Properties

Label 841.2.d.m.605.1
Level $841$
Weight $2$
Character 841.605
Analytic conductor $6.715$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(190,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.d (of order \(7\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{7})\)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 605.1
Character \(\chi\) \(=\) 841.605
Dual form 841.2.d.m.645.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.504621 + 2.21089i) q^{2} +(-2.55926 + 1.23248i) q^{3} +(-2.83146 - 1.36356i) q^{4} +(-0.0128801 + 0.0564316i) q^{5} +(-1.43341 - 6.28018i) q^{6} +(1.40728 - 0.677709i) q^{7} +(1.61565 - 2.02596i) q^{8} +(3.16036 - 3.96297i) q^{9} +(-0.118264 - 0.0569531i) q^{10} +(-2.47705 - 3.10613i) q^{11} +8.92699 q^{12} +(0.252504 + 0.316631i) q^{13} +(0.788198 + 3.45332i) q^{14} +(-0.0365869 - 0.160298i) q^{15} +(-0.254963 - 0.319714i) q^{16} +5.16843 q^{17} +(7.16690 + 8.98701i) q^{18} +(3.10914 + 1.49728i) q^{19} +(0.113417 - 0.142221i) q^{20} +(-2.76633 + 3.46887i) q^{21} +(8.11728 - 3.90908i) q^{22} +(-0.0512209 - 0.224414i) q^{23} +(-1.63793 + 7.17623i) q^{24} +(4.50183 + 2.16797i) q^{25} +(-0.827455 + 0.398481i) q^{26} +(-1.30768 + 5.72931i) q^{27} -4.90874 q^{28} +0.372863 q^{30} +(-0.960917 + 4.21005i) q^{31} +(5.50488 - 2.65101i) q^{32} +(10.1677 + 4.89649i) q^{33} +(-2.60810 + 11.4268i) q^{34} +(0.0201183 + 0.0881438i) q^{35} +(-14.3522 + 6.91164i) q^{36} +(3.34857 - 4.19898i) q^{37} +(-4.87927 + 6.11841i) q^{38} +(-1.03647 - 0.499135i) q^{39} +(0.0935185 + 0.117269i) q^{40} -1.46294 q^{41} +(-6.27335 - 7.86653i) q^{42} +(-1.44264 - 6.32061i) q^{43} +(2.77829 + 12.1725i) q^{44} +(0.182931 + 0.229388i) q^{45} +0.522001 q^{46} +(-5.96928 - 7.48524i) q^{47} +(1.04656 + 0.503996i) q^{48} +(-2.84329 + 3.56537i) q^{49} +(-7.06485 + 8.85904i) q^{50} +(-13.2274 + 6.36997i) q^{51} +(-0.283211 - 1.24083i) q^{52} +(0.398044 - 1.74395i) q^{53} +(-12.0070 - 5.78226i) q^{54} +(0.207188 - 0.0997767i) q^{55} +(0.900657 - 3.94604i) q^{56} -9.80247 q^{57} -1.05216 q^{59} +(-0.114981 + 0.503764i) q^{60} +(2.87352 - 1.38382i) q^{61} +(-8.82307 - 4.24897i) q^{62} +(1.76177 - 7.71880i) q^{63} +(2.90123 + 12.7111i) q^{64} +(-0.0211203 + 0.0101710i) q^{65} +(-15.9564 + 20.0087i) q^{66} +(6.77893 - 8.50052i) q^{67} +(-14.6342 - 7.04745i) q^{68} +(0.407672 + 0.511205i) q^{69} -0.205028 q^{70} +(8.38773 + 10.5179i) q^{71} +(-2.92279 - 12.8056i) q^{72} +(1.56113 + 6.83974i) q^{73} +(7.59372 + 9.52223i) q^{74} -14.1933 q^{75} +(-6.76176 - 8.47898i) q^{76} +(-5.59095 - 2.69246i) q^{77} +(1.62656 - 2.03964i) q^{78} +(2.98318 - 3.74078i) q^{79} +(0.0213259 - 0.0102700i) q^{80} +(-0.330785 - 1.44926i) q^{81} +(0.738232 - 3.23440i) q^{82} +(-7.58927 - 3.65480i) q^{83} +(12.5628 - 6.04990i) q^{84} +(-0.0665701 + 0.291662i) q^{85} +14.7022 q^{86} -10.2950 q^{88} +(0.252043 - 1.10427i) q^{89} +(-0.599462 + 0.288686i) q^{90} +(0.569927 + 0.274462i) q^{91} +(-0.160971 + 0.705260i) q^{92} +(-2.72955 - 11.9589i) q^{93} +(19.5613 - 9.42022i) q^{94} +(-0.124540 + 0.156168i) q^{95} +(-10.8211 + 13.5693i) q^{96} +(15.5085 + 7.46850i) q^{97} +(-6.44786 - 8.08536i) q^{98} -20.1379 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{4} + 2 q^{5} + 6 q^{6} - 22 q^{7} + 6 q^{9} - 18 q^{13} + 18 q^{16} - 22 q^{20} + 8 q^{22} - 10 q^{23} - 50 q^{24} + 26 q^{25} - 24 q^{28} + 4 q^{30} + 34 q^{33} + 26 q^{34} - 38 q^{35} - 80 q^{36}+ \cdots - 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.504621 + 2.21089i −0.356821 + 1.56334i 0.404239 + 0.914654i \(0.367537\pi\)
−0.761060 + 0.648682i \(0.775321\pi\)
\(3\) −2.55926 + 1.23248i −1.47759 + 0.711571i −0.987134 0.159895i \(-0.948885\pi\)
−0.490457 + 0.871465i \(0.663170\pi\)
\(4\) −2.83146 1.36356i −1.41573 0.681779i
\(5\) −0.0128801 + 0.0564316i −0.00576017 + 0.0252370i −0.977726 0.209884i \(-0.932691\pi\)
0.971966 + 0.235121i \(0.0755486\pi\)
\(6\) −1.43341 6.28018i −0.585188 2.56387i
\(7\) 1.40728 0.677709i 0.531901 0.256150i −0.148600 0.988897i \(-0.547477\pi\)
0.680501 + 0.732747i \(0.261762\pi\)
\(8\) 1.61565 2.02596i 0.571220 0.716287i
\(9\) 3.16036 3.96297i 1.05345 1.32099i
\(10\) −0.118264 0.0569531i −0.0373985 0.0180102i
\(11\) −2.47705 3.10613i −0.746860 0.936533i 0.252659 0.967555i \(-0.418695\pi\)
−0.999519 + 0.0310229i \(0.990124\pi\)
\(12\) 8.92699 2.57700
\(13\) 0.252504 + 0.316631i 0.0700321 + 0.0878175i 0.815614 0.578597i \(-0.196400\pi\)
−0.745581 + 0.666415i \(0.767828\pi\)
\(14\) 0.788198 + 3.45332i 0.210655 + 0.922939i
\(15\) −0.0365869 0.160298i −0.00944670 0.0413887i
\(16\) −0.254963 0.319714i −0.0637408 0.0799285i
\(17\) 5.16843 1.25353 0.626764 0.779209i \(-0.284379\pi\)
0.626764 + 0.779209i \(0.284379\pi\)
\(18\) 7.16690 + 8.98701i 1.68926 + 2.11826i
\(19\) 3.10914 + 1.49728i 0.713286 + 0.343500i 0.755086 0.655626i \(-0.227595\pi\)
−0.0418005 + 0.999126i \(0.513309\pi\)
\(20\) 0.113417 0.142221i 0.0253609 0.0318015i
\(21\) −2.76633 + 3.46887i −0.603663 + 0.756970i
\(22\) 8.11728 3.90908i 1.73061 0.833418i
\(23\) −0.0512209 0.224414i −0.0106803 0.0467935i 0.969307 0.245854i \(-0.0790682\pi\)
−0.979987 + 0.199060i \(0.936211\pi\)
\(24\) −1.63793 + 7.17623i −0.334341 + 1.46484i
\(25\) 4.50183 + 2.16797i 0.900365 + 0.433593i
\(26\) −0.827455 + 0.398481i −0.162277 + 0.0781486i
\(27\) −1.30768 + 5.72931i −0.251663 + 1.10261i
\(28\) −4.90874 −0.927664
\(29\) 0 0
\(30\) 0.372863 0.0680752
\(31\) −0.960917 + 4.21005i −0.172586 + 0.756148i 0.812342 + 0.583182i \(0.198192\pi\)
−0.984928 + 0.172967i \(0.944665\pi\)
\(32\) 5.50488 2.65101i 0.973135 0.468637i
\(33\) 10.1677 + 4.89649i 1.76996 + 0.852369i
\(34\) −2.60810 + 11.4268i −0.447285 + 1.95968i
\(35\) 0.0201183 + 0.0881438i 0.00340061 + 0.0148990i
\(36\) −14.3522 + 6.91164i −2.39203 + 1.15194i
\(37\) 3.34857 4.19898i 0.550502 0.690308i −0.426268 0.904597i \(-0.640172\pi\)
0.976770 + 0.214289i \(0.0687434\pi\)
\(38\) −4.87927 + 6.11841i −0.791521 + 0.992536i
\(39\) −1.03647 0.499135i −0.165967 0.0799256i
\(40\) 0.0935185 + 0.117269i 0.0147866 + 0.0185418i
\(41\) −1.46294 −0.228473 −0.114237 0.993454i \(-0.536442\pi\)
−0.114237 + 0.993454i \(0.536442\pi\)
\(42\) −6.27335 7.86653i −0.967998 1.21383i
\(43\) −1.44264 6.32061i −0.220000 0.963884i −0.957477 0.288511i \(-0.906840\pi\)
0.737476 0.675373i \(-0.236017\pi\)
\(44\) 2.77829 + 12.1725i 0.418842 + 1.83507i
\(45\) 0.182931 + 0.229388i 0.0272697 + 0.0341951i
\(46\) 0.522001 0.0769648
\(47\) −5.96928 7.48524i −0.870709 1.09184i −0.995028 0.0995928i \(-0.968246\pi\)
0.124319 0.992242i \(-0.460325\pi\)
\(48\) 1.04656 + 0.503996i 0.151058 + 0.0727455i
\(49\) −2.84329 + 3.56537i −0.406184 + 0.509339i
\(50\) −7.06485 + 8.85904i −0.999121 + 1.25286i
\(51\) −13.2274 + 6.36997i −1.85220 + 0.891974i
\(52\) −0.283211 1.24083i −0.0392743 0.172072i
\(53\) 0.398044 1.74395i 0.0546756 0.239549i −0.940205 0.340610i \(-0.889366\pi\)
0.994880 + 0.101061i \(0.0322236\pi\)
\(54\) −12.0070 5.78226i −1.63394 0.786866i
\(55\) 0.207188 0.0997767i 0.0279373 0.0134539i
\(56\) 0.900657 3.94604i 0.120355 0.527311i
\(57\) −9.80247 −1.29837
\(58\) 0 0
\(59\) −1.05216 −0.136980 −0.0684900 0.997652i \(-0.521818\pi\)
−0.0684900 + 0.997652i \(0.521818\pi\)
\(60\) −0.114981 + 0.503764i −0.0148440 + 0.0650357i
\(61\) 2.87352 1.38382i 0.367917 0.177179i −0.240785 0.970578i \(-0.577405\pi\)
0.608702 + 0.793399i \(0.291691\pi\)
\(62\) −8.82307 4.24897i −1.12053 0.539619i
\(63\) 1.76177 7.71880i 0.221962 0.972478i
\(64\) 2.90123 + 12.7111i 0.362653 + 1.58889i
\(65\) −0.0211203 + 0.0101710i −0.00261964 + 0.00126155i
\(66\) −15.9564 + 20.0087i −1.96410 + 2.46290i
\(67\) 6.77893 8.50052i 0.828179 1.03850i −0.170409 0.985373i \(-0.554509\pi\)
0.998588 0.0531298i \(-0.0169197\pi\)
\(68\) −14.6342 7.04745i −1.77465 0.854628i
\(69\) 0.407672 + 0.511205i 0.0490780 + 0.0615418i
\(70\) −0.205028 −0.0245056
\(71\) 8.38773 + 10.5179i 0.995440 + 1.24824i 0.968606 + 0.248603i \(0.0799713\pi\)
0.0268346 + 0.999640i \(0.491457\pi\)
\(72\) −2.92279 12.8056i −0.344454 1.50915i
\(73\) 1.56113 + 6.83974i 0.182716 + 0.800531i 0.980330 + 0.197363i \(0.0632378\pi\)
−0.797615 + 0.603167i \(0.793905\pi\)
\(74\) 7.59372 + 9.52223i 0.882752 + 1.10694i
\(75\) −14.1933 −1.63890
\(76\) −6.76176 8.47898i −0.775627 0.972605i
\(77\) −5.59095 2.69246i −0.637148 0.306834i
\(78\) 1.62656 2.03964i 0.184171 0.230943i
\(79\) 2.98318 3.74078i 0.335634 0.420871i −0.585162 0.810916i \(-0.698969\pi\)
0.920796 + 0.390045i \(0.127541\pi\)
\(80\) 0.0213259 0.0102700i 0.00238431 0.00114822i
\(81\) −0.330785 1.44926i −0.0367539 0.161029i
\(82\) 0.738232 3.23440i 0.0815241 0.357180i
\(83\) −7.58927 3.65480i −0.833030 0.401166i −0.0317796 0.999495i \(-0.510117\pi\)
−0.801251 + 0.598329i \(0.795832\pi\)
\(84\) 12.5628 6.04990i 1.37071 0.660099i
\(85\) −0.0665701 + 0.291662i −0.00722054 + 0.0316352i
\(86\) 14.7022 1.58537
\(87\) 0 0
\(88\) −10.2950 −1.09745
\(89\) 0.252043 1.10427i 0.0267165 0.117053i −0.959811 0.280646i \(-0.909451\pi\)
0.986528 + 0.163593i \(0.0523085\pi\)
\(90\) −0.599462 + 0.288686i −0.0631888 + 0.0304301i
\(91\) 0.569927 + 0.274462i 0.0597446 + 0.0287715i
\(92\) −0.160971 + 0.705260i −0.0167824 + 0.0735284i
\(93\) −2.72955 11.9589i −0.283041 1.24009i
\(94\) 19.5613 9.42022i 2.01759 0.971621i
\(95\) −0.124540 + 0.156168i −0.0127775 + 0.0160225i
\(96\) −10.8211 + 13.5693i −1.10443 + 1.38491i
\(97\) 15.5085 + 7.46850i 1.57465 + 0.758311i 0.998266 0.0588689i \(-0.0187494\pi\)
0.576383 + 0.817180i \(0.304464\pi\)
\(98\) −6.44786 8.08536i −0.651332 0.816745i
\(99\) −20.1379 −2.02393
\(100\) −9.79057 12.2770i −0.979057 1.22770i
\(101\) 1.38844 + 6.08315i 0.138155 + 0.605296i 0.995840 + 0.0911203i \(0.0290448\pi\)
−0.857685 + 0.514175i \(0.828098\pi\)
\(102\) −7.40848 32.4587i −0.733549 3.21389i
\(103\) 8.23659 + 10.3284i 0.811576 + 1.01768i 0.999371 + 0.0354755i \(0.0112946\pi\)
−0.187795 + 0.982208i \(0.560134\pi\)
\(104\) 1.04944 0.102906
\(105\) −0.160123 0.200788i −0.0156264 0.0195949i
\(106\) 3.65481 + 1.76006i 0.354987 + 0.170953i
\(107\) 5.77864 7.24619i 0.558642 0.700516i −0.419664 0.907680i \(-0.637852\pi\)
0.978306 + 0.207164i \(0.0664234\pi\)
\(108\) 11.5149 14.4392i 1.10802 1.38941i
\(109\) 5.18545 2.49718i 0.496676 0.239187i −0.168738 0.985661i \(-0.553969\pi\)
0.665414 + 0.746474i \(0.268255\pi\)
\(110\) 0.116044 + 0.508420i 0.0110643 + 0.0484760i
\(111\) −3.39474 + 14.8733i −0.322215 + 1.41171i
\(112\) −0.575477 0.277135i −0.0543775 0.0261868i
\(113\) −7.26385 + 3.49809i −0.683326 + 0.329072i −0.743139 0.669137i \(-0.766664\pi\)
0.0598131 + 0.998210i \(0.480950\pi\)
\(114\) 4.94654 21.6722i 0.463286 2.02979i
\(115\) 0.0133237 0.00124245
\(116\) 0 0
\(117\) 2.05280 0.189782
\(118\) 0.530944 2.32622i 0.0488774 0.214146i
\(119\) 7.27341 3.50269i 0.666753 0.321091i
\(120\) −0.383869 0.184862i −0.0350423 0.0168755i
\(121\) −1.06450 + 4.66388i −0.0967727 + 0.423989i
\(122\) 1.60942 + 7.05135i 0.145710 + 0.638399i
\(123\) 3.74405 1.80304i 0.337590 0.162575i
\(124\) 8.46144 10.6103i 0.759860 0.952834i
\(125\) −0.360772 + 0.452394i −0.0322685 + 0.0404634i
\(126\) 16.1764 + 7.79014i 1.44111 + 0.694001i
\(127\) 10.9570 + 13.7396i 0.972277 + 1.21920i 0.975679 + 0.219202i \(0.0703455\pi\)
−0.00340252 + 0.999994i \(0.501083\pi\)
\(128\) −17.3469 −1.53327
\(129\) 11.4821 + 14.3981i 1.01094 + 1.26768i
\(130\) −0.0118292 0.0518270i −0.00103749 0.00454553i
\(131\) −0.744983 3.26398i −0.0650895 0.285176i 0.931900 0.362716i \(-0.118150\pi\)
−0.996989 + 0.0775403i \(0.975293\pi\)
\(132\) −22.1126 27.7284i −1.92466 2.41345i
\(133\) 5.39014 0.467385
\(134\) 15.3729 + 19.2770i 1.32802 + 1.66528i
\(135\) −0.306471 0.147589i −0.0263768 0.0127024i
\(136\) 8.35039 10.4711i 0.716040 0.897885i
\(137\) −3.44204 + 4.31618i −0.294073 + 0.368756i −0.906816 0.421526i \(-0.861495\pi\)
0.612743 + 0.790282i \(0.290066\pi\)
\(138\) −1.33594 + 0.643354i −0.113723 + 0.0547659i
\(139\) 0.132958 + 0.582528i 0.0112774 + 0.0494094i 0.980254 0.197745i \(-0.0633617\pi\)
−0.968976 + 0.247154i \(0.920505\pi\)
\(140\) 0.0632252 0.277008i 0.00534351 0.0234114i
\(141\) 24.5024 + 11.7997i 2.06347 + 0.993715i
\(142\) −27.4865 + 13.2368i −2.30662 + 1.11081i
\(143\) 0.358028 1.56862i 0.0299398 0.131175i
\(144\) −2.07279 −0.172733
\(145\) 0 0
\(146\) −15.9097 −1.31669
\(147\) 2.88249 12.6290i 0.237744 1.04162i
\(148\) −15.2069 + 7.32325i −1.25000 + 0.601968i
\(149\) −4.60312 2.21675i −0.377102 0.181603i 0.235725 0.971820i \(-0.424254\pi\)
−0.612827 + 0.790217i \(0.709968\pi\)
\(150\) 7.16225 31.3799i 0.584796 2.56216i
\(151\) 1.73572 + 7.60469i 0.141251 + 0.618861i 0.995145 + 0.0984149i \(0.0313772\pi\)
−0.853894 + 0.520446i \(0.825766\pi\)
\(152\) 8.05673 3.87992i 0.653487 0.314703i
\(153\) 16.3341 20.4823i 1.32053 1.65590i
\(154\) 8.77405 11.0023i 0.707033 0.886591i
\(155\) −0.225203 0.108452i −0.0180888 0.00871109i
\(156\) 2.25411 + 2.82656i 0.180473 + 0.226306i
\(157\) 18.8577 1.50501 0.752504 0.658588i \(-0.228846\pi\)
0.752504 + 0.658588i \(0.228846\pi\)
\(158\) 6.76509 + 8.48315i 0.538202 + 0.674884i
\(159\) 1.13067 + 4.95380i 0.0896681 + 0.392862i
\(160\) 0.0786971 + 0.344795i 0.00622155 + 0.0272584i
\(161\) −0.224169 0.281099i −0.0176670 0.0221537i
\(162\) 3.37109 0.264858
\(163\) −1.41033 1.76850i −0.110466 0.138520i 0.723525 0.690298i \(-0.242521\pi\)
−0.833991 + 0.551779i \(0.813949\pi\)
\(164\) 4.14226 + 1.99481i 0.323456 + 0.155768i
\(165\) −0.407277 + 0.510710i −0.0317065 + 0.0397587i
\(166\) 11.9101 14.9347i 0.924400 1.15916i
\(167\) −10.5728 + 5.09159i −0.818147 + 0.393999i −0.795656 0.605748i \(-0.792874\pi\)
−0.0224905 + 0.999747i \(0.507160\pi\)
\(168\) 2.55838 + 11.2090i 0.197383 + 0.864792i
\(169\) 2.85628 12.5142i 0.219714 0.962628i
\(170\) −0.611241 0.294358i −0.0468801 0.0225762i
\(171\) 15.7597 7.58947i 1.20517 0.580381i
\(172\) −4.53375 + 19.8636i −0.345695 + 1.51459i
\(173\) 19.2889 1.46651 0.733254 0.679954i \(-0.238000\pi\)
0.733254 + 0.679954i \(0.238000\pi\)
\(174\) 0 0
\(175\) 7.80457 0.589970
\(176\) −0.361514 + 1.58390i −0.0272501 + 0.119391i
\(177\) 2.69276 1.29677i 0.202401 0.0974710i
\(178\) 2.31424 + 1.11448i 0.173460 + 0.0835337i
\(179\) −0.202580 + 0.887562i −0.0151416 + 0.0663395i −0.981934 0.189222i \(-0.939403\pi\)
0.966793 + 0.255562i \(0.0822604\pi\)
\(180\) −0.205177 0.898938i −0.0152930 0.0670029i
\(181\) −4.74107 + 2.28318i −0.352401 + 0.169707i −0.601706 0.798718i \(-0.705512\pi\)
0.249305 + 0.968425i \(0.419798\pi\)
\(182\) −0.894404 + 1.12155i −0.0662976 + 0.0831346i
\(183\) −5.64858 + 7.08310i −0.417555 + 0.523598i
\(184\) −0.537409 0.258803i −0.0396183 0.0190792i
\(185\) 0.193825 + 0.243049i 0.0142503 + 0.0178693i
\(186\) 27.8173 2.03966
\(187\) −12.8025 16.0538i −0.936210 1.17397i
\(188\) 6.69520 + 29.3336i 0.488298 + 2.13937i
\(189\) 2.04254 + 8.94895i 0.148573 + 0.650940i
\(190\) −0.282426 0.354150i −0.0204893 0.0256928i
\(191\) −10.3088 −0.745920 −0.372960 0.927847i \(-0.621657\pi\)
−0.372960 + 0.927847i \(0.621657\pi\)
\(192\) −23.0911 28.9554i −1.66646 2.08967i
\(193\) 2.44160 + 1.17581i 0.175750 + 0.0846368i 0.519690 0.854355i \(-0.326047\pi\)
−0.343940 + 0.938992i \(0.611762\pi\)
\(194\) −24.3379 + 30.5188i −1.74736 + 2.19112i
\(195\) 0.0415168 0.0520604i 0.00297308 0.00372812i
\(196\) 12.9122 6.21820i 0.922302 0.444157i
\(197\) 3.28855 + 14.4081i 0.234300 + 1.02653i 0.946030 + 0.324080i \(0.105055\pi\)
−0.711730 + 0.702453i \(0.752088\pi\)
\(198\) 10.1620 44.5226i 0.722182 3.16409i
\(199\) −13.5173 6.50959i −0.958216 0.461453i −0.111657 0.993747i \(-0.535616\pi\)
−0.846560 + 0.532294i \(0.821330\pi\)
\(200\) 11.6656 5.61786i 0.824883 0.397243i
\(201\) −6.87240 + 30.1099i −0.484741 + 2.12379i
\(202\) −14.1498 −0.995577
\(203\) 0 0
\(204\) 46.1385 3.23034
\(205\) 0.0188429 0.0825561i 0.00131604 0.00576597i
\(206\) −26.9912 + 12.9983i −1.88057 + 0.905634i
\(207\) −1.05122 0.506241i −0.0730649 0.0351862i
\(208\) 0.0368518 0.161458i 0.00255521 0.0111951i
\(209\) −3.05076 13.3662i −0.211025 0.924562i
\(210\) 0.524722 0.252693i 0.0362093 0.0174375i
\(211\) −7.46505 + 9.36088i −0.513916 + 0.644430i −0.969305 0.245863i \(-0.920929\pi\)
0.455389 + 0.890293i \(0.349500\pi\)
\(212\) −3.50501 + 4.39515i −0.240725 + 0.301860i
\(213\) −34.4294 16.5803i −2.35907 1.13607i
\(214\) 13.1045 + 16.4325i 0.895805 + 1.12330i
\(215\) 0.375263 0.0255927
\(216\) 9.49462 + 11.9059i 0.646027 + 0.810093i
\(217\) 1.50091 + 6.57594i 0.101889 + 0.446404i
\(218\) 2.90430 + 12.7246i 0.196704 + 0.861818i
\(219\) −12.4251 15.5806i −0.839613 1.05284i
\(220\) −0.722696 −0.0487241
\(221\) 1.30505 + 1.63648i 0.0877872 + 0.110082i
\(222\) −31.1703 15.0108i −2.09201 1.00746i
\(223\) 8.33685 10.4541i 0.558277 0.700057i −0.419962 0.907542i \(-0.637956\pi\)
0.978238 + 0.207485i \(0.0665279\pi\)
\(224\) 5.95028 7.46142i 0.397570 0.498537i
\(225\) 22.8190 10.9890i 1.52127 0.732603i
\(226\) −4.06839 17.8248i −0.270625 1.18569i
\(227\) 0.472258 2.06910i 0.0313448 0.137331i −0.956834 0.290634i \(-0.906134\pi\)
0.988179 + 0.153303i \(0.0489910\pi\)
\(228\) 27.7553 + 13.3662i 1.83814 + 0.885200i
\(229\) 24.6772 11.8839i 1.63072 0.785312i 0.630760 0.775978i \(-0.282743\pi\)
0.999956 0.00933352i \(-0.00297099\pi\)
\(230\) −0.00672344 + 0.0294573i −0.000443331 + 0.00194236i
\(231\) 17.6271 1.15978
\(232\) 0 0
\(233\) 17.4774 1.14498 0.572492 0.819910i \(-0.305977\pi\)
0.572492 + 0.819910i \(0.305977\pi\)
\(234\) −1.03589 + 4.53852i −0.0677181 + 0.296692i
\(235\) 0.499289 0.240445i 0.0325700 0.0156849i
\(236\) 2.97915 + 1.43468i 0.193926 + 0.0933900i
\(237\) −3.02431 + 13.2503i −0.196450 + 0.860703i
\(238\) 4.07375 + 17.8482i 0.264062 + 1.15693i
\(239\) −15.5439 + 7.48555i −1.00545 + 0.484200i −0.862785 0.505571i \(-0.831282\pi\)
−0.142667 + 0.989771i \(0.545568\pi\)
\(240\) −0.0419211 + 0.0525674i −0.00270599 + 0.00339321i
\(241\) 13.7085 17.1899i 0.883040 1.10730i −0.110507 0.993875i \(-0.535247\pi\)
0.993547 0.113422i \(-0.0361811\pi\)
\(242\) −9.77415 4.70698i −0.628306 0.302576i
\(243\) −8.35934 10.4823i −0.536252 0.672439i
\(244\) −10.0232 −0.641667
\(245\) −0.164578 0.206374i −0.0105145 0.0131847i
\(246\) 2.09700 + 9.18755i 0.133700 + 0.585777i
\(247\) 0.310986 + 1.36252i 0.0197876 + 0.0866950i
\(248\) 6.97691 + 8.74877i 0.443034 + 0.555548i
\(249\) 23.9274 1.51634
\(250\) −0.818141 1.02592i −0.0517438 0.0648846i
\(251\) 8.80311 + 4.23936i 0.555648 + 0.267586i 0.690564 0.723271i \(-0.257362\pi\)
−0.134917 + 0.990857i \(0.543077\pi\)
\(252\) −15.5134 + 19.4532i −0.977252 + 1.22544i
\(253\) −0.570180 + 0.714983i −0.0358469 + 0.0449506i
\(254\) −35.9060 + 17.2914i −2.25294 + 1.08496i
\(255\) −0.189097 0.828487i −0.0118417 0.0518819i
\(256\) 2.95119 12.9300i 0.184449 0.808124i
\(257\) 13.8769 + 6.68278i 0.865620 + 0.416861i 0.813352 0.581772i \(-0.197641\pi\)
0.0522684 + 0.998633i \(0.483355\pi\)
\(258\) −37.6267 + 18.1201i −2.34254 + 1.12811i
\(259\) 1.86669 8.17849i 0.115990 0.508187i
\(260\) 0.0736698 0.00456880
\(261\) 0 0
\(262\) 7.59225 0.469050
\(263\) 6.89666 30.2162i 0.425266 1.86321i −0.0747599 0.997202i \(-0.523819\pi\)
0.500026 0.866010i \(-0.333324\pi\)
\(264\) 26.3475 12.6883i 1.62158 0.780911i
\(265\) 0.0932867 + 0.0449245i 0.00573056 + 0.00275969i
\(266\) −2.71998 + 11.9170i −0.166773 + 0.730679i
\(267\) 0.715945 + 3.13676i 0.0438151 + 0.191967i
\(268\) −30.7852 + 14.8254i −1.88050 + 0.905603i
\(269\) −8.63841 + 10.8322i −0.526693 + 0.660453i −0.972015 0.234918i \(-0.924518\pi\)
0.445322 + 0.895371i \(0.353089\pi\)
\(270\) 0.480954 0.603097i 0.0292699 0.0367033i
\(271\) 24.1804 + 11.6447i 1.46885 + 0.707362i 0.985752 0.168203i \(-0.0537963\pi\)
0.483100 + 0.875565i \(0.339511\pi\)
\(272\) −1.31776 1.65242i −0.0799009 0.100193i
\(273\) −1.79686 −0.108751
\(274\) −7.80567 9.78800i −0.471558 0.591315i
\(275\) −4.41729 19.3534i −0.266373 1.16705i
\(276\) −0.457249 2.00334i −0.0275232 0.120587i
\(277\) −14.0636 17.6352i −0.845002 1.05960i −0.997456 0.0712885i \(-0.977289\pi\)
0.152454 0.988311i \(-0.451283\pi\)
\(278\) −1.35500 −0.0812675
\(279\) 13.6475 + 17.1134i 0.817053 + 1.02455i
\(280\) 0.211080 + 0.101651i 0.0126145 + 0.00607481i
\(281\) −2.05756 + 2.58010i −0.122744 + 0.153916i −0.839406 0.543504i \(-0.817097\pi\)
0.716663 + 0.697420i \(0.245669\pi\)
\(282\) −38.4523 + 48.2176i −2.28980 + 2.87132i
\(283\) 15.9189 7.66611i 0.946277 0.455703i 0.103898 0.994588i \(-0.466868\pi\)
0.842380 + 0.538885i \(0.181154\pi\)
\(284\) −9.40775 41.2180i −0.558247 2.44584i
\(285\) 0.126257 0.553169i 0.00747883 0.0327669i
\(286\) 3.28738 + 1.58312i 0.194387 + 0.0936118i
\(287\) −2.05877 + 0.991449i −0.121525 + 0.0585234i
\(288\) 6.89155 30.1938i 0.406088 1.77919i
\(289\) 9.71265 0.571332
\(290\) 0 0
\(291\) −48.8951 −2.86628
\(292\) 4.90611 21.4951i 0.287109 1.25790i
\(293\) −12.1939 + 5.87226i −0.712374 + 0.343061i −0.754725 0.656042i \(-0.772230\pi\)
0.0423508 + 0.999103i \(0.486515\pi\)
\(294\) 26.4668 + 12.7457i 1.54357 + 0.743346i
\(295\) 0.0135520 0.0593752i 0.000789028 0.00345696i
\(296\) −3.09685 13.5682i −0.180001 0.788635i
\(297\) 21.0351 10.1300i 1.22058 0.587802i
\(298\) 7.22382 9.05838i 0.418464 0.524738i
\(299\) 0.0581227 0.0728835i 0.00336132 0.00421496i
\(300\) 40.1878 + 19.3534i 2.32024 + 1.11737i
\(301\) −6.31373 7.91716i −0.363917 0.456338i
\(302\) −17.6890 −1.01789
\(303\) −11.0507 13.8572i −0.634847 0.796073i
\(304\) −0.314014 1.37579i −0.0180100 0.0789068i
\(305\) 0.0410795 + 0.179981i 0.00235221 + 0.0103057i
\(306\) 37.0416 + 46.4487i 2.11753 + 2.65530i
\(307\) 6.51865 0.372039 0.186020 0.982546i \(-0.440441\pi\)
0.186020 + 0.982546i \(0.440441\pi\)
\(308\) 12.1592 + 15.2472i 0.692835 + 0.868788i
\(309\) −33.8091 16.2816i −1.92333 0.926227i
\(310\) 0.353418 0.443172i 0.0200728 0.0251705i
\(311\) 15.3042 19.1908i 0.867820 1.08821i −0.127525 0.991835i \(-0.540703\pi\)
0.995345 0.0963761i \(-0.0307252\pi\)
\(312\) −2.68580 + 1.29341i −0.152053 + 0.0732251i
\(313\) −0.439360 1.92496i −0.0248341 0.108805i 0.960992 0.276577i \(-0.0892001\pi\)
−0.985826 + 0.167772i \(0.946343\pi\)
\(314\) −9.51599 + 41.6923i −0.537019 + 2.35283i
\(315\) 0.412892 + 0.198838i 0.0232638 + 0.0112033i
\(316\) −13.5475 + 6.52413i −0.762107 + 0.367011i
\(317\) 6.60459 28.9366i 0.370951 1.62524i −0.353163 0.935562i \(-0.614894\pi\)
0.724114 0.689680i \(-0.242249\pi\)
\(318\) −11.5229 −0.646170
\(319\) 0 0
\(320\) −0.754675 −0.0421876
\(321\) −5.85831 + 25.6669i −0.326979 + 1.43259i
\(322\) 0.734600 0.353765i 0.0409377 0.0197145i
\(323\) 16.0694 + 7.73860i 0.894123 + 0.430587i
\(324\) −1.03955 + 4.55457i −0.0577529 + 0.253032i
\(325\) 0.450287 + 1.97284i 0.0249774 + 0.109433i
\(326\) 4.62165 2.22567i 0.255969 0.123268i
\(327\) −10.1932 + 12.7819i −0.563686 + 0.706840i
\(328\) −2.36361 + 2.96387i −0.130508 + 0.163652i
\(329\) −13.4733 6.48838i −0.742805 0.357716i
\(330\) −0.923602 1.15816i −0.0508426 0.0637546i
\(331\) −28.3740 −1.55958 −0.779788 0.626044i \(-0.784673\pi\)
−0.779788 + 0.626044i \(0.784673\pi\)
\(332\) 16.5051 + 20.6968i 0.905838 + 1.13588i
\(333\) −6.05772 26.5406i −0.331961 1.45442i
\(334\) −5.92168 25.9446i −0.324020 1.41963i
\(335\) 0.392384 + 0.492034i 0.0214382 + 0.0268827i
\(336\) 1.81436 0.0989814
\(337\) −2.50472 3.14082i −0.136441 0.171091i 0.708917 0.705292i \(-0.249184\pi\)
−0.845358 + 0.534201i \(0.820613\pi\)
\(338\) 26.2261 + 12.6298i 1.42651 + 0.686972i
\(339\) 14.2788 17.9051i 0.775518 0.972469i
\(340\) 0.586189 0.735057i 0.0317905 0.0398641i
\(341\) 15.4572 7.44380i 0.837055 0.403104i
\(342\) 8.82681 + 38.6728i 0.477299 + 2.09118i
\(343\) −4.01799 + 17.6040i −0.216951 + 0.950525i
\(344\) −15.1361 7.28918i −0.816086 0.393006i
\(345\) −0.0340990 + 0.0164212i −0.00183583 + 0.000884088i
\(346\) −9.73360 + 42.6457i −0.523281 + 2.29265i
\(347\) −3.55272 −0.190720 −0.0953601 0.995443i \(-0.530400\pi\)
−0.0953601 + 0.995443i \(0.530400\pi\)
\(348\) 0 0
\(349\) 3.34203 0.178895 0.0894473 0.995992i \(-0.471490\pi\)
0.0894473 + 0.995992i \(0.471490\pi\)
\(350\) −3.93835 + 17.2550i −0.210514 + 0.922321i
\(351\) −2.14427 + 1.03263i −0.114453 + 0.0551175i
\(352\) −21.8703 10.5322i −1.16569 0.561366i
\(353\) −2.78493 + 12.2016i −0.148227 + 0.649424i 0.845151 + 0.534528i \(0.179511\pi\)
−0.993378 + 0.114896i \(0.963347\pi\)
\(354\) 1.50818 + 6.60778i 0.0801590 + 0.351200i
\(355\) −0.701575 + 0.337861i −0.0372358 + 0.0179318i
\(356\) −2.21939 + 2.78302i −0.117627 + 0.147500i
\(357\) −14.2976 + 17.9286i −0.756709 + 0.948883i
\(358\) −1.86008 0.895765i −0.0983080 0.0473426i
\(359\) 11.4697 + 14.3825i 0.605346 + 0.759080i 0.986201 0.165555i \(-0.0529416\pi\)
−0.380855 + 0.924635i \(0.624370\pi\)
\(360\) 0.760284 0.0400705
\(361\) −4.42141 5.54428i −0.232706 0.291804i
\(362\) −2.65541 11.6341i −0.139566 0.611476i
\(363\) −3.02378 13.2481i −0.158708 0.695343i
\(364\) −1.23948 1.55426i −0.0649663 0.0814652i
\(365\) −0.406084 −0.0212554
\(366\) −12.8096 16.0627i −0.669566 0.839609i
\(367\) −8.85669 4.26516i −0.462316 0.222639i 0.188202 0.982130i \(-0.439734\pi\)
−0.650518 + 0.759491i \(0.725448\pi\)
\(368\) −0.0586887 + 0.0735933i −0.00305936 + 0.00383631i
\(369\) −4.62343 + 5.79760i −0.240686 + 0.301811i
\(370\) −0.635162 + 0.305878i −0.0330205 + 0.0159018i
\(371\) −0.621729 2.72397i −0.0322786 0.141422i
\(372\) −8.57810 + 37.5831i −0.444754 + 1.94859i
\(373\) −19.9832 9.62338i −1.03469 0.498280i −0.162120 0.986771i \(-0.551833\pi\)
−0.872569 + 0.488491i \(0.837547\pi\)
\(374\) 41.9536 20.2038i 2.16937 1.04471i
\(375\) 0.365746 1.60244i 0.0188871 0.0827496i
\(376\) −24.8091 −1.27943
\(377\) 0 0
\(378\) −20.8159 −1.07065
\(379\) −1.93598 + 8.48209i −0.0994447 + 0.435696i 0.900555 + 0.434742i \(0.143161\pi\)
−1.00000 0.000953214i \(0.999697\pi\)
\(380\) 0.565574 0.272366i 0.0290134 0.0139721i
\(381\) −44.9757 21.6591i −2.30417 1.10963i
\(382\) 5.20205 22.7917i 0.266160 1.16612i
\(383\) −1.13179 4.95869i −0.0578317 0.253377i 0.937746 0.347323i \(-0.112909\pi\)
−0.995577 + 0.0939456i \(0.970052\pi\)
\(384\) 44.3954 21.3797i 2.26554 1.09103i
\(385\) 0.223952 0.280827i 0.0114136 0.0143123i
\(386\) −3.83167 + 4.80477i −0.195027 + 0.244556i
\(387\) −29.6076 14.2583i −1.50504 0.724790i
\(388\) −33.7279 42.2934i −1.71227 2.14712i
\(389\) 29.8408 1.51299 0.756494 0.654000i \(-0.226910\pi\)
0.756494 + 0.654000i \(0.226910\pi\)
\(390\) 0.0941496 + 0.118060i 0.00476745 + 0.00597819i
\(391\) −0.264732 1.15987i −0.0133881 0.0586569i
\(392\) 2.62955 + 11.5208i 0.132812 + 0.581888i
\(393\) 5.92939 + 7.43522i 0.299098 + 0.375057i
\(394\) −33.5142 −1.68842
\(395\) 0.172675 + 0.216527i 0.00868820 + 0.0108947i
\(396\) 57.0195 + 27.4591i 2.86534 + 1.37987i
\(397\) −1.82220 + 2.28497i −0.0914537 + 0.114679i −0.825453 0.564471i \(-0.809080\pi\)
0.733999 + 0.679150i \(0.237652\pi\)
\(398\) 21.2131 26.6004i 1.06332 1.33336i
\(399\) −13.7948 + 6.64322i −0.690604 + 0.332577i
\(400\) −0.454672 1.99205i −0.0227336 0.0996024i
\(401\) 4.54850 19.9283i 0.227141 0.995171i −0.724817 0.688942i \(-0.758075\pi\)
0.951958 0.306229i \(-0.0990674\pi\)
\(402\) −63.1018 30.3882i −3.14723 1.51563i
\(403\) −1.57567 + 0.758802i −0.0784896 + 0.0377986i
\(404\) 4.36341 19.1174i 0.217088 0.951125i
\(405\) 0.0860448 0.00427560
\(406\) 0 0
\(407\) −21.3372 −1.05764
\(408\) −8.46551 + 37.0898i −0.419105 + 1.83622i
\(409\) 30.2833 14.5837i 1.49741 0.721116i 0.507349 0.861741i \(-0.330626\pi\)
0.990063 + 0.140625i \(0.0449112\pi\)
\(410\) 0.173014 + 0.0833192i 0.00854455 + 0.00411484i
\(411\) 3.48949 15.2885i 0.172124 0.754124i
\(412\) −9.23824 40.4754i −0.455135 1.99408i
\(413\) −1.48069 + 0.713061i −0.0728598 + 0.0350874i
\(414\) 1.64971 2.06867i 0.0810789 0.101670i
\(415\) 0.303997 0.381200i 0.0149226 0.0187124i
\(416\) 2.22940 + 1.07362i 0.109305 + 0.0526387i
\(417\) −1.05823 1.32698i −0.0518216 0.0649823i
\(418\) 31.0907 1.52070
\(419\) −4.69488 5.88719i −0.229360 0.287608i 0.653813 0.756656i \(-0.273168\pi\)
−0.883173 + 0.469048i \(0.844597\pi\)
\(420\) 0.179596 + 0.786859i 0.00876336 + 0.0383948i
\(421\) 4.53398 + 19.8646i 0.220972 + 0.968144i 0.956748 + 0.290918i \(0.0939607\pi\)
−0.735775 + 0.677226i \(0.763182\pi\)
\(422\) −16.9289 21.2281i −0.824084 1.03337i
\(423\) −48.5289 −2.35956
\(424\) −2.89007 3.62403i −0.140354 0.175999i
\(425\) 23.2674 + 11.2050i 1.12863 + 0.543521i
\(426\) 54.0312 67.7529i 2.61782 3.28264i
\(427\) 3.10602 3.89482i 0.150311 0.188484i
\(428\) −26.2426 + 12.6378i −1.26848 + 0.610869i
\(429\) 1.01700 + 4.45578i 0.0491013 + 0.215127i
\(430\) −0.189366 + 0.829666i −0.00913203 + 0.0400100i
\(431\) −10.6631 5.13509i −0.513625 0.247349i 0.159072 0.987267i \(-0.449150\pi\)
−0.672697 + 0.739918i \(0.734864\pi\)
\(432\) 2.16515 1.04268i 0.104171 0.0501660i
\(433\) 3.80447 16.6685i 0.182831 0.801037i −0.797443 0.603394i \(-0.793814\pi\)
0.980274 0.197642i \(-0.0633284\pi\)
\(434\) −15.2961 −0.734235
\(435\) 0 0
\(436\) −18.0874 −0.866230
\(437\) 0.176758 0.774425i 0.00845546 0.0370458i
\(438\) 40.7171 19.6083i 1.94554 0.936921i
\(439\) −16.8940 8.13573i −0.806308 0.388297i −0.0151314 0.999886i \(-0.504817\pi\)
−0.791176 + 0.611588i \(0.790531\pi\)
\(440\) 0.132601 0.580961i 0.00632148 0.0276962i
\(441\) 5.14363 + 22.5357i 0.244935 + 1.07313i
\(442\) −4.27664 + 2.05952i −0.203419 + 0.0979614i
\(443\) 2.12225 2.66122i 0.100831 0.126438i −0.728856 0.684667i \(-0.759948\pi\)
0.829687 + 0.558229i \(0.188519\pi\)
\(444\) 29.8927 37.4843i 1.41864 1.77892i
\(445\) 0.0590695 + 0.0284464i 0.00280016 + 0.00134849i
\(446\) 18.9059 + 23.7072i 0.895219 + 1.12257i
\(447\) 14.5127 0.686427
\(448\) 12.6973 + 15.9219i 0.599889 + 0.752237i
\(449\) −0.0309934 0.135791i −0.00146267 0.00640836i 0.974191 0.225724i \(-0.0724747\pi\)
−0.975654 + 0.219316i \(0.929618\pi\)
\(450\) 12.7806 + 55.9956i 0.602484 + 2.63966i
\(451\) 3.62379 + 4.54408i 0.170637 + 0.213973i
\(452\) 25.3371 1.19176
\(453\) −13.8148 17.3232i −0.649075 0.813914i
\(454\) 4.33623 + 2.08822i 0.203509 + 0.0980050i
\(455\) −0.0228291 + 0.0286268i −0.00107024 + 0.00134204i
\(456\) −15.8374 + 19.8595i −0.741654 + 0.930005i
\(457\) −28.9026 + 13.9188i −1.35201 + 0.651093i −0.962840 0.270073i \(-0.912952\pi\)
−0.389169 + 0.921166i \(0.627238\pi\)
\(458\) 13.8214 + 60.5555i 0.645831 + 2.82957i
\(459\) −6.75864 + 29.6115i −0.315466 + 1.38215i
\(460\) −0.0377256 0.0181677i −0.00175896 0.000847073i
\(461\) 0.653661 0.314786i 0.0304440 0.0146611i −0.418600 0.908171i \(-0.637479\pi\)
0.449044 + 0.893510i \(0.351765\pi\)
\(462\) −8.89502 + 38.9716i −0.413834 + 1.81312i
\(463\) −9.14813 −0.425150 −0.212575 0.977145i \(-0.568185\pi\)
−0.212575 + 0.977145i \(0.568185\pi\)
\(464\) 0 0
\(465\) 0.710019 0.0329263
\(466\) −8.81948 + 38.6407i −0.408554 + 1.78999i
\(467\) −27.6274 + 13.3047i −1.27844 + 0.615667i −0.944990 0.327099i \(-0.893929\pi\)
−0.333455 + 0.942766i \(0.608215\pi\)
\(468\) −5.81242 2.79911i −0.268679 0.129389i
\(469\) 3.77897 16.5567i 0.174496 0.764519i
\(470\) 0.279646 + 1.22521i 0.0128991 + 0.0565146i
\(471\) −48.2618 + 23.2417i −2.22379 + 1.07092i
\(472\) −1.69993 + 2.13165i −0.0782457 + 0.0981170i
\(473\) −16.0591 + 20.1375i −0.738399 + 0.925924i
\(474\) −27.7689 13.3728i −1.27547 0.614234i
\(475\) 10.7507 + 13.4810i 0.493278 + 0.618551i
\(476\) −25.3705 −1.16285
\(477\) −5.65324 7.08894i −0.258844 0.324580i
\(478\) −8.70595 38.1433i −0.398201 1.74463i
\(479\) −1.17876 5.16447i −0.0538588 0.235971i 0.940833 0.338871i \(-0.110045\pi\)
−0.994692 + 0.102900i \(0.967188\pi\)
\(480\) −0.626358 0.785428i −0.0285892 0.0358497i
\(481\) 2.17506 0.0991740
\(482\) 31.0873 + 38.9823i 1.41599 + 1.77559i
\(483\) 0.920156 + 0.443124i 0.0418686 + 0.0201628i
\(484\) 9.37355 11.7541i 0.426070 0.534275i
\(485\) −0.621210 + 0.778973i −0.0282077 + 0.0353713i
\(486\) 27.3935 13.1920i 1.24259 0.598401i
\(487\) 0.774725 + 3.39429i 0.0351062 + 0.153810i 0.989443 0.144922i \(-0.0462933\pi\)
−0.954337 + 0.298733i \(0.903436\pi\)
\(488\) 1.83905 8.05742i 0.0832500 0.364742i
\(489\) 5.78905 + 2.78786i 0.261790 + 0.126071i
\(490\) 0.539319 0.259722i 0.0243639 0.0117331i
\(491\) −1.30210 + 5.70489i −0.0587631 + 0.257458i −0.995773 0.0918437i \(-0.970724\pi\)
0.937010 + 0.349302i \(0.113581\pi\)
\(492\) −13.0597 −0.588776
\(493\) 0 0
\(494\) −3.16931 −0.142594
\(495\) 0.259379 1.13641i 0.0116582 0.0510779i
\(496\) 1.59101 0.766191i 0.0714385 0.0344030i
\(497\) 18.9319 + 9.11713i 0.849213 + 0.408959i
\(498\) −12.0743 + 52.9008i −0.541061 + 2.37054i
\(499\) 5.27783 + 23.1237i 0.236268 + 1.03516i 0.944328 + 0.329005i \(0.106713\pi\)
−0.708060 + 0.706152i \(0.750429\pi\)
\(500\) 1.63838 0.789001i 0.0732704 0.0352852i
\(501\) 20.7833 26.0614i 0.928529 1.16434i
\(502\) −13.8150 + 17.3234i −0.616593 + 0.773183i
\(503\) 17.4212 + 8.38962i 0.776774 + 0.374075i 0.779887 0.625920i \(-0.215277\pi\)
−0.00311266 + 0.999995i \(0.500991\pi\)
\(504\) −12.7916 16.0402i −0.569784 0.714487i
\(505\) −0.361165 −0.0160716
\(506\) −1.29302 1.62140i −0.0574819 0.0720801i
\(507\) 8.11345 + 35.5473i 0.360331 + 1.57871i
\(508\) −12.2895 53.8437i −0.545257 2.38893i
\(509\) 24.2136 + 30.3629i 1.07325 + 1.34581i 0.934693 + 0.355456i \(0.115674\pi\)
0.138555 + 0.990355i \(0.455754\pi\)
\(510\) 1.92712 0.0853342
\(511\) 6.83229 + 8.56742i 0.302243 + 0.379000i
\(512\) −4.16055 2.00362i −0.183872 0.0885482i
\(513\) −12.6441 + 15.8553i −0.558253 + 0.700027i
\(514\) −21.7775 + 27.3081i −0.960565 + 1.20451i
\(515\) −0.688934 + 0.331773i −0.0303581 + 0.0146197i
\(516\) −12.8784 56.4240i −0.566941 2.48393i
\(517\) −8.46389 + 37.0827i −0.372241 + 1.63090i
\(518\) 17.1398 + 8.25408i 0.753078 + 0.362663i
\(519\) −49.3654 + 23.7731i −2.16690 + 1.04352i
\(520\) −0.0135170 + 0.0592216i −0.000592758 + 0.00259704i
\(521\) −33.3472 −1.46097 −0.730484 0.682930i \(-0.760706\pi\)
−0.730484 + 0.682930i \(0.760706\pi\)
\(522\) 0 0
\(523\) 31.8103 1.39097 0.695484 0.718542i \(-0.255190\pi\)
0.695484 + 0.718542i \(0.255190\pi\)
\(524\) −2.34124 + 10.2577i −0.102278 + 0.448108i
\(525\) −19.9739 + 9.61894i −0.871734 + 0.419805i
\(526\) 63.3246 + 30.4955i 2.76108 + 1.32967i
\(527\) −4.96643 + 21.7594i −0.216341 + 0.947853i
\(528\) −1.02691 4.49917i −0.0446903 0.195801i
\(529\) 20.6745 9.95634i 0.898893 0.432884i
\(530\) −0.146398 + 0.183577i −0.00635911 + 0.00797407i
\(531\) −3.32522 + 4.16969i −0.144302 + 0.180949i
\(532\) −15.2620 7.34977i −0.661689 0.318653i
\(533\) −0.369399 0.463212i −0.0160005 0.0200640i
\(534\) −7.29632 −0.315742
\(535\) 0.334484 + 0.419430i 0.0144610 + 0.0181335i
\(536\) −6.26934 27.4678i −0.270794 1.18643i
\(537\) −0.575443 2.52118i −0.0248322 0.108797i
\(538\) −19.5897 24.5648i −0.844574 1.05906i
\(539\) 18.1175 0.780375
\(540\) 0.666513 + 0.835781i 0.0286821 + 0.0359663i
\(541\) −34.9037 16.8087i −1.50063 0.722664i −0.510117 0.860105i \(-0.670398\pi\)
−0.990510 + 0.137441i \(0.956112\pi\)
\(542\) −37.9470 + 47.5840i −1.62996 + 2.04391i
\(543\) 9.31969 11.6865i 0.399946 0.501517i
\(544\) 28.4516 13.7016i 1.21985 0.587450i
\(545\) 0.0741305 + 0.324787i 0.00317540 + 0.0139123i
\(546\) 0.906735 3.97267i 0.0388047 0.170014i
\(547\) −5.39730 2.59920i −0.230772 0.111134i 0.314925 0.949117i \(-0.398021\pi\)
−0.545697 + 0.837983i \(0.683735\pi\)
\(548\) 15.6313 7.52765i 0.667737 0.321565i
\(549\) 3.59735 15.7610i 0.153531 0.672665i
\(550\) 45.0173 1.91954
\(551\) 0 0
\(552\) 1.69434 0.0721159
\(553\) 1.66299 7.28605i 0.0707176 0.309834i
\(554\) 46.0864 22.1940i 1.95802 0.942934i
\(555\) −0.795601 0.383141i −0.0337714 0.0162634i
\(556\) 0.417845 1.83070i 0.0177206 0.0776389i
\(557\) −0.417760 1.83032i −0.0177010 0.0775533i 0.965306 0.261122i \(-0.0840923\pi\)
−0.983007 + 0.183568i \(0.941235\pi\)
\(558\) −44.7226 + 21.5373i −1.89326 + 0.911746i
\(559\) 1.63703 2.05277i 0.0692388 0.0868227i
\(560\) 0.0230514 0.0289055i 0.000974099 0.00122148i
\(561\) 52.5508 + 25.3071i 2.21870 + 1.06847i
\(562\) −4.66602 5.85101i −0.196824 0.246810i
\(563\) 26.4739 1.11574 0.557872 0.829927i \(-0.311618\pi\)
0.557872 + 0.829927i \(0.311618\pi\)
\(564\) −53.2877 66.8207i −2.24382 2.81366i
\(565\) −0.103843 0.454966i −0.00436871 0.0191406i
\(566\) 8.91595 + 39.0633i 0.374765 + 1.64195i
\(567\) −1.44769 1.81534i −0.0607971 0.0762372i
\(568\) 34.8605 1.46271
\(569\) −7.97139 9.99580i −0.334178 0.419046i 0.586144 0.810207i \(-0.300645\pi\)
−0.920322 + 0.391161i \(0.872074\pi\)
\(570\) 1.15928 + 0.558282i 0.0485570 + 0.0233838i
\(571\) −23.7265 + 29.7521i −0.992924 + 1.24509i −0.0234924 + 0.999724i \(0.507479\pi\)
−0.969431 + 0.245363i \(0.921093\pi\)
\(572\) −3.15264 + 3.95329i −0.131819 + 0.165295i
\(573\) 26.3830 12.7054i 1.10216 0.530775i
\(574\) −1.15309 5.05201i −0.0481290 0.210867i
\(575\) 0.255933 1.12132i 0.0106731 0.0467621i
\(576\) 59.5426 + 28.6742i 2.48094 + 1.19476i
\(577\) −0.0921290 + 0.0443670i −0.00383538 + 0.00184702i −0.435800 0.900043i \(-0.643535\pi\)
0.431965 + 0.901890i \(0.357820\pi\)
\(578\) −4.90121 + 21.4736i −0.203863 + 0.893184i
\(579\) −7.69786 −0.319912
\(580\) 0 0
\(581\) −13.1571 −0.545848
\(582\) 24.6735 108.102i 1.02275 4.48096i
\(583\) −6.40289 + 3.08347i −0.265181 + 0.127704i
\(584\) 16.3793 + 7.88785i 0.677780 + 0.326402i
\(585\) −0.0264404 + 0.115843i −0.00109318 + 0.00478951i
\(586\) −6.82964 29.9226i −0.282130 1.23609i
\(587\) 0.662492 0.319039i 0.0273440 0.0131682i −0.420162 0.907449i \(-0.638027\pi\)
0.447506 + 0.894281i \(0.352312\pi\)
\(588\) −25.3820 + 31.8280i −1.04674 + 1.31257i
\(589\) −9.29127 + 11.6509i −0.382840 + 0.480066i
\(590\) 0.124433 + 0.0599240i 0.00512285 + 0.00246703i
\(591\) −26.1739 32.8210i −1.07665 1.35008i
\(592\) −2.19624 −0.0902647
\(593\) 27.9046 + 34.9913i 1.14590 + 1.43692i 0.881297 + 0.472562i \(0.156671\pi\)
0.264607 + 0.964356i \(0.414758\pi\)
\(594\) 11.7815 + 51.6182i 0.483402 + 2.11792i
\(595\) 0.103980 + 0.455565i 0.00426275 + 0.0186763i
\(596\) 10.0109 + 12.5532i 0.410061 + 0.514201i
\(597\) 42.6173 1.74421
\(598\) 0.131808 + 0.165281i 0.00539001 + 0.00675886i
\(599\) −3.65797 1.76159i −0.149461 0.0719764i 0.357658 0.933853i \(-0.383575\pi\)
−0.507119 + 0.861876i \(0.669290\pi\)
\(600\) −22.9315 + 28.7552i −0.936174 + 1.17393i
\(601\) −27.7036 + 34.7392i −1.13005 + 1.41704i −0.234483 + 0.972120i \(0.575340\pi\)
−0.895570 + 0.444921i \(0.853232\pi\)
\(602\) 20.6900 9.96379i 0.843262 0.406094i
\(603\) −12.2634 53.7294i −0.499404 2.18803i
\(604\) 5.45481 23.8991i 0.221953 0.972441i
\(605\) −0.249479 0.120143i −0.0101428 0.00488450i
\(606\) 36.2131 17.4393i 1.47106 0.708423i
\(607\) 2.15884 9.45849i 0.0876246 0.383908i −0.912032 0.410119i \(-0.865487\pi\)
0.999656 + 0.0262110i \(0.00834417\pi\)
\(608\) 21.0848 0.855100
\(609\) 0 0
\(610\) −0.418648 −0.0169506
\(611\) 0.862787 3.78012i 0.0349046 0.152927i
\(612\) −74.1781 + 35.7223i −2.99847 + 1.44399i
\(613\) 1.60828 + 0.774505i 0.0649576 + 0.0312820i 0.466081 0.884742i \(-0.345666\pi\)
−0.401123 + 0.916024i \(0.631380\pi\)
\(614\) −3.28945 + 14.4120i −0.132751 + 0.581622i
\(615\) 0.0535245 + 0.234506i 0.00215832 + 0.00945621i
\(616\) −14.4879 + 6.97699i −0.583733 + 0.281111i
\(617\) 5.43065 6.80982i 0.218630 0.274153i −0.660406 0.750909i \(-0.729616\pi\)
0.879036 + 0.476756i \(0.158187\pi\)
\(618\) 53.0576 66.5321i 2.13429 2.67631i
\(619\) −12.7975 6.16293i −0.514373 0.247709i 0.158644 0.987336i \(-0.449288\pi\)
−0.673017 + 0.739627i \(0.735002\pi\)
\(620\) 0.489772 + 0.614155i 0.0196697 + 0.0246651i
\(621\) 1.35272 0.0542826
\(622\) 34.7060 + 43.5199i 1.39158 + 1.74499i
\(623\) −0.393681 1.72483i −0.0157725 0.0691038i
\(624\) 0.104680 + 0.458633i 0.00419056 + 0.0183600i
\(625\) 15.5559 + 19.5065i 0.622237 + 0.780260i
\(626\) 4.47759 0.178961
\(627\) 24.2813 + 30.4477i 0.969700 + 1.21597i
\(628\) −53.3947 25.7135i −2.13068 1.02608i
\(629\) 17.3069 21.7021i 0.690070 0.865320i
\(630\) −0.647964 + 0.812522i −0.0258155 + 0.0323716i
\(631\) −14.9293 + 7.18958i −0.594327 + 0.286213i −0.706768 0.707446i \(-0.749847\pi\)
0.112441 + 0.993658i \(0.464133\pi\)
\(632\) −2.75892 12.0876i −0.109744 0.480820i
\(633\) 7.56798 33.1575i 0.300800 1.31789i
\(634\) 60.6429 + 29.2041i 2.40844 + 1.15984i
\(635\) −0.916478 + 0.441352i −0.0363693 + 0.0175145i
\(636\) 3.55334 15.5682i 0.140899 0.617319i
\(637\) −1.84685 −0.0731748
\(638\) 0 0
\(639\) 68.1903 2.69757
\(640\) 0.223431 0.978915i 0.00883189 0.0386950i
\(641\) 6.57486 3.16628i 0.259691 0.125061i −0.299509 0.954094i \(-0.596823\pi\)
0.559200 + 0.829033i \(0.311108\pi\)
\(642\) −53.7906 25.9042i −2.12294 1.02236i
\(643\) 7.53691 33.0214i 0.297227 1.30224i −0.577010 0.816737i \(-0.695781\pi\)
0.874237 0.485499i \(-0.161362\pi\)
\(644\) 0.251430 + 1.10159i 0.00990774 + 0.0434086i
\(645\) −0.960398 + 0.462503i −0.0378156 + 0.0182110i
\(646\) −25.2181 + 31.6225i −0.992194 + 1.24417i
\(647\) 20.8525 26.1482i 0.819795 1.02799i −0.179228 0.983807i \(-0.557360\pi\)
0.999023 0.0441829i \(-0.0140684\pi\)
\(648\) −3.47059 1.67135i −0.136338 0.0656568i
\(649\) 2.60627 + 3.26815i 0.102305 + 0.128286i
\(650\) −4.58895 −0.179993
\(651\) −11.9459 14.9797i −0.468198 0.587101i
\(652\) 1.58184 + 6.93051i 0.0619497 + 0.271420i
\(653\) −5.28615 23.1601i −0.206863 0.906326i −0.966639 0.256141i \(-0.917549\pi\)
0.759776 0.650184i \(-0.225308\pi\)
\(654\) −23.1156 28.9861i −0.903893 1.13345i
\(655\) 0.193787 0.00757189
\(656\) 0.372997 + 0.467723i 0.0145631 + 0.0182615i
\(657\) 32.0394 + 15.4294i 1.24998 + 0.601956i
\(658\) 21.1440 26.5137i 0.824278 1.03361i
\(659\) −3.07458 + 3.85540i −0.119769 + 0.150185i −0.838101 0.545515i \(-0.816334\pi\)
0.718333 + 0.695700i \(0.244906\pi\)
\(660\) 1.84957 0.890706i 0.0719944 0.0346707i
\(661\) 5.22326 + 22.8846i 0.203161 + 0.890107i 0.968997 + 0.247071i \(0.0794682\pi\)
−0.765836 + 0.643036i \(0.777675\pi\)
\(662\) 14.3181 62.7318i 0.556489 2.43814i
\(663\) −5.35690 2.57975i −0.208045 0.100189i
\(664\) −19.6661 + 9.47070i −0.763193 + 0.367535i
\(665\) −0.0694258 + 0.304174i −0.00269222 + 0.0117954i
\(666\) 61.7352 2.39219
\(667\) 0 0
\(668\) 36.8790 1.42689
\(669\) −8.45179 + 37.0297i −0.326765 + 1.43165i
\(670\) −1.28584 + 0.619227i −0.0496762 + 0.0239228i
\(671\) −11.4162 5.49774i −0.440717 0.212238i
\(672\) −6.03232 + 26.4293i −0.232702 + 1.01953i
\(673\) −6.65990 29.1789i −0.256720 1.12477i −0.924733 0.380616i \(-0.875712\pi\)
0.668013 0.744150i \(-0.267145\pi\)
\(674\) 8.20794 3.95274i 0.316158 0.152254i
\(675\) −18.3079 + 22.9573i −0.704670 + 0.883629i
\(676\) −25.1512 + 31.5386i −0.967353 + 1.21302i
\(677\) −19.8360 9.55250i −0.762358 0.367132i 0.0119603 0.999928i \(-0.496193\pi\)
−0.774318 + 0.632796i \(0.781907\pi\)
\(678\) 32.3807 + 40.6041i 1.24357 + 1.55939i
\(679\) 26.8862 1.03180
\(680\) 0.483344 + 0.606094i 0.0185354 + 0.0232426i
\(681\) 1.34148 + 5.87741i 0.0514056 + 0.225223i
\(682\) 8.65739 + 37.9305i 0.331508 + 1.45243i
\(683\) −2.87871 3.60979i −0.110151 0.138125i 0.723700 0.690115i \(-0.242440\pi\)
−0.833851 + 0.551990i \(0.813869\pi\)
\(684\) −54.9715 −2.10189
\(685\) −0.199235 0.249832i −0.00761237 0.00954561i
\(686\) −36.8929 17.7667i −1.40858 0.678335i
\(687\) −48.5088 + 60.8282i −1.85073 + 2.32074i
\(688\) −1.65297 + 2.07275i −0.0630188 + 0.0790230i
\(689\) 0.652694 0.314321i 0.0248657 0.0119747i
\(690\) −0.0190984 0.0836756i −0.000727064 0.00318547i
\(691\) 7.95421 34.8497i 0.302592 1.32574i −0.563606 0.826044i \(-0.690586\pi\)
0.866199 0.499700i \(-0.166556\pi\)
\(692\) −54.6157 26.3015i −2.07618 0.999834i
\(693\) −28.3396 + 13.6476i −1.07653 + 0.518430i
\(694\) 1.79278 7.85468i 0.0680530 0.298160i
\(695\) −0.0345855 −0.00131190
\(696\) 0 0
\(697\) −7.56111 −0.286398
\(698\) −1.68646 + 7.38886i −0.0638334 + 0.279672i
\(699\) −44.7293 + 21.5405i −1.69182 + 0.814737i
\(700\) −22.0983 10.6420i −0.835237 0.402229i
\(701\) 0.811010 3.55327i 0.0306314 0.134205i −0.957300 0.289096i \(-0.906645\pi\)
0.987932 + 0.154891i \(0.0495025\pi\)
\(702\) −1.20098 5.26183i −0.0453280 0.198595i
\(703\) 16.6982 8.04145i 0.629786 0.303289i
\(704\) 32.2958 40.4976i 1.21719 1.52631i
\(705\) −0.981470 + 1.23072i −0.0369643 + 0.0463518i
\(706\) −25.5710 12.3143i −0.962377 0.463457i
\(707\) 6.07652 + 7.61972i 0.228531 + 0.286569i
\(708\) −9.39266 −0.352998
\(709\) −13.0877 16.4114i −0.491518 0.616344i 0.472774 0.881184i \(-0.343253\pi\)
−0.964293 + 0.264839i \(0.914681\pi\)
\(710\) −0.392944 1.72160i −0.0147469 0.0646104i
\(711\) −5.39670 23.6445i −0.202392 0.886737i
\(712\) −1.83000 2.29475i −0.0685822 0.0859994i
\(713\) 0.994013 0.0372261
\(714\) −32.4233 40.6576i −1.21341 1.52157i
\(715\) 0.0839083 + 0.0404081i 0.00313799 + 0.00151118i
\(716\) 1.78384 2.23686i 0.0666651 0.0835954i
\(717\) 30.5552 38.3150i 1.14110 1.43090i
\(718\) −37.5860 + 18.1005i −1.40270 + 0.675503i
\(719\) −5.39677 23.6448i −0.201266 0.881803i −0.970167 0.242436i \(-0.922054\pi\)
0.768902 0.639367i \(-0.220803\pi\)
\(720\) 0.0266979 0.116971i 0.000994970 0.00435925i
\(721\) 18.5908 + 8.95286i 0.692357 + 0.333422i
\(722\) 14.4889 6.97750i 0.539222 0.259676i
\(723\) −13.8975 + 60.8888i −0.516852 + 2.26448i
\(724\) 16.5374 0.614607
\(725\) 0 0
\(726\) 30.8159 1.14368
\(727\) −6.88385 + 30.1601i −0.255308 + 1.11858i 0.670895 + 0.741552i \(0.265910\pi\)
−0.926203 + 0.377025i \(0.876947\pi\)
\(728\) 1.47686 0.711216i 0.0547359 0.0263594i
\(729\) 38.3309 + 18.4592i 1.41966 + 0.683673i
\(730\) 0.204919 0.897808i 0.00758439 0.0332294i
\(731\) −7.45617 32.6676i −0.275776 1.20826i
\(732\) 25.6519 12.3533i 0.948122 0.456591i
\(733\) −11.5408 + 14.4717i −0.426268 + 0.534523i −0.947866 0.318668i \(-0.896765\pi\)
0.521598 + 0.853191i \(0.325336\pi\)
\(734\) 13.8991 17.4289i 0.513024 0.643312i
\(735\) 0.675548 + 0.325327i 0.0249180 + 0.0119999i
\(736\) −0.876889 1.09958i −0.0323225 0.0405312i
\(737\) −43.1955 −1.59113
\(738\) −10.4848 13.1475i −0.385950 0.483966i
\(739\) 7.57663 + 33.1954i 0.278711 + 1.22111i 0.899425 + 0.437075i \(0.143986\pi\)
−0.620714 + 0.784037i \(0.713157\pi\)
\(740\) −0.217396 0.952473i −0.00799163 0.0350136i
\(741\) −2.47517 3.10376i −0.0909276 0.114020i
\(742\) 6.33614 0.232607
\(743\) −21.7142 27.2288i −0.796618 0.998927i −0.999804 0.0197868i \(-0.993701\pi\)
0.203187 0.979140i \(-0.434870\pi\)
\(744\) −28.6384 13.7915i −1.04994 0.505622i
\(745\) 0.184383 0.231209i 0.00675528 0.00847086i
\(746\) 31.3602 39.3244i 1.14818 1.43977i
\(747\) −38.4687 + 18.5255i −1.40750 + 0.677814i
\(748\) 14.3594 + 62.9125i 0.525030 + 2.30031i
\(749\) 3.22135 14.1136i 0.117705 0.515701i
\(750\) 3.35826 + 1.61725i 0.122626 + 0.0590536i
\(751\) 43.7769 21.0818i 1.59744 0.769287i 0.597961 0.801525i \(-0.295978\pi\)
0.999480 + 0.0322376i \(0.0102633\pi\)
\(752\) −0.871188 + 3.81692i −0.0317690 + 0.139189i
\(753\) −27.7544 −1.01143
\(754\) 0 0
\(755\) −0.451501 −0.0164318
\(756\) 6.41904 28.1237i 0.233458 1.02285i
\(757\) 27.1118 13.0563i 0.985394 0.474541i 0.129437 0.991588i \(-0.458683\pi\)
0.855957 + 0.517047i \(0.172969\pi\)
\(758\) −17.7760 8.56048i −0.645654 0.310931i
\(759\) 0.578041 2.53256i 0.0209816 0.0919262i
\(760\) 0.115178 + 0.504628i 0.00417795 + 0.0183048i
\(761\) 8.85531 4.26449i 0.321005 0.154588i −0.266441 0.963851i \(-0.585848\pi\)
0.587446 + 0.809263i \(0.300133\pi\)
\(762\) 70.5816 88.5066i 2.55690 3.20625i
\(763\) 5.60500 7.02845i 0.202915 0.254447i
\(764\) 29.1890 + 14.0567i 1.05602 + 0.508552i
\(765\) 0.945464 + 1.18557i 0.0341833 + 0.0428645i
\(766\) 11.5342 0.416749
\(767\) −0.265676 0.333147i −0.00959300 0.0120292i
\(768\) 8.38305 + 36.7285i 0.302497 + 1.32533i
\(769\) −6.67010 29.2236i −0.240530 1.05383i −0.940536 0.339694i \(-0.889677\pi\)
0.700006 0.714137i \(-0.253181\pi\)
\(770\) 0.507867 + 0.636844i 0.0183022 + 0.0229503i
\(771\) −43.7511 −1.57566
\(772\) −5.30999 6.65852i −0.191111 0.239645i
\(773\) 15.2398 + 7.33911i 0.548138 + 0.263969i 0.687391 0.726287i \(-0.258756\pi\)
−0.139253 + 0.990257i \(0.544470\pi\)
\(774\) 46.4642 58.2642i 1.67012 2.09426i
\(775\) −13.4531 + 16.8697i −0.483251 + 0.605977i
\(776\) 40.1872 19.3532i 1.44264 0.694738i
\(777\) 5.30245 + 23.2316i 0.190224 + 0.833427i
\(778\) −15.0583 + 65.9747i −0.539866 + 2.36531i
\(779\) −4.54849 2.19044i −0.162967 0.0784806i
\(780\) −0.188540 + 0.0907962i −0.00675083 + 0.00325103i
\(781\) 11.8930 52.1067i 0.425565 1.86452i
\(782\) 2.69792 0.0964776
\(783\) 0 0
\(784\) 1.86483 0.0666012
\(785\) −0.242890 + 1.06417i −0.00866910 + 0.0379818i
\(786\) −19.4306 + 9.35726i −0.693065 + 0.333763i
\(787\) 18.0155 + 8.67579i 0.642182 + 0.309259i 0.726486 0.687181i \(-0.241152\pi\)
−0.0843036 + 0.996440i \(0.526867\pi\)
\(788\) 10.3349 45.2800i 0.368164 1.61303i
\(789\) 19.5904 + 85.8312i 0.697437 + 3.05567i
\(790\) −0.565853 + 0.272500i −0.0201321 + 0.00969513i
\(791\) −7.85157 + 9.84556i −0.279170 + 0.350068i
\(792\) −32.5358 + 40.7986i −1.15611 + 1.44972i
\(793\) 1.16374 + 0.560425i 0.0413255 + 0.0199013i
\(794\) −4.13230 5.18173i −0.146650 0.183893i
\(795\) −0.294114 −0.0104311
\(796\) 29.3975 + 36.8632i 1.04197 + 1.30658i
\(797\) −8.96777 39.2904i −0.317655 1.39174i −0.841654 0.540017i \(-0.818418\pi\)
0.523999 0.851719i \(-0.324440\pi\)
\(798\) −7.72629 33.8511i −0.273508 1.19832i
\(799\) −30.8518 38.6869i −1.09146 1.36865i
\(800\) 30.5293 1.07937
\(801\) −3.57965 4.48874i −0.126481 0.158602i
\(802\) 41.7640 + 20.1125i 1.47474 + 0.710196i
\(803\) 17.3781 21.7914i 0.613260 0.769003i
\(804\) 60.5155 75.8840i 2.13422 2.67622i
\(805\) 0.0187502 0.00902962i 0.000660858 0.000318252i
\(806\) −0.882512 3.86654i −0.0310851 0.136193i
\(807\) 8.75751 38.3692i 0.308279 1.35066i
\(808\) 14.5675 + 7.01532i 0.512482 + 0.246798i
\(809\) −45.1522 + 21.7442i −1.58747 + 0.764484i −0.999029 0.0440579i \(-0.985971\pi\)
−0.588439 + 0.808542i \(0.700257\pi\)
\(810\) −0.0434201 + 0.190236i −0.00152563 + 0.00668420i
\(811\) −24.7764 −0.870017 −0.435009 0.900426i \(-0.643255\pi\)
−0.435009 + 0.900426i \(0.643255\pi\)
\(812\) 0 0
\(813\) −76.2357 −2.67370
\(814\) 10.7672 47.1741i 0.377390 1.65345i
\(815\) 0.117965 0.0568088i 0.00413212 0.00198992i
\(816\) 5.40906 + 2.60487i 0.189355 + 0.0911885i
\(817\) 4.97838 21.8117i 0.174171 0.763095i
\(818\) 16.9613 + 74.3122i 0.593037 + 2.59827i
\(819\) 2.88886 1.39120i 0.100945 0.0486126i
\(820\) −0.165923 + 0.208061i −0.00579428 + 0.00726579i
\(821\) −22.1885 + 27.8235i −0.774384 + 0.971047i −0.999995 0.00317052i \(-0.998991\pi\)
0.225611 + 0.974218i \(0.427562\pi\)
\(822\) 32.0402 + 15.4298i 1.11753 + 0.538175i
\(823\) −9.60419 12.0433i −0.334781 0.419802i 0.585738 0.810501i \(-0.300805\pi\)
−0.920519 + 0.390699i \(0.872233\pi\)
\(824\) 34.2324 1.19254
\(825\) 35.1576 + 44.0863i 1.22403 + 1.53489i
\(826\) −0.829313 3.63346i −0.0288555 0.126424i
\(827\) 9.21841 + 40.3885i 0.320556 + 1.40445i 0.836567 + 0.547864i \(0.184559\pi\)
−0.516012 + 0.856581i \(0.672584\pi\)
\(828\) 2.28620 + 2.86680i 0.0794508 + 0.0996282i
\(829\) −4.64043 −0.161169 −0.0805844 0.996748i \(-0.525679\pi\)
−0.0805844 + 0.996748i \(0.525679\pi\)
\(830\) 0.689388 + 0.864465i 0.0239290 + 0.0300060i
\(831\) 57.7276 + 27.8001i 2.00255 + 0.964376i
\(832\) −3.29215 + 4.12823i −0.114135 + 0.143120i
\(833\) −14.6953 + 18.4274i −0.509163 + 0.638470i
\(834\) 3.46780 1.67000i 0.120080 0.0578275i
\(835\) −0.151147 0.662219i −0.00523067 0.0229170i
\(836\) −9.58754 + 42.0058i −0.331592 + 1.45280i
\(837\) −22.8641 11.0108i −0.790300 0.380588i
\(838\) 15.3851 7.40906i 0.531468 0.255942i
\(839\) −7.88295 + 34.5374i −0.272150 + 1.19237i 0.635321 + 0.772248i \(0.280868\pi\)
−0.907470 + 0.420117i \(0.861989\pi\)
\(840\) −0.665493 −0.0229617
\(841\) 0 0
\(842\) −46.2065 −1.59238
\(843\) 2.08593 9.13904i 0.0718431 0.314765i
\(844\) 33.9011 16.3259i 1.16692 0.561960i
\(845\) 0.669404 + 0.322368i 0.0230282 + 0.0110898i
\(846\) 24.4887 107.292i 0.841939 3.68878i
\(847\) 1.66271 + 7.28479i 0.0571313 + 0.250308i
\(848\) −0.659050 + 0.317382i −0.0226319 + 0.0108989i
\(849\) −31.2922 + 39.2392i −1.07395 + 1.34669i
\(850\) −36.5142 + 45.7873i −1.25243 + 1.57049i
\(851\) −1.11383 0.536390i −0.0381814 0.0183872i
\(852\) 74.8772 + 93.8930i 2.56525 + 3.21672i
\(853\) −25.5045 −0.873256 −0.436628 0.899642i \(-0.643827\pi\)
−0.436628 + 0.899642i \(0.643827\pi\)
\(854\) 7.04367 + 8.83248i 0.241029 + 0.302241i
\(855\) 0.225299 + 0.987098i 0.00770505 + 0.0337580i
\(856\) −5.34424 23.4147i −0.182662 0.800296i
\(857\) −22.3127 27.9793i −0.762189 0.955754i 0.237690 0.971341i \(-0.423610\pi\)
−0.999879 + 0.0155868i \(0.995038\pi\)
\(858\) −10.3644 −0.353836
\(859\) 18.4402 + 23.1233i 0.629171 + 0.788956i 0.989602 0.143830i \(-0.0459419\pi\)
−0.360431 + 0.932786i \(0.617370\pi\)
\(860\) −1.06254 0.511693i −0.0362324 0.0174486i
\(861\) 4.04699 5.07476i 0.137921 0.172947i
\(862\) 16.7340 20.9837i 0.569961 0.714709i
\(863\) 36.2241 17.4446i 1.23308 0.593822i 0.300158 0.953890i \(-0.402961\pi\)
0.932926 + 0.360068i \(0.117246\pi\)
\(864\) 7.98986 + 35.0058i 0.271820 + 1.19092i
\(865\) −0.248444 + 1.08850i −0.00844734 + 0.0370102i
\(866\) 34.9324 + 16.8225i 1.18705 + 0.571654i
\(867\) −24.8572 + 11.9706i −0.844196 + 0.406543i
\(868\) 4.71689 20.6661i 0.160102 0.701452i
\(869\) −19.0088 −0.644831
\(870\) 0 0
\(871\) 4.40323 0.149198
\(872\) 3.31869 14.5401i 0.112385 0.492390i
\(873\) 78.6099 37.8565i 2.66054 1.28125i
\(874\) 1.62297 + 0.781583i 0.0548979 + 0.0264374i
\(875\) −0.201115 + 0.881143i −0.00679893 + 0.0297881i
\(876\) 13.9362 + 61.0583i 0.470859 + 2.06297i
\(877\) 46.9427 22.6064i 1.58514 0.763364i 0.586237 0.810139i \(-0.300609\pi\)
0.998905 + 0.0467750i \(0.0148944\pi\)
\(878\) 26.5123 33.2454i 0.894747 1.12198i
\(879\) 23.9699 30.0573i 0.808485 1.01381i
\(880\) −0.0847254 0.0408016i −0.00285609 0.00137542i
\(881\) −28.2196 35.3863i −0.950743 1.19219i −0.981266 0.192660i \(-0.938289\pi\)
0.0305225 0.999534i \(-0.490283\pi\)
\(882\) −52.4196 −1.76506
\(883\) −21.1350 26.5025i −0.711251 0.891880i 0.286557 0.958063i \(-0.407489\pi\)
−0.997808 + 0.0661830i \(0.978918\pi\)
\(884\) −1.46376 6.41314i −0.0492315 0.215697i
\(885\) 0.0384954 + 0.168659i 0.00129401 + 0.00566942i
\(886\) 4.81273 + 6.03497i 0.161687 + 0.202749i
\(887\) 30.4108 1.02110 0.510548 0.859850i \(-0.329443\pi\)
0.510548 + 0.859850i \(0.329443\pi\)
\(888\) 24.6481 + 30.9078i 0.827137 + 1.03720i
\(889\) 24.7310 + 11.9098i 0.829452 + 0.399443i
\(890\) −0.0926995 + 0.116241i −0.00310729 + 0.00389642i
\(891\) −3.68223 + 4.61737i −0.123359 + 0.154688i
\(892\) −37.8601 + 18.2325i −1.26765 + 0.610469i
\(893\) −7.35181 32.2104i −0.246019 1.07788i
\(894\) −7.32341 + 32.0860i −0.244932 + 1.07312i
\(895\) −0.0474772 0.0228638i −0.00158699 0.000764254i
\(896\) −24.4120 + 11.7562i −0.815546 + 0.392746i
\(897\) −0.0589240 + 0.258163i −0.00196742 + 0.00861981i
\(898\) 0.315858 0.0105403
\(899\) 0 0
\(900\) −79.5951 −2.65317
\(901\) 2.05726 9.01346i 0.0685374 0.300282i
\(902\) −11.8751 + 5.71875i −0.395398 + 0.190414i
\(903\) 25.9162 + 12.4806i 0.862437 + 0.415328i
\(904\) −4.64886 + 20.3680i −0.154619 + 0.677430i
\(905\) −0.0677778 0.296954i −0.00225301 0.00987108i
\(906\) 45.2709 21.8013i 1.50402 0.724300i
\(907\) 9.90255 12.4174i 0.328809 0.412313i −0.589757 0.807580i \(-0.700777\pi\)
0.918566 + 0.395267i \(0.129348\pi\)
\(908\) −4.15851 + 5.21460i −0.138005 + 0.173053i
\(909\) 28.4953 + 13.7226i 0.945129 + 0.455150i
\(910\) −0.0517706 0.0649183i −0.00171618 0.00215202i
\(911\) −24.9672 −0.827199 −0.413600 0.910459i \(-0.635729\pi\)
−0.413600 + 0.910459i \(0.635729\pi\)
\(912\) 2.49927 + 3.13399i 0.0827591 + 0.103777i
\(913\) 7.44675 + 32.6264i 0.246452 + 1.07977i
\(914\) −16.1880 70.9243i −0.535452 2.34597i
\(915\) −0.326956 0.409990i −0.0108088 0.0135538i
\(916\) −86.0768 −2.84406
\(917\) −3.26043 4.08845i −0.107669 0.135012i
\(918\) −62.0573 29.8852i −2.04819 0.986359i
\(919\) 8.39456 10.5264i 0.276911 0.347236i −0.623855 0.781540i \(-0.714434\pi\)
0.900766 + 0.434305i \(0.143006\pi\)
\(920\) 0.0215265 0.0269934i 0.000709709 0.000889947i
\(921\) −16.6830 + 8.03409i −0.549722 + 0.264732i
\(922\) 0.366107 + 1.60402i 0.0120571 + 0.0528256i
\(923\) −1.21234 + 5.31162i −0.0399048 + 0.174834i
\(924\) −49.9104 24.0356i −1.64193 0.790712i
\(925\) 24.1779 11.6435i 0.794966 0.382835i
\(926\) 4.61634 20.2255i 0.151702 0.664651i
\(927\) 66.9616 2.19931
\(928\) 0 0
\(929\) 7.53667 0.247270 0.123635 0.992328i \(-0.460545\pi\)
0.123635 + 0.992328i \(0.460545\pi\)
\(930\) −0.358291 + 1.56977i −0.0117488 + 0.0514749i
\(931\) −14.1785 + 6.82803i −0.464683 + 0.223780i
\(932\) −49.4865 23.8315i −1.62099 0.780625i
\(933\) −15.5152 + 67.9764i −0.507944 + 2.22545i
\(934\) −15.4738 67.7950i −0.506317 2.21832i
\(935\) 1.07084 0.515689i 0.0350202 0.0168648i
\(936\) 3.31662 4.15891i 0.108407 0.135938i
\(937\) −22.7346 + 28.5083i −0.742708 + 0.931326i −0.999381 0.0351723i \(-0.988802\pi\)
0.256674 + 0.966498i \(0.417373\pi\)
\(938\) 34.6982 + 16.7098i 1.13294 + 0.545593i
\(939\) 3.49691 + 4.38499i 0.114117 + 0.143099i
\(940\) −1.74158 −0.0568039
\(941\) −21.9323 27.5023i −0.714973 0.896548i 0.283068 0.959100i \(-0.408648\pi\)
−0.998042 + 0.0625515i \(0.980076\pi\)
\(942\) −27.0308 118.430i −0.880712 3.85865i
\(943\) 0.0749333 + 0.328304i 0.00244016 + 0.0106911i
\(944\) 0.268263 + 0.336391i 0.00873122 + 0.0109486i
\(945\) −0.531311 −0.0172836
\(946\) −36.4180 45.6668i −1.18405 1.48476i
\(947\) 9.36711 + 4.51096i 0.304390 + 0.146587i 0.579843 0.814728i \(-0.303114\pi\)
−0.275453 + 0.961314i \(0.588828\pi\)
\(948\) 26.6308 33.3940i 0.864928 1.08459i
\(949\) −1.77148 + 2.22136i −0.0575046 + 0.0721085i
\(950\) −35.2301 + 16.9659i −1.14302 + 0.550447i
\(951\) 18.7608 + 82.1964i 0.608361 + 2.66540i
\(952\) 4.65498 20.3948i 0.150869 0.660999i
\(953\) −48.4858 23.3495i −1.57061 0.756366i −0.572625 0.819818i \(-0.694075\pi\)
−0.997985 + 0.0634519i \(0.979789\pi\)
\(954\) 18.5256 8.92146i 0.599789 0.288843i
\(955\) 0.132779 0.581743i 0.00429663 0.0188248i
\(956\) 54.2189 1.75356
\(957\) 0 0
\(958\) 12.0129 0.388119
\(959\) −1.91879 + 8.40676i −0.0619609 + 0.271468i
\(960\) 1.93141 0.930120i 0.0623361 0.0300195i
\(961\) 11.1288 + 5.35937i 0.358995 + 0.172883i
\(962\) −1.09758 + 4.80881i −0.0353874 + 0.155042i
\(963\) −10.4538 45.8012i −0.336870 1.47592i
\(964\) −62.2543 + 29.9801i −2.00508 + 0.965594i
\(965\) −0.0978010 + 0.122639i −0.00314833 + 0.00394788i
\(966\) −1.44403 + 1.81075i −0.0464609 + 0.0582601i
\(967\) 10.7168 + 5.16092i 0.344628 + 0.165964i 0.598188 0.801356i \(-0.295887\pi\)
−0.253561 + 0.967319i \(0.581602\pi\)
\(968\) 7.72899 + 9.69185i 0.248419 + 0.311508i
\(969\) −50.6634 −1.62754
\(970\) −1.40875 1.76651i −0.0452322 0.0567194i
\(971\) 11.1461 + 48.8341i 0.357694 + 1.56716i 0.758921 + 0.651183i \(0.225727\pi\)
−0.401226 + 0.915979i \(0.631416\pi\)
\(972\) 9.37591 + 41.0785i 0.300732 + 1.31759i
\(973\) 0.581894 + 0.729672i 0.0186547 + 0.0233922i
\(974\) −7.89535 −0.252983
\(975\) −3.58388 4.49404i −0.114776 0.143924i
\(976\) −1.17507 0.565883i −0.0376130 0.0181135i
\(977\) 8.61138 10.7983i 0.275502 0.345469i −0.624760 0.780817i \(-0.714803\pi\)
0.900262 + 0.435348i \(0.143375\pi\)
\(978\) −9.08493 + 11.3921i −0.290504 + 0.364281i
\(979\) −4.05433 + 1.95246i −0.129577 + 0.0624010i
\(980\) 0.184592 + 0.808749i 0.00589656 + 0.0258345i
\(981\) 6.49165 28.4418i 0.207262 0.908076i
\(982\) −11.9558 5.75762i −0.381525 0.183733i
\(983\) −10.5011 + 5.05705i −0.334932 + 0.161295i −0.593789 0.804621i \(-0.702369\pi\)
0.258857 + 0.965916i \(0.416654\pi\)
\(984\) 2.39619 10.4984i 0.0763879 0.334677i
\(985\) −0.855428 −0.0272562
\(986\) 0 0
\(987\) 42.4784 1.35210
\(988\) 0.977329 4.28196i 0.0310930 0.136227i
\(989\) −1.34454 + 0.647495i −0.0427538 + 0.0205891i
\(990\) 2.38159 + 1.14692i 0.0756920 + 0.0364514i
\(991\) −1.54324 + 6.76136i −0.0490225 + 0.214782i −0.993506 0.113776i \(-0.963705\pi\)
0.944484 + 0.328558i \(0.106563\pi\)
\(992\) 5.87117 + 25.7233i 0.186410 + 0.816715i
\(993\) 72.6165 34.9703i 2.30442 1.10975i
\(994\) −29.7104 + 37.2557i −0.942358 + 1.18168i
\(995\) 0.541451 0.678958i 0.0171652 0.0215244i
\(996\) −67.7493 32.6264i −2.14672 1.03381i
\(997\) 14.9450 + 18.7405i 0.473314 + 0.593516i 0.959979 0.280072i \(-0.0903583\pi\)
−0.486665 + 0.873588i \(0.661787\pi\)
\(998\) −53.7872 −1.70260
\(999\) 19.6784 + 24.6759i 0.622597 + 0.780712i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.d.m.605.1 24
29.2 odd 28 841.2.e.a.651.1 12
29.3 odd 28 29.2.e.a.22.1 yes 12
29.4 even 14 841.2.d.k.574.1 24
29.5 even 14 841.2.d.l.190.4 24
29.6 even 14 841.2.a.k.1.2 12
29.7 even 7 inner 841.2.d.m.645.1 24
29.8 odd 28 841.2.e.f.63.1 12
29.9 even 14 841.2.d.k.778.1 24
29.10 odd 28 841.2.e.e.267.2 12
29.11 odd 28 841.2.e.h.270.2 12
29.12 odd 4 29.2.e.a.4.1 12
29.13 even 14 841.2.d.l.571.4 24
29.14 odd 28 841.2.b.e.840.2 12
29.15 odd 28 841.2.b.e.840.11 12
29.16 even 7 841.2.d.l.571.1 24
29.17 odd 4 841.2.e.i.236.2 12
29.18 odd 28 841.2.e.a.270.1 12
29.19 odd 28 841.2.e.f.267.1 12
29.20 even 7 841.2.d.k.778.4 24
29.21 odd 28 841.2.e.e.63.2 12
29.22 even 14 inner 841.2.d.m.645.4 24
29.23 even 7 841.2.a.k.1.11 12
29.24 even 7 841.2.d.l.190.1 24
29.25 even 7 841.2.d.k.574.4 24
29.26 odd 28 841.2.e.i.196.2 12
29.27 odd 28 841.2.e.h.651.2 12
29.28 even 2 inner 841.2.d.m.605.4 24
87.23 odd 14 7569.2.a.bp.1.2 12
87.32 even 28 261.2.o.a.109.2 12
87.35 odd 14 7569.2.a.bp.1.11 12
87.41 even 4 261.2.o.a.91.2 12
116.3 even 28 464.2.y.d.225.2 12
116.99 even 4 464.2.y.d.33.2 12
145.3 even 28 725.2.p.a.399.4 24
145.12 even 4 725.2.p.a.149.4 24
145.32 even 28 725.2.p.a.399.1 24
145.99 odd 4 725.2.q.a.526.2 12
145.119 odd 28 725.2.q.a.51.2 12
145.128 even 4 725.2.p.a.149.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.e.a.4.1 12 29.12 odd 4
29.2.e.a.22.1 yes 12 29.3 odd 28
261.2.o.a.91.2 12 87.41 even 4
261.2.o.a.109.2 12 87.32 even 28
464.2.y.d.33.2 12 116.99 even 4
464.2.y.d.225.2 12 116.3 even 28
725.2.p.a.149.1 24 145.128 even 4
725.2.p.a.149.4 24 145.12 even 4
725.2.p.a.399.1 24 145.32 even 28
725.2.p.a.399.4 24 145.3 even 28
725.2.q.a.51.2 12 145.119 odd 28
725.2.q.a.526.2 12 145.99 odd 4
841.2.a.k.1.2 12 29.6 even 14
841.2.a.k.1.11 12 29.23 even 7
841.2.b.e.840.2 12 29.14 odd 28
841.2.b.e.840.11 12 29.15 odd 28
841.2.d.k.574.1 24 29.4 even 14
841.2.d.k.574.4 24 29.25 even 7
841.2.d.k.778.1 24 29.9 even 14
841.2.d.k.778.4 24 29.20 even 7
841.2.d.l.190.1 24 29.24 even 7
841.2.d.l.190.4 24 29.5 even 14
841.2.d.l.571.1 24 29.16 even 7
841.2.d.l.571.4 24 29.13 even 14
841.2.d.m.605.1 24 1.1 even 1 trivial
841.2.d.m.605.4 24 29.28 even 2 inner
841.2.d.m.645.1 24 29.7 even 7 inner
841.2.d.m.645.4 24 29.22 even 14 inner
841.2.e.a.270.1 12 29.18 odd 28
841.2.e.a.651.1 12 29.2 odd 28
841.2.e.e.63.2 12 29.21 odd 28
841.2.e.e.267.2 12 29.10 odd 28
841.2.e.f.63.1 12 29.8 odd 28
841.2.e.f.267.1 12 29.19 odd 28
841.2.e.h.270.2 12 29.11 odd 28
841.2.e.h.651.2 12 29.27 odd 28
841.2.e.i.196.2 12 29.26 odd 28
841.2.e.i.236.2 12 29.17 odd 4
7569.2.a.bp.1.2 12 87.23 odd 14
7569.2.a.bp.1.11 12 87.35 odd 14