Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [735,2,Mod(106,735)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(735, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([0, 0, 12]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("735.106");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 735 = 3 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 735.u (of order \(7\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.86900454856\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{7})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{7}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
106.1 | −1.50084 | − | 1.88200i | −0.900969 | + | 0.433884i | −0.844346 | + | 3.69932i | −0.900969 | + | 0.433884i | 2.16878 | + | 1.04443i | −2.16503 | + | 1.52074i | 3.89178 | − | 1.87418i | 0.623490 | − | 0.781831i | 2.16878 | + | 1.04443i |
106.2 | −1.47354 | − | 1.84776i | −0.900969 | + | 0.433884i | −0.797863 | + | 3.49567i | −0.900969 | + | 0.433884i | 2.12933 | + | 1.02543i | −1.04651 | − | 2.42998i | 3.37619 | − | 1.62589i | 0.623490 | − | 0.781831i | 2.12933 | + | 1.02543i |
106.3 | −1.00535 | − | 1.26067i | −0.900969 | + | 0.433884i | −0.133517 | + | 0.584976i | −0.900969 | + | 0.433884i | 1.45277 | + | 0.699619i | 2.49967 | + | 0.866972i | −2.03386 | + | 0.979453i | 0.623490 | − | 0.781831i | 1.45277 | + | 0.699619i |
106.4 | −0.0768248 | − | 0.0963352i | −0.900969 | + | 0.433884i | 0.441663 | − | 1.93505i | −0.900969 | + | 0.433884i | 0.111015 | + | 0.0534620i | 1.60567 | − | 2.10281i | −0.442374 | + | 0.213036i | 0.623490 | − | 0.781831i | 0.111015 | + | 0.0534620i |
106.5 | 0.0311710 | + | 0.0390871i | −0.900969 | + | 0.433884i | 0.444486 | − | 1.94742i | −0.900969 | + | 0.433884i | −0.0450433 | − | 0.0216917i | 1.31746 | + | 2.29440i | 0.180061 | − | 0.0867127i | 0.623490 | − | 0.781831i | −0.0450433 | − | 0.0216917i |
106.6 | 0.837439 | + | 1.05012i | −0.900969 | + | 0.433884i | 0.0436035 | − | 0.191039i | −0.900969 | + | 0.433884i | −1.21013 | − | 0.582770i | −2.55563 | − | 0.684649i | 2.65740 | − | 1.27974i | 0.623490 | − | 0.781831i | −1.21013 | − | 0.582770i |
106.7 | 1.02388 | + | 1.28391i | −0.900969 | + | 0.433884i | −0.155040 | + | 0.679276i | −0.900969 | + | 0.433884i | −1.47955 | − | 0.712514i | −0.516929 | − | 2.59476i | 1.92823 | − | 0.928588i | 0.623490 | − | 0.781831i | −1.47955 | − | 0.712514i |
106.8 | 1.54058 | + | 1.93183i | −0.900969 | + | 0.433884i | −0.913529 | + | 4.00243i | −0.900969 | + | 0.433884i | −2.22621 | − | 1.07208i | −1.73169 | + | 2.00031i | −4.68697 | + | 2.25713i | 0.623490 | − | 0.781831i | −2.22621 | − | 1.07208i |
211.1 | −0.489922 | + | 2.14649i | 0.623490 | − | 0.781831i | −2.56545 | − | 1.23546i | 0.623490 | − | 0.781831i | 1.37273 | + | 1.72135i | −2.64571 | + | 0.0145107i | 1.16331 | − | 1.45874i | −0.222521 | − | 0.974928i | 1.37273 | + | 1.72135i |
211.2 | −0.430109 | + | 1.88443i | 0.623490 | − | 0.781831i | −1.56415 | − | 0.753254i | 0.623490 | − | 0.781831i | 1.20514 | + | 1.51120i | 1.44043 | − | 2.21927i | −0.318067 | + | 0.398843i | −0.222521 | − | 0.974928i | 1.20514 | + | 1.51120i |
211.3 | −0.105053 | + | 0.460266i | 0.623490 | − | 0.781831i | 1.60113 | + | 0.771063i | 0.623490 | − | 0.781831i | 0.294351 | + | 0.369105i | −2.25104 | + | 1.39025i | −1.11180 | + | 1.39415i | −0.222521 | − | 0.974928i | 0.294351 | + | 0.369105i |
211.4 | −0.0253319 | + | 0.110986i | 0.623490 | − | 0.781831i | 1.79026 | + | 0.862145i | 0.623490 | − | 0.781831i | 0.0709783 | + | 0.0890040i | 2.44876 | − | 1.00178i | −0.282993 | + | 0.354862i | −0.222521 | − | 0.974928i | 0.0709783 | + | 0.0890040i |
211.5 | 0.179043 | − | 0.784438i | 0.623490 | − | 0.781831i | 1.21865 | + | 0.586872i | 0.623490 | − | 0.781831i | −0.501667 | − | 0.629070i | 2.64379 | + | 0.101941i | 1.68189 | − | 2.10902i | −0.222521 | − | 0.974928i | −0.501667 | − | 0.629070i |
211.6 | 0.189678 | − | 0.831032i | 0.623490 | − | 0.781831i | 1.14730 | + | 0.552511i | 0.623490 | − | 0.781831i | −0.531465 | − | 0.666436i | −2.46818 | − | 0.952935i | 1.73970 | − | 2.18152i | −0.222521 | − | 0.974928i | −0.531465 | − | 0.666436i |
211.7 | 0.414664 | − | 1.81676i | 0.623490 | − | 0.781831i | −1.32673 | − | 0.638921i | 0.623490 | − | 0.781831i | −1.16186 | − | 1.45693i | −1.39768 | − | 2.24644i | 0.612808 | − | 0.768437i | −0.222521 | − | 0.974928i | −1.16186 | − | 1.45693i |
211.8 | 0.489553 | − | 2.14487i | 0.623490 | − | 0.781831i | −2.55887 | − | 1.23229i | 0.623490 | − | 0.781831i | −1.37170 | − | 1.72005i | 1.49623 | + | 2.18204i | −1.15241 | + | 1.44507i | −0.222521 | − | 0.974928i | −1.37170 | − | 1.72005i |
316.1 | −2.19446 | + | 1.05679i | −0.222521 | + | 0.974928i | 2.45184 | − | 3.07451i | −0.222521 | + | 0.974928i | −0.541986 | − | 2.37459i | 2.00777 | − | 1.72304i | −1.04736 | + | 4.58878i | −0.900969 | − | 0.433884i | −0.541986 | − | 2.37459i |
316.2 | −1.61143 | + | 0.776023i | −0.222521 | + | 0.974928i | 0.747508 | − | 0.937345i | −0.222521 | + | 0.974928i | −0.397990 | − | 1.74371i | 0.837875 | + | 2.50957i | 0.318826 | − | 1.39687i | −0.900969 | − | 0.433884i | −0.397990 | − | 1.74371i |
316.3 | −0.557211 | + | 0.268339i | −0.222521 | + | 0.974928i | −1.00850 | + | 1.26462i | −0.222521 | + | 0.974928i | −0.137620 | − | 0.602952i | −2.57754 | + | 0.596878i | 0.497841 | − | 2.18118i | −0.900969 | − | 0.433884i | −0.137620 | − | 0.602952i |
316.4 | −0.441873 | + | 0.212795i | −0.222521 | + | 0.974928i | −1.09701 | + | 1.37561i | −0.222521 | + | 0.974928i | −0.109134 | − | 0.478146i | 1.08258 | − | 2.41413i | 0.410284 | − | 1.79757i | −0.900969 | − | 0.433884i | −0.109134 | − | 0.478146i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.e | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 735.2.u.b | ✓ | 48 |
49.e | even | 7 | 1 | inner | 735.2.u.b | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
735.2.u.b | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
735.2.u.b | ✓ | 48 | 49.e | even | 7 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{48} - T_{2}^{47} + 9 T_{2}^{46} - 15 T_{2}^{45} + 89 T_{2}^{44} - 133 T_{2}^{43} + 630 T_{2}^{42} + \cdots + 1 \) acting on \(S_{2}^{\mathrm{new}}(735, [\chi])\).