−0.196891 + 0.980425i \(0.563084\pi\)
\(608\) 21.0848 0.855100
\(609\) 0 0
\(610\) −0.418648 −0.0169506
\(611\) −3.87733 −0.156860
\(612\) 82.3315 3.32805
\(613\) −1.78505 −0.0720975 −0.0360488 0.999350i \(-0.511477\pi\)
−0.0360488 + 0.999350i \(0.511477\pi\)
\(614\) 14.7827 0.596580
\(615\) −0.240537 −0.00969939
\(616\) 16.0803 0.647894
\(617\) 8.71009 0.350655 0.175327 0.984510i \(-0.443902\pi\)
0.175327 + 0.984510i \(0.443902\pi\)
\(618\) 85.0978 3.42313
\(619\) 14.2041 0.570911 0.285456 0.958392i \(-0.407855\pi\)
0.285456 + 0.958392i \(0.407855\pi\)
\(620\) 0.785534 0.0315478
\(621\) 1.35272 0.0542826
\(622\) 55.6641 2.23193
\(623\) 1.76919 0.0708810
\(624\) −0.470428 −0.0188322
\(625\) 24.9498 0.997990
\(626\) 4.47759 0.178961
\(627\) 38.9441 1.55528
\(628\) 59.2637 2.36488
\(629\) 27.7581 1.10679
\(630\) −1.03925 −0.0414049
\(631\) 16.5703 0.659653 0.329827 0.944042i \(-0.393010\pi\)
0.329827 + 0.944042i \(0.393010\pi\)
\(632\) 12.3985 0.493185
\(633\) −34.0102 −1.35178
\(634\) −67.3085 −2.67316
\(635\) 1.01721 0.0403669
\(636\) −15.9686 −0.633194
\(637\) −1.84685 −0.0731748
\(638\) 0 0
\(639\) 68.1903 2.69757
\(640\) −1.00409 −0.0396901
\(641\) −7.29754 −0.288236 −0.144118 0.989561i \(-0.546034\pi\)
−0.144118 + 0.989561i \(0.546034\pi\)
\(642\) 59.7030 2.35629
\(643\) −33.8706 −1.33573 −0.667863 0.744284i \(-0.732791\pi\)
−0.667863 + 0.744284i \(0.732791\pi\)
\(644\) −1.12992 −0.0445250
\(645\) 1.06596 0.0419722
\(646\) −40.4467 −1.59136
\(647\) 33.4448 1.31485 0.657425 0.753520i \(-0.271646\pi\)
0.657425 + 0.753520i \(0.271646\pi\)
\(648\) 3.85207 0.151324
\(649\) 4.18013 0.164084
\(650\) −4.58895 −0.179993
\(651\) −19.1598 −0.750931
\(652\) −7.10874 −0.278400
\(653\) 23.7557 0.929633 0.464817 0.885407i \(-0.346120\pi\)
0.464817 + 0.885407i \(0.346120\pi\)
\(654\) −37.0746 −1.44973
\(655\) 0.193787 0.00757189
\(656\) 0.598240 0.0233573
\(657\) −35.5610 −1.38737
\(658\) 33.9123 1.32204
\(659\) −4.93124 −0.192094 −0.0960469 0.995377i \(-0.530620\pi\)
−0.0960469 + 0.995377i \(0.530620\pi\)
\(660\) −2.05287 −0.0799077
\(661\) −23.4731 −0.912998 −0.456499 0.889724i \(-0.650897\pi\)
−0.456499 + 0.889724i \(0.650897\pi\)
\(662\) −64.3450 −2.50084
\(663\) 5.94571 0.230912
\(664\) 21.8277 0.847081
\(665\) 0.311997 0.0120987
\(666\) 61.7352 2.39219
\(667\) 0 0
\(668\) 36.8790 1.42689
\(669\) 37.9820 1.46847
\(670\) 1.42717 0.0551365
\(671\) 12.6710 0.489158
\(672\) 27.1090 1.04575
\(673\) 29.9293 1.15369 0.576846 0.816853i \(-0.304283\pi\)
0.576846 + 0.816853i \(0.304283\pi\)
\(674\) −9.11013 −0.350909
\(675\) −29.3636 −1.13020
\(676\) −40.3394 −1.55151
\(677\) 22.0163 0.846154 0.423077 0.906094i \(-0.360950\pi\)
0.423077 + 0.906094i \(0.360950\pi\)
\(678\) 51.9346 1.99454
\(679\) 26.8862 1.03180
\(680\) 0.775223 0.0297285
\(681\) −6.02856 −0.231015
\(682\) −38.9059 −1.48979
\(683\) −4.61710 −0.176668 −0.0883341 0.996091i \(-0.528154\pi\)
−0.0883341 + 0.996091i \(0.528154\pi\)
\(684\) −54.9715 −2.10189
\(685\) −0.319548 −0.0122093
\(686\) 40.9480 1.56340
\(687\) −77.8022 −2.96834
\(688\) −2.65115 −0.101074
\(689\) −0.724436 −0.0275988
\(690\) 0.0858274 0.00326739
\(691\) −35.7459 −1.35984 −0.679919 0.733287i \(-0.737985\pi\)
−0.679919 + 0.733287i \(0.737985\pi\)
\(692\) 60.6188 2.30438
\(693\) 31.4546 1.19486
\(694\) −8.05668 −0.305827
\(695\) −0.0345855 −0.00131190
\(696\) 0 0
\(697\) −7.56111 −0.286398
\(698\) 7.57887 0.286865
\(699\) 49.6458 1.87778
\(700\) 24.5272 0.927043
\(701\) −3.64465 −0.137656 −0.0688282 0.997629i \(-0.521926\pi\)
−0.0688282 + 0.997629i \(0.521926\pi\)
\(702\) 5.39714 0.203702
\(703\) −18.5337 −0.699010
\(704\) 51.7984 1.95223
\(705\) −1.57416 −0.0592861
\(706\) 28.3817 1.06816
\(707\) 9.74598 0.366535
\(708\) −9.39266 −0.352998
\(709\) −20.9910 −0.788334 −0.394167 0.919039i \(-0.628967\pi\)
−0.394167 + 0.919039i \(0.628967\pi\)
\(710\) 1.76587 0.0662720
\(711\) 24.2525 0.909541
\(712\) −2.93510 −0.109997
\(713\) 0.994013 0.0372261
\(714\) −52.0030 −1.94616
\(715\) −0.0931312 −0.00348291
\(716\) 2.86105 0.106923
\(717\) 49.0067 1.83019
\(718\) 41.7173 1.55688
\(719\) 24.2529 0.904480 0.452240 0.891896i \(-0.350625\pi\)
0.452240 + 0.891896i \(0.350625\pi\)
\(720\) −0.119979 −0.00447136
\(721\) −20.6342 −0.768459
\(722\) −16.0815 −0.598491
\(723\) 62.4547 2.32271
\(724\) 16.5374 0.614607
\(725\) 0 0
\(726\) 30.8159 1.14368
\(727\) 30.9357 1.14734 0.573672 0.819085i \(-0.305519\pi\)
0.573672 + 0.819085i \(0.305519\pi\)
\(728\) −1.63919 −0.0607523
\(729\) −42.5441 −1.57571
\(730\) −0.920897 −0.0340839
\(731\) 33.5077 1.23933
\(732\) −28.4715 −1.05234
\(733\) −18.5100 −0.683681 −0.341841 0.939758i \(-0.611050\pi\)
−0.341841 + 0.939758i \(0.611050\pi\)
\(734\) 22.2924 0.822827
\(735\) −0.749802 −0.0276569
\(736\) −1.40642 −0.0518413
\(737\) −43.1955 −1.59113
\(738\) −16.8163 −0.619015
\(739\) −34.0491 −1.25251 −0.626257 0.779616i \(-0.715414\pi\)
−0.626257 + 0.779616i \(0.715414\pi\)
\(740\) 0.976968 0.0359140
\(741\) −3.96986 −0.145837
\(742\) 6.33614 0.232607
\(743\) −34.8269 −1.27768 −0.638838 0.769342i \(-0.720584\pi\)
−0.638838 + 0.769342i \(0.720584\pi\)
\(744\) 31.7862 1.16534
\(745\) 0.295728 0.0108346
\(746\) 50.2978 1.84153
\(747\) 42.6970 1.56220
\(748\) −64.5304 −2.35947
\(749\) −14.4766 −0.528963
\(750\) −3.72738 −0.136105
\(751\) −48.5887 −1.77303 −0.886513 0.462703i \(-0.846880\pi\)
−0.886513 + 0.462703i \(0.846880\pi\)
\(752\) 3.91508 0.142768
\(753\) −27.7544 −1.01143
\(754\) 0 0
\(755\) −0.451501 −0.0164318
\(756\) −28.8469 −1.04915
\(757\) −30.0918 −1.09371 −0.546853 0.837229i \(-0.684174\pi\)
−0.546853 + 0.837229i \(0.684174\pi\)
\(758\) 19.7299 0.716622
\(759\) −2.59769 −0.0942903
\(760\) −0.517605 −0.0187755
\(761\) −9.82865 −0.356288 −0.178144 0.984004i \(-0.557009\pi\)
−0.178144 + 0.984004i \(0.557009\pi\)
\(762\) 113.204 4.10095
\(763\) 8.98973 0.325450
\(764\) −32.3973 −1.17209
\(765\) 1.51641 0.0548258
\(766\) 11.5342 0.416749
\(767\) −0.426111 −0.0153860
\(768\) −37.6731 −1.35941
\(769\) 29.9752 1.08093 0.540466 0.841366i \(-0.318248\pi\)
0.540466 + 0.841366i \(0.318248\pi\)
\(770\) 0.814555 0.0293545
\(771\) −43.7511 −1.57566
\(772\) −8.51656 −0.306518
\(773\) −16.9149 −0.608388 −0.304194 0.952610i \(-0.598387\pi\)
−0.304194 + 0.952610i \(0.598387\pi\)
\(774\) 74.5227 2.67866
\(775\) −21.5772 −0.775074
\(776\) −44.6045 −1.60121
\(777\) −23.8290 −0.854861
\(778\) 67.6714 2.42614
\(779\) 5.04844 0.180879
\(780\) 0.209264 0.00749285
\(781\) −53.4467 −1.91247
\(782\) 2.69792 0.0964776
\(783\) 0 0
\(784\) 1.86483 0.0666012
\(785\) 1.09154 0.0389586
\(786\) 21.5663 0.769244
\(787\) −19.9957 −0.712769 −0.356384 0.934339i \(-0.615991\pi\)
−0.356384 + 0.934339i \(0.615991\pi\)
\(788\) −46.4444 −1.65451
\(789\) −88.0386 −3.13426
\(790\) 0.628049 0.0223450
\(791\) −12.5929 −0.447753
\(792\) −52.1834 −1.85426
\(793\) −1.29165 −0.0458678
\(794\) −6.62769 −0.235208
\(795\) −0.294114 −0.0104311
\(796\) 47.1499 1.67118
\(797\) 40.3008 1.42753 0.713764 0.700387i \(-0.246989\pi\)
0.713764 + 0.700387i \(0.246989\pi\)
\(798\) 34.7216 1.22913
\(799\) −49.4825 −1.75056
\(800\) 30.5293 1.07937
\(801\) −5.74131 −0.202859
\(802\) −46.3545 −1.63684
\(803\) 27.8723 0.983592
\(804\) 97.0593 3.42302
\(805\) −0.0208112 −0.000733497 0
\(806\) 3.96597 0.139695
\(807\) −39.3559 −1.38539
\(808\) −16.1687 −0.568812
\(809\) 50.1152 1.76196 0.880978 0.473157i \(-0.156886\pi\)
0.880978 + 0.473157i \(0.156886\pi\)
\(810\) 0.195128 0.00685610
\(811\) −24.7764 −0.870017 −0.435009 0.900426i \(-0.643255\pi\)
−0.435009 + 0.900426i \(0.643255\pi\)
\(812\) 0 0
\(813\) −76.2357 −2.67370
\(814\) −48.3873 −1.69597
\(815\) −0.130931 −0.00458631
\(816\) −6.00360 −0.210168
\(817\) −22.3726 −0.782719
\(818\) −76.2233 −2.66509
\(819\) −3.20640 −0.112041
\(820\) −0.266120 −0.00929330
\(821\) −35.5876 −1.24202 −0.621008 0.783804i \(-0.713277\pi\)
−0.621008 + 0.783804i \(0.713277\pi\)
\(822\) −35.5620 −1.24037
\(823\) −15.4039 −0.536947 −0.268474 0.963287i \(-0.586519\pi\)
−0.268474 + 0.963287i \(0.586519\pi\)
\(824\) 34.2324 1.19254
\(825\) 56.3885 1.96319
\(826\) 3.72690 0.129675
\(827\) −41.4272 −1.44056 −0.720282 0.693682i \(-0.755987\pi\)
−0.720282 + 0.693682i \(0.755987\pi\)
\(828\) 3.66677 0.127429
\(829\) −4.64043 −0.161169 −0.0805844 0.996748i \(-0.525679\pi\)
−0.0805844 + 0.996748i \(0.525679\pi\)
\(830\) 1.10569 0.0383791
\(831\) −64.0728 −2.22266
\(832\) −5.28020 −0.183058
\(833\) −23.5695 −0.816634
\(834\) −3.84897 −0.133279
\(835\) 0.679249 0.0235064
\(836\) 43.0860 1.49016
\(837\) 25.3773 0.877167
\(838\) −17.0761 −0.589886
\(839\) 35.4256 1.22303 0.611514 0.791233i \(-0.290561\pi\)
0.611514 + 0.791233i \(0.290561\pi\)
\(840\) −0.665493 −0.0229617
\(841\) 0 0
\(842\) −46.2065 −1.59238
\(843\) −9.37407 −0.322860
\(844\) −37.6273 −1.29519
\(845\) −0.742983 −0.0255594
\(846\) −110.051 −3.78364
\(847\) −7.47213 −0.256746
\(848\) 0.731490 0.0251195
\(849\) −50.1888 −1.72248
\(850\) −58.5642 −2.00873
\(851\) 1.23625 0.0423782
\(852\) 120.094 4.11434
\(853\) −25.5045 −0.873256 −0.436628 0.899642i \(-0.643827\pi\)
−0.436628 + 0.899642i \(0.643827\pi\)
\(854\) 11.2972 0.386581
\(855\) −1.01248 −0.0346262
\(856\) 24.0168 0.820877
\(857\) −35.7869 −1.22246 −0.611228 0.791455i \(-0.709324\pi\)
−0.611228 + 0.791455i \(0.709324\pi\)
\(858\) −10.3644 −0.353836
\(859\) 29.5758 1.00911 0.504556 0.863379i \(-0.331656\pi\)
0.504556 + 0.863379i \(0.331656\pi\)
\(860\) 1.17933 0.0402149
\(861\) 6.49086 0.221208
\(862\) 26.8392 0.914147
\(863\) −40.2058 −1.36862 −0.684310 0.729191i \(-0.739896\pi\)
−0.684310 + 0.729191i \(0.739896\pi\)
\(864\) −35.9061 −1.22155
\(865\) 1.11650 0.0379620
\(866\) −38.7720 −1.31753
\(867\) 27.5894 0.936987
\(868\) −21.1975 −0.719491
\(869\) −19.0088 −0.644831
\(870\) 0 0
\(871\) 4.40323 0.149198
\(872\) −14.9140 −0.505053
\(873\) −87.2504 −2.95298
\(874\) −1.80137 −0.0609321
\(875\) 0.903803 0.0305541
\(876\) −62.6285 −2.11602
\(877\) −52.1025 −1.75938 −0.879688 0.475552i \(-0.842248\pi\)
−0.879688 + 0.475552i \(0.842248\pi\)
\(878\) 42.5224 1.43506
\(879\) 38.4448 1.29671
\(880\) 0.0940381 0.00317002
\(881\) −45.2608 −1.52487 −0.762437 0.647063i \(-0.775997\pi\)
−0.762437 + 0.647063i \(0.775997\pi\)
\(882\) −52.4196 −1.76506
\(883\) −33.8980 −1.14076 −0.570379 0.821382i \(-0.693204\pi\)
−0.570379 + 0.821382i \(0.693204\pi\)
\(884\) 6.57806 0.221244
\(885\) −0.172997 −0.00581522
\(886\) 7.71902 0.259326
\(887\) 30.4108 1.02110 0.510548 0.859850i \(-0.329443\pi\)
0.510548 + 0.859850i \(0.329443\pi\)
\(888\) 39.5325 1.32662
\(889\) −27.4494 −0.920622
\(890\) −0.148678 −0.00498371
\(891\) −5.90583 −0.197853
\(892\) 42.0216 1.40699
\(893\) 33.0387 1.10560
\(894\) 32.9111 1.10071
\(895\) 0.0526958 0.00176142
\(896\) 27.0952 0.905188
\(897\) 0.264802 0.00884149
\(898\) 0.315858 0.0105403
\(899\) 0 0
\(900\) −79.5951 −2.65317
\(901\) −9.24525 −0.308004
\(902\) 13.1804 0.438859
\(903\) −28.7648 −0.957233
\(904\) 20.8918 0.694851
\(905\) 0.304591 0.0101249
\(906\) −50.2469 −1.66934
\(907\) 15.8825 0.527368 0.263684 0.964609i \(-0.415062\pi\)
0.263684 + 0.964609i \(0.415062\pi\)
\(908\) −6.66973 −0.221343
\(909\) −31.6274 −1.04901
\(910\) −0.0830336 −0.00275254
\(911\) −24.9672 −0.827199 −0.413600 0.910459i \(-0.635729\pi\)
−0.413600 + 0.910459i \(0.635729\pi\)
\(912\) 4.00852 0.132735
\(913\) −33.4654 −1.10754
\(914\) 72.7482 2.40630
\(915\) −0.524396 −0.0173360
\(916\) −86.0768 −2.84406
\(917\) −5.22932 −0.172687
\(918\) 68.8784 2.27332
\(919\) 13.4638 0.444131 0.222065 0.975032i \(-0.428720\pi\)
0.222065 + 0.975032i \(0.428720\pi\)
\(920\) 0.0345259 0.00113828
\(921\) 18.5167 0.610145
\(922\) −1.64527 −0.0541841
\(923\) 5.44822 0.179330
\(924\) 55.3963 1.82241
\(925\) −26.8355 −0.882345
\(926\) −20.7456 −0.681744
\(927\) 66.9616 2.19931
\(928\) 0 0
\(929\) 7.53667 0.247270 0.123635 0.992328i \(-0.460545\pi\)
0.123635 + 0.992328i \(0.460545\pi\)
\(930\) 1.61014 0.0527987
\(931\) 15.7370 0.515759
\(932\) 54.9259 1.79916
\(933\) 69.7245 2.28268
\(934\) 69.5385 2.27537
\(935\) −1.18854 −0.0388694
\(936\) 5.31944 0.173871
\(937\) −36.4635 −1.19121 −0.595605 0.803277i \(-0.703088\pi\)
−0.595605 + 0.803277i \(0.703088\pi\)
\(938\) −38.5121 −1.25746
\(939\) 5.60861 0.183030
\(940\) −1.74158 −0.0568039
\(941\) −35.1767 −1.14673 −0.573364 0.819301i \(-0.694362\pi\)
−0.573364 + 0.819301i \(0.694362\pi\)
\(942\) 121.475 3.95788
\(943\) −0.336747 −0.0109660
\(944\) 0.430261 0.0140038
\(945\) −0.531311 −0.0172836
\(946\) −58.4100 −1.89907
\(947\) −10.3967 −0.337848 −0.168924 0.985629i \(-0.554029\pi\)
−0.168924 + 0.985629i \(0.554029\pi\)
\(948\) 42.7125 1.38724
\(949\) −2.84123 −0.0922303
\(950\) 39.1025 1.26865
\(951\) −84.3103 −2.73395
\(952\) −20.9193 −0.677998
\(953\) 53.8152 1.74325 0.871623 0.490178i \(-0.163068\pi\)
0.871623 + 0.490178i \(0.163068\pi\)
\(954\) −20.5619 −0.665715
\(955\) −0.596703 −0.0193089
\(956\) 54.2189 1.75356
\(957\) 0 0
\(958\) 12.0129 0.388119
\(959\) 8.62295 0.278450
\(960\) −2.14371 −0.0691878
\(961\) −12.3521 −0.398454
\(962\) 4.93248 0.159029
\(963\) 46.9790 1.51388
\(964\) 69.0970 2.22547
\(965\) −0.156861 −0.00504952
\(966\) −2.31604 −0.0745174
\(967\) −11.8947 −0.382508 −0.191254 0.981541i \(-0.561255\pi\)
−0.191254 + 0.981541i \(0.561255\pi\)
\(968\) 12.3963 0.398433
\(969\) −50.6634 −1.62754
\(970\) −2.25946 −0.0725468
\(971\) −50.0900 −1.60746 −0.803732 0.594991i \(-0.797156\pi\)
−0.803732 + 0.594991i \(0.797156\pi\)
\(972\) −42.1350 −1.35148
\(973\) 0.933285 0.0299197
\(974\) −7.89535 −0.252983
\(975\) −5.74809 −0.184086
\(976\) 1.30423 0.0417473
\(977\) 13.8116 0.441871 0.220936 0.975288i \(-0.429089\pi\)
0.220936 + 0.975288i \(0.429089\pi\)
\(978\) −14.5711 −0.465932
\(979\) 4.49997 0.143820
\(980\) −0.829547 −0.0264989
\(981\) −29.1732 −0.931429
\(982\) 13.2699 0.423461
\(983\) 11.6553 0.371746 0.185873 0.982574i \(-0.440489\pi\)
0.185873 + 0.982574i \(0.440489\pi\)
\(984\) −10.7684 −0.343284
\(985\) −0.855428 −0.0272562
\(986\) 0 0
\(987\) 42.4784 1.35210
\(988\) −4.39208 −0.139731
\(989\) 1.49232 0.0474531
\(990\) −2.64337 −0.0840118
\(991\) 6.93524 0.220305 0.110153 0.993915i \(-0.464866\pi\)
0.110153 + 0.993915i \(0.464866\pi\)
\(992\) −26.3848 −0.837718
\(993\) −80.5983 −2.55771
\(994\) −47.6518 −1.51142
\(995\) 0.868420 0.0275308
\(996\) 75.1961 2.38268
\(997\) 23.9700 0.759136 0.379568 0.925164i \(-0.376073\pi\)
0.379568 + 0.925164i \(0.376073\pi\)
\(998\) −53.7872 −1.70260
\(999\) 31.5617 0.998568
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.a.k.1.11 12
3.2 odd 2 7569.2.a.bp.1.2 12
29.2 odd 28 841.2.e.i.236.2 12
29.3 odd 28 841.2.e.h.270.2 12
29.4 even 14 841.2.d.l.190.4 24
29.5 even 14 841.2.d.m.605.4 24
29.6 even 14 841.2.d.m.645.4 24
29.7 even 7 841.2.d.l.571.1 24
29.8 odd 28 841.2.e.e.267.2 12
29.9 even 14 841.2.d.k.574.1 24
29.10 odd 28 841.2.e.h.651.2 12
29.11 odd 28 841.2.e.e.63.2 12
29.12 odd 4 841.2.b.e.840.11 12
29.13 even 14 841.2.d.k.778.1 24
29.14 odd 28 29.2.e.a.22.1 yes 12
29.15 odd 28 841.2.e.i.196.2 12
29.16 even 7 841.2.d.k.778.4 24
29.17 odd 4 841.2.b.e.840.2 12
29.18 odd 28 841.2.e.f.63.1 12
29.19 odd 28 841.2.e.a.651.1 12
29.20 even 7 841.2.d.k.574.4 24
29.21 odd 28 841.2.e.f.267.1 12
29.22 even 14 841.2.d.l.571.4 24
29.23 even 7 841.2.d.m.645.1 24
29.24 even 7 841.2.d.m.605.1 24
29.25 even 7 841.2.d.l.190.1 24
29.26 odd 28 841.2.e.a.270.1 12
29.27 odd 28 29.2.e.a.4.1 12
29.28 even 2 inner 841.2.a.k.1.2 12
87.14 even 28 261.2.o.a.109.2 12
87.56 even 28 261.2.o.a.91.2 12
87.86 odd 2 7569.2.a.bp.1.11 12
116.27 even 28 464.2.y.d.33.2 12
116.43 even 28 464.2.y.d.225.2 12
145.14 odd 28 725.2.q.a.51.2 12
145.27 even 28 725.2.p.a.149.4 24
145.43 even 28 725.2.p.a.399.4 24
145.72 even 28 725.2.p.a.399.1 24
145.114 odd 28 725.2.q.a.526.2 12
145.143 even 28 725.2.p.a.149.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.e.a.4.1 12 29.27 odd 28
29.2.e.a.22.1 yes 12 29.14 odd 28
261.2.o.a.91.2 12 87.56 even 28
261.2.o.a.109.2 12 87.14 even 28
464.2.y.d.33.2 12 116.27 even 28
464.2.y.d.225.2 12 116.43 even 28
725.2.p.a.149.1 24 145.143 even 28
725.2.p.a.149.4 24 145.27 even 28
725.2.p.a.399.1 24 145.72 even 28
725.2.p.a.399.4 24 145.43 even 28
725.2.q.a.51.2 12 145.14 odd 28
725.2.q.a.526.2 12 145.114 odd 28
841.2.a.k.1.2 12 29.28 even 2 inner
841.2.a.k.1.11 12 1.1 even 1 trivial
841.2.b.e.840.2 12 29.17 odd 4
841.2.b.e.840.11 12 29.12 odd 4
841.2.d.k.574.1 24 29.9 even 14
841.2.d.k.574.4 24 29.20 even 7
841.2.d.k.778.1 24 29.13 even 14
841.2.d.k.778.4 24 29.16 even 7
841.2.d.l.190.1 24 29.25 even 7
841.2.d.l.190.4 24 29.4 even 14
841.2.d.l.571.1 24 29.7 even 7
841.2.d.l.571.4 24 29.22 even 14
841.2.d.m.605.1 24 29.24 even 7
841.2.d.m.605.4 24 29.5 even 14
841.2.d.m.645.1 24 29.23 even 7
841.2.d.m.645.4 24 29.6 even 14
841.2.e.a.270.1 12 29.26 odd 28
841.2.e.a.651.1 12 29.19 odd 28
841.2.e.e.63.2 12 29.11 odd 28
841.2.e.e.267.2 12 29.8 odd 28
841.2.e.f.63.1 12 29.18 odd 28
841.2.e.f.267.1 12 29.21 odd 28
841.2.e.h.270.2 12 29.3 odd 28
841.2.e.h.651.2 12 29.10 odd 28
841.2.e.i.196.2 12 29.15 odd 28
841.2.e.i.236.2 12 29.2 odd 28
7569.2.a.bp.1.2 12 3.2 odd 2
7569.2.a.bp.1.11 12 87.86 odd 2