Properties

Label 784.2.x.k.557.2
Level $784$
Weight $2$
Character 784.557
Analytic conductor $6.260$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(165,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 4 x^{14} + 4 x^{13} - 13 x^{12} + 32 x^{11} - 4 x^{10} - 34 x^{9} + 121 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.2
Root \(0.772089 + 1.18485i\) of defining polynomial
Character \(\chi\) \(=\) 784.557
Dual form 784.2.x.k.373.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.146726 - 1.40658i) q^{2} +(0.977085 - 0.261809i) q^{3} +(-1.95694 + 0.412764i) q^{4} +(-1.18533 - 0.317608i) q^{5} +(-0.511620 - 1.33594i) q^{6} +(0.867721 + 2.69204i) q^{8} +(-1.71192 + 0.988380i) q^{9} +(-0.272823 + 1.71386i) q^{10} +(-1.08957 - 4.06633i) q^{11} +(-1.80403 + 0.915651i) q^{12} +(-2.02017 - 2.02017i) q^{13} -1.24132 q^{15} +(3.65925 - 1.61551i) q^{16} +(-0.132279 + 0.229115i) q^{17} +(1.64142 + 2.26294i) q^{18} +(-1.66161 + 6.20120i) q^{19} +(2.45072 + 0.132279i) q^{20} +(-5.55976 + 2.12921i) q^{22} +(-1.33906 + 0.773104i) q^{23} +(1.55264 + 2.40317i) q^{24} +(-3.02600 - 1.74706i) q^{25} +(-2.54512 + 3.13794i) q^{26} +(-3.55976 + 3.55976i) q^{27} +(-0.328129 - 0.328129i) q^{29} +(0.182134 + 1.74602i) q^{30} +(-3.02017 + 5.23108i) q^{31} +(-2.80926 - 4.91000i) q^{32} +(-2.12921 - 3.68789i) q^{33} +(0.341677 + 0.152445i) q^{34} +(2.94217 - 2.64082i) q^{36} +(-9.08220 - 2.43357i) q^{37} +(8.96629 + 1.42731i) q^{38} +(-2.50277 - 1.44498i) q^{39} +(-0.173522 - 3.46654i) q^{40} +11.0327i q^{41} +(3.38407 - 3.38407i) q^{43} +(3.81066 + 7.50784i) q^{44} +(2.34311 - 0.627835i) q^{45} +(1.28391 + 1.77006i) q^{46} +(-1.56283 - 2.70690i) q^{47} +(3.15244 - 2.53652i) q^{48} +(-2.01339 + 4.51265i) q^{50} +(-0.0692639 + 0.258496i) q^{51} +(4.78720 + 3.11950i) q^{52} +(0.157593 + 0.588145i) q^{53} +(5.52940 + 4.48478i) q^{54} +5.16599i q^{55} +6.49412i q^{57} +(-0.413395 + 0.509685i) q^{58} +(-1.69338 - 6.31978i) q^{59} +(2.42919 - 0.512372i) q^{60} +(1.78171 - 6.64943i) q^{61} +(7.80108 + 3.48057i) q^{62} +(-6.49412 + 4.67187i) q^{64} +(1.75294 + 3.03618i) q^{65} +(-4.87491 + 3.53601i) q^{66} +(-4.56764 + 1.22389i) q^{67} +(0.164293 - 0.502964i) q^{68} +(-1.10597 + 1.10597i) q^{69} -9.03885i q^{71} +(-4.14623 - 3.75093i) q^{72} +(12.8298 + 7.40731i) q^{73} +(-2.09042 + 13.1319i) q^{74} +(-3.41405 - 0.914793i) q^{75} +(0.692037 - 12.8212i) q^{76} +(-1.66525 + 3.73237i) q^{78} +(-6.29520 - 10.9036i) q^{79} +(-4.85051 + 0.752705i) q^{80} +(0.418932 - 0.725612i) q^{81} +(15.5184 - 1.61878i) q^{82} +(-0.715276 - 0.715276i) q^{83} +(0.229563 - 0.229563i) q^{85} +(-5.25651 - 4.26344i) q^{86} +(-0.406517 - 0.234703i) q^{87} +(10.0013 - 6.46160i) q^{88} +(9.51968 - 5.49619i) q^{89} +(-1.22690 - 3.20366i) q^{90} +(2.30135 - 2.06564i) q^{92} +(-1.58141 + 5.90192i) q^{93} +(-3.57817 + 2.59542i) q^{94} +(3.93910 - 6.82272i) q^{95} +(-4.03036 - 4.06200i) q^{96} -14.2452 q^{97} +(5.88434 + 5.88434i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 4 q^{4} + 4 q^{5} - 32 q^{6} - 8 q^{8} - 12 q^{10} + 12 q^{12} - 16 q^{15} - 8 q^{16} - 24 q^{17} - 6 q^{18} + 12 q^{19} - 16 q^{20} - 8 q^{22} - 8 q^{26} + 24 q^{27} - 32 q^{29} - 20 q^{30}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.146726 1.40658i −0.103751 0.994603i
\(3\) 0.977085 0.261809i 0.564120 0.151156i 0.0345217 0.999404i \(-0.489009\pi\)
0.529599 + 0.848248i \(0.322343\pi\)
\(4\) −1.95694 + 0.412764i −0.978471 + 0.206382i
\(5\) −1.18533 0.317608i −0.530095 0.142039i −0.0161629 0.999869i \(-0.505145\pi\)
−0.513932 + 0.857831i \(0.671812\pi\)
\(6\) −0.511620 1.33594i −0.208868 0.545393i
\(7\) 0 0
\(8\) 0.867721 + 2.69204i 0.306786 + 0.951779i
\(9\) −1.71192 + 0.988380i −0.570642 + 0.329460i
\(10\) −0.272823 + 1.71386i −0.0862741 + 0.541971i
\(11\) −1.08957 4.06633i −0.328518 1.22604i −0.910728 0.413007i \(-0.864479\pi\)
0.582210 0.813038i \(-0.302188\pi\)
\(12\) −1.80403 + 0.915651i −0.520780 + 0.264326i
\(13\) −2.02017 2.02017i −0.560293 0.560293i 0.369098 0.929391i \(-0.379667\pi\)
−0.929391 + 0.369098i \(0.879667\pi\)
\(14\) 0 0
\(15\) −1.24132 −0.320507
\(16\) 3.65925 1.61551i 0.914813 0.403878i
\(17\) −0.132279 + 0.229115i −0.0320825 + 0.0555685i −0.881621 0.471958i \(-0.843547\pi\)
0.849538 + 0.527527i \(0.176881\pi\)
\(18\) 1.64142 + 2.26294i 0.386887 + 0.533380i
\(19\) −1.66161 + 6.20120i −0.381199 + 1.42265i 0.462874 + 0.886424i \(0.346818\pi\)
−0.844073 + 0.536228i \(0.819849\pi\)
\(20\) 2.45072 + 0.132279i 0.547997 + 0.0295786i
\(21\) 0 0
\(22\) −5.55976 + 2.12921i −1.18534 + 0.453948i
\(23\) −1.33906 + 0.773104i −0.279212 + 0.161203i −0.633067 0.774097i \(-0.718204\pi\)
0.353854 + 0.935301i \(0.384871\pi\)
\(24\) 1.55264 + 2.40317i 0.316931 + 0.490545i
\(25\) −3.02600 1.74706i −0.605200 0.349412i
\(26\) −2.54512 + 3.13794i −0.499138 + 0.615400i
\(27\) −3.55976 + 3.55976i −0.685076 + 0.685076i
\(28\) 0 0
\(29\) −0.328129 0.328129i −0.0609320 0.0609320i 0.675984 0.736916i \(-0.263719\pi\)
−0.736916 + 0.675984i \(0.763719\pi\)
\(30\) 0.182134 + 1.74602i 0.0332529 + 0.318778i
\(31\) −3.02017 + 5.23108i −0.542438 + 0.939530i 0.456326 + 0.889813i \(0.349165\pi\)
−0.998763 + 0.0497168i \(0.984168\pi\)
\(32\) −2.80926 4.91000i −0.496611 0.867973i
\(33\) −2.12921 3.68789i −0.370647 0.641980i
\(34\) 0.341677 + 0.152445i 0.0585972 + 0.0261440i
\(35\) 0 0
\(36\) 2.94217 2.64082i 0.490362 0.440137i
\(37\) −9.08220 2.43357i −1.49310 0.400076i −0.582320 0.812959i \(-0.697855\pi\)
−0.910784 + 0.412883i \(0.864522\pi\)
\(38\) 8.96629 + 1.42731i 1.45452 + 0.231540i
\(39\) −2.50277 1.44498i −0.400764 0.231381i
\(40\) −0.173522 3.46654i −0.0274363 0.548108i
\(41\) 11.0327i 1.72302i 0.507741 + 0.861510i \(0.330481\pi\)
−0.507741 + 0.861510i \(0.669519\pi\)
\(42\) 0 0
\(43\) 3.38407 3.38407i 0.516066 0.516066i −0.400312 0.916379i \(-0.631098\pi\)
0.916379 + 0.400312i \(0.131098\pi\)
\(44\) 3.81066 + 7.50784i 0.574479 + 1.13185i
\(45\) 2.34311 0.627835i 0.349290 0.0935921i
\(46\) 1.28391 + 1.77006i 0.189302 + 0.260981i
\(47\) −1.56283 2.70690i −0.227962 0.394842i 0.729242 0.684256i \(-0.239873\pi\)
−0.957204 + 0.289414i \(0.906540\pi\)
\(48\) 3.15244 2.53652i 0.455016 0.366115i
\(49\) 0 0
\(50\) −2.01339 + 4.51265i −0.284736 + 0.638185i
\(51\) −0.0692639 + 0.258496i −0.00969889 + 0.0361967i
\(52\) 4.78720 + 3.11950i 0.663865 + 0.432596i
\(53\) 0.157593 + 0.588145i 0.0216471 + 0.0807879i 0.975904 0.218199i \(-0.0700181\pi\)
−0.954257 + 0.298987i \(0.903351\pi\)
\(54\) 5.52940 + 4.48478i 0.752456 + 0.610301i
\(55\) 5.16599i 0.696582i
\(56\) 0 0
\(57\) 6.49412i 0.860167i
\(58\) −0.413395 + 0.509685i −0.0542814 + 0.0669249i
\(59\) −1.69338 6.31978i −0.220459 0.822765i −0.984173 0.177210i \(-0.943293\pi\)
0.763714 0.645555i \(-0.223374\pi\)
\(60\) 2.42919 0.512372i 0.313607 0.0661469i
\(61\) 1.78171 6.64943i 0.228125 0.851372i −0.753004 0.658016i \(-0.771396\pi\)
0.981129 0.193356i \(-0.0619374\pi\)
\(62\) 7.80108 + 3.48057i 0.990738 + 0.442033i
\(63\) 0 0
\(64\) −6.49412 + 4.67187i −0.811765 + 0.583984i
\(65\) 1.75294 + 3.03618i 0.217425 + 0.376592i
\(66\) −4.87491 + 3.53601i −0.600060 + 0.435253i
\(67\) −4.56764 + 1.22389i −0.558026 + 0.149523i −0.526799 0.849990i \(-0.676608\pi\)
−0.0312266 + 0.999512i \(0.509941\pi\)
\(68\) 0.164293 0.502964i 0.0199234 0.0609934i
\(69\) −1.10597 + 1.10597i −0.133143 + 0.133143i
\(70\) 0 0
\(71\) 9.03885i 1.07271i −0.843991 0.536357i \(-0.819800\pi\)
0.843991 0.536357i \(-0.180200\pi\)
\(72\) −4.14623 3.75093i −0.488638 0.442051i
\(73\) 12.8298 + 7.40731i 1.50162 + 0.866960i 0.999998 + 0.00187294i \(0.000596176\pi\)
0.501621 + 0.865087i \(0.332737\pi\)
\(74\) −2.09042 + 13.1319i −0.243006 + 1.52655i
\(75\) −3.41405 0.914793i −0.394221 0.105631i
\(76\) 0.692037 12.8212i 0.0793820 1.47070i
\(77\) 0 0
\(78\) −1.66525 + 3.73237i −0.188553 + 0.422607i
\(79\) −6.29520 10.9036i −0.708265 1.22675i −0.965500 0.260402i \(-0.916145\pi\)
0.257235 0.966349i \(-0.417189\pi\)
\(80\) −4.85051 + 0.752705i −0.542304 + 0.0841549i
\(81\) 0.418932 0.725612i 0.0465480 0.0806235i
\(82\) 15.5184 1.61878i 1.71372 0.178765i
\(83\) −0.715276 0.715276i −0.0785117 0.0785117i 0.666760 0.745272i \(-0.267680\pi\)
−0.745272 + 0.666760i \(0.767680\pi\)
\(84\) 0 0
\(85\) 0.229563 0.229563i 0.0248996 0.0248996i
\(86\) −5.25651 4.26344i −0.566824 0.459739i
\(87\) −0.406517 0.234703i −0.0435832 0.0251628i
\(88\) 10.0013 6.46160i 1.06614 0.688809i
\(89\) 9.51968 5.49619i 1.00908 0.582595i 0.0981604 0.995171i \(-0.468704\pi\)
0.910923 + 0.412576i \(0.135371\pi\)
\(90\) −1.22690 3.20366i −0.129326 0.337695i
\(91\) 0 0
\(92\) 2.30135 2.06564i 0.239932 0.215357i
\(93\) −1.58141 + 5.90192i −0.163985 + 0.612000i
\(94\) −3.57817 + 2.59542i −0.369060 + 0.267697i
\(95\) 3.93910 6.82272i 0.404143 0.699996i
\(96\) −4.03036 4.06200i −0.411347 0.414576i
\(97\) −14.2452 −1.44638 −0.723189 0.690650i \(-0.757325\pi\)
−0.723189 + 0.690650i \(0.757325\pi\)
\(98\) 0 0
\(99\) 5.88434 + 5.88434i 0.591399 + 0.591399i
\(100\) 6.64283 + 2.16988i 0.664283 + 0.216988i
\(101\) −3.85421 14.3841i −0.383508 1.43127i −0.840505 0.541804i \(-0.817741\pi\)
0.456996 0.889469i \(-0.348925\pi\)
\(102\) 0.373759 + 0.0594972i 0.0370077 + 0.00589110i
\(103\) −11.2464 + 6.49311i −1.10814 + 0.639785i −0.938347 0.345694i \(-0.887643\pi\)
−0.169794 + 0.985480i \(0.554310\pi\)
\(104\) 3.68542 7.19130i 0.361385 0.705165i
\(105\) 0 0
\(106\) 0.804151 0.307963i 0.0781060 0.0299121i
\(107\) 1.69567 + 0.454354i 0.163927 + 0.0439241i 0.339849 0.940480i \(-0.389624\pi\)
−0.175922 + 0.984404i \(0.556291\pi\)
\(108\) 5.49690 8.43558i 0.528940 0.811714i
\(109\) 14.9628 4.00927i 1.43318 0.384018i 0.543037 0.839709i \(-0.317274\pi\)
0.890138 + 0.455691i \(0.150608\pi\)
\(110\) 7.26639 0.757985i 0.692823 0.0722711i
\(111\) −9.51121 −0.902764
\(112\) 0 0
\(113\) 7.63302 0.718054 0.359027 0.933327i \(-0.383109\pi\)
0.359027 + 0.933327i \(0.383109\pi\)
\(114\) 9.13451 0.952856i 0.855525 0.0892432i
\(115\) 1.83277 0.491088i 0.170906 0.0457942i
\(116\) 0.777569 + 0.506689i 0.0721955 + 0.0470449i
\(117\) 5.45506 + 1.46168i 0.504321 + 0.135132i
\(118\) −8.64082 + 3.30915i −0.795452 + 0.304632i
\(119\) 0 0
\(120\) −1.07712 3.34168i −0.0983270 0.305052i
\(121\) −5.82160 + 3.36110i −0.529237 + 0.305555i
\(122\) −9.61439 1.53048i −0.870446 0.138563i
\(123\) 2.88846 + 10.7799i 0.260444 + 0.971990i
\(124\) 3.75109 11.4835i 0.336858 1.03125i
\(125\) 7.37052 + 7.37052i 0.659240 + 0.659240i
\(126\) 0 0
\(127\) −10.7393 −0.952959 −0.476479 0.879186i \(-0.658087\pi\)
−0.476479 + 0.879186i \(0.658087\pi\)
\(128\) 7.52422 + 8.44903i 0.665054 + 0.746796i
\(129\) 2.42055 4.19251i 0.213117 0.369130i
\(130\) 4.01343 2.91114i 0.352001 0.255324i
\(131\) −4.71692 + 17.6038i −0.412120 + 1.53805i 0.378416 + 0.925636i \(0.376469\pi\)
−0.790536 + 0.612416i \(0.790198\pi\)
\(132\) 5.68896 + 6.33813i 0.495161 + 0.551664i
\(133\) 0 0
\(134\) 2.39170 + 6.24518i 0.206611 + 0.539501i
\(135\) 5.35009 3.08887i 0.460462 0.265848i
\(136\) −0.731566 0.157293i −0.0627313 0.0134878i
\(137\) 6.35987 + 3.67187i 0.543360 + 0.313709i 0.746440 0.665453i \(-0.231762\pi\)
−0.203079 + 0.979162i \(0.565095\pi\)
\(138\) 1.71791 + 1.39336i 0.146238 + 0.118610i
\(139\) 8.36184 8.36184i 0.709242 0.709242i −0.257134 0.966376i \(-0.582778\pi\)
0.966376 + 0.257134i \(0.0827781\pi\)
\(140\) 0 0
\(141\) −2.23571 2.23571i −0.188281 0.188281i
\(142\) −12.7139 + 1.32623i −1.06693 + 0.111295i
\(143\) −6.01355 + 10.4158i −0.502878 + 0.871011i
\(144\) −4.66762 + 6.38237i −0.388969 + 0.531864i
\(145\) 0.284724 + 0.493157i 0.0236450 + 0.0409544i
\(146\) 8.53652 19.1331i 0.706487 1.58346i
\(147\) 0 0
\(148\) 18.7778 + 1.01355i 1.54353 + 0.0833132i
\(149\) 17.5919 + 4.71375i 1.44119 + 0.386165i 0.892949 0.450157i \(-0.148632\pi\)
0.548239 + 0.836322i \(0.315299\pi\)
\(150\) −0.785801 + 4.93637i −0.0641604 + 0.403053i
\(151\) −11.2731 6.50855i −0.917394 0.529658i −0.0345916 0.999402i \(-0.511013\pi\)
−0.882803 + 0.469744i \(0.844346\pi\)
\(152\) −18.1357 + 0.907803i −1.47100 + 0.0736326i
\(153\) 0.522969i 0.0422796i
\(154\) 0 0
\(155\) 5.24132 5.24132i 0.420993 0.420993i
\(156\) 5.49421 + 1.79468i 0.439889 + 0.143689i
\(157\) −20.0219 + 5.36485i −1.59792 + 0.428162i −0.944414 0.328759i \(-0.893370\pi\)
−0.653507 + 0.756921i \(0.726703\pi\)
\(158\) −14.4131 + 10.4546i −1.14665 + 0.831719i
\(159\) 0.307963 + 0.533408i 0.0244231 + 0.0423020i
\(160\) 1.77044 + 6.71220i 0.139965 + 0.530646i
\(161\) 0 0
\(162\) −1.08210 0.482796i −0.0850178 0.0379321i
\(163\) 1.62795 6.07559i 0.127511 0.475877i −0.872406 0.488782i \(-0.837441\pi\)
0.999917 + 0.0129051i \(0.00410792\pi\)
\(164\) −4.55390 21.5904i −0.355600 1.68593i
\(165\) 1.35250 + 5.04762i 0.105292 + 0.392956i
\(166\) −0.901144 + 1.11104i −0.0699424 + 0.0862337i
\(167\) 5.45765i 0.422326i −0.977451 0.211163i \(-0.932275\pi\)
0.977451 0.211163i \(-0.0677250\pi\)
\(168\) 0 0
\(169\) 4.83786i 0.372143i
\(170\) −0.356582 0.289216i −0.0273486 0.0221819i
\(171\) −3.28460 12.2583i −0.251179 0.937414i
\(172\) −5.22561 + 8.01926i −0.398449 + 0.611463i
\(173\) 4.25406 15.8764i 0.323430 1.20706i −0.592450 0.805607i \(-0.701839\pi\)
0.915880 0.401452i \(-0.131494\pi\)
\(174\) −0.270482 + 0.606236i −0.0205052 + 0.0459586i
\(175\) 0 0
\(176\) −10.5562 13.1195i −0.795705 0.988921i
\(177\) −3.30915 5.73162i −0.248731 0.430815i
\(178\) −9.12762 12.5838i −0.684144 0.943193i
\(179\) −17.6788 + 4.73701i −1.32137 + 0.354061i −0.849492 0.527601i \(-0.823092\pi\)
−0.471882 + 0.881662i \(0.656425\pi\)
\(180\) −4.32619 + 2.19579i −0.322455 + 0.163664i
\(181\) 1.39069 1.39069i 0.103369 0.103369i −0.653531 0.756900i \(-0.726713\pi\)
0.756900 + 0.653531i \(0.226713\pi\)
\(182\) 0 0
\(183\) 6.96353i 0.514759i
\(184\) −3.24315 2.93395i −0.239088 0.216294i
\(185\) 9.99247 + 5.76916i 0.734661 + 0.424157i
\(186\) 8.53356 + 1.35842i 0.625711 + 0.0996044i
\(187\) 1.07578 + 0.288255i 0.0786691 + 0.0210793i
\(188\) 4.17568 + 4.65217i 0.304543 + 0.339295i
\(189\) 0 0
\(190\) −10.1747 4.53959i −0.738149 0.329337i
\(191\) 1.73544 + 3.00587i 0.125572 + 0.217497i 0.921956 0.387294i \(-0.126590\pi\)
−0.796384 + 0.604791i \(0.793257\pi\)
\(192\) −5.12217 + 6.26504i −0.369661 + 0.452140i
\(193\) 3.79327 6.57014i 0.273046 0.472929i −0.696595 0.717465i \(-0.745302\pi\)
0.969640 + 0.244536i \(0.0786357\pi\)
\(194\) 2.09014 + 20.0370i 0.150063 + 1.43857i
\(195\) 2.50767 + 2.50767i 0.179578 + 0.179578i
\(196\) 0 0
\(197\) 7.82786 7.82786i 0.557712 0.557712i −0.370944 0.928655i \(-0.620966\pi\)
0.928655 + 0.370944i \(0.120966\pi\)
\(198\) 7.41342 9.14019i 0.526849 0.649565i
\(199\) −17.0344 9.83479i −1.20753 0.697170i −0.245314 0.969444i \(-0.578891\pi\)
−0.962220 + 0.272274i \(0.912224\pi\)
\(200\) 2.07743 9.66206i 0.146897 0.683211i
\(201\) −4.14254 + 2.39170i −0.292192 + 0.168697i
\(202\) −19.6669 + 7.53178i −1.38376 + 0.529935i
\(203\) 0 0
\(204\) 0.0288475 0.534452i 0.00201973 0.0374192i
\(205\) 3.50407 13.0774i 0.244735 0.913364i
\(206\) 10.7832 + 14.8663i 0.751303 + 1.03578i
\(207\) 1.52824 2.64699i 0.106220 0.183979i
\(208\) −10.6559 4.12869i −0.738853 0.286273i
\(209\) 27.0266 1.86947
\(210\) 0 0
\(211\) −1.13890 1.13890i −0.0784048 0.0784048i 0.666817 0.745222i \(-0.267656\pi\)
−0.745222 + 0.666817i \(0.767656\pi\)
\(212\) −0.551165 1.08592i −0.0378542 0.0745811i
\(213\) −2.36645 8.83173i −0.162147 0.605140i
\(214\) 0.390287 2.45177i 0.0266795 0.167599i
\(215\) −5.08605 + 2.93643i −0.346865 + 0.200263i
\(216\) −12.6719 6.49412i −0.862212 0.441869i
\(217\) 0 0
\(218\) −7.83479 20.4581i −0.530639 1.38560i
\(219\) 14.4751 + 3.87860i 0.978140 + 0.262092i
\(220\) −2.13234 10.1096i −0.143762 0.681586i
\(221\) 0.730076 0.195623i 0.0491102 0.0131590i
\(222\) 1.39554 + 13.3783i 0.0936626 + 0.897892i
\(223\) −8.02710 −0.537534 −0.268767 0.963205i \(-0.586616\pi\)
−0.268767 + 0.963205i \(0.586616\pi\)
\(224\) 0 0
\(225\) 6.90704 0.460469
\(226\) −1.11996 10.7365i −0.0744988 0.714179i
\(227\) 4.88260 1.30829i 0.324070 0.0868342i −0.0931165 0.995655i \(-0.529683\pi\)
0.417186 + 0.908821i \(0.363016\pi\)
\(228\) −2.68054 12.7086i −0.177523 0.841649i
\(229\) −0.868918 0.232826i −0.0574197 0.0153856i 0.229995 0.973192i \(-0.426129\pi\)
−0.287415 + 0.957806i \(0.592796\pi\)
\(230\) −0.959669 2.50588i −0.0632787 0.165233i
\(231\) 0 0
\(232\) 0.598610 1.16806i 0.0393007 0.0766868i
\(233\) −21.2724 + 12.2816i −1.39360 + 0.804598i −0.993712 0.111965i \(-0.964286\pi\)
−0.399892 + 0.916562i \(0.630952\pi\)
\(234\) 1.25557 7.88746i 0.0820793 0.515619i
\(235\) 0.992735 + 3.70494i 0.0647589 + 0.241683i
\(236\) 5.92243 + 11.6685i 0.385517 + 0.759554i
\(237\) −9.00561 9.00561i −0.584977 0.584977i
\(238\) 0 0
\(239\) −29.3026 −1.89543 −0.947714 0.319122i \(-0.896612\pi\)
−0.947714 + 0.319122i \(0.896612\pi\)
\(240\) −4.54230 + 2.00537i −0.293204 + 0.129446i
\(241\) −3.97014 + 6.87649i −0.255739 + 0.442954i −0.965096 0.261896i \(-0.915652\pi\)
0.709357 + 0.704850i \(0.248986\pi\)
\(242\) 5.58185 + 7.69540i 0.358815 + 0.494679i
\(243\) 4.12825 15.4068i 0.264827 0.988348i
\(244\) −0.742058 + 13.7480i −0.0475054 + 0.880124i
\(245\) 0 0
\(246\) 14.7390 5.64455i 0.939723 0.359883i
\(247\) 15.8842 9.17073i 1.01069 0.583519i
\(248\) −16.7029 3.59128i −1.06064 0.228046i
\(249\) −0.886151 0.511620i −0.0561576 0.0324226i
\(250\) 9.28580 11.4487i 0.587285 0.724079i
\(251\) 6.93336 6.93336i 0.437630 0.437630i −0.453584 0.891214i \(-0.649855\pi\)
0.891214 + 0.453584i \(0.149855\pi\)
\(252\) 0 0
\(253\) 4.60269 + 4.60269i 0.289369 + 0.289369i
\(254\) 1.57573 + 15.1057i 0.0988703 + 0.947816i
\(255\) 0.164201 0.284404i 0.0102827 0.0178101i
\(256\) 10.7802 11.8231i 0.673765 0.738945i
\(257\) 4.15244 + 7.19225i 0.259022 + 0.448640i 0.965980 0.258616i \(-0.0832663\pi\)
−0.706958 + 0.707256i \(0.749933\pi\)
\(258\) −6.25226 2.78955i −0.389249 0.173670i
\(259\) 0 0
\(260\) −4.68363 5.21808i −0.290466 0.323612i
\(261\) 0.886048 + 0.237416i 0.0548450 + 0.0146957i
\(262\) 25.4533 + 4.05180i 1.57251 + 0.250321i
\(263\) 11.9975 + 6.92674i 0.739795 + 0.427121i 0.821995 0.569495i \(-0.192861\pi\)
−0.0821996 + 0.996616i \(0.526194\pi\)
\(264\) 8.08038 8.93196i 0.497313 0.549724i
\(265\) 0.747198i 0.0459000i
\(266\) 0 0
\(267\) 7.86258 7.86258i 0.481182 0.481182i
\(268\) 8.43343 4.28045i 0.515153 0.261470i
\(269\) −1.75698 + 0.470782i −0.107125 + 0.0287041i −0.311983 0.950088i \(-0.600993\pi\)
0.204858 + 0.978792i \(0.434327\pi\)
\(270\) −5.12975 7.07212i −0.312187 0.430395i
\(271\) 8.18515 + 14.1771i 0.497212 + 0.861197i 0.999995 0.00321582i \(-0.00102363\pi\)
−0.502782 + 0.864413i \(0.667690\pi\)
\(272\) −0.113906 + 1.05209i −0.00690658 + 0.0637921i
\(273\) 0 0
\(274\) 4.23163 9.48443i 0.255642 0.572975i
\(275\) −3.80709 + 14.2083i −0.229576 + 0.856790i
\(276\) 1.70781 2.62082i 0.102798 0.157755i
\(277\) 3.02645 + 11.2949i 0.181842 + 0.678643i 0.995285 + 0.0969979i \(0.0309240\pi\)
−0.813443 + 0.581645i \(0.802409\pi\)
\(278\) −12.9885 10.5347i −0.778999 0.631830i
\(279\) 11.9403i 0.714846i
\(280\) 0 0
\(281\) 30.2126i 1.80233i 0.433476 + 0.901165i \(0.357287\pi\)
−0.433476 + 0.901165i \(0.642713\pi\)
\(282\) −2.81667 + 3.47275i −0.167730 + 0.206799i
\(283\) −4.32192 16.1296i −0.256911 0.958806i −0.967017 0.254711i \(-0.918020\pi\)
0.710106 0.704095i \(-0.248647\pi\)
\(284\) 3.73091 + 17.6885i 0.221389 + 1.04962i
\(285\) 2.06258 7.69767i 0.122177 0.455970i
\(286\) 15.5330 + 6.93028i 0.918484 + 0.409796i
\(287\) 0 0
\(288\) 9.66218 + 5.62894i 0.569349 + 0.331688i
\(289\) 8.46500 + 14.6618i 0.497941 + 0.862460i
\(290\) 0.651888 0.472846i 0.0382802 0.0277665i
\(291\) −13.9188 + 3.72952i −0.815932 + 0.218628i
\(292\) −28.1647 9.19999i −1.64822 0.538389i
\(293\) 15.3849 15.3849i 0.898793 0.898793i −0.0965365 0.995329i \(-0.530776\pi\)
0.995329 + 0.0965365i \(0.0307765\pi\)
\(294\) 0 0
\(295\) 8.02885i 0.467458i
\(296\) −1.32956 26.5613i −0.0772790 1.54384i
\(297\) 18.3538 + 10.5965i 1.06499 + 0.614874i
\(298\) 4.04907 25.4361i 0.234557 1.47348i
\(299\) 4.26691 + 1.14332i 0.246762 + 0.0661197i
\(300\) 7.05870 + 0.380999i 0.407534 + 0.0219970i
\(301\) 0 0
\(302\) −7.50074 + 16.8116i −0.431619 + 0.967396i
\(303\) −7.53178 13.0454i −0.432690 0.749441i
\(304\) 3.93787 + 25.3761i 0.225852 + 1.45542i
\(305\) −4.22382 + 7.31587i −0.241855 + 0.418906i
\(306\) −0.735599 + 0.0767332i −0.0420514 + 0.00438654i
\(307\) −8.15291 8.15291i −0.465311 0.465311i 0.435080 0.900392i \(-0.356720\pi\)
−0.900392 + 0.435080i \(0.856720\pi\)
\(308\) 0 0
\(309\) −9.28874 + 9.28874i −0.528418 + 0.528418i
\(310\) −8.14138 6.60331i −0.462399 0.375043i
\(311\) 26.9396 + 15.5536i 1.52761 + 0.881964i 0.999462 + 0.0328102i \(0.0104457\pi\)
0.528145 + 0.849154i \(0.322888\pi\)
\(312\) 1.71822 7.99139i 0.0972751 0.452423i
\(313\) −2.75384 + 1.58993i −0.155656 + 0.0898681i −0.575805 0.817587i \(-0.695311\pi\)
0.420149 + 0.907455i \(0.361978\pi\)
\(314\) 10.4838 + 27.3753i 0.591637 + 1.54488i
\(315\) 0 0
\(316\) 16.8200 + 18.7393i 0.946197 + 1.05417i
\(317\) 0.574458 2.14391i 0.0322648 0.120414i −0.947915 0.318523i \(-0.896813\pi\)
0.980180 + 0.198109i \(0.0634800\pi\)
\(318\) 0.705096 0.511440i 0.0395398 0.0286802i
\(319\) −0.976761 + 1.69180i −0.0546881 + 0.0947226i
\(320\) 9.18149 3.47512i 0.513261 0.194265i
\(321\) 1.77577 0.0991139
\(322\) 0 0
\(323\) −1.20099 1.20099i −0.0668248 0.0668248i
\(324\) −0.520320 + 1.59290i −0.0289067 + 0.0884945i
\(325\) 2.58366 + 9.64237i 0.143316 + 0.534862i
\(326\) −8.78468 1.39840i −0.486538 0.0774501i
\(327\) 13.5703 7.83479i 0.750437 0.433265i
\(328\) −29.7004 + 9.57331i −1.63993 + 0.528597i
\(329\) 0 0
\(330\) 6.90143 2.64302i 0.379911 0.145494i
\(331\) −2.67696 0.717289i −0.147139 0.0394258i 0.184498 0.982833i \(-0.440934\pi\)
−0.331637 + 0.943407i \(0.607601\pi\)
\(332\) 1.69499 + 1.10451i 0.0930249 + 0.0606181i
\(333\) 17.9533 4.81058i 0.983837 0.263618i
\(334\) −7.67663 + 0.800779i −0.420046 + 0.0438167i
\(335\) 5.80287 0.317045
\(336\) 0 0
\(337\) −28.7067 −1.56375 −0.781876 0.623434i \(-0.785737\pi\)
−0.781876 + 0.623434i \(0.785737\pi\)
\(338\) −6.80485 + 0.709840i −0.370135 + 0.0386102i
\(339\) 7.45811 1.99839i 0.405069 0.108538i
\(340\) −0.354486 + 0.543997i −0.0192247 + 0.0295024i
\(341\) 24.5620 + 6.58136i 1.33011 + 0.356401i
\(342\) −16.7603 + 6.41866i −0.906295 + 0.347082i
\(343\) 0 0
\(344\) 12.0465 + 6.17362i 0.649503 + 0.332859i
\(345\) 1.66220 0.959669i 0.0894896 0.0516669i
\(346\) −22.9556 3.65421i −1.23410 0.196452i
\(347\) 1.61739 + 6.03619i 0.0868261 + 0.324039i 0.995654 0.0931324i \(-0.0296880\pi\)
−0.908828 + 0.417172i \(0.863021\pi\)
\(348\) 0.892407 + 0.291504i 0.0478380 + 0.0156263i
\(349\) −7.46427 7.46427i −0.399553 0.399553i 0.478522 0.878075i \(-0.341173\pi\)
−0.878075 + 0.478522i \(0.841173\pi\)
\(350\) 0 0
\(351\) 14.3826 0.767686
\(352\) −16.9048 + 16.7731i −0.901029 + 0.894012i
\(353\) 3.35343 5.80832i 0.178485 0.309146i −0.762877 0.646544i \(-0.776214\pi\)
0.941362 + 0.337399i \(0.109547\pi\)
\(354\) −7.57645 + 5.49557i −0.402684 + 0.292086i
\(355\) −2.87081 + 10.7140i −0.152367 + 0.568641i
\(356\) −16.3608 + 14.6851i −0.867122 + 0.778309i
\(357\) 0 0
\(358\) 9.25693 + 24.1716i 0.489244 + 1.27751i
\(359\) −10.1793 + 5.87700i −0.537241 + 0.310176i −0.743960 0.668224i \(-0.767055\pi\)
0.206719 + 0.978400i \(0.433721\pi\)
\(360\) 3.72332 + 5.76295i 0.196236 + 0.303734i
\(361\) −19.2394 11.1079i −1.01260 0.584626i
\(362\) −2.16017 1.75207i −0.113536 0.0920867i
\(363\) −4.80823 + 4.80823i −0.252367 + 0.252367i
\(364\) 0 0
\(365\) −12.8550 12.8550i −0.672859 0.672859i
\(366\) −9.79477 + 1.02173i −0.511981 + 0.0534067i
\(367\) −17.2352 + 29.8522i −0.899669 + 1.55827i −0.0717506 + 0.997423i \(0.522859\pi\)
−0.827918 + 0.560849i \(0.810475\pi\)
\(368\) −3.65098 + 4.99224i −0.190321 + 0.260239i
\(369\) −10.9045 18.8872i −0.567666 0.983226i
\(370\) 6.64863 14.9017i 0.345646 0.774703i
\(371\) 0 0
\(372\) 0.658638 12.2025i 0.0341488 0.632668i
\(373\) 12.0177 + 3.22012i 0.622251 + 0.166732i 0.556151 0.831081i \(-0.312278\pi\)
0.0660999 + 0.997813i \(0.478944\pi\)
\(374\) 0.247609 1.55547i 0.0128036 0.0804315i
\(375\) 9.13130 + 5.27196i 0.471538 + 0.272243i
\(376\) 5.93098 6.55603i 0.305867 0.338102i
\(377\) 1.32575i 0.0682795i
\(378\) 0 0
\(379\) −0.171601 + 0.171601i −0.00881456 + 0.00881456i −0.711500 0.702686i \(-0.751984\pi\)
0.702686 + 0.711500i \(0.251984\pi\)
\(380\) −4.89242 + 14.9776i −0.250976 + 0.768334i
\(381\) −10.4932 + 2.81165i −0.537583 + 0.144045i
\(382\) 3.97337 2.88208i 0.203295 0.147460i
\(383\) −10.8580 18.8067i −0.554819 0.960975i −0.997918 0.0645023i \(-0.979454\pi\)
0.443098 0.896473i \(-0.353879\pi\)
\(384\) 9.56384 + 6.28551i 0.488053 + 0.320756i
\(385\) 0 0
\(386\) −9.79800 4.37153i −0.498705 0.222505i
\(387\) −2.44853 + 9.13803i −0.124466 + 0.464512i
\(388\) 27.8770 5.87990i 1.41524 0.298507i
\(389\) 4.14779 + 15.4798i 0.210302 + 0.784856i 0.987768 + 0.155931i \(0.0498379\pi\)
−0.777466 + 0.628925i \(0.783495\pi\)
\(390\) 3.15930 3.89518i 0.159977 0.197240i
\(391\) 0.409063i 0.0206872i
\(392\) 0 0
\(393\) 18.4353i 0.929940i
\(394\) −12.1591 9.86197i −0.612565 0.496839i
\(395\) 3.99881 + 14.9238i 0.201202 + 0.750896i
\(396\) −13.9442 9.08648i −0.700721 0.456613i
\(397\) −5.39802 + 20.1457i −0.270919 + 1.01108i 0.687608 + 0.726082i \(0.258661\pi\)
−0.958527 + 0.285001i \(0.908006\pi\)
\(398\) −11.3341 + 25.4032i −0.568125 + 1.27335i
\(399\) 0 0
\(400\) −13.8953 1.50440i −0.694764 0.0752200i
\(401\) 0.0734423 + 0.127206i 0.00366753 + 0.00635235i 0.867853 0.496820i \(-0.165499\pi\)
−0.864186 + 0.503173i \(0.832166\pi\)
\(402\) 3.97194 + 5.47590i 0.198102 + 0.273113i
\(403\) 16.6689 4.46641i 0.830336 0.222488i
\(404\) 13.4797 + 26.5580i 0.670641 + 1.32131i
\(405\) −0.727032 + 0.727032i −0.0361265 + 0.0361265i
\(406\) 0 0
\(407\) 39.5828i 1.96205i
\(408\) −0.755984 + 0.0378417i −0.0374268 + 0.00187344i
\(409\) 1.96730 + 1.13582i 0.0972768 + 0.0561628i 0.547849 0.836577i \(-0.315447\pi\)
−0.450572 + 0.892740i \(0.648780\pi\)
\(410\) −18.9085 3.00997i −0.933826 0.148652i
\(411\) 7.17546 + 1.92266i 0.353939 + 0.0948378i
\(412\) 19.3284 17.3488i 0.952244 0.854712i
\(413\) 0 0
\(414\) −3.94744 1.76121i −0.194006 0.0865590i
\(415\) 0.620660 + 1.07501i 0.0304670 + 0.0527704i
\(416\) −4.24385 + 15.5942i −0.208072 + 0.764567i
\(417\) 5.98102 10.3594i 0.292892 0.507304i
\(418\) −3.96550 38.0151i −0.193959 1.85938i
\(419\) 19.3654 + 19.3654i 0.946061 + 0.946061i 0.998618 0.0525570i \(-0.0167371\pi\)
−0.0525570 + 0.998618i \(0.516737\pi\)
\(420\) 0 0
\(421\) 8.11005 8.11005i 0.395260 0.395260i −0.481298 0.876557i \(-0.659834\pi\)
0.876557 + 0.481298i \(0.159834\pi\)
\(422\) −1.43484 + 1.76906i −0.0698471 + 0.0861163i
\(423\) 5.35090 + 3.08934i 0.260170 + 0.150209i
\(424\) −1.44656 + 0.934591i −0.0702512 + 0.0453878i
\(425\) 0.800554 0.462200i 0.0388326 0.0224200i
\(426\) −12.0753 + 4.62446i −0.585051 + 0.224056i
\(427\) 0 0
\(428\) −3.50588 0.189233i −0.169463 0.00914690i
\(429\) −3.14880 + 11.7515i −0.152026 + 0.567368i
\(430\) 4.87658 + 6.72309i 0.235170 + 0.324216i
\(431\) 5.38288 9.32343i 0.259284 0.449094i −0.706766 0.707447i \(-0.749847\pi\)
0.966050 + 0.258354i \(0.0831800\pi\)
\(432\) −7.27522 + 18.7769i −0.350029 + 0.903403i
\(433\) 4.99439 0.240015 0.120008 0.992773i \(-0.461708\pi\)
0.120008 + 0.992773i \(0.461708\pi\)
\(434\) 0 0
\(435\) 0.407313 + 0.407313i 0.0195291 + 0.0195291i
\(436\) −27.6264 + 14.0220i −1.32307 + 0.671532i
\(437\) −2.56919 9.58835i −0.122901 0.458673i
\(438\) 3.33169 20.9296i 0.159194 1.00005i
\(439\) 1.47159 0.849621i 0.0702350 0.0405502i −0.464471 0.885588i \(-0.653756\pi\)
0.534706 + 0.845038i \(0.320422\pi\)
\(440\) −13.9070 + 4.48264i −0.662992 + 0.213701i
\(441\) 0 0
\(442\) −0.382281 0.998208i −0.0181833 0.0474799i
\(443\) 10.7956 + 2.89267i 0.512913 + 0.137435i 0.505987 0.862541i \(-0.331128\pi\)
0.00692670 + 0.999976i \(0.497795\pi\)
\(444\) 18.6129 3.92589i 0.883329 0.186314i
\(445\) −13.0296 + 3.49126i −0.617661 + 0.165502i
\(446\) 1.17778 + 11.2908i 0.0557697 + 0.534633i
\(447\) 18.4229 0.871375
\(448\) 0 0
\(449\) 4.05419 0.191329 0.0956646 0.995414i \(-0.469502\pi\)
0.0956646 + 0.995414i \(0.469502\pi\)
\(450\) −1.01344 9.71532i −0.0477741 0.457984i
\(451\) 44.8626 12.0209i 2.11250 0.566042i
\(452\) −14.9374 + 3.15064i −0.702595 + 0.148193i
\(453\) −12.7188 3.40799i −0.597582 0.160122i
\(454\) −2.55662 6.67582i −0.119988 0.313312i
\(455\) 0 0
\(456\) −17.4824 + 5.63508i −0.818689 + 0.263887i
\(457\) 8.79002 5.07492i 0.411180 0.237395i −0.280117 0.959966i \(-0.590373\pi\)
0.691296 + 0.722571i \(0.257040\pi\)
\(458\) −0.199996 + 1.25637i −0.00934519 + 0.0587061i
\(459\) −0.344710 1.28647i −0.0160897 0.0600475i
\(460\) −3.38391 + 1.71753i −0.157776 + 0.0800803i
\(461\) 1.02609 + 1.02609i 0.0477897 + 0.0477897i 0.730598 0.682808i \(-0.239241\pi\)
−0.682808 + 0.730598i \(0.739241\pi\)
\(462\) 0 0
\(463\) 10.5945 0.492369 0.246185 0.969223i \(-0.420823\pi\)
0.246185 + 0.969223i \(0.420823\pi\)
\(464\) −1.73080 0.670610i −0.0803504 0.0311323i
\(465\) 3.74899 6.49344i 0.173855 0.301126i
\(466\) 20.3964 + 28.1194i 0.944843 + 1.30261i
\(467\) 3.39211 12.6595i 0.156968 0.585812i −0.841961 0.539539i \(-0.818599\pi\)
0.998929 0.0462738i \(-0.0147347\pi\)
\(468\) −11.2786 0.608770i −0.521352 0.0281404i
\(469\) 0 0
\(470\) 5.06564 1.93997i 0.233660 0.0894843i
\(471\) −18.1585 + 10.4838i −0.836701 + 0.483069i
\(472\) 15.5437 10.0424i 0.715457 0.462241i
\(473\) −17.4479 10.0736i −0.802257 0.463184i
\(474\) −11.3458 + 13.9885i −0.521128 + 0.642512i
\(475\) 15.8619 15.8619i 0.727793 0.727793i
\(476\) 0 0
\(477\) −0.851098 0.851098i −0.0389691 0.0389691i
\(478\) 4.29945 + 41.2165i 0.196652 + 1.88520i
\(479\) −16.7383 + 28.9916i −0.764792 + 1.32466i 0.175564 + 0.984468i \(0.443825\pi\)
−0.940356 + 0.340191i \(0.889508\pi\)
\(480\) 3.48718 + 6.09488i 0.159167 + 0.278192i
\(481\) 13.4313 + 23.2638i 0.612416 + 1.06074i
\(482\) 10.2549 + 4.57537i 0.467096 + 0.208402i
\(483\) 0 0
\(484\) 10.0052 8.98044i 0.454782 0.408202i
\(485\) 16.8852 + 4.52438i 0.766718 + 0.205441i
\(486\) −22.2767 3.54613i −1.01049 0.160856i
\(487\) −19.9401 11.5124i −0.903571 0.521677i −0.0252137 0.999682i \(-0.508027\pi\)
−0.878357 + 0.478005i \(0.841360\pi\)
\(488\) 19.4465 0.973421i 0.880303 0.0440647i
\(489\) 6.36258i 0.287726i
\(490\) 0 0
\(491\) −21.9341 + 21.9341i −0.989874 + 0.989874i −0.999949 0.0100754i \(-0.996793\pi\)
0.0100754 + 0.999949i \(0.496793\pi\)
\(492\) −10.1021 19.9034i −0.455438 0.897314i
\(493\) 0.118584 0.0317744i 0.00534074 0.00143105i
\(494\) −15.2300 20.9968i −0.685230 0.944690i
\(495\) −5.10597 8.84379i −0.229496 0.397499i
\(496\) −2.60068 + 24.0209i −0.116774 + 1.07857i
\(497\) 0 0
\(498\) −0.589613 + 1.32151i −0.0264212 + 0.0592184i
\(499\) 2.24074 8.36254i 0.100309 0.374359i −0.897462 0.441092i \(-0.854591\pi\)
0.997771 + 0.0667336i \(0.0212578\pi\)
\(500\) −17.4660 11.3814i −0.781103 0.508992i
\(501\) −1.42886 5.33259i −0.0638369 0.238242i
\(502\) −10.7696 8.73503i −0.480672 0.389863i
\(503\) 11.5286i 0.514034i 0.966407 + 0.257017i \(0.0827396\pi\)
−0.966407 + 0.257017i \(0.917260\pi\)
\(504\) 0 0
\(505\) 18.2740i 0.813183i
\(506\) 5.79873 7.14940i 0.257785 0.317829i
\(507\) −1.26660 4.72701i −0.0562516 0.209934i
\(508\) 21.0162 4.43280i 0.932443 0.196674i
\(509\) −6.56418 + 24.4978i −0.290952 + 1.08585i 0.653427 + 0.756989i \(0.273331\pi\)
−0.944379 + 0.328859i \(0.893336\pi\)
\(510\) −0.424131 0.189233i −0.0187808 0.00837936i
\(511\) 0 0
\(512\) −18.2119 13.4285i −0.804861 0.593463i
\(513\) −16.1598 27.9897i −0.713475 1.23577i
\(514\) 9.50721 6.89604i 0.419345 0.304171i
\(515\) 15.3929 4.12453i 0.678294 0.181748i
\(516\) −3.00635 + 9.20362i −0.132347 + 0.405167i
\(517\) −9.30435 + 9.30435i −0.409205 + 0.409205i
\(518\) 0 0
\(519\) 16.6263i 0.729815i
\(520\) −6.65244 + 7.35353i −0.291729 + 0.322474i
\(521\) 0.249004 + 0.143762i 0.0109091 + 0.00629835i 0.505445 0.862859i \(-0.331328\pi\)
−0.494536 + 0.869157i \(0.664662\pi\)
\(522\) 0.203938 1.28113i 0.00892614 0.0560737i
\(523\) 5.24964 + 1.40664i 0.229551 + 0.0615079i 0.371761 0.928329i \(-0.378754\pi\)
−0.142210 + 0.989837i \(0.545421\pi\)
\(524\) 1.96454 36.3966i 0.0858211 1.58999i
\(525\) 0 0
\(526\) 7.98268 17.8917i 0.348062 0.780117i
\(527\) −0.799011 1.38393i −0.0348055 0.0602848i
\(528\) −13.7491 10.0552i −0.598354 0.437595i
\(529\) −10.3046 + 17.8481i −0.448027 + 0.776005i
\(530\) −1.05099 + 0.109633i −0.0456523 + 0.00476217i
\(531\) 9.14529 + 9.14529i 0.396872 + 0.396872i
\(532\) 0 0
\(533\) 22.2879 22.2879i 0.965396 0.965396i
\(534\) −12.2130 9.90572i −0.528508 0.428662i
\(535\) −1.86562 1.07712i −0.0806580 0.0465679i
\(536\) −7.25820 11.2342i −0.313507 0.485246i
\(537\) −16.0335 + 9.25693i −0.691896 + 0.399466i
\(538\) 0.919989 + 2.40226i 0.0396635 + 0.103569i
\(539\) 0 0
\(540\) −9.19484 + 8.25308i −0.395683 + 0.355156i
\(541\) 9.64594 35.9992i 0.414712 1.54772i −0.370701 0.928752i \(-0.620883\pi\)
0.785413 0.618972i \(-0.212451\pi\)
\(542\) 18.7403 13.5932i 0.804963 0.583879i
\(543\) 0.994727 1.72292i 0.0426878 0.0739375i
\(544\) 1.49656 + 0.00585000i 0.0641644 + 0.000250817i
\(545\) −19.0092 −0.814264
\(546\) 0 0
\(547\) 10.4205 + 10.4205i 0.445550 + 0.445550i 0.893872 0.448322i \(-0.147978\pi\)
−0.448322 + 0.893872i \(0.647978\pi\)
\(548\) −13.9615 4.56052i −0.596406 0.194816i
\(549\) 3.52201 + 13.1443i 0.150316 + 0.560986i
\(550\) 20.5437 + 3.27026i 0.875985 + 0.139444i
\(551\) 2.58001 1.48957i 0.109912 0.0634578i
\(552\) −3.93697 2.01763i −0.167569 0.0858761i
\(553\) 0 0
\(554\) 15.4431 5.91420i 0.656114 0.251270i
\(555\) 11.2739 + 3.02084i 0.478551 + 0.128227i
\(556\) −12.9122 + 19.8151i −0.547598 + 0.840348i
\(557\) −10.5829 + 2.83567i −0.448411 + 0.120151i −0.475956 0.879469i \(-0.657898\pi\)
0.0275450 + 0.999621i \(0.491231\pi\)
\(558\) −16.7950 + 1.75195i −0.710989 + 0.0741660i
\(559\) −13.6728 −0.578297
\(560\) 0 0
\(561\) 1.12660 0.0475651
\(562\) 42.4964 4.43297i 1.79260 0.186993i
\(563\) −19.2022 + 5.14520i −0.809274 + 0.216844i −0.639652 0.768665i \(-0.720921\pi\)
−0.169622 + 0.985509i \(0.554255\pi\)
\(564\) 5.29798 + 3.45234i 0.223085 + 0.145370i
\(565\) −9.04763 2.42431i −0.380637 0.101991i
\(566\) −22.0535 + 8.44576i −0.926977 + 0.355002i
\(567\) 0 0
\(568\) 24.3329 7.84320i 1.02099 0.329093i
\(569\) 23.3519 13.4822i 0.978963 0.565205i 0.0770061 0.997031i \(-0.475464\pi\)
0.901957 + 0.431826i \(0.142131\pi\)
\(570\) −11.1300 1.77174i −0.466186 0.0742102i
\(571\) 7.98417 + 29.7973i 0.334127 + 1.24698i 0.904813 + 0.425810i \(0.140011\pi\)
−0.570686 + 0.821169i \(0.693322\pi\)
\(572\) 7.46892 22.8652i 0.312291 0.956044i
\(573\) 2.48264 + 2.48264i 0.103714 + 0.103714i
\(574\) 0 0
\(575\) 5.40264 0.225306
\(576\) 6.49986 14.4166i 0.270828 0.600690i
\(577\) −4.08125 + 7.06893i −0.169905 + 0.294283i −0.938386 0.345589i \(-0.887679\pi\)
0.768482 + 0.639872i \(0.221013\pi\)
\(578\) 19.3810 14.0580i 0.806144 0.584735i
\(579\) 1.98623 7.41269i 0.0825447 0.308061i
\(580\) −0.760746 0.847555i −0.0315883 0.0351928i
\(581\) 0 0
\(582\) 7.28811 + 19.0306i 0.302102 + 0.788845i
\(583\) 2.21988 1.28165i 0.0919382 0.0530805i
\(584\) −8.80804 + 40.9659i −0.364479 + 1.69518i
\(585\) −6.00180 3.46514i −0.248144 0.143266i
\(586\) −23.8974 19.3827i −0.987193 0.800692i
\(587\) −0.0166226 + 0.0166226i −0.000686087 + 0.000686087i −0.707450 0.706764i \(-0.750154\pi\)
0.706764 + 0.707450i \(0.250154\pi\)
\(588\) 0 0
\(589\) −27.4206 27.4206i −1.12985 1.12985i
\(590\) 11.2932 1.17804i 0.464935 0.0484992i
\(591\) 5.59908 9.69789i 0.230315 0.398918i
\(592\) −37.1655 + 5.76736i −1.52749 + 0.237037i
\(593\) −8.35729 14.4753i −0.343193 0.594427i 0.641831 0.766846i \(-0.278175\pi\)
−0.985024 + 0.172419i \(0.944842\pi\)
\(594\) 12.2119 27.3708i 0.501062 1.12304i
\(595\) 0 0
\(596\) −36.3721 1.96321i −1.48986 0.0804163i
\(597\) −19.2189 5.14968i −0.786575 0.210762i
\(598\) 0.982100 6.16952i 0.0401611 0.252290i
\(599\) 15.2174 + 8.78578i 0.621767 + 0.358977i 0.777556 0.628813i \(-0.216459\pi\)
−0.155790 + 0.987790i \(0.549792\pi\)
\(600\) −0.499789 9.98454i −0.0204038 0.407617i
\(601\) 6.99237i 0.285225i 0.989779 + 0.142612i \(0.0455503\pi\)
−0.989779 + 0.142612i \(0.954450\pi\)
\(602\) 0 0
\(603\) 6.60978 6.60978i 0.269171 0.269171i
\(604\) 24.7474 + 8.08371i 1.00696 + 0.328921i
\(605\) 7.96802 2.13503i 0.323946 0.0868011i
\(606\) −17.2444 + 12.5082i −0.700504 + 0.508110i
\(607\) 3.12773 + 5.41738i 0.126951 + 0.219885i 0.922494 0.386012i \(-0.126148\pi\)
−0.795543 + 0.605897i \(0.792814\pi\)
\(608\) 35.1157 9.26227i 1.42413 0.375635i
\(609\) 0 0
\(610\) 10.9101 + 4.86772i 0.441738 + 0.197088i
\(611\) −2.31121 + 8.62557i −0.0935017 + 0.348953i
\(612\) 0.215863 + 1.02342i 0.00872574 + 0.0413693i
\(613\) −2.08597 7.78494i −0.0842514 0.314431i 0.910920 0.412583i \(-0.135373\pi\)
−0.995171 + 0.0981525i \(0.968707\pi\)
\(614\) −10.2715 + 12.6640i −0.414524 + 0.511077i
\(615\) 13.6951i 0.552240i
\(616\) 0 0
\(617\) 44.4895i 1.79108i −0.444980 0.895541i \(-0.646789\pi\)
0.444980 0.895541i \(-0.353211\pi\)
\(618\) 14.4283 + 11.7025i 0.580390 + 0.470742i
\(619\) −5.07865 18.9538i −0.204128 0.761816i −0.989714 0.143063i \(-0.954305\pi\)
0.785586 0.618753i \(-0.212362\pi\)
\(620\) −8.09353 + 12.4204i −0.325044 + 0.498815i
\(621\) 2.01465 7.51878i 0.0808451 0.301718i
\(622\) 17.9247 40.1749i 0.718714 1.61087i
\(623\) 0 0
\(624\) −11.4926 1.24427i −0.460074 0.0498108i
\(625\) 2.33975 + 4.05256i 0.0935899 + 0.162103i
\(626\) 2.64042 + 3.64021i 0.105533 + 0.145492i
\(627\) 26.4072 7.07580i 1.05460 0.282580i
\(628\) 36.9673 18.7630i 1.47516 0.748726i
\(629\) 1.75895 1.75895i 0.0701341 0.0701341i
\(630\) 0 0
\(631\) 8.64101i 0.343993i −0.985098 0.171997i \(-0.944978\pi\)
0.985098 0.171997i \(-0.0550218\pi\)
\(632\) 23.8904 26.4082i 0.950310 1.05046i
\(633\) −1.41097 0.814625i −0.0560811 0.0323784i
\(634\) −3.09987 0.493455i −0.123111 0.0195976i
\(635\) 12.7296 + 3.41088i 0.505159 + 0.135357i
\(636\) −0.822839 0.916733i −0.0326277 0.0363508i
\(637\) 0 0
\(638\) 2.52297 + 1.12566i 0.0998853 + 0.0445654i
\(639\) 8.93382 + 15.4738i 0.353417 + 0.612136i
\(640\) −6.23520 12.4046i −0.246468 0.490336i
\(641\) −7.54432 + 13.0672i −0.297983 + 0.516122i −0.975674 0.219225i \(-0.929647\pi\)
0.677691 + 0.735346i \(0.262981\pi\)
\(642\) −0.260552 2.49777i −0.0102832 0.0985790i
\(643\) −12.3557 12.3557i −0.487261 0.487261i 0.420180 0.907441i \(-0.361967\pi\)
−0.907441 + 0.420180i \(0.861967\pi\)
\(644\) 0 0
\(645\) −4.20072 + 4.20072i −0.165403 + 0.165403i
\(646\) −1.51307 + 1.86550i −0.0595310 + 0.0733973i
\(647\) −35.3412 20.4042i −1.38941 0.802173i −0.396157 0.918183i \(-0.629656\pi\)
−0.993248 + 0.116009i \(0.962990\pi\)
\(648\) 2.31689 + 0.498152i 0.0910160 + 0.0195693i
\(649\) −23.8533 + 13.7717i −0.936323 + 0.540586i
\(650\) 13.1837 5.04892i 0.517107 0.198035i
\(651\) 0 0
\(652\) −0.678019 + 12.5615i −0.0265533 + 0.491948i
\(653\) −3.61772 + 13.5015i −0.141572 + 0.528356i 0.858312 + 0.513129i \(0.171514\pi\)
−0.999884 + 0.0152268i \(0.995153\pi\)
\(654\) −13.0114 17.9381i −0.508785 0.701435i
\(655\) 11.1822 19.3682i 0.436925 0.756776i
\(656\) 17.8235 + 40.3714i 0.695889 + 1.57624i
\(657\) −29.2850 −1.14252
\(658\) 0 0
\(659\) −2.71835 2.71835i −0.105892 0.105892i 0.652176 0.758068i \(-0.273856\pi\)
−0.758068 + 0.652176i \(0.773856\pi\)
\(660\) −4.73025 9.31963i −0.184125 0.362766i
\(661\) −3.57716 13.3501i −0.139135 0.519260i −0.999947 0.0103356i \(-0.996710\pi\)
0.860811 0.508924i \(-0.169957\pi\)
\(662\) −0.616146 + 3.87060i −0.0239472 + 0.150435i
\(663\) 0.662130 0.382281i 0.0257150 0.0148466i
\(664\) 1.30489 2.54621i 0.0506395 0.0988121i
\(665\) 0 0
\(666\) −9.40070 24.5470i −0.364270 0.951177i
\(667\) 0.693060 + 0.185705i 0.0268354 + 0.00719053i
\(668\) 2.25272 + 10.6803i 0.0871604 + 0.413234i
\(669\) −7.84316 + 2.10157i −0.303234 + 0.0812513i
\(670\) −0.851432 8.16221i −0.0328937 0.315334i
\(671\) −28.9801 −1.11876
\(672\) 0 0
\(673\) −19.1036 −0.736391 −0.368195 0.929748i \(-0.620024\pi\)
−0.368195 + 0.929748i \(0.620024\pi\)
\(674\) 4.21202 + 40.3783i 0.162241 + 1.55531i
\(675\) 16.9909 4.55271i 0.653981 0.175234i
\(676\) 1.99690 + 9.46742i 0.0768037 + 0.364132i
\(677\) −14.2373 3.81488i −0.547186 0.146618i −0.0253729 0.999678i \(-0.508077\pi\)
−0.521813 + 0.853060i \(0.674744\pi\)
\(678\) −3.90520 10.1972i −0.149978 0.391622i
\(679\) 0 0
\(680\) 0.817189 + 0.418796i 0.0313378 + 0.0160601i
\(681\) 4.42820 2.55662i 0.169689 0.0979699i
\(682\) 5.65334 35.5141i 0.216478 1.35990i
\(683\) −12.8286 47.8769i −0.490872 1.83196i −0.552022 0.833830i \(-0.686143\pi\)
0.0611498 0.998129i \(-0.480523\pi\)
\(684\) 11.4875 + 22.6330i 0.439237 + 0.865394i
\(685\) −6.37232 6.37232i −0.243474 0.243474i
\(686\) 0 0
\(687\) −0.909963 −0.0347172
\(688\) 6.91617 17.8502i 0.263676 0.680532i
\(689\) 0.869786 1.50651i 0.0331362 0.0573936i
\(690\) −1.59374 2.19721i −0.0606727 0.0836462i
\(691\) 1.46943 5.48399i 0.0558997 0.208621i −0.932327 0.361616i \(-0.882225\pi\)
0.988227 + 0.152995i \(0.0488919\pi\)
\(692\) −1.77176 + 32.8251i −0.0673522 + 1.24782i
\(693\) 0 0
\(694\) 8.25308 3.16066i 0.313282 0.119977i
\(695\) −12.5673 + 7.25574i −0.476705 + 0.275226i
\(696\) 0.279085 1.29801i 0.0105787 0.0492011i
\(697\) −2.52775 1.45940i −0.0957455 0.0552787i
\(698\) −9.40390 + 11.5943i −0.355943 + 0.438851i
\(699\) −17.5695 + 17.5695i −0.664541 + 0.664541i
\(700\) 0 0
\(701\) 6.91144 + 6.91144i 0.261041 + 0.261041i 0.825477 0.564436i \(-0.190906\pi\)
−0.564436 + 0.825477i \(0.690906\pi\)
\(702\) −2.11030 20.2303i −0.0796481 0.763543i
\(703\) 30.1821 52.2769i 1.13834 1.97166i
\(704\) 26.0732 + 21.3169i 0.982670 + 0.803411i
\(705\) 1.93997 + 3.36013i 0.0730636 + 0.126550i
\(706\) −8.66191 3.86465i −0.325995 0.145448i
\(707\) 0 0
\(708\) 8.84163 + 9.85056i 0.332289 + 0.370207i
\(709\) −25.2840 6.77484i −0.949562 0.254434i −0.249385 0.968404i \(-0.580229\pi\)
−0.700176 + 0.713970i \(0.746895\pi\)
\(710\) 15.4913 + 2.46601i 0.581380 + 0.0925475i
\(711\) 21.5538 + 12.4441i 0.808331 + 0.466690i
\(712\) 23.0564 + 20.8582i 0.864073 + 0.781693i
\(713\) 9.33961i 0.349771i
\(714\) 0 0
\(715\) 10.4362 10.4362i 0.390290 0.390290i
\(716\) 32.6411 16.5672i 1.21985 0.619147i
\(717\) −28.6311 + 7.67169i −1.06925 + 0.286504i
\(718\) 9.76005 + 13.4557i 0.364242 + 0.502161i
\(719\) −7.26709 12.5870i −0.271017 0.469415i 0.698106 0.715995i \(-0.254027\pi\)
−0.969122 + 0.246580i \(0.920693\pi\)
\(720\) 7.55976 6.08273i 0.281736 0.226690i
\(721\) 0 0
\(722\) −12.8012 + 28.6917i −0.476413 + 1.06779i
\(723\) −2.07884 + 7.75834i −0.0773129 + 0.288536i
\(724\) −2.14747 + 3.29553i −0.0798102 + 0.122477i
\(725\) 0.419656 + 1.56618i 0.0155856 + 0.0581664i
\(726\) 7.46866 + 6.05768i 0.277188 + 0.224822i
\(727\) 35.2605i 1.30774i 0.756607 + 0.653870i \(0.226856\pi\)
−0.756607 + 0.653870i \(0.773144\pi\)
\(728\) 0 0
\(729\) 13.6210i 0.504481i
\(730\) −16.1954 + 19.9677i −0.599418 + 0.739038i
\(731\) 0.327697 + 1.22298i 0.0121203 + 0.0452337i
\(732\) 2.87429 + 13.6272i 0.106237 + 0.503677i
\(733\) −1.71332 + 6.39419i −0.0632828 + 0.236175i −0.990322 0.138790i \(-0.955679\pi\)
0.927039 + 0.374965i \(0.122345\pi\)
\(734\) 44.5184 + 19.8626i 1.64320 + 0.733141i
\(735\) 0 0
\(736\) 7.55769 + 4.40291i 0.278580 + 0.162294i
\(737\) 9.95352 + 17.2400i 0.366643 + 0.635044i
\(738\) −24.9664 + 18.1093i −0.919024 + 0.666613i
\(739\) −15.1682 + 4.06431i −0.557972 + 0.149508i −0.526774 0.850005i \(-0.676599\pi\)
−0.0311973 + 0.999513i \(0.509932\pi\)
\(740\) −21.9360 7.16538i −0.806383 0.263404i
\(741\) 13.1192 13.1192i 0.481946 0.481946i
\(742\) 0 0
\(743\) 9.88941i 0.362807i 0.983409 + 0.181404i \(0.0580641\pi\)
−0.983409 + 0.181404i \(0.941936\pi\)
\(744\) −17.2604 + 0.863991i −0.632797 + 0.0316754i
\(745\) −19.3551 11.1747i −0.709116 0.409408i
\(746\) 2.76606 17.3763i 0.101273 0.636191i
\(747\) 1.93146 + 0.517534i 0.0706686 + 0.0189356i
\(748\) −2.22423 0.120054i −0.0813258 0.00438963i
\(749\) 0 0
\(750\) 6.07564 13.6175i 0.221851 0.497239i
\(751\) 1.95848 + 3.39219i 0.0714659 + 0.123783i 0.899544 0.436830i \(-0.143899\pi\)
−0.828078 + 0.560613i \(0.810566\pi\)
\(752\) −10.0918 7.38047i −0.368011 0.269138i
\(753\) 4.95926 8.58970i 0.180726 0.313026i
\(754\) 1.86477 0.194522i 0.0679110 0.00708406i
\(755\) 11.2952 + 11.2952i 0.411074 + 0.411074i
\(756\) 0 0
\(757\) 30.8256 30.8256i 1.12037 1.12037i 0.128689 0.991685i \(-0.458923\pi\)
0.991685 0.128689i \(-0.0410770\pi\)
\(758\) 0.266550 + 0.216193i 0.00968151 + 0.00785248i
\(759\) 5.70225 + 3.29220i 0.206979 + 0.119499i
\(760\) 21.7850 + 4.68398i 0.790226 + 0.169906i
\(761\) −26.7482 + 15.4431i −0.969622 + 0.559812i −0.899121 0.437700i \(-0.855793\pi\)
−0.0705012 + 0.997512i \(0.522460\pi\)
\(762\) 5.49444 + 14.3470i 0.199042 + 0.519737i
\(763\) 0 0
\(764\) −4.63688 5.16599i −0.167756 0.186899i
\(765\) −0.166099 + 0.619890i −0.00600533 + 0.0224122i
\(766\) −24.8599 + 18.0321i −0.898226 + 0.651527i
\(767\) −9.34610 + 16.1879i −0.337468 + 0.584512i
\(768\) 7.43781 14.3746i 0.268389 0.518698i
\(769\) 32.1016 1.15761 0.578807 0.815465i \(-0.303519\pi\)
0.578807 + 0.815465i \(0.303519\pi\)
\(770\) 0 0
\(771\) 5.94029 + 5.94029i 0.213934 + 0.213934i
\(772\) −4.71130 + 14.4231i −0.169563 + 0.519099i
\(773\) −11.3371 42.3105i −0.407766 1.52180i −0.798896 0.601469i \(-0.794582\pi\)
0.391130 0.920335i \(-0.372084\pi\)
\(774\) 13.2126 + 2.10327i 0.474919 + 0.0756004i
\(775\) 18.2780 10.5528i 0.656566 0.379069i
\(776\) −12.3608 38.3485i −0.443728 1.37663i
\(777\) 0 0
\(778\) 21.1650 8.10550i 0.758801 0.290596i
\(779\) −68.4160 18.3320i −2.45126 0.656812i
\(780\) −5.94244 3.87229i −0.212774 0.138650i
\(781\) −36.7550 + 9.84846i −1.31520 + 0.352406i
\(782\) −0.575381 + 0.0600202i −0.0205756 + 0.00214632i
\(783\) 2.33612 0.0834860
\(784\) 0 0
\(785\) 25.4364 0.907865
\(786\) 25.9308 2.70494i 0.924922 0.0964822i
\(787\) −33.4688 + 8.96793i −1.19303 + 0.319672i −0.800084 0.599888i \(-0.795212\pi\)
−0.392949 + 0.919560i \(0.628545\pi\)
\(788\) −12.0876 + 18.5497i −0.430603 + 0.660807i
\(789\) 13.5360 + 3.62697i 0.481895 + 0.129123i
\(790\) 20.4047 7.81435i 0.725968 0.278022i
\(791\) 0 0
\(792\) −10.7349 + 20.9468i −0.381448 + 0.744313i
\(793\) −17.0323 + 9.83360i −0.604835 + 0.349201i
\(794\) 29.1286 + 4.63686i 1.03373 + 0.164556i
\(795\) −0.195623 0.730076i −0.00693804 0.0258931i
\(796\) 37.3947 + 12.2150i 1.32542 + 0.432948i
\(797\) −10.8522 10.8522i −0.384403 0.384403i 0.488283 0.872686i \(-0.337624\pi\)
−0.872686 + 0.488283i \(0.837624\pi\)
\(798\) 0 0
\(799\) 0.826921 0.0292544
\(800\) −0.0772631 + 19.7656i −0.00273166 + 0.698819i
\(801\) −10.8646 + 18.8181i −0.383883 + 0.664906i
\(802\) 0.168149 0.121967i 0.00593756 0.00430680i
\(803\) 16.1416 60.2412i 0.569624 2.12586i
\(804\) 7.11951 6.39031i 0.251086 0.225369i
\(805\) 0 0
\(806\) −8.72813 22.7908i −0.307435 0.802772i
\(807\) −1.59347 + 0.919989i −0.0560927 + 0.0323851i
\(808\) 35.3782 22.8571i 1.24460 0.804109i
\(809\) 34.7775 + 20.0788i 1.22271 + 0.705932i 0.965495 0.260422i \(-0.0838616\pi\)
0.257216 + 0.966354i \(0.417195\pi\)
\(810\) 1.12930 + 0.915956i 0.0396797 + 0.0321834i
\(811\) −15.7147 + 15.7147i −0.551819 + 0.551819i −0.926966 0.375147i \(-0.877592\pi\)
0.375147 + 0.926966i \(0.377592\pi\)
\(812\) 0 0
\(813\) 11.7093 + 11.7093i 0.410662 + 0.410662i
\(814\) 55.6764 5.80782i 1.95146 0.203564i
\(815\) −3.85931 + 6.68452i −0.135186 + 0.234149i
\(816\) 0.164150 + 1.05780i 0.00574639 + 0.0370304i
\(817\) 15.3623 + 26.6083i 0.537459 + 0.930907i
\(818\) 1.30897 2.93382i 0.0457671 0.102579i
\(819\) 0 0
\(820\) −1.45940 + 27.0380i −0.0509644 + 0.944209i
\(821\) 3.12519 + 0.837392i 0.109070 + 0.0292252i 0.312941 0.949773i \(-0.398686\pi\)
−0.203871 + 0.978998i \(0.565352\pi\)
\(822\) 1.65155 10.3750i 0.0576044 0.361869i
\(823\) −9.16184 5.28959i −0.319362 0.184384i 0.331746 0.943369i \(-0.392362\pi\)
−0.651108 + 0.758985i \(0.725696\pi\)
\(824\) −27.2384 24.6415i −0.948896 0.858428i
\(825\) 14.8794i 0.518034i
\(826\) 0 0
\(827\) 16.8200 16.8200i 0.584887 0.584887i −0.351355 0.936242i \(-0.614279\pi\)
0.936242 + 0.351355i \(0.114279\pi\)
\(828\) −1.89810 + 5.81082i −0.0659635 + 0.201940i
\(829\) −7.46997 + 2.00157i −0.259443 + 0.0695175i −0.386196 0.922417i \(-0.626211\pi\)
0.126753 + 0.991934i \(0.459544\pi\)
\(830\) 1.42103 1.03074i 0.0493246 0.0357775i
\(831\) 5.91420 + 10.2437i 0.205161 + 0.355350i
\(832\) 22.5572 + 3.68125i 0.782029 + 0.127624i
\(833\) 0 0
\(834\) −15.4490 6.89280i −0.534954 0.238678i
\(835\) −1.73339 + 6.46911i −0.0599865 + 0.223873i
\(836\) −52.8894 + 11.1556i −1.82922 + 0.385824i
\(837\) −7.87032 29.3724i −0.272038 1.01526i
\(838\) 24.3976 30.0804i 0.842801 1.03911i
\(839\) 6.99735i 0.241575i −0.992678 0.120788i \(-0.961458\pi\)
0.992678 0.120788i \(-0.0385420\pi\)
\(840\) 0 0
\(841\) 28.7847i 0.992575i
\(842\) −12.5974 10.2175i −0.434135 0.352118i
\(843\) 7.90993 + 29.5202i 0.272432 + 1.01673i
\(844\) 2.69885 + 1.75866i 0.0928983 + 0.0605356i
\(845\) −1.53654 + 5.73446i −0.0528587 + 0.197271i
\(846\) 3.56030 7.97976i 0.122406 0.274350i
\(847\) 0 0
\(848\) 1.52683 + 1.89758i 0.0524315 + 0.0651631i
\(849\) −8.44576 14.6285i −0.289858 0.502048i
\(850\) −0.767584 1.05823i −0.0263279 0.0362969i
\(851\) 14.0430 3.76280i 0.481387 0.128987i
\(852\) 8.27644 + 16.3064i 0.283546 + 0.558648i
\(853\) −32.6377 + 32.6377i −1.11749 + 1.11749i −0.125384 + 0.992108i \(0.540016\pi\)
−0.992108 + 0.125384i \(0.959984\pi\)
\(854\) 0 0
\(855\) 15.5733i 0.532596i
\(856\) 0.248232 + 4.95907i 0.00848441 + 0.169497i
\(857\) −37.8047 21.8266i −1.29139 0.745582i −0.312486 0.949923i \(-0.601162\pi\)
−0.978900 + 0.204341i \(0.934495\pi\)
\(858\) 16.9915 + 2.70480i 0.580079 + 0.0923403i
\(859\) −9.06433 2.42878i −0.309271 0.0828689i 0.100845 0.994902i \(-0.467845\pi\)
−0.410116 + 0.912033i \(0.634512\pi\)
\(860\) 8.74105 7.84576i 0.298067 0.267538i
\(861\) 0 0
\(862\) −13.9040 6.20347i −0.473571 0.211291i
\(863\) 4.05796 + 7.02860i 0.138135 + 0.239256i 0.926791 0.375579i \(-0.122556\pi\)
−0.788656 + 0.614835i \(0.789223\pi\)
\(864\) 27.4787 + 7.47813i 0.934843 + 0.254411i
\(865\) −10.0849 + 17.4676i −0.342898 + 0.593916i
\(866\) −0.732807 7.02502i −0.0249018 0.238720i
\(867\) 12.1096 + 12.1096i 0.411265 + 0.411265i
\(868\) 0 0
\(869\) −37.4786 + 37.4786i −1.27137 + 1.27137i
\(870\) 0.513155 0.632682i 0.0173976 0.0214499i
\(871\) 11.6999 + 6.75491i 0.396434 + 0.228881i
\(872\) 23.7766 + 36.8014i 0.805178 + 1.24625i
\(873\) 24.3867 14.0797i 0.825364 0.476524i
\(874\) −13.1098 + 5.02063i −0.443446 + 0.169825i
\(875\) 0 0
\(876\) −29.9280 1.61539i −1.01117 0.0545789i
\(877\) 8.49639 31.7089i 0.286903 1.07074i −0.660535 0.750795i \(-0.729671\pi\)
0.947438 0.319940i \(-0.103663\pi\)
\(878\) −1.41098 1.94524i −0.0476183 0.0656488i
\(879\) 11.0044 19.0602i 0.371170 0.642885i
\(880\) 8.34572 + 18.9037i 0.281334 + 0.637243i
\(881\) −12.2614 −0.413096 −0.206548 0.978436i \(-0.566223\pi\)
−0.206548 + 0.978436i \(0.566223\pi\)
\(882\) 0 0
\(883\) 4.12180 + 4.12180i 0.138710 + 0.138710i 0.773052 0.634342i \(-0.218729\pi\)
−0.634342 + 0.773052i \(0.718729\pi\)
\(884\) −1.34797 + 0.684172i −0.0453371 + 0.0230112i
\(885\) 2.10203 + 7.84487i 0.0706588 + 0.263702i
\(886\) 2.48478 15.6093i 0.0834778 0.524404i
\(887\) 20.6829 11.9413i 0.694465 0.400949i −0.110818 0.993841i \(-0.535347\pi\)
0.805283 + 0.592891i \(0.202014\pi\)
\(888\) −8.25308 25.6045i −0.276955 0.859232i
\(889\) 0 0
\(890\) 6.82252 + 17.8149i 0.228692 + 0.597157i
\(891\) −3.40703 0.912912i −0.114140 0.0305837i
\(892\) 15.7086 3.31330i 0.525962 0.110937i
\(893\) 19.3829 5.19362i 0.648622 0.173798i
\(894\) −2.70312 25.9133i −0.0904059 0.866672i
\(895\) 22.4597 0.750744
\(896\) 0 0
\(897\) 4.46847 0.149198
\(898\) −0.594856 5.70255i −0.0198506 0.190297i
\(899\) 2.70747 0.725465i 0.0902992 0.0241956i
\(900\) −13.5167 + 2.85098i −0.450556 + 0.0950326i
\(901\) −0.155599 0.0416926i −0.00518375 0.00138898i
\(902\) −23.4909 61.3392i −0.782161 2.04237i
\(903\) 0 0
\(904\) 6.62333 + 20.5484i 0.220289 + 0.683428i
\(905\) −2.09012 + 1.20673i −0.0694779 + 0.0401131i
\(906\) −2.92744 + 18.3901i −0.0972577 + 0.610969i
\(907\) 12.3867 + 46.2279i 0.411295 + 1.53497i 0.792143 + 0.610335i \(0.208965\pi\)
−0.380849 + 0.924637i \(0.624368\pi\)
\(908\) −9.01496 + 4.57561i −0.299172 + 0.151847i
\(909\) 20.8151 + 20.8151i 0.690393 + 0.690393i
\(910\) 0 0
\(911\) 0.866439 0.0287064 0.0143532 0.999897i \(-0.495431\pi\)
0.0143532 + 0.999897i \(0.495431\pi\)
\(912\) 10.4913 + 23.7636i 0.347403 + 0.786892i
\(913\) −2.12921 + 3.68789i −0.0704664 + 0.122051i
\(914\) −8.42801 11.6193i −0.278774 0.384331i
\(915\) −2.21167 + 8.25407i −0.0731156 + 0.272871i
\(916\) 1.79653 + 0.0969689i 0.0593589 + 0.00320394i
\(917\) 0 0
\(918\) −1.75895 + 0.673622i −0.0580541 + 0.0222328i
\(919\) −28.1635 + 16.2602i −0.929028 + 0.536375i −0.886504 0.462721i \(-0.846873\pi\)
−0.0425240 + 0.999095i \(0.513540\pi\)
\(920\) 2.91235 + 4.50774i 0.0960175 + 0.148616i
\(921\) −10.1006 5.83158i −0.332826 0.192157i
\(922\) 1.29272 1.59383i 0.0425736 0.0524900i
\(923\) −18.2600 + 18.2600i −0.601034 + 0.601034i
\(924\) 0 0
\(925\) 23.2311 + 23.2311i 0.763835 + 0.763835i
\(926\) −1.55449 14.9021i −0.0510838 0.489712i
\(927\) 12.8353 22.2314i 0.421568 0.730176i
\(928\) −0.689314 + 2.53291i −0.0226278 + 0.0831468i
\(929\) −5.10083 8.83489i −0.167353 0.289863i 0.770136 0.637880i \(-0.220189\pi\)
−0.937488 + 0.348017i \(0.886855\pi\)
\(930\) −9.68363 4.32050i −0.317539 0.141675i
\(931\) 0 0
\(932\) 36.5595 32.8150i 1.19755 1.07489i
\(933\) 30.3944 + 8.14415i 0.995068 + 0.266628i
\(934\) −18.3043 2.91379i −0.598937 0.0953423i
\(935\) −1.18360 0.683354i −0.0387080 0.0223481i
\(936\) 0.798575 + 15.9536i 0.0261023 + 0.521458i
\(937\) 5.06532i 0.165477i −0.996571 0.0827384i \(-0.973633\pi\)
0.996571 0.0827384i \(-0.0263666\pi\)
\(938\) 0 0
\(939\) −2.27447 + 2.27447i −0.0742247 + 0.0742247i
\(940\) −3.47199 6.84058i −0.113244 0.223115i
\(941\) 40.1915 10.7693i 1.31021 0.351069i 0.464906 0.885360i \(-0.346088\pi\)
0.845300 + 0.534292i \(0.179422\pi\)
\(942\) 17.4107 + 24.0032i 0.567271 + 0.782066i
\(943\) −8.52943 14.7734i −0.277757 0.481088i
\(944\) −16.4062 20.3900i −0.533976 0.663638i
\(945\) 0 0
\(946\) −11.6092 + 26.0200i −0.377449 + 0.845984i
\(947\) 6.95589 25.9598i 0.226036 0.843579i −0.755951 0.654629i \(-0.772825\pi\)
0.981987 0.188950i \(-0.0605084\pi\)
\(948\) 21.3407 + 13.9063i 0.693112 + 0.451655i
\(949\) −10.9544 40.8824i −0.355595 1.32710i
\(950\) −24.6384 19.9837i −0.799375 0.648356i
\(951\) 2.24518i 0.0728049i
\(952\) 0 0
\(953\) 39.1113i 1.26694i −0.773767 0.633470i \(-0.781630\pi\)
0.773767 0.633470i \(-0.218370\pi\)
\(954\) −1.07226 + 1.32202i −0.0347157 + 0.0428019i
\(955\) −1.10238 4.11414i −0.0356722 0.133130i
\(956\) 57.3435 12.0951i 1.85462 0.391182i
\(957\) −0.511450 + 1.90876i −0.0165328 + 0.0617013i
\(958\) 43.2349 + 19.2900i 1.39686 + 0.623230i
\(959\) 0 0
\(960\) 8.06128 5.79928i 0.260177 0.187171i
\(961\) −2.74280 4.75066i −0.0884773 0.153247i
\(962\) 30.7516 22.3057i 0.991473 0.719163i
\(963\) −3.35194 + 0.898150i −0.108015 + 0.0289425i
\(964\) 4.93098 15.0956i 0.158816 0.486198i
\(965\) −6.58300 + 6.58300i −0.211914 + 0.211914i
\(966\) 0 0
\(967\) 53.9124i 1.73371i −0.498565 0.866853i \(-0.666139\pi\)
0.498565 0.866853i \(-0.333861\pi\)
\(968\) −14.0997 12.7555i −0.453183 0.409976i
\(969\) −1.48790 0.859038i −0.0477982 0.0275963i
\(970\) 3.88641 24.4143i 0.124785 0.783895i
\(971\) −35.6676 9.55711i −1.14463 0.306702i −0.363818 0.931470i \(-0.618527\pi\)
−0.780811 + 0.624768i \(0.785194\pi\)
\(972\) −1.71936 + 31.8543i −0.0551485 + 1.02173i
\(973\) 0 0
\(974\) −13.2674 + 29.7365i −0.425115 + 0.952819i
\(975\) 5.04892 + 8.74499i 0.161695 + 0.280064i
\(976\) −4.22251 27.2103i −0.135159 0.870981i
\(977\) 28.5378 49.4289i 0.913004 1.58137i 0.103207 0.994660i \(-0.467090\pi\)
0.809797 0.586710i \(-0.199577\pi\)
\(978\) −8.94949 + 0.933556i −0.286173 + 0.0298518i
\(979\) −32.7217 32.7217i −1.04579 1.04579i
\(980\) 0 0
\(981\) −21.6525 + 21.6525i −0.691311 + 0.691311i
\(982\) 34.0705 + 27.6338i 1.08723 + 0.881831i
\(983\) 40.3197 + 23.2786i 1.28600 + 0.742471i 0.977938 0.208896i \(-0.0669869\pi\)
0.308060 + 0.951367i \(0.400320\pi\)
\(984\) −26.5135 + 17.1298i −0.845219 + 0.546078i
\(985\) −11.7648 + 6.79239i −0.374857 + 0.216424i
\(986\) −0.0620926 0.162136i −0.00197743 0.00516345i
\(987\) 0 0
\(988\) −27.2991 + 24.5030i −0.868499 + 0.779544i
\(989\) −1.91522 + 7.14771i −0.0609005 + 0.227284i
\(990\) −11.6903 + 8.47957i −0.371543 + 0.269498i
\(991\) −26.4721 + 45.8511i −0.840915 + 1.45651i 0.0482069 + 0.998837i \(0.484649\pi\)
−0.889122 + 0.457670i \(0.848684\pi\)
\(992\) 34.1690 + 0.133566i 1.08487 + 0.00424071i
\(993\) −2.80341 −0.0889635
\(994\) 0 0
\(995\) 17.0677 + 17.0677i 0.541082 + 0.541082i
\(996\) 1.94533 + 0.635439i 0.0616400 + 0.0201347i
\(997\) 5.87285 + 21.9178i 0.185995 + 0.694143i 0.994415 + 0.105537i \(0.0336563\pi\)
−0.808420 + 0.588606i \(0.799677\pi\)
\(998\) −12.0914 1.92478i −0.382746 0.0609277i
\(999\) 40.9933 23.6675i 1.29697 0.748807i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.x.k.557.2 16
7.2 even 3 inner 784.2.x.k.765.2 16
7.3 odd 6 784.2.m.g.589.4 8
7.4 even 3 112.2.m.c.29.4 8
7.5 odd 6 784.2.x.j.765.2 16
7.6 odd 2 784.2.x.j.557.2 16
16.5 even 4 inner 784.2.x.k.165.2 16
28.11 odd 6 448.2.m.c.337.3 8
56.11 odd 6 896.2.m.f.673.2 8
56.53 even 6 896.2.m.e.673.3 8
112.5 odd 12 784.2.x.j.373.2 16
112.11 odd 12 448.2.m.c.113.3 8
112.37 even 12 inner 784.2.x.k.373.2 16
112.53 even 12 112.2.m.c.85.4 yes 8
112.67 odd 12 896.2.m.f.225.2 8
112.69 odd 4 784.2.x.j.165.2 16
112.101 odd 12 784.2.m.g.197.4 8
112.109 even 12 896.2.m.e.225.3 8
224.11 odd 24 7168.2.a.bd.1.5 8
224.53 even 24 7168.2.a.bc.1.4 8
224.123 odd 24 7168.2.a.bd.1.4 8
224.165 even 24 7168.2.a.bc.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.m.c.29.4 8 7.4 even 3
112.2.m.c.85.4 yes 8 112.53 even 12
448.2.m.c.113.3 8 112.11 odd 12
448.2.m.c.337.3 8 28.11 odd 6
784.2.m.g.197.4 8 112.101 odd 12
784.2.m.g.589.4 8 7.3 odd 6
784.2.x.j.165.2 16 112.69 odd 4
784.2.x.j.373.2 16 112.5 odd 12
784.2.x.j.557.2 16 7.6 odd 2
784.2.x.j.765.2 16 7.5 odd 6
784.2.x.k.165.2 16 16.5 even 4 inner
784.2.x.k.373.2 16 112.37 even 12 inner
784.2.x.k.557.2 16 1.1 even 1 trivial
784.2.x.k.765.2 16 7.2 even 3 inner
896.2.m.e.225.3 8 112.109 even 12
896.2.m.e.673.3 8 56.53 even 6
896.2.m.f.225.2 8 112.67 odd 12
896.2.m.f.673.2 8 56.11 odd 6
7168.2.a.bc.1.4 8 224.53 even 24
7168.2.a.bc.1.5 8 224.165 even 24
7168.2.a.bd.1.4 8 224.123 odd 24
7168.2.a.bd.1.5 8 224.11 odd 24