Properties

Label 784.2.m.g.197.4
Level $784$
Weight $2$
Character 784.197
Analytic conductor $6.260$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(197,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.197");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.214798336.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 2x^{5} + 9x^{4} - 4x^{3} - 16x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 197.4
Root \(1.41216 + 0.0762223i\) of defining polynomial
Character \(\chi\) \(=\) 784.197
Dual form 784.2.m.g.589.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.29150 - 0.576222i) q^{2} +(0.715276 - 0.715276i) q^{3} +(1.33594 - 1.48838i) q^{4} +(-0.867721 - 0.867721i) q^{5} +(0.511620 - 1.33594i) q^{6} +(0.867721 - 2.69204i) q^{8} +1.97676i q^{9} +(-1.62066 - 0.620660i) q^{10} +(-2.97676 - 2.97676i) q^{11} +(-0.109040 - 2.02017i) q^{12} +(2.02017 - 2.02017i) q^{13} -1.24132 q^{15} +(-0.430552 - 3.97676i) q^{16} -0.264559 q^{17} +(1.13905 + 2.55298i) q^{18} +(4.53959 - 4.53959i) q^{19} +(-2.45072 + 0.132279i) q^{20} +(-5.55976 - 2.12921i) q^{22} +1.54621i q^{23} +(-1.30489 - 2.54621i) q^{24} -3.49412i q^{25} +(1.44498 - 3.77310i) q^{26} +(3.55976 + 3.55976i) q^{27} +(-0.328129 + 0.328129i) q^{29} +(-1.60316 + 0.715276i) q^{30} -6.04033 q^{31} +(-2.84756 - 4.88789i) q^{32} -4.25841 q^{33} +(-0.341677 + 0.152445i) q^{34} +(2.94217 + 2.64082i) q^{36} +(6.64863 + 6.64863i) q^{37} +(3.24706 - 8.47869i) q^{38} -2.88995i q^{39} +(-3.08887 + 1.58300i) q^{40} +11.0327i q^{41} +(3.38407 + 3.38407i) q^{43} +(-8.40731 + 0.453791i) q^{44} +(1.71528 - 1.71528i) q^{45} +(0.890960 + 1.99693i) q^{46} -3.12566 q^{47} +(-3.15244 - 2.53652i) q^{48} +(-2.01339 - 4.51265i) q^{50} +(-0.189233 + 0.189233i) q^{51} +(-0.307963 - 5.70559i) q^{52} +(0.430552 + 0.430552i) q^{53} +(6.64863 + 2.54621i) q^{54} +5.16599i q^{55} -6.49412i q^{57} +(-0.234703 + 0.612853i) q^{58} +(4.62640 + 4.62640i) q^{59} +(-1.65832 + 1.84756i) q^{60} +(-4.86772 + 4.86772i) q^{61} +(-7.80108 + 3.48057i) q^{62} +(-6.49412 - 4.67187i) q^{64} -3.50588 q^{65} +(-5.49973 + 2.45379i) q^{66} +(3.34374 - 3.34374i) q^{67} +(-0.353433 + 0.393764i) q^{68} +(1.10597 + 1.10597i) q^{69} +9.03885i q^{71} +(5.32151 + 1.71528i) q^{72} -14.8146i q^{73} +(12.4178 + 4.75561i) q^{74} +(-2.49926 - 2.49926i) q^{75} +(-0.692037 - 12.8212i) q^{76} +(-1.66525 - 3.73237i) q^{78} +12.5904 q^{79} +(-3.07712 + 3.82432i) q^{80} -0.837864 q^{81} +(6.35729 + 14.2487i) q^{82} +(0.715276 - 0.715276i) q^{83} +(0.229563 + 0.229563i) q^{85} +(6.32050 + 2.42055i) q^{86} +0.469405i q^{87} +(-10.5965 + 5.43055i) q^{88} +10.9924i q^{89} +(1.22690 - 3.20366i) q^{90} +(2.30135 + 2.06564i) q^{92} +(-4.32050 + 4.32050i) q^{93} +(-4.03679 + 1.80108i) q^{94} -7.87820 q^{95} +(-5.53298 - 1.45940i) q^{96} +14.2452 q^{97} +(5.88434 - 5.88434i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 4 q^{4} + 4 q^{5} + 16 q^{6} - 4 q^{8} - 12 q^{10} + 12 q^{12} - 8 q^{15} + 8 q^{16} - 24 q^{17} + 6 q^{18} + 12 q^{19} + 8 q^{20} - 4 q^{22} - 8 q^{26} - 12 q^{27} - 16 q^{29} + 20 q^{30}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.29150 0.576222i 0.913227 0.407451i
\(3\) 0.715276 0.715276i 0.412965 0.412965i −0.469805 0.882770i \(-0.655676\pi\)
0.882770 + 0.469805i \(0.155676\pi\)
\(4\) 1.33594 1.48838i 0.667968 0.744190i
\(5\) −0.867721 0.867721i −0.388056 0.388056i 0.485937 0.873994i \(-0.338478\pi\)
−0.873994 + 0.485937i \(0.838478\pi\)
\(6\) 0.511620 1.33594i 0.208868 0.545393i
\(7\) 0 0
\(8\) 0.867721 2.69204i 0.306786 0.951779i
\(9\) 1.97676i 0.658920i
\(10\) −1.62066 0.620660i −0.512498 0.196270i
\(11\) −2.97676 2.97676i −0.897527 0.897527i 0.0976898 0.995217i \(-0.468855\pi\)
−0.995217 + 0.0976898i \(0.968855\pi\)
\(12\) −0.109040 2.02017i −0.0314771 0.583171i
\(13\) 2.02017 2.02017i 0.560293 0.560293i −0.369098 0.929391i \(-0.620333\pi\)
0.929391 + 0.369098i \(0.120333\pi\)
\(14\) 0 0
\(15\) −1.24132 −0.320507
\(16\) −0.430552 3.97676i −0.107638 0.994190i
\(17\) −0.264559 −0.0641649 −0.0320825 0.999485i \(-0.510214\pi\)
−0.0320825 + 0.999485i \(0.510214\pi\)
\(18\) 1.13905 + 2.55298i 0.268478 + 0.601744i
\(19\) 4.53959 4.53959i 1.04145 1.04145i 0.0423510 0.999103i \(-0.486515\pi\)
0.999103 0.0423510i \(-0.0134848\pi\)
\(20\) −2.45072 + 0.132279i −0.547997 + 0.0295786i
\(21\) 0 0
\(22\) −5.55976 2.12921i −1.18534 0.453948i
\(23\) 1.54621i 0.322407i 0.986921 + 0.161203i \(0.0515375\pi\)
−0.986921 + 0.161203i \(0.948462\pi\)
\(24\) −1.30489 2.54621i −0.266359 0.519743i
\(25\) 3.49412i 0.698824i
\(26\) 1.44498 3.77310i 0.283383 0.739967i
\(27\) 3.55976 + 3.55976i 0.685076 + 0.685076i
\(28\) 0 0
\(29\) −0.328129 + 0.328129i −0.0609320 + 0.0609320i −0.736916 0.675984i \(-0.763719\pi\)
0.675984 + 0.736916i \(0.263719\pi\)
\(30\) −1.60316 + 0.715276i −0.292696 + 0.130591i
\(31\) −6.04033 −1.08488 −0.542438 0.840096i \(-0.682499\pi\)
−0.542438 + 0.840096i \(0.682499\pi\)
\(32\) −2.84756 4.88789i −0.503381 0.864064i
\(33\) −4.25841 −0.741294
\(34\) −0.341677 + 0.152445i −0.0585972 + 0.0261440i
\(35\) 0 0
\(36\) 2.94217 + 2.64082i 0.490362 + 0.440137i
\(37\) 6.64863 + 6.64863i 1.09303 + 1.09303i 0.995204 + 0.0978247i \(0.0311884\pi\)
0.0978247 + 0.995204i \(0.468812\pi\)
\(38\) 3.24706 8.47869i 0.526743 1.37543i
\(39\) 2.88995i 0.462763i
\(40\) −3.08887 + 1.58300i −0.488394 + 0.250294i
\(41\) 11.0327i 1.72302i 0.507741 + 0.861510i \(0.330481\pi\)
−0.507741 + 0.861510i \(0.669519\pi\)
\(42\) 0 0
\(43\) 3.38407 + 3.38407i 0.516066 + 0.516066i 0.916379 0.400312i \(-0.131098\pi\)
−0.400312 + 0.916379i \(0.631098\pi\)
\(44\) −8.40731 + 0.453791i −1.26745 + 0.0684116i
\(45\) 1.71528 1.71528i 0.255698 0.255698i
\(46\) 0.890960 + 1.99693i 0.131365 + 0.294431i
\(47\) −3.12566 −0.455925 −0.227962 0.973670i \(-0.573206\pi\)
−0.227962 + 0.973670i \(0.573206\pi\)
\(48\) −3.15244 2.53652i −0.455016 0.366115i
\(49\) 0 0
\(50\) −2.01339 4.51265i −0.284736 0.638185i
\(51\) −0.189233 + 0.189233i −0.0264979 + 0.0264979i
\(52\) −0.307963 5.70559i −0.0427068 0.791222i
\(53\) 0.430552 + 0.430552i 0.0591409 + 0.0591409i 0.736059 0.676918i \(-0.236685\pi\)
−0.676918 + 0.736059i \(0.736685\pi\)
\(54\) 6.64863 + 2.54621i 0.904764 + 0.346495i
\(55\) 5.16599i 0.696582i
\(56\) 0 0
\(57\) 6.49412i 0.860167i
\(58\) −0.234703 + 0.612853i −0.0308180 + 0.0804715i
\(59\) 4.62640 + 4.62640i 0.602306 + 0.602306i 0.940924 0.338618i \(-0.109959\pi\)
−0.338618 + 0.940924i \(0.609959\pi\)
\(60\) −1.65832 + 1.84756i −0.214089 + 0.238518i
\(61\) −4.86772 + 4.86772i −0.623248 + 0.623248i −0.946360 0.323113i \(-0.895271\pi\)
0.323113 + 0.946360i \(0.395271\pi\)
\(62\) −7.80108 + 3.48057i −0.990738 + 0.442033i
\(63\) 0 0
\(64\) −6.49412 4.67187i −0.811765 0.583984i
\(65\) −3.50588 −0.434851
\(66\) −5.49973 + 2.45379i −0.676970 + 0.302041i
\(67\) 3.34374 3.34374i 0.408503 0.408503i −0.472713 0.881216i \(-0.656725\pi\)
0.881216 + 0.472713i \(0.156725\pi\)
\(68\) −0.353433 + 0.393764i −0.0428601 + 0.0477509i
\(69\) 1.10597 + 1.10597i 0.133143 + 0.133143i
\(70\) 0 0
\(71\) 9.03885i 1.07271i 0.843991 + 0.536357i \(0.180200\pi\)
−0.843991 + 0.536357i \(0.819800\pi\)
\(72\) 5.32151 + 1.71528i 0.627146 + 0.202147i
\(73\) 14.8146i 1.73392i −0.498377 0.866960i \(-0.666070\pi\)
0.498377 0.866960i \(-0.333930\pi\)
\(74\) 12.4178 + 4.75561i 1.44354 + 0.552828i
\(75\) −2.49926 2.49926i −0.288590 0.288590i
\(76\) −0.692037 12.8212i −0.0793820 1.47070i
\(77\) 0 0
\(78\) −1.66525 3.73237i −0.188553 0.422607i
\(79\) 12.5904 1.41653 0.708265 0.705947i \(-0.249478\pi\)
0.708265 + 0.705947i \(0.249478\pi\)
\(80\) −3.07712 + 3.82432i −0.344032 + 0.427572i
\(81\) −0.837864 −0.0930960
\(82\) 6.35729 + 14.2487i 0.702045 + 1.57351i
\(83\) 0.715276 0.715276i 0.0785117 0.0785117i −0.666760 0.745272i \(-0.732320\pi\)
0.745272 + 0.666760i \(0.232320\pi\)
\(84\) 0 0
\(85\) 0.229563 + 0.229563i 0.0248996 + 0.0248996i
\(86\) 6.32050 + 2.42055i 0.681557 + 0.261014i
\(87\) 0.469405i 0.0503255i
\(88\) −10.5965 + 5.43055i −1.12960 + 0.578899i
\(89\) 10.9924i 1.16519i 0.812763 + 0.582595i \(0.197962\pi\)
−0.812763 + 0.582595i \(0.802038\pi\)
\(90\) 1.22690 3.20366i 0.129326 0.337695i
\(91\) 0 0
\(92\) 2.30135 + 2.06564i 0.239932 + 0.215357i
\(93\) −4.32050 + 4.32050i −0.448015 + 0.448015i
\(94\) −4.03679 + 1.80108i −0.416363 + 0.185767i
\(95\) −7.87820 −0.808286
\(96\) −5.53298 1.45940i −0.564707 0.148949i
\(97\) 14.2452 1.44638 0.723189 0.690650i \(-0.242675\pi\)
0.723189 + 0.690650i \(0.242675\pi\)
\(98\) 0 0
\(99\) 5.88434 5.88434i 0.591399 0.591399i
\(100\) −5.20058 4.66792i −0.520058 0.466792i
\(101\) 10.5299 + 10.5299i 1.04776 + 1.04776i 0.998801 + 0.0489638i \(0.0155919\pi\)
0.0489638 + 0.998801i \(0.484408\pi\)
\(102\) −0.135353 + 0.353433i −0.0134020 + 0.0349951i
\(103\) 12.9862i 1.27957i −0.768554 0.639785i \(-0.779023\pi\)
0.768554 0.639785i \(-0.220977\pi\)
\(104\) −3.68542 7.19130i −0.361385 0.705165i
\(105\) 0 0
\(106\) 0.804151 + 0.307963i 0.0781060 + 0.0299121i
\(107\) −1.24132 1.24132i −0.120003 0.120003i 0.644555 0.764558i \(-0.277043\pi\)
−0.764558 + 0.644555i \(0.777043\pi\)
\(108\) 10.0539 0.542666i 0.967435 0.0522181i
\(109\) −10.9535 + 10.9535i −1.04916 + 1.04916i −0.0504294 + 0.998728i \(0.516059\pi\)
−0.998728 + 0.0504294i \(0.983941\pi\)
\(110\) 2.97676 + 6.67187i 0.283823 + 0.636138i
\(111\) 9.51121 0.902764
\(112\) 0 0
\(113\) 7.63302 0.718054 0.359027 0.933327i \(-0.383109\pi\)
0.359027 + 0.933327i \(0.383109\pi\)
\(114\) −3.74206 8.38715i −0.350476 0.785528i
\(115\) 1.34168 1.34168i 0.125112 0.125112i
\(116\) 0.0500215 + 0.926739i 0.00464438 + 0.0860456i
\(117\) 3.99338 + 3.99338i 0.369188 + 0.369188i
\(118\) 8.64082 + 3.30915i 0.795452 + 0.304632i
\(119\) 0 0
\(120\) −1.07712 + 3.34168i −0.0983270 + 0.305052i
\(121\) 6.72221i 0.611110i
\(122\) −3.48176 + 9.09154i −0.315224 + 0.823110i
\(123\) 7.89143 + 7.89143i 0.711546 + 0.711546i
\(124\) −8.06949 + 8.99031i −0.724662 + 0.807354i
\(125\) −7.37052 + 7.37052i −0.659240 + 0.659240i
\(126\) 0 0
\(127\) −10.7393 −0.952959 −0.476479 0.879186i \(-0.658087\pi\)
−0.476479 + 0.879186i \(0.658087\pi\)
\(128\) −11.0792 2.29166i −0.979271 0.202556i
\(129\) 4.84109 0.426234
\(130\) −4.52784 + 2.02017i −0.397117 + 0.177180i
\(131\) 12.8869 12.8869i 1.12593 1.12593i 0.135100 0.990832i \(-0.456865\pi\)
0.990832 0.135100i \(-0.0431355\pi\)
\(132\) −5.68896 + 6.33813i −0.495161 + 0.551664i
\(133\) 0 0
\(134\) 2.39170 6.24518i 0.206611 0.539501i
\(135\) 6.17775i 0.531696i
\(136\) −0.229563 + 0.712202i −0.0196849 + 0.0610708i
\(137\) 7.34374i 0.627418i 0.949519 + 0.313709i \(0.101572\pi\)
−0.949519 + 0.313709i \(0.898428\pi\)
\(138\) 2.06564 + 0.791071i 0.175839 + 0.0673404i
\(139\) −8.36184 8.36184i −0.709242 0.709242i 0.257134 0.966376i \(-0.417222\pi\)
−0.966376 + 0.257134i \(0.917222\pi\)
\(140\) 0 0
\(141\) −2.23571 + 2.23571i −0.188281 + 0.188281i
\(142\) 5.20839 + 11.6737i 0.437078 + 0.979632i
\(143\) −12.0271 −1.00576
\(144\) 7.86110 0.851098i 0.655092 0.0709248i
\(145\) 0.569448 0.0472901
\(146\) −8.53652 19.1331i −0.706487 1.58346i
\(147\) 0 0
\(148\) 18.7778 1.01355i 1.54353 0.0833132i
\(149\) −12.8782 12.8782i −1.05502 1.05502i −0.998395 0.0566275i \(-0.981965\pi\)
−0.0566275 0.998395i \(-0.518035\pi\)
\(150\) −4.66792 1.78766i −0.381134 0.145962i
\(151\) 13.0171i 1.05932i −0.848211 0.529658i \(-0.822320\pi\)
0.848211 0.529658i \(-0.177680\pi\)
\(152\) −8.28165 16.1598i −0.671731 1.31074i
\(153\) 0.522969i 0.0422796i
\(154\) 0 0
\(155\) 5.24132 + 5.24132i 0.420993 + 0.420993i
\(156\) −4.30135 3.86079i −0.344383 0.309111i
\(157\) −14.6570 + 14.6570i −1.16976 + 1.16976i −0.187493 + 0.982266i \(0.560036\pi\)
−0.982266 + 0.187493i \(0.939964\pi\)
\(158\) 16.2605 7.25487i 1.29361 0.577166i
\(159\) 0.615927 0.0488462
\(160\) −1.77044 + 6.71220i −0.139965 + 0.530646i
\(161\) 0 0
\(162\) −1.08210 + 0.482796i −0.0850178 + 0.0379321i
\(163\) 4.44764 4.44764i 0.348366 0.348366i −0.511134 0.859501i \(-0.670775\pi\)
0.859501 + 0.511134i \(0.170775\pi\)
\(164\) 16.4209 + 14.7390i 1.28225 + 1.15092i
\(165\) 3.69511 + 3.69511i 0.287664 + 0.287664i
\(166\) 0.511620 1.33594i 0.0397094 0.103689i
\(167\) 5.45765i 0.422326i −0.977451 0.211163i \(-0.932275\pi\)
0.977451 0.211163i \(-0.0677250\pi\)
\(168\) 0 0
\(169\) 4.83786i 0.372143i
\(170\) 0.428760 + 0.164201i 0.0328844 + 0.0125936i
\(171\) 8.97369 + 8.97369i 0.686235 + 0.686235i
\(172\) 9.55769 0.515884i 0.728767 0.0393358i
\(173\) −11.6223 + 11.6223i −0.883629 + 0.883629i −0.993901 0.110273i \(-0.964828\pi\)
0.110273 + 0.993901i \(0.464828\pi\)
\(174\) 0.270482 + 0.606236i 0.0205052 + 0.0459586i
\(175\) 0 0
\(176\) −10.5562 + 13.1195i −0.795705 + 0.988921i
\(177\) 6.61831 0.497462
\(178\) 6.33405 + 14.1966i 0.474757 + 1.06408i
\(179\) 12.9418 12.9418i 0.967313 0.967313i −0.0321695 0.999482i \(-0.510242\pi\)
0.999482 + 0.0321695i \(0.0102416\pi\)
\(180\) −0.261485 4.84448i −0.0194899 0.361086i
\(181\) −1.39069 1.39069i −0.103369 0.103369i 0.653531 0.756900i \(-0.273287\pi\)
−0.756900 + 0.653531i \(0.773287\pi\)
\(182\) 0 0
\(183\) 6.96353i 0.514759i
\(184\) 4.16245 + 1.34168i 0.306860 + 0.0989098i
\(185\) 11.5383i 0.848313i
\(186\) −3.09035 + 8.06949i −0.226596 + 0.591684i
\(187\) 0.787528 + 0.787528i 0.0575898 + 0.0575898i
\(188\) −4.17568 + 4.65217i −0.304543 + 0.339295i
\(189\) 0 0
\(190\) −10.1747 + 4.53959i −0.738149 + 0.329337i
\(191\) −3.47088 −0.251144 −0.125572 0.992084i \(-0.540077\pi\)
−0.125572 + 0.992084i \(0.540077\pi\)
\(192\) −7.98677 + 1.30341i −0.576395 + 0.0940657i
\(193\) −7.58654 −0.546091 −0.273046 0.962001i \(-0.588031\pi\)
−0.273046 + 0.962001i \(0.588031\pi\)
\(194\) 18.3976 8.20839i 1.32087 0.589328i
\(195\) −2.50767 + 2.50767i −0.179578 + 0.179578i
\(196\) 0 0
\(197\) 7.82786 + 7.82786i 0.557712 + 0.557712i 0.928655 0.370944i \(-0.120966\pi\)
−0.370944 + 0.928655i \(0.620966\pi\)
\(198\) 4.20893 10.9903i 0.299116 0.781047i
\(199\) 19.6696i 1.39434i 0.716906 + 0.697170i \(0.245558\pi\)
−0.716906 + 0.697170i \(0.754442\pi\)
\(200\) −9.40630 3.03192i −0.665126 0.214389i
\(201\) 4.78340i 0.337395i
\(202\) 19.6669 + 7.53178i 1.38376 + 0.529935i
\(203\) 0 0
\(204\) 0.0288475 + 0.534452i 0.00201973 + 0.0374192i
\(205\) 9.57331 9.57331i 0.668629 0.668629i
\(206\) −7.48295 16.7717i −0.521362 1.16854i
\(207\) −3.05648 −0.212440
\(208\) −8.90350 7.16393i −0.617347 0.496729i
\(209\) −27.0266 −1.86947
\(210\) 0 0
\(211\) −1.13890 + 1.13890i −0.0784048 + 0.0784048i −0.745222 0.666817i \(-0.767656\pi\)
0.666817 + 0.745222i \(0.267656\pi\)
\(212\) 1.21601 0.0656353i 0.0835162 0.00450785i
\(213\) 6.46527 + 6.46527i 0.442993 + 0.442993i
\(214\) −2.31844 0.887886i −0.158485 0.0606946i
\(215\) 5.87286i 0.400526i
\(216\) 12.6719 6.49412i 0.862212 0.441869i
\(217\) 0 0
\(218\) −7.83479 + 20.4581i −0.530639 + 1.38560i
\(219\) −10.5965 10.5965i −0.716048 0.716048i
\(220\) 7.68896 + 6.90143i 0.518390 + 0.465295i
\(221\) −0.534452 + 0.534452i −0.0359512 + 0.0359512i
\(222\) 12.2837 5.48057i 0.824429 0.367832i
\(223\) 8.02710 0.537534 0.268767 0.963205i \(-0.413384\pi\)
0.268767 + 0.963205i \(0.413384\pi\)
\(224\) 0 0
\(225\) 6.90704 0.460469
\(226\) 9.85803 4.39832i 0.655746 0.292572i
\(227\) 3.57431 3.57431i 0.237236 0.237236i −0.578469 0.815704i \(-0.696350\pi\)
0.815704 + 0.578469i \(0.196350\pi\)
\(228\) −9.66572 8.67573i −0.640128 0.574564i
\(229\) −0.636092 0.636092i −0.0420342 0.0420342i 0.685777 0.727811i \(-0.259462\pi\)
−0.727811 + 0.685777i \(0.759462\pi\)
\(230\) 0.959669 2.50588i 0.0632787 0.165233i
\(231\) 0 0
\(232\) 0.598610 + 1.16806i 0.0393007 + 0.0766868i
\(233\) 24.5633i 1.60920i 0.593820 + 0.804598i \(0.297619\pi\)
−0.593820 + 0.804598i \(0.702381\pi\)
\(234\) 7.45852 + 2.85637i 0.487579 + 0.186727i
\(235\) 2.71220 + 2.71220i 0.176925 + 0.176925i
\(236\) 13.0664 0.705270i 0.850551 0.0459092i
\(237\) 9.00561 9.00561i 0.584977 0.584977i
\(238\) 0 0
\(239\) −29.3026 −1.89543 −0.947714 0.319122i \(-0.896612\pi\)
−0.947714 + 0.319122i \(0.896612\pi\)
\(240\) 0.534452 + 4.93643i 0.0344988 + 0.318645i
\(241\) −7.94029 −0.511479 −0.255739 0.966746i \(-0.582319\pi\)
−0.255739 + 0.966746i \(0.582319\pi\)
\(242\) 3.87349 + 8.68172i 0.248997 + 0.558082i
\(243\) −11.2786 + 11.2786i −0.723521 + 0.723521i
\(244\) 0.742058 + 13.7480i 0.0475054 + 0.880124i
\(245\) 0 0
\(246\) 14.7390 + 5.64455i 0.939723 + 0.359883i
\(247\) 18.3415i 1.16704i
\(248\) −5.24132 + 16.2608i −0.332824 + 1.03256i
\(249\) 1.02324i 0.0648452i
\(250\) −5.27196 + 13.7661i −0.333428 + 0.870643i
\(251\) −6.93336 6.93336i −0.437630 0.437630i 0.453584 0.891214i \(-0.350145\pi\)
−0.891214 + 0.453584i \(0.850145\pi\)
\(252\) 0 0
\(253\) 4.60269 4.60269i 0.289369 0.289369i
\(254\) −13.8698 + 6.18822i −0.870268 + 0.388284i
\(255\) 0.328402 0.0205653
\(256\) −15.6293 + 3.42440i −0.976828 + 0.214025i
\(257\) 8.30489 0.518045 0.259022 0.965871i \(-0.416600\pi\)
0.259022 + 0.965871i \(0.416600\pi\)
\(258\) 6.25226 2.78955i 0.389249 0.173670i
\(259\) 0 0
\(260\) −4.68363 + 5.21808i −0.290466 + 0.323612i
\(261\) −0.648632 0.648632i −0.0401493 0.0401493i
\(262\) 9.21767 24.0691i 0.569470 1.48699i
\(263\) 13.8535i 0.854242i 0.904194 + 0.427121i \(0.140472\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(264\) −3.69511 + 11.4638i −0.227418 + 0.705548i
\(265\) 0.747198i 0.0459000i
\(266\) 0 0
\(267\) 7.86258 + 7.86258i 0.481182 + 0.481182i
\(268\) −0.509736 9.44379i −0.0311371 0.576871i
\(269\) −1.28620 + 1.28620i −0.0784211 + 0.0784211i −0.745229 0.666808i \(-0.767660\pi\)
0.666808 + 0.745229i \(0.267660\pi\)
\(270\) −3.55976 7.97855i −0.216640 0.485559i
\(271\) 16.3703 0.994425 0.497212 0.867629i \(-0.334357\pi\)
0.497212 + 0.867629i \(0.334357\pi\)
\(272\) 0.113906 + 1.05209i 0.00690658 + 0.0637921i
\(273\) 0 0
\(274\) 4.23163 + 9.48443i 0.255642 + 0.572975i
\(275\) −10.4012 + 10.4012i −0.627214 + 0.627214i
\(276\) 3.12360 0.168599i 0.188018 0.0101484i
\(277\) 8.26842 + 8.26842i 0.496801 + 0.496801i 0.910441 0.413640i \(-0.135743\pi\)
−0.413640 + 0.910441i \(0.635743\pi\)
\(278\) −15.6176 5.98102i −0.936681 0.358718i
\(279\) 11.9403i 0.714846i
\(280\) 0 0
\(281\) 30.2126i 1.80233i −0.433476 0.901165i \(-0.642713\pi\)
0.433476 0.901165i \(-0.357287\pi\)
\(282\) −1.59915 + 4.17568i −0.0952280 + 0.248658i
\(283\) 11.8077 + 11.8077i 0.701895 + 0.701895i 0.964817 0.262922i \(-0.0846863\pi\)
−0.262922 + 0.964817i \(0.584686\pi\)
\(284\) 13.4533 + 12.0753i 0.798304 + 0.716539i
\(285\) −5.63508 + 5.63508i −0.333794 + 0.333794i
\(286\) −15.5330 + 6.93028i −0.918484 + 0.409796i
\(287\) 0 0
\(288\) 9.66218 5.62894i 0.569349 0.331688i
\(289\) −16.9300 −0.995883
\(290\) 0.735441 0.328129i 0.0431866 0.0192684i
\(291\) 10.1892 10.1892i 0.597303 0.597303i
\(292\) −22.0498 19.7914i −1.29037 1.15820i
\(293\) −15.3849 15.3849i −0.898793 0.898793i 0.0965365 0.995329i \(-0.469224\pi\)
−0.995329 + 0.0965365i \(0.969224\pi\)
\(294\) 0 0
\(295\) 8.02885i 0.467458i
\(296\) 23.6675 12.1292i 1.37565 0.704996i
\(297\) 21.1931i 1.22975i
\(298\) −24.0529 9.21146i −1.39335 0.533606i
\(299\) 3.12360 + 3.12360i 0.180642 + 0.180642i
\(300\) −7.05870 + 0.380999i −0.407534 + 0.0219970i
\(301\) 0 0
\(302\) −7.50074 16.8116i −0.431619 0.967396i
\(303\) 15.0636 0.865379
\(304\) −20.0074 16.0983i −1.14750 0.923303i
\(305\) 8.44764 0.483711
\(306\) −0.301347 0.675414i −0.0172268 0.0386108i
\(307\) 8.15291 8.15291i 0.465311 0.465311i −0.435080 0.900392i \(-0.643280\pi\)
0.900392 + 0.435080i \(0.143280\pi\)
\(308\) 0 0
\(309\) −9.28874 9.28874i −0.528418 0.528418i
\(310\) 9.78932 + 3.74899i 0.555996 + 0.212928i
\(311\) 31.1072i 1.76393i −0.471316 0.881964i \(-0.656221\pi\)
0.471316 0.881964i \(-0.343779\pi\)
\(312\) −7.77985 2.50767i −0.440448 0.141969i
\(313\) 3.17986i 0.179736i −0.995954 0.0898681i \(-0.971355\pi\)
0.995954 0.0898681i \(-0.0286445\pi\)
\(314\) −10.4838 + 27.3753i −0.591637 + 1.54488i
\(315\) 0 0
\(316\) 16.8200 18.7393i 0.946197 1.05417i
\(317\) 1.56945 1.56945i 0.0881490 0.0881490i −0.661657 0.749806i \(-0.730147\pi\)
0.749806 + 0.661657i \(0.230147\pi\)
\(318\) 0.795468 0.354911i 0.0446077 0.0199024i
\(319\) 1.95352 0.109376
\(320\) 1.58120 + 9.68896i 0.0883920 + 0.541629i
\(321\) −1.77577 −0.0991139
\(322\) 0 0
\(323\) −1.20099 + 1.20099i −0.0668248 + 0.0668248i
\(324\) −1.11933 + 1.24706i −0.0621852 + 0.0692812i
\(325\) −7.05870 7.05870i −0.391546 0.391546i
\(326\) 3.18129 8.30695i 0.176195 0.460080i
\(327\) 15.6696i 0.866530i
\(328\) 29.7004 + 9.57331i 1.63993 + 0.528597i
\(329\) 0 0
\(330\) 6.90143 + 2.64302i 0.379911 + 0.145494i
\(331\) 1.95967 + 1.95967i 0.107713 + 0.107713i 0.758909 0.651196i \(-0.225733\pi\)
−0.651196 + 0.758909i \(0.725733\pi\)
\(332\) −0.109040 2.02017i −0.00598435 0.110871i
\(333\) −13.1428 + 13.1428i −0.720218 + 0.720218i
\(334\) −3.14482 7.04854i −0.172077 0.385679i
\(335\) −5.80287 −0.317045
\(336\) 0 0
\(337\) −28.7067 −1.56375 −0.781876 0.623434i \(-0.785737\pi\)
−0.781876 + 0.623434i \(0.785737\pi\)
\(338\) 2.78769 + 6.24809i 0.151630 + 0.339851i
\(339\) 5.45971 5.45971i 0.296531 0.296531i
\(340\) 0.648359 0.0349957i 0.0351622 0.00189791i
\(341\) 17.9806 + 17.9806i 0.973705 + 0.973705i
\(342\) 16.7603 + 6.41866i 0.906295 + 0.347082i
\(343\) 0 0
\(344\) 12.0465 6.17362i 0.649503 0.332859i
\(345\) 1.91934i 0.103334i
\(346\) −8.31316 + 21.7072i −0.446919 + 1.16699i
\(347\) 4.41880 + 4.41880i 0.237213 + 0.237213i 0.815695 0.578482i \(-0.196355\pi\)
−0.578482 + 0.815695i \(0.696355\pi\)
\(348\) 0.698653 + 0.627095i 0.0374518 + 0.0336158i
\(349\) 7.46427 7.46427i 0.399553 0.399553i −0.478522 0.878075i \(-0.658827\pi\)
0.878075 + 0.478522i \(0.158827\pi\)
\(350\) 0 0
\(351\) 14.3826 0.767686
\(352\) −6.07358 + 23.0266i −0.323723 + 1.22732i
\(353\) 6.70687 0.356971 0.178485 0.983943i \(-0.442880\pi\)
0.178485 + 0.983943i \(0.442880\pi\)
\(354\) 8.54753 3.81362i 0.454296 0.202691i
\(355\) 7.84320 7.84320i 0.416274 0.416274i
\(356\) 16.3608 + 14.6851i 0.867122 + 0.778309i
\(357\) 0 0
\(358\) 9.25693 24.1716i 0.489244 1.27751i
\(359\) 11.7540i 0.620353i 0.950679 + 0.310176i \(0.100388\pi\)
−0.950679 + 0.310176i \(0.899612\pi\)
\(360\) −3.12921 6.10597i −0.164924 0.321813i
\(361\) 22.2158i 1.16925i
\(362\) −2.59742 0.994727i −0.136517 0.0522817i
\(363\) 4.80823 + 4.80823i 0.252367 + 0.252367i
\(364\) 0 0
\(365\) −12.8550 + 12.8550i −0.672859 + 0.672859i
\(366\) 4.01254 + 8.99338i 0.209739 + 0.470092i
\(367\) −34.4703 −1.79934 −0.899669 0.436573i \(-0.856192\pi\)
−0.899669 + 0.436573i \(0.856192\pi\)
\(368\) 6.14890 0.665723i 0.320534 0.0347032i
\(369\) −21.8090 −1.13533
\(370\) −6.64863 14.9017i −0.345646 0.774703i
\(371\) 0 0
\(372\) 0.658638 + 12.2025i 0.0341488 + 0.632668i
\(373\) −8.79753 8.79753i −0.455519 0.455519i 0.441662 0.897181i \(-0.354389\pi\)
−0.897181 + 0.441662i \(0.854389\pi\)
\(374\) 1.47088 + 0.563300i 0.0760575 + 0.0291275i
\(375\) 10.5439i 0.544486i
\(376\) −2.71220 + 8.41440i −0.139871 + 0.433939i
\(377\) 1.32575i 0.0682795i
\(378\) 0 0
\(379\) −0.171601 0.171601i −0.00881456 0.00881456i 0.702686 0.711500i \(-0.251984\pi\)
−0.711500 + 0.702686i \(0.751984\pi\)
\(380\) −10.5248 + 11.7258i −0.539909 + 0.601518i
\(381\) −7.68156 + 7.68156i −0.393538 + 0.393538i
\(382\) −4.48264 + 2.00000i −0.229352 + 0.102329i
\(383\) −21.7161 −1.10964 −0.554819 0.831971i \(-0.687213\pi\)
−0.554819 + 0.831971i \(0.687213\pi\)
\(384\) −9.56384 + 6.28551i −0.488053 + 0.320756i
\(385\) 0 0
\(386\) −9.79800 + 4.37153i −0.498705 + 0.222505i
\(387\) −6.68950 + 6.68950i −0.340047 + 0.340047i
\(388\) 19.0306 21.2022i 0.966134 1.07638i
\(389\) 11.3320 + 11.3320i 0.574555 + 0.574555i 0.933398 0.358843i \(-0.116829\pi\)
−0.358843 + 0.933398i \(0.616829\pi\)
\(390\) −1.79368 + 4.68363i −0.0908263 + 0.237165i
\(391\) 0.409063i 0.0206872i
\(392\) 0 0
\(393\) 18.4353i 0.929940i
\(394\) 14.6203 + 5.59908i 0.736558 + 0.282078i
\(395\) −10.9249 10.9249i −0.549694 0.549694i
\(396\) −0.897037 16.6192i −0.0450778 0.835148i
\(397\) 14.7477 14.7477i 0.740164 0.740164i −0.232445 0.972609i \(-0.574673\pi\)
0.972609 + 0.232445i \(0.0746727\pi\)
\(398\) 11.3341 + 25.4032i 0.568125 + 1.27335i
\(399\) 0 0
\(400\) −13.8953 + 1.50440i −0.694764 + 0.0752200i
\(401\) −0.146885 −0.00733506 −0.00366753 0.999993i \(-0.501167\pi\)
−0.00366753 + 0.999993i \(0.501167\pi\)
\(402\) −2.75630 6.17775i −0.137472 0.308118i
\(403\) −12.2025 + 12.2025i −0.607848 + 0.607848i
\(404\) 29.7398 1.60523i 1.47961 0.0798630i
\(405\) 0.727032 + 0.727032i 0.0361265 + 0.0361265i
\(406\) 0 0
\(407\) 39.5828i 1.96205i
\(408\) 0.345220 + 0.673622i 0.0170909 + 0.0333492i
\(409\) 2.27164i 0.112326i −0.998422 0.0561628i \(-0.982113\pi\)
0.998422 0.0561628i \(-0.0178866\pi\)
\(410\) 6.84756 17.8803i 0.338177 0.883043i
\(411\) 5.25280 + 5.25280i 0.259102 + 0.259102i
\(412\) −19.3284 17.3488i −0.952244 0.854712i
\(413\) 0 0
\(414\) −3.94744 + 1.76121i −0.194006 + 0.0865590i
\(415\) −1.24132 −0.0609340
\(416\) −15.6269 4.12180i −0.766170 0.202088i
\(417\) −11.9620 −0.585784
\(418\) −34.9048 + 15.5733i −1.70725 + 0.761715i
\(419\) −19.3654 + 19.3654i −0.946061 + 0.946061i −0.998618 0.0525570i \(-0.983263\pi\)
0.0525570 + 0.998618i \(0.483263\pi\)
\(420\) 0 0
\(421\) 8.11005 + 8.11005i 0.395260 + 0.395260i 0.876557 0.481298i \(-0.159834\pi\)
−0.481298 + 0.876557i \(0.659834\pi\)
\(422\) −0.814625 + 2.12714i −0.0396553 + 0.103548i
\(423\) 6.17869i 0.300418i
\(424\) 1.53266 0.785463i 0.0744326 0.0381454i
\(425\) 0.924401i 0.0448400i
\(426\) 12.0753 + 4.62446i 0.585051 + 0.224056i
\(427\) 0 0
\(428\) −3.50588 + 0.189233i −0.169463 + 0.00914690i
\(429\) −8.60269 + 8.60269i −0.415342 + 0.415342i
\(430\) −3.38407 7.58479i −0.163194 0.365771i
\(431\) −10.7658 −0.518569 −0.259284 0.965801i \(-0.583487\pi\)
−0.259284 + 0.965801i \(0.583487\pi\)
\(432\) 12.6236 15.6890i 0.607355 0.754836i
\(433\) −4.99439 −0.240015 −0.120008 0.992773i \(-0.538292\pi\)
−0.120008 + 0.992773i \(0.538292\pi\)
\(434\) 0 0
\(435\) 0.407313 0.407313i 0.0195291 0.0195291i
\(436\) 1.66981 + 30.9362i 0.0799692 + 1.48158i
\(437\) 7.01916 + 7.01916i 0.335772 + 0.335772i
\(438\) −19.7914 7.57945i −0.945669 0.362160i
\(439\) 1.69924i 0.0811004i 0.999178 + 0.0405502i \(0.0129111\pi\)
−0.999178 + 0.0405502i \(0.987089\pi\)
\(440\) 13.9070 + 4.48264i 0.662992 + 0.213701i
\(441\) 0 0
\(442\) −0.382281 + 0.998208i −0.0181833 + 0.0474799i
\(443\) −7.90291 7.90291i −0.375479 0.375479i 0.493989 0.869468i \(-0.335538\pi\)
−0.869468 + 0.493989i \(0.835538\pi\)
\(444\) 12.7064 14.1563i 0.603018 0.671828i
\(445\) 9.53831 9.53831i 0.452159 0.452159i
\(446\) 10.3670 4.62539i 0.490891 0.219019i
\(447\) −18.4229 −0.871375
\(448\) 0 0
\(449\) 4.05419 0.191329 0.0956646 0.995414i \(-0.469502\pi\)
0.0956646 + 0.995414i \(0.469502\pi\)
\(450\) 8.92043 3.97999i 0.420513 0.187619i
\(451\) 32.8417 32.8417i 1.54646 1.54646i
\(452\) 10.1972 11.3608i 0.479637 0.534369i
\(453\) −9.31081 9.31081i −0.437460 0.437460i
\(454\) 2.55662 6.67582i 0.119988 0.313312i
\(455\) 0 0
\(456\) −17.4824 5.63508i −0.818689 0.263887i
\(457\) 10.1498i 0.474789i −0.971413 0.237395i \(-0.923707\pi\)
0.971413 0.237395i \(-0.0762935\pi\)
\(458\) −1.18804 0.454981i −0.0555136 0.0212599i
\(459\) −0.941765 0.941765i −0.0439578 0.0439578i
\(460\) −0.204532 3.78932i −0.00953633 0.176678i
\(461\) −1.02609 + 1.02609i −0.0477897 + 0.0477897i −0.730598 0.682808i \(-0.760759\pi\)
0.682808 + 0.730598i \(0.260759\pi\)
\(462\) 0 0
\(463\) 10.5945 0.492369 0.246185 0.969223i \(-0.420823\pi\)
0.246185 + 0.969223i \(0.420823\pi\)
\(464\) 1.44617 + 1.16361i 0.0671366 + 0.0540194i
\(465\) 7.49798 0.347710
\(466\) 14.1539 + 31.7235i 0.655668 + 1.46956i
\(467\) −9.26741 + 9.26741i −0.428844 + 0.428844i −0.888235 0.459390i \(-0.848068\pi\)
0.459390 + 0.888235i \(0.348068\pi\)
\(468\) 11.2786 0.608770i 0.521352 0.0281404i
\(469\) 0 0
\(470\) 5.06564 + 1.93997i 0.233660 + 0.0894843i
\(471\) 20.9677i 0.966139i
\(472\) 16.4689 8.44002i 0.758041 0.388483i
\(473\) 20.1472i 0.926367i
\(474\) 6.44149 16.8200i 0.295868 0.772566i
\(475\) −15.8619 15.8619i −0.727793 0.727793i
\(476\) 0 0
\(477\) −0.851098 + 0.851098i −0.0389691 + 0.0389691i
\(478\) −37.8443 + 16.8848i −1.73096 + 0.772293i
\(479\) −33.4766 −1.52958 −0.764792 0.644277i \(-0.777158\pi\)
−0.764792 + 0.644277i \(0.777158\pi\)
\(480\) 3.53473 + 6.06743i 0.161337 + 0.276939i
\(481\) 26.8627 1.22483
\(482\) −10.2549 + 4.57537i −0.467096 + 0.208402i
\(483\) 0 0
\(484\) 10.0052 + 8.98044i 0.454782 + 0.408202i
\(485\) −12.3608 12.3608i −0.561277 0.561277i
\(486\) −8.06729 + 21.0652i −0.365940 + 0.955538i
\(487\) 23.0248i 1.04335i −0.853143 0.521677i \(-0.825307\pi\)
0.853143 0.521677i \(-0.174693\pi\)
\(488\) 8.88026 + 17.3279i 0.401991 + 0.784397i
\(489\) 6.36258i 0.287726i
\(490\) 0 0
\(491\) −21.9341 21.9341i −0.989874 0.989874i 0.0100754 0.999949i \(-0.496793\pi\)
−0.999949 + 0.0100754i \(0.996793\pi\)
\(492\) 22.2879 1.20301i 1.00482 0.0542357i
\(493\) 0.0868093 0.0868093i 0.00390970 0.00390970i
\(494\) −10.5688 23.6880i −0.475511 1.06577i
\(495\) −10.2119 −0.458992
\(496\) 2.60068 + 24.0209i 0.116774 + 1.07857i
\(497\) 0 0
\(498\) −0.589613 1.32151i −0.0264212 0.0592184i
\(499\) 6.12180 6.12180i 0.274050 0.274050i −0.556678 0.830728i \(-0.687924\pi\)
0.830728 + 0.556678i \(0.187924\pi\)
\(500\) 1.12360 + 20.8167i 0.0502488 + 0.930951i
\(501\) −3.90372 3.90372i −0.174406 0.174406i
\(502\) −12.9496 4.95926i −0.577968 0.221343i
\(503\) 11.5286i 0.514034i 0.966407 + 0.257017i \(0.0827396\pi\)
−0.966407 + 0.257017i \(0.917260\pi\)
\(504\) 0 0
\(505\) 18.2740i 0.813183i
\(506\) 3.29220 8.59655i 0.146356 0.382163i
\(507\) 3.46041 + 3.46041i 0.153682 + 0.153682i
\(508\) −14.3470 + 15.9842i −0.636546 + 0.709182i
\(509\) 17.9337 17.9337i 0.794896 0.794896i −0.187390 0.982286i \(-0.560003\pi\)
0.982286 + 0.187390i \(0.0600027\pi\)
\(510\) 0.424131 0.189233i 0.0187808 0.00837936i
\(511\) 0 0
\(512\) −18.2119 + 13.4285i −0.804861 + 0.593463i
\(513\) 32.3197 1.42695
\(514\) 10.7258 4.78546i 0.473093 0.211078i
\(515\) −11.2684 + 11.2684i −0.496546 + 0.496546i
\(516\) 6.46739 7.20539i 0.284711 0.317199i
\(517\) 9.30435 + 9.30435i 0.409205 + 0.409205i
\(518\) 0 0
\(519\) 16.6263i 0.729815i
\(520\) −3.04212 + 9.43795i −0.133406 + 0.413882i
\(521\) 0.287525i 0.0125967i −0.999980 0.00629835i \(-0.997995\pi\)
0.999980 0.00629835i \(-0.00200484\pi\)
\(522\) −1.21146 0.463951i −0.0530243 0.0203066i
\(523\) 3.84300 + 3.84300i 0.168043 + 0.168043i 0.786119 0.618076i \(-0.212087\pi\)
−0.618076 + 0.786119i \(0.712087\pi\)
\(524\) −1.96454 36.3966i −0.0858211 1.58999i
\(525\) 0 0
\(526\) 7.98268 + 17.8917i 0.348062 + 0.780117i
\(527\) 1.59802 0.0696109
\(528\) 1.83347 + 16.9347i 0.0797914 + 0.736987i
\(529\) 20.6092 0.896054
\(530\) −0.430552 0.965004i −0.0187020 0.0419171i
\(531\) −9.14529 + 9.14529i −0.396872 + 0.396872i
\(532\) 0 0
\(533\) 22.2879 + 22.2879i 0.965396 + 0.965396i
\(534\) 14.6851 + 5.62392i 0.635487 + 0.243371i
\(535\) 2.15424i 0.0931358i
\(536\) −6.10004 11.9029i −0.263482 0.514127i
\(537\) 18.5139i 0.798932i
\(538\) −0.919989 + 2.40226i −0.0396635 + 0.103569i
\(539\) 0 0
\(540\) −9.19484 8.25308i −0.395683 0.355156i
\(541\) 26.3532 26.3532i 1.13301 1.13301i 0.143339 0.989674i \(-0.454216\pi\)
0.989674 0.143339i \(-0.0457840\pi\)
\(542\) 21.1422 9.43293i 0.908136 0.405179i
\(543\) −1.98945 −0.0853757
\(544\) 0.753346 + 1.29313i 0.0322994 + 0.0554426i
\(545\) 19.0092 0.814264
\(546\) 0 0
\(547\) 10.4205 10.4205i 0.445550 0.445550i −0.448322 0.893872i \(-0.647978\pi\)
0.893872 + 0.448322i \(0.147978\pi\)
\(548\) 10.9303 + 9.81077i 0.466919 + 0.419095i
\(549\) −9.62232 9.62232i −0.410671 0.410671i
\(550\) −7.43970 + 19.4265i −0.317230 + 0.828347i
\(551\) 2.97914i 0.126916i
\(552\) 3.93697 2.01763i 0.167569 0.0858761i
\(553\) 0 0
\(554\) 15.4431 + 5.91420i 0.656114 + 0.251270i
\(555\) −8.25308 8.25308i −0.350324 0.350324i
\(556\) −23.6165 + 1.27472i −1.00156 + 0.0540601i
\(557\) 7.74720 7.74720i 0.328259 0.328259i −0.523665 0.851924i \(-0.675436\pi\)
0.851924 + 0.523665i \(0.175436\pi\)
\(558\) −6.88026 15.4209i −0.291265 0.652817i
\(559\) 13.6728 0.578297
\(560\) 0 0
\(561\) 1.12660 0.0475651
\(562\) −17.4092 39.0195i −0.734361 1.64594i
\(563\) −14.0570 + 14.0570i −0.592430 + 0.592430i −0.938287 0.345857i \(-0.887588\pi\)
0.345857 + 0.938287i \(0.387588\pi\)
\(564\) 0.340822 + 6.31436i 0.0143512 + 0.265882i
\(565\) −6.62333 6.62333i −0.278645 0.278645i
\(566\) 22.0535 + 8.44576i 0.926977 + 0.355002i
\(567\) 0 0
\(568\) 24.3329 + 7.84320i 1.02099 + 0.329093i
\(569\) 26.9645i 1.13041i −0.824951 0.565205i \(-0.808797\pi\)
0.824951 0.565205i \(-0.191203\pi\)
\(570\) −4.03064 + 10.5248i −0.168825 + 0.440834i
\(571\) 21.8131 + 21.8131i 0.912852 + 0.912852i 0.996496 0.0836439i \(-0.0266558\pi\)
−0.0836439 + 0.996496i \(0.526656\pi\)
\(572\) −16.0674 + 17.9009i −0.671813 + 0.748474i
\(573\) −2.48264 + 2.48264i −0.103714 + 0.103714i
\(574\) 0 0
\(575\) 5.40264 0.225306
\(576\) 9.23517 12.8373i 0.384799 0.534889i
\(577\) −8.16250 −0.339809 −0.169905 0.985461i \(-0.554346\pi\)
−0.169905 + 0.985461i \(0.554346\pi\)
\(578\) −21.8651 + 9.75545i −0.909467 + 0.405773i
\(579\) −5.42647 + 5.42647i −0.225516 + 0.225516i
\(580\) 0.760746 0.847555i 0.0315883 0.0351928i
\(581\) 0 0
\(582\) 7.28811 19.0306i 0.302102 0.788845i
\(583\) 2.56330i 0.106161i
\(584\) −39.8815 12.8550i −1.65031 0.531942i
\(585\) 6.93028i 0.286532i
\(586\) −28.7346 11.0044i −1.18702 0.454588i
\(587\) 0.0166226 + 0.0166226i 0.000686087 + 0.000686087i 0.707450 0.706764i \(-0.249846\pi\)
−0.706764 + 0.707450i \(0.749846\pi\)
\(588\) 0 0
\(589\) −27.4206 + 27.4206i −1.12985 + 1.12985i
\(590\) −4.62640 10.3692i −0.190466 0.426895i
\(591\) 11.1982 0.460631
\(592\) 23.5774 29.3026i 0.969027 1.20433i
\(593\) −16.7146 −0.686386 −0.343193 0.939265i \(-0.611508\pi\)
−0.343193 + 0.939265i \(0.611508\pi\)
\(594\) −12.2119 27.3708i −0.501062 1.12304i
\(595\) 0 0
\(596\) −36.3721 + 1.96321i −1.48986 + 0.0804163i
\(597\) 14.0692 + 14.0692i 0.575813 + 0.575813i
\(598\) 5.83401 + 2.23423i 0.238570 + 0.0913646i
\(599\) 17.5716i 0.717954i 0.933346 + 0.358977i \(0.116874\pi\)
−0.933346 + 0.358977i \(0.883126\pi\)
\(600\) −8.89676 + 4.55944i −0.363209 + 0.186138i
\(601\) 6.99237i 0.285225i 0.989779 + 0.142612i \(0.0455503\pi\)
−0.989779 + 0.142612i \(0.954450\pi\)
\(602\) 0 0
\(603\) 6.60978 + 6.60978i 0.269171 + 0.269171i
\(604\) −19.3744 17.3900i −0.788332 0.707589i
\(605\) 5.83300 5.83300i 0.237145 0.237145i
\(606\) 19.4546 8.67997i 0.790288 0.352599i
\(607\) 6.25546 0.253901 0.126951 0.991909i \(-0.459481\pi\)
0.126951 + 0.991909i \(0.459481\pi\)
\(608\) −35.1157 9.26227i −1.42413 0.375635i
\(609\) 0 0
\(610\) 10.9101 4.86772i 0.441738 0.197088i
\(611\) −6.31436 + 6.31436i −0.255451 + 0.255451i
\(612\) −0.778377 0.698653i −0.0314640 0.0282414i
\(613\) −5.69897 5.69897i −0.230179 0.230179i 0.582588 0.812767i \(-0.302040\pi\)
−0.812767 + 0.582588i \(0.802040\pi\)
\(614\) 5.83158 15.2274i 0.235344 0.614526i
\(615\) 13.6951i 0.552240i
\(616\) 0 0
\(617\) 44.4895i 1.79108i 0.444980 + 0.895541i \(0.353211\pi\)
−0.444980 + 0.895541i \(0.646789\pi\)
\(618\) −17.3488 6.64401i −0.697870 0.267261i
\(619\) 13.8751 + 13.8751i 0.557688 + 0.557688i 0.928649 0.370960i \(-0.120971\pi\)
−0.370960 + 0.928649i \(0.620971\pi\)
\(620\) 14.8031 0.799011i 0.594508 0.0320891i
\(621\) −5.50413 + 5.50413i −0.220873 + 0.220873i
\(622\) −17.9247 40.1749i −0.718714 1.61087i
\(623\) 0 0
\(624\) −11.4926 + 1.24427i −0.460074 + 0.0498108i
\(625\) −4.67950 −0.187180
\(626\) −1.83230 4.10678i −0.0732336 0.164140i
\(627\) −19.3314 + 19.3314i −0.772024 + 0.772024i
\(628\) 2.23439 + 41.3961i 0.0891618 + 1.65188i
\(629\) −1.75895 1.75895i −0.0701341 0.0701341i
\(630\) 0 0
\(631\) 8.64101i 0.343993i 0.985098 + 0.171997i \(0.0550218\pi\)
−0.985098 + 0.171997i \(0.944978\pi\)
\(632\) 10.9249 33.8938i 0.434571 1.34822i
\(633\) 1.62925i 0.0647569i
\(634\) 1.12259 2.93129i 0.0445837 0.116416i
\(635\) 9.31871 + 9.31871i 0.369802 + 0.369802i
\(636\) 0.822839 0.916733i 0.0326277 0.0363508i
\(637\) 0 0
\(638\) 2.52297 1.12566i 0.0998853 0.0445654i
\(639\) −17.8676 −0.706833
\(640\) 7.62512 + 11.6022i 0.301409 + 0.458615i
\(641\) 15.0886 0.595966 0.297983 0.954571i \(-0.403686\pi\)
0.297983 + 0.954571i \(0.403686\pi\)
\(642\) −2.29341 + 1.02324i −0.0905135 + 0.0403840i
\(643\) 12.3557 12.3557i 0.487261 0.487261i −0.420180 0.907441i \(-0.638033\pi\)
0.907441 + 0.420180i \(0.138033\pi\)
\(644\) 0 0
\(645\) −4.20072 4.20072i −0.165403 0.165403i
\(646\) −0.859038 + 2.24311i −0.0337984 + 0.0882540i
\(647\) 40.8085i 1.60435i 0.597091 + 0.802173i \(0.296323\pi\)
−0.597091 + 0.802173i \(0.703677\pi\)
\(648\) −0.727032 + 2.25556i −0.0285605 + 0.0886068i
\(649\) 27.5434i 1.08117i
\(650\) −13.1837 5.04892i −0.517107 0.198035i
\(651\) 0 0
\(652\) −0.678019 12.5615i −0.0265533 0.491948i
\(653\) −9.88380 + 9.88380i −0.386783 + 0.386783i −0.873538 0.486755i \(-0.838180\pi\)
0.486755 + 0.873538i \(0.338180\pi\)
\(654\) 9.02916 + 20.2372i 0.353068 + 0.791339i
\(655\) −22.3644 −0.873850
\(656\) 43.8744 4.75015i 1.71301 0.185462i
\(657\) 29.2850 1.14252
\(658\) 0 0
\(659\) −2.71835 + 2.71835i −0.105892 + 0.105892i −0.758068 0.652176i \(-0.773856\pi\)
0.652176 + 0.758068i \(0.273856\pi\)
\(660\) 10.4362 0.563300i 0.406227 0.0219264i
\(661\) 9.77297 + 9.77297i 0.380125 + 0.380125i 0.871147 0.491022i \(-0.163377\pi\)
−0.491022 + 0.871147i \(0.663377\pi\)
\(662\) 3.66011 + 1.40170i 0.142254 + 0.0544788i
\(663\) 0.764562i 0.0296931i
\(664\) −1.30489 2.54621i −0.0506395 0.0988121i
\(665\) 0 0
\(666\) −9.40070 + 24.5470i −0.364270 + 0.951177i
\(667\) −0.507355 0.507355i −0.0196449 0.0196449i
\(668\) −8.12306 7.29107i −0.314291 0.282100i
\(669\) 5.74159 5.74159i 0.221983 0.221983i
\(670\) −7.49440 + 3.34374i −0.289534 + 0.129180i
\(671\) 28.9801 1.11876
\(672\) 0 0
\(673\) −19.1036 −0.736391 −0.368195 0.929748i \(-0.620024\pi\)
−0.368195 + 0.929748i \(0.620024\pi\)
\(674\) −37.0746 + 16.5414i −1.42806 + 0.637152i
\(675\) 12.4382 12.4382i 0.478748 0.478748i
\(676\) 7.20058 + 6.46308i 0.276945 + 0.248580i
\(677\) −10.4225 10.4225i −0.400568 0.400568i 0.477865 0.878433i \(-0.341411\pi\)
−0.878433 + 0.477865i \(0.841411\pi\)
\(678\) 3.90520 10.1972i 0.149978 0.391622i
\(679\) 0 0
\(680\) 0.817189 0.418796i 0.0313378 0.0160601i
\(681\) 5.11324i 0.195940i
\(682\) 33.5828 + 12.8611i 1.28595 + 0.492477i
\(683\) −35.0483 35.0483i −1.34109 1.34109i −0.894980 0.446107i \(-0.852810\pi\)
−0.446107 0.894980i \(-0.647190\pi\)
\(684\) 25.3445 1.36799i 0.969072 0.0523064i
\(685\) 6.37232 6.37232i 0.243474 0.243474i
\(686\) 0 0
\(687\) −0.909963 −0.0347172
\(688\) 12.0006 14.9147i 0.457520 0.568616i
\(689\) 1.73957 0.0662724
\(690\) −1.10597 2.47882i −0.0421034 0.0943672i
\(691\) −4.01456 + 4.01456i −0.152721 + 0.152721i −0.779332 0.626611i \(-0.784441\pi\)
0.626611 + 0.779332i \(0.284441\pi\)
\(692\) 1.77176 + 32.8251i 0.0673522 + 1.24782i
\(693\) 0 0
\(694\) 8.25308 + 3.16066i 0.313282 + 0.119977i
\(695\) 14.5115i 0.550452i
\(696\) 1.26366 + 0.407313i 0.0478988 + 0.0154391i
\(697\) 2.91880i 0.110557i
\(698\) 5.33901 13.9412i 0.202084 0.527681i
\(699\) 17.5695 + 17.5695i 0.664541 + 0.664541i
\(700\) 0 0
\(701\) 6.91144 6.91144i 0.261041 0.261041i −0.564436 0.825477i \(-0.690906\pi\)
0.825477 + 0.564436i \(0.190906\pi\)
\(702\) 18.5751 8.28757i 0.701072 0.312794i
\(703\) 60.3642 2.27668
\(704\) 5.42440 + 33.2385i 0.204440 + 1.25272i
\(705\) 3.87995 0.146127
\(706\) 8.66191 3.86465i 0.325995 0.145448i
\(707\) 0 0
\(708\) 8.84163 9.85056i 0.332289 0.370207i
\(709\) 18.5092 + 18.5092i 0.695127 + 0.695127i 0.963355 0.268228i \(-0.0864381\pi\)
−0.268228 + 0.963355i \(0.586438\pi\)
\(710\) 5.61005 14.6489i 0.210541 0.549764i
\(711\) 24.8882i 0.933380i
\(712\) 29.5919 + 9.53831i 1.10900 + 0.357463i
\(713\) 9.33961i 0.349771i
\(714\) 0 0
\(715\) 10.4362 + 10.4362i 0.390290 + 0.390290i
\(716\) −1.97290 36.5516i −0.0737308 1.36600i
\(717\) −20.9594 + 20.9594i −0.782745 + 0.782745i
\(718\) 6.77292 + 15.1803i 0.252763 + 0.566523i
\(719\) −14.5342 −0.542034 −0.271017 0.962575i \(-0.587360\pi\)
−0.271017 + 0.962575i \(0.587360\pi\)
\(720\) −7.55976 6.08273i −0.281736 0.226690i
\(721\) 0 0
\(722\) −12.8012 28.6917i −0.476413 1.06779i
\(723\) −5.67950 + 5.67950i −0.211223 + 0.211223i
\(724\) −3.92775 + 0.212003i −0.145974 + 0.00787904i
\(725\) 1.14652 + 1.14652i 0.0425807 + 0.0425807i
\(726\) 8.98044 + 3.43921i 0.333295 + 0.127641i
\(727\) 35.2605i 1.30774i 0.756607 + 0.653870i \(0.226856\pi\)
−0.756607 + 0.653870i \(0.773144\pi\)
\(728\) 0 0
\(729\) 13.6210i 0.504481i
\(730\) −9.19484 + 24.0095i −0.340316 + 0.888630i
\(731\) −0.895286 0.895286i −0.0331134 0.0331134i
\(732\) 10.3644 + 9.30282i 0.383078 + 0.343842i
\(733\) 4.68087 4.68087i 0.172892 0.172892i −0.615357 0.788249i \(-0.710988\pi\)
0.788249 + 0.615357i \(0.210988\pi\)
\(734\) −44.5184 + 19.8626i −1.64320 + 0.733141i
\(735\) 0 0
\(736\) 7.55769 4.40291i 0.278580 0.162294i
\(737\) −19.9070 −0.733285
\(738\) −28.1663 + 12.5668i −1.03682 + 0.462592i
\(739\) 11.1039 11.1039i 0.408464 0.408464i −0.472739 0.881203i \(-0.656735\pi\)
0.881203 + 0.472739i \(0.156735\pi\)
\(740\) −17.1734 15.4144i −0.631306 0.566646i
\(741\) −13.1192 13.1192i −0.481946 0.481946i
\(742\) 0 0
\(743\) 9.88941i 0.362807i −0.983409 0.181404i \(-0.941936\pi\)
0.983409 0.181404i \(-0.0580641\pi\)
\(744\) 7.88196 + 15.3799i 0.288967 + 0.563856i
\(745\) 22.3494i 0.818817i
\(746\) −16.4313 6.29266i −0.601594 0.230391i
\(747\) 1.41393 + 1.41393i 0.0517330 + 0.0517330i
\(748\) 2.22423 0.120054i 0.0813258 0.00438963i
\(749\) 0 0
\(750\) 6.07564 + 13.6175i 0.221851 + 0.497239i
\(751\) −3.91696 −0.142932 −0.0714659 0.997443i \(-0.522768\pi\)
−0.0714659 + 0.997443i \(0.522768\pi\)
\(752\) 1.34576 + 12.4300i 0.0490748 + 0.453276i
\(753\) −9.91853 −0.361451
\(754\) 0.763926 + 1.71220i 0.0278205 + 0.0623547i
\(755\) −11.2952 + 11.2952i −0.411074 + 0.411074i
\(756\) 0 0
\(757\) 30.8256 + 30.8256i 1.12037 + 1.12037i 0.991685 + 0.128689i \(0.0410770\pi\)
0.128689 + 0.991685i \(0.458923\pi\)
\(758\) −0.320503 0.122742i −0.0116412 0.00445820i
\(759\) 6.58439i 0.238998i
\(760\) −6.83607 + 21.2084i −0.247970 + 0.769309i
\(761\) 30.8862i 1.11962i −0.828620 0.559812i \(-0.810873\pi\)
0.828620 0.559812i \(-0.189127\pi\)
\(762\) −5.49444 + 14.3470i −0.199042 + 0.519737i
\(763\) 0 0
\(764\) −4.63688 + 5.16599i −0.167756 + 0.186899i
\(765\) −0.453791 + 0.453791i −0.0164069 + 0.0164069i
\(766\) −28.0463 + 12.5133i −1.01335 + 0.452123i
\(767\) 18.6922 0.674936
\(768\) −8.72983 + 13.6286i −0.315011 + 0.491780i
\(769\) −32.1016 −1.15761 −0.578807 0.815465i \(-0.696481\pi\)
−0.578807 + 0.815465i \(0.696481\pi\)
\(770\) 0 0
\(771\) 5.94029 5.94029i 0.213934 0.213934i
\(772\) −10.1351 + 11.2917i −0.364771 + 0.406396i
\(773\) 30.9735 + 30.9735i 1.11404 + 1.11404i 0.992599 + 0.121439i \(0.0387509\pi\)
0.121439 + 0.992599i \(0.461249\pi\)
\(774\) −4.78484 + 12.4941i −0.171988 + 0.449092i
\(775\) 21.1057i 0.758137i
\(776\) 12.3608 38.3485i 0.443728 1.37663i
\(777\) 0 0
\(778\) 21.1650 + 8.10550i 0.758801 + 0.290596i
\(779\) 50.0840 + 50.0840i 1.79444 + 1.79444i
\(780\) 0.382281 + 7.08245i 0.0136879 + 0.253593i
\(781\) 26.9065 26.9065i 0.962790 0.962790i
\(782\) −0.235711 0.528304i −0.00842902 0.0188921i
\(783\) −2.33612 −0.0834860
\(784\) 0 0
\(785\) 25.4364 0.907865
\(786\) −10.6229 23.8092i −0.378905 0.849247i
\(787\) −24.5008 + 24.5008i −0.873360 + 0.873360i −0.992837 0.119477i \(-0.961878\pi\)
0.119477 + 0.992837i \(0.461878\pi\)
\(788\) 22.1083 1.19332i 0.787577 0.0425101i
\(789\) 9.90906 + 9.90906i 0.352772 + 0.352772i
\(790\) −20.4047 7.81435i −0.725968 0.278022i
\(791\) 0 0
\(792\) −10.7349 20.9468i −0.381448 0.744313i
\(793\) 19.6672i 0.698403i
\(794\) 10.5487 27.5445i 0.374358 0.977518i
\(795\) −0.534452 0.534452i −0.0189551 0.0189551i
\(796\) 29.2758 + 26.2773i 1.03765 + 0.931374i
\(797\) 10.8522 10.8522i 0.384403 0.384403i −0.488283 0.872686i \(-0.662376\pi\)
0.872686 + 0.488283i \(0.162376\pi\)
\(798\) 0 0
\(799\) 0.826921 0.0292544
\(800\) −17.0789 + 9.94971i −0.603829 + 0.351775i
\(801\) −21.7293 −0.767767
\(802\) −0.189701 + 0.0846382i −0.00669858 + 0.00298868i
\(803\) −44.0996 + 44.0996i −1.55624 + 1.55624i
\(804\) −7.11951 6.39031i −0.251086 0.225369i
\(805\) 0 0
\(806\) −8.72813 + 22.7908i −0.307435 + 0.802772i
\(807\) 1.83998i 0.0647703i
\(808\) 37.4839 19.2099i 1.31868 0.675801i
\(809\) 40.1576i 1.41186i 0.708279 + 0.705932i \(0.249472\pi\)
−0.708279 + 0.705932i \(0.750528\pi\)
\(810\) 1.35789 + 0.520029i 0.0477115 + 0.0182719i
\(811\) 15.7147 + 15.7147i 0.551819 + 0.551819i 0.926966 0.375147i \(-0.122408\pi\)
−0.375147 + 0.926966i \(0.622408\pi\)
\(812\) 0 0
\(813\) 11.7093 11.7093i 0.410662 0.410662i
\(814\) −22.8085 51.1211i −0.799437 1.79179i
\(815\) −7.71862 −0.270372
\(816\) 0.834007 + 0.671058i 0.0291961 + 0.0234917i
\(817\) 30.7246 1.07492
\(818\) −1.30897 2.93382i −0.0457671 0.102579i
\(819\) 0 0
\(820\) −1.45940 27.0380i −0.0509644 0.944209i
\(821\) −2.28780 2.28780i −0.0798447 0.0798447i 0.666057 0.745901i \(-0.267981\pi\)
−0.745901 + 0.666057i \(0.767981\pi\)
\(822\) 9.81077 + 3.75720i 0.342190 + 0.131048i
\(823\) 10.5792i 0.368767i −0.982854 0.184384i \(-0.940971\pi\)
0.982854 0.184384i \(-0.0590288\pi\)
\(824\) −34.9594 11.2684i −1.21787 0.392554i
\(825\) 14.8794i 0.518034i
\(826\) 0 0
\(827\) 16.8200 + 16.8200i 0.584887 + 0.584887i 0.936242 0.351355i \(-0.114279\pi\)
−0.351355 + 0.936242i \(0.614279\pi\)
\(828\) −4.08327 + 4.54921i −0.141903 + 0.158096i
\(829\) −5.46840 + 5.46840i −0.189925 + 0.189925i −0.795664 0.605739i \(-0.792878\pi\)
0.605739 + 0.795664i \(0.292878\pi\)
\(830\) −1.60316 + 0.715276i −0.0556466 + 0.0248276i
\(831\) 11.8284 0.410323
\(832\) −22.5572 + 3.68125i −0.782029 + 0.127624i
\(833\) 0 0
\(834\) −15.4490 + 6.89280i −0.534954 + 0.238678i
\(835\) −4.73571 + 4.73571i −0.163886 + 0.163886i
\(836\) −36.1057 + 40.2258i −1.24874 + 1.39124i
\(837\) −21.5021 21.5021i −0.743222 0.743222i
\(838\) −13.8516 + 36.1691i −0.478495 + 1.24944i
\(839\) 6.99735i 0.241575i −0.992678 0.120788i \(-0.961458\pi\)
0.992678 0.120788i \(-0.0385420\pi\)
\(840\) 0 0
\(841\) 28.7847i 0.992575i
\(842\) 15.1473 + 5.80092i 0.522011 + 0.199913i
\(843\) −21.6103 21.6103i −0.744299 0.744299i
\(844\) 0.173619 + 3.21660i 0.00597620 + 0.110720i
\(845\) 4.19791 4.19791i 0.144413 0.144413i
\(846\) −3.56030 7.97976i −0.122406 0.274350i
\(847\) 0 0
\(848\) 1.52683 1.89758i 0.0524315 0.0651631i
\(849\) 16.8915 0.579715
\(850\) 0.532660 + 1.19386i 0.0182701 + 0.0409491i
\(851\) −10.2802 + 10.2802i −0.352400 + 0.352400i
\(852\) 18.2600 0.985597i 0.625577 0.0337660i
\(853\) 32.6377 + 32.6377i 1.11749 + 1.11749i 0.992108 + 0.125384i \(0.0400162\pi\)
0.125384 + 0.992108i \(0.459984\pi\)
\(854\) 0 0
\(855\) 15.5733i 0.532596i
\(856\) −4.41880 + 2.26456i −0.151031 + 0.0774010i
\(857\) 43.6532i 1.49116i 0.666414 + 0.745582i \(0.267828\pi\)
−0.666414 + 0.745582i \(0.732172\pi\)
\(858\) −6.15330 + 16.0674i −0.210070 + 0.548533i
\(859\) −6.63555 6.63555i −0.226402 0.226402i 0.584786 0.811188i \(-0.301179\pi\)
−0.811188 + 0.584786i \(0.801179\pi\)
\(860\) −8.74105 7.84576i −0.298067 0.267538i
\(861\) 0 0
\(862\) −13.9040 + 6.20347i −0.473571 + 0.211291i
\(863\) −8.11592 −0.276269 −0.138135 0.990413i \(-0.544111\pi\)
−0.138135 + 0.990413i \(0.544111\pi\)
\(864\) 7.26308 27.5363i 0.247095 0.936804i
\(865\) 20.1699 0.685795
\(866\) −6.45025 + 2.87788i −0.219188 + 0.0977943i
\(867\) −12.1096 + 12.1096i −0.411265 + 0.411265i
\(868\) 0 0
\(869\) −37.4786 37.4786i −1.27137 1.27137i
\(870\) 0.291341 0.760746i 0.00987738 0.0257917i
\(871\) 13.5098i 0.457763i
\(872\) 19.9827 + 38.9919i 0.676699 + 1.32043i
\(873\) 28.1593i 0.953048i
\(874\) 13.1098 + 5.02063i 0.443446 + 0.169825i
\(875\) 0 0
\(876\) −29.9280 + 1.61539i −1.01117 + 0.0545789i
\(877\) 23.2126 23.2126i 0.783833 0.783833i −0.196643 0.980475i \(-0.563004\pi\)
0.980475 + 0.196643i \(0.0630039\pi\)
\(878\) 0.979141 + 2.19457i 0.0330444 + 0.0740631i
\(879\) −22.0088 −0.742340
\(880\) 20.5439 2.22423i 0.692535 0.0749787i
\(881\) 12.2614 0.413096 0.206548 0.978436i \(-0.433777\pi\)
0.206548 + 0.978436i \(0.433777\pi\)
\(882\) 0 0
\(883\) 4.12180 4.12180i 0.138710 0.138710i −0.634342 0.773052i \(-0.718729\pi\)
0.773052 + 0.634342i \(0.218729\pi\)
\(884\) 0.0814744 + 1.50946i 0.00274028 + 0.0507687i
\(885\) −5.74284 5.74284i −0.193044 0.193044i
\(886\) −14.7604 5.65276i −0.495886 0.189908i
\(887\) 23.8826i 0.801899i 0.916100 + 0.400949i \(0.131320\pi\)
−0.916100 + 0.400949i \(0.868680\pi\)
\(888\) 8.25308 25.6045i 0.276955 0.859232i
\(889\) 0 0
\(890\) 6.82252 17.8149i 0.228692 0.597157i
\(891\) 2.49412 + 2.49412i 0.0835562 + 0.0835562i
\(892\) 10.7237 11.9474i 0.359056 0.400028i
\(893\) −14.1892 + 14.1892i −0.474825 + 0.474825i
\(894\) −23.7932 + 10.6157i −0.795763 + 0.355042i
\(895\) −22.4597 −0.750744
\(896\) 0 0
\(897\) 4.46847 0.149198
\(898\) 5.23598 2.33612i 0.174727 0.0779572i
\(899\) 1.98201 1.98201i 0.0661036 0.0661036i
\(900\) 9.22736 10.2803i 0.307579 0.342677i
\(901\) −0.113906 0.113906i −0.00379477 0.00379477i
\(902\) 23.4909 61.3392i 0.782161 2.04237i
\(903\) 0 0
\(904\) 6.62333 20.5484i 0.220289 0.683428i
\(905\) 2.41346i 0.0802261i
\(906\) −17.3900 6.65980i −0.577744 0.221257i
\(907\) 33.8412 + 33.8412i 1.12368 + 1.12368i 0.991184 + 0.132494i \(0.0422986\pi\)
0.132494 + 0.991184i \(0.457701\pi\)
\(908\) −0.544885 10.0950i −0.0180826 0.335014i
\(909\) −20.8151 + 20.8151i −0.690393 + 0.690393i
\(910\) 0 0
\(911\) 0.866439 0.0287064 0.0143532 0.999897i \(-0.495431\pi\)
0.0143532 + 0.999897i \(0.495431\pi\)
\(912\) −25.8256 + 2.79606i −0.855170 + 0.0925867i
\(913\) −4.25841 −0.140933
\(914\) −5.84856 13.1085i −0.193453 0.433591i
\(915\) 6.04240 6.04240i 0.199755 0.199755i
\(916\) −1.79653 + 0.0969689i −0.0593589 + 0.00320394i
\(917\) 0 0
\(918\) −1.75895 0.673622i −0.0580541 0.0222328i
\(919\) 32.5204i 1.07275i 0.843980 + 0.536375i \(0.180207\pi\)
−0.843980 + 0.536375i \(0.819793\pi\)
\(920\) −2.44764 4.77605i −0.0806964 0.157462i
\(921\) 11.6632i 0.384314i
\(922\) −0.733936 + 1.91645i −0.0241709 + 0.0631148i
\(923\) 18.2600 + 18.2600i 0.601034 + 0.601034i
\(924\) 0 0
\(925\) 23.2311 23.2311i 0.763835 0.763835i
\(926\) 13.6828 6.10480i 0.449645 0.200616i
\(927\) 25.6707 0.843135
\(928\) 2.53822 + 0.669491i 0.0833212 + 0.0219771i
\(929\) −10.2017 −0.334705 −0.167353 0.985897i \(-0.553522\pi\)
−0.167353 + 0.985897i \(0.553522\pi\)
\(930\) 9.68363 4.32050i 0.317539 0.141675i
\(931\) 0 0
\(932\) 36.5595 + 32.8150i 1.19755 + 1.07489i
\(933\) −22.2502 22.2502i −0.728440 0.728440i
\(934\) −6.62875 + 17.3089i −0.216899 + 0.566365i
\(935\) 1.36671i 0.0446962i
\(936\) 14.2155 7.28519i 0.464647 0.238124i
\(937\) 5.06532i 0.165477i −0.996571 0.0827384i \(-0.973633\pi\)
0.996571 0.0827384i \(-0.0263666\pi\)
\(938\) 0 0
\(939\) −2.27447 2.27447i −0.0742247 0.0742247i
\(940\) 7.66011 0.413461i 0.249845 0.0134856i
\(941\) 29.4222 29.4222i 0.959137 0.959137i −0.0400599 0.999197i \(-0.512755\pi\)
0.999197 + 0.0400599i \(0.0127549\pi\)
\(942\) 12.0820 + 27.0797i 0.393654 + 0.882304i
\(943\) −17.0589 −0.555513
\(944\) 16.4062 20.3900i 0.533976 0.663638i
\(945\) 0 0
\(946\) −11.6092 26.0200i −0.377449 0.845984i
\(947\) 19.0039 19.0039i 0.617542 0.617542i −0.327358 0.944900i \(-0.606158\pi\)
0.944900 + 0.327358i \(0.106158\pi\)
\(948\) −1.37286 25.4347i −0.0445883 0.826080i
\(949\) −29.9280 29.9280i −0.971504 0.971504i
\(950\) −29.6256 11.3456i −0.961181 0.368101i
\(951\) 2.24518i 0.0728049i
\(952\) 0 0
\(953\) 39.1113i 1.26694i 0.773767 + 0.633470i \(0.218370\pi\)
−0.773767 + 0.633470i \(0.781630\pi\)
\(954\) −0.608770 + 1.58961i −0.0197097 + 0.0514656i
\(955\) 3.01176 + 3.01176i 0.0974581 + 0.0974581i
\(956\) −39.1464 + 43.6134i −1.26608 + 1.41056i
\(957\) 1.39731 1.39731i 0.0451685 0.0451685i
\(958\) −43.2349 + 19.2900i −1.39686 + 0.623230i
\(959\) 0 0
\(960\) 8.06128 + 5.79928i 0.260177 + 0.187171i
\(961\) 5.48559 0.176955
\(962\) 34.6931 15.4789i 1.11855 0.499059i
\(963\) 2.45379 2.45379i 0.0790723 0.0790723i
\(964\) −10.6077 + 11.8182i −0.341651 + 0.380638i
\(965\) 6.58300 + 6.58300i 0.211914 + 0.211914i
\(966\) 0 0
\(967\) 53.9124i 1.73371i 0.498565 + 0.866853i \(0.333861\pi\)
−0.498565 + 0.866853i \(0.666139\pi\)
\(968\) 18.0964 + 5.83300i 0.581641 + 0.187480i
\(969\) 1.71808i 0.0551926i
\(970\) −23.0866 8.84141i −0.741266 0.283880i
\(971\) −26.1105 26.1105i −0.837926 0.837926i 0.150659 0.988586i \(-0.451860\pi\)
−0.988586 + 0.150659i \(0.951860\pi\)
\(972\) 1.71936 + 31.8543i 0.0551485 + 1.02173i
\(973\) 0 0
\(974\) −13.2674 29.7365i −0.425115 0.952819i
\(975\) −10.0978 −0.323390
\(976\) 21.4536 + 17.2620i 0.686712 + 0.552542i
\(977\) −57.0755 −1.82601 −0.913004 0.407950i \(-0.866244\pi\)
−0.913004 + 0.407950i \(0.866244\pi\)
\(978\) −3.66626 8.21727i −0.117234 0.262759i
\(979\) 32.7217 32.7217i 1.04579 1.04579i
\(980\) 0 0
\(981\) −21.6525 21.6525i −0.691311 0.691311i
\(982\) −40.9668 15.6890i −1.30730 0.500655i
\(983\) 46.5572i 1.48494i −0.669878 0.742471i \(-0.733654\pi\)
0.669878 0.742471i \(-0.266346\pi\)
\(984\) 28.0916 14.3965i 0.895527 0.458942i
\(985\) 13.5848i 0.432847i
\(986\) 0.0620926 0.162136i 0.00197743 0.00516345i
\(987\) 0 0
\(988\) −27.2991 24.5030i −0.868499 0.779544i
\(989\) −5.23248 + 5.23248i −0.166383 + 0.166383i
\(990\) −13.1887 + 5.88434i −0.419164 + 0.187017i
\(991\) 52.9443 1.68183 0.840915 0.541167i \(-0.182017\pi\)
0.840915 + 0.541167i \(0.182017\pi\)
\(992\) 17.2002 + 29.5244i 0.546106 + 0.937402i
\(993\) 2.80341 0.0889635
\(994\) 0 0
\(995\) 17.0677 17.0677i 0.541082 0.541082i
\(996\) −1.52297 1.36698i −0.0482571 0.0433145i
\(997\) −16.0449 16.0449i −0.508148 0.508148i 0.405810 0.913958i \(-0.366990\pi\)
−0.913958 + 0.405810i \(0.866990\pi\)
\(998\) 4.37878 11.4338i 0.138608 0.361931i
\(999\) 47.3350i 1.49761i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.m.g.197.4 8
7.2 even 3 784.2.x.j.165.2 16
7.3 odd 6 784.2.x.k.373.2 16
7.4 even 3 784.2.x.j.373.2 16
7.5 odd 6 784.2.x.k.165.2 16
7.6 odd 2 112.2.m.c.85.4 yes 8
16.13 even 4 inner 784.2.m.g.589.4 8
28.27 even 2 448.2.m.c.113.3 8
56.13 odd 2 896.2.m.e.225.3 8
56.27 even 2 896.2.m.f.225.2 8
112.13 odd 4 112.2.m.c.29.4 8
112.27 even 4 896.2.m.f.673.2 8
112.45 odd 12 784.2.x.k.765.2 16
112.61 odd 12 784.2.x.k.557.2 16
112.69 odd 4 896.2.m.e.673.3 8
112.83 even 4 448.2.m.c.337.3 8
112.93 even 12 784.2.x.j.557.2 16
112.109 even 12 784.2.x.j.765.2 16
224.13 odd 8 7168.2.a.bc.1.5 8
224.83 even 8 7168.2.a.bd.1.4 8
224.125 odd 8 7168.2.a.bc.1.4 8
224.195 even 8 7168.2.a.bd.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.m.c.29.4 8 112.13 odd 4
112.2.m.c.85.4 yes 8 7.6 odd 2
448.2.m.c.113.3 8 28.27 even 2
448.2.m.c.337.3 8 112.83 even 4
784.2.m.g.197.4 8 1.1 even 1 trivial
784.2.m.g.589.4 8 16.13 even 4 inner
784.2.x.j.165.2 16 7.2 even 3
784.2.x.j.373.2 16 7.4 even 3
784.2.x.j.557.2 16 112.93 even 12
784.2.x.j.765.2 16 112.109 even 12
784.2.x.k.165.2 16 7.5 odd 6
784.2.x.k.373.2 16 7.3 odd 6
784.2.x.k.557.2 16 112.61 odd 12
784.2.x.k.765.2 16 112.45 odd 12
896.2.m.e.225.3 8 56.13 odd 2
896.2.m.e.673.3 8 112.69 odd 4
896.2.m.f.225.2 8 56.27 even 2
896.2.m.f.673.2 8 112.27 even 4
7168.2.a.bc.1.4 8 224.125 odd 8
7168.2.a.bc.1.5 8 224.13 odd 8
7168.2.a.bd.1.4 8 224.83 even 8
7168.2.a.bd.1.5 8 224.195 even 8