Properties

Label 784.2.x.k.165.2
Level $784$
Weight $2$
Character 784.165
Analytic conductor $6.260$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(165,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 4 x^{14} + 4 x^{13} - 13 x^{12} + 32 x^{11} - 4 x^{10} - 34 x^{9} + 121 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 165.2
Root \(0.640069 + 1.26108i\) of defining polynomial
Character \(\chi\) \(=\) 784.165
Dual form 784.2.x.k.765.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.14477 - 0.830359i) q^{2} +(-0.261809 - 0.977085i) q^{3} +(0.621007 + 1.90114i) q^{4} +(0.317608 - 1.18533i) q^{5} +(-0.511620 + 1.33594i) q^{6} +(0.867721 - 2.69204i) q^{8} +(1.71192 - 0.988380i) q^{9} +(-1.34784 + 1.09320i) q^{10} +(4.06633 - 1.08957i) q^{11} +(1.69499 - 1.10451i) q^{12} +(-2.02017 + 2.02017i) q^{13} -1.24132 q^{15} +(-3.22870 + 2.36125i) q^{16} +(-0.132279 + 0.229115i) q^{17} +(-2.78047 - 0.290042i) q^{18} +(6.20120 + 1.66161i) q^{19} +(2.45072 - 0.132279i) q^{20} +(-5.55976 - 2.12921i) q^{22} +(1.33906 - 0.773104i) q^{23} +(-2.85753 - 0.143037i) q^{24} +(3.02600 + 1.74706i) q^{25} +(3.99009 - 0.635167i) q^{26} +(-3.55976 - 3.55976i) q^{27} +(-0.328129 + 0.328129i) q^{29} +(1.42103 + 1.03074i) q^{30} +(-3.02017 + 5.23108i) q^{31} +(5.65681 - 0.0221123i) q^{32} +(-2.12921 - 3.68789i) q^{33} +(0.341677 - 0.152445i) q^{34} +(2.94217 + 2.64082i) q^{36} +(2.43357 - 9.08220i) q^{37} +(-5.71923 - 7.05138i) q^{38} +(2.50277 + 1.44498i) q^{39} +(-2.91535 - 1.88355i) q^{40} -11.0327i q^{41} +(3.38407 + 3.38407i) q^{43} +(4.59665 + 7.05405i) q^{44} +(-0.627835 - 2.34311i) q^{45} +(-2.17487 - 0.226869i) q^{46} +(-1.56283 - 2.70690i) q^{47} +(3.15244 + 2.53652i) q^{48} +(-2.01339 - 4.51265i) q^{50} +(0.258496 + 0.0692639i) q^{51} +(-5.09516 - 2.58609i) q^{52} +(-0.588145 + 0.157593i) q^{53} +(1.11923 + 7.03099i) q^{54} -5.16599i q^{55} -6.49412i q^{57} +(0.648097 - 0.103168i) q^{58} +(6.31978 - 1.69338i) q^{59} +(-0.770868 - 2.35993i) q^{60} +(-6.64943 - 1.78171i) q^{61} +(7.80108 - 3.48057i) q^{62} +(-6.49412 - 4.67187i) q^{64} +(1.75294 + 3.03618i) q^{65} +(-0.624819 + 5.98980i) q^{66} +(1.22389 + 4.56764i) q^{67} +(-0.517726 - 0.109200i) q^{68} +(-1.10597 - 1.10597i) q^{69} +9.03885i q^{71} +(-1.17528 - 5.46620i) q^{72} +(-12.8298 - 7.40731i) q^{73} +(-10.3274 + 8.37632i) q^{74} +(0.914793 - 3.41405i) q^{75} +(0.692037 + 12.8212i) q^{76} +(-1.66525 - 3.73237i) q^{78} +(-6.29520 - 10.9036i) q^{79} +(1.77340 + 4.57702i) q^{80} +(0.418932 - 0.725612i) q^{81} +(-9.16111 + 12.6299i) q^{82} +(-0.715276 + 0.715276i) q^{83} +(0.229563 + 0.229563i) q^{85} +(-1.06400 - 6.68399i) q^{86} +(0.406517 + 0.234703i) q^{87} +(0.595277 - 11.8922i) q^{88} +(-9.51968 + 5.49619i) q^{89} +(-1.22690 + 3.20366i) q^{90} +(2.30135 + 2.06564i) q^{92} +(5.90192 + 1.58141i) q^{93} +(-0.458616 + 4.39650i) q^{94} +(3.93910 - 6.82272i) q^{95} +(-1.50261 - 5.52140i) q^{96} -14.2452 q^{97} +(5.88434 - 5.88434i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 4 q^{4} + 4 q^{5} - 32 q^{6} - 8 q^{8} - 12 q^{10} + 12 q^{12} - 16 q^{15} - 8 q^{16} - 24 q^{17} - 6 q^{18} + 12 q^{19} - 16 q^{20} - 8 q^{22} - 8 q^{26} + 24 q^{27} - 32 q^{29} - 20 q^{30}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.14477 0.830359i −0.809476 0.587153i
\(3\) −0.261809 0.977085i −0.151156 0.564120i −0.999404 0.0345217i \(-0.989009\pi\)
0.848248 0.529599i \(-0.177657\pi\)
\(4\) 0.621007 + 1.90114i 0.310504 + 0.950572i
\(5\) 0.317608 1.18533i 0.142039 0.530095i −0.857831 0.513932i \(-0.828188\pi\)
0.999869 0.0161629i \(-0.00514502\pi\)
\(6\) −0.511620 + 1.33594i −0.208868 + 0.545393i
\(7\) 0 0
\(8\) 0.867721 2.69204i 0.306786 0.951779i
\(9\) 1.71192 0.988380i 0.570642 0.329460i
\(10\) −1.34784 + 1.09320i −0.426223 + 0.345701i
\(11\) 4.06633 1.08957i 1.22604 0.328518i 0.413007 0.910728i \(-0.364479\pi\)
0.813038 + 0.582210i \(0.197812\pi\)
\(12\) 1.69499 1.10451i 0.489303 0.318846i
\(13\) −2.02017 + 2.02017i −0.560293 + 0.560293i −0.929391 0.369098i \(-0.879667\pi\)
0.369098 + 0.929391i \(0.379667\pi\)
\(14\) 0 0
\(15\) −1.24132 −0.320507
\(16\) −3.22870 + 2.36125i −0.807175 + 0.590312i
\(17\) −0.132279 + 0.229115i −0.0320825 + 0.0555685i −0.881621 0.471958i \(-0.843547\pi\)
0.849538 + 0.527527i \(0.176881\pi\)
\(18\) −2.78047 0.290042i −0.655364 0.0683636i
\(19\) 6.20120 + 1.66161i 1.42265 + 0.381199i 0.886424 0.462874i \(-0.153182\pi\)
0.536228 + 0.844073i \(0.319849\pi\)
\(20\) 2.45072 0.132279i 0.547997 0.0295786i
\(21\) 0 0
\(22\) −5.55976 2.12921i −1.18534 0.453948i
\(23\) 1.33906 0.773104i 0.279212 0.161203i −0.353854 0.935301i \(-0.615129\pi\)
0.633067 + 0.774097i \(0.281796\pi\)
\(24\) −2.85753 0.143037i −0.583290 0.0291973i
\(25\) 3.02600 + 1.74706i 0.605200 + 0.349412i
\(26\) 3.99009 0.635167i 0.782521 0.124566i
\(27\) −3.55976 3.55976i −0.685076 0.685076i
\(28\) 0 0
\(29\) −0.328129 + 0.328129i −0.0609320 + 0.0609320i −0.736916 0.675984i \(-0.763719\pi\)
0.675984 + 0.736916i \(0.263719\pi\)
\(30\) 1.42103 + 1.03074i 0.259443 + 0.188187i
\(31\) −3.02017 + 5.23108i −0.542438 + 0.939530i 0.456326 + 0.889813i \(0.349165\pi\)
−0.998763 + 0.0497168i \(0.984168\pi\)
\(32\) 5.65681 0.0221123i 0.999992 0.00390894i
\(33\) −2.12921 3.68789i −0.370647 0.641980i
\(34\) 0.341677 0.152445i 0.0585972 0.0261440i
\(35\) 0 0
\(36\) 2.94217 + 2.64082i 0.490362 + 0.440137i
\(37\) 2.43357 9.08220i 0.400076 1.49310i −0.412883 0.910784i \(-0.635478\pi\)
0.812959 0.582320i \(-0.197855\pi\)
\(38\) −5.71923 7.05138i −0.927782 1.14389i
\(39\) 2.50277 + 1.44498i 0.400764 + 0.231381i
\(40\) −2.91535 1.88355i −0.460958 0.297815i
\(41\) 11.0327i 1.72302i −0.507741 0.861510i \(-0.669519\pi\)
0.507741 0.861510i \(-0.330481\pi\)
\(42\) 0 0
\(43\) 3.38407 + 3.38407i 0.516066 + 0.516066i 0.916379 0.400312i \(-0.131098\pi\)
−0.400312 + 0.916379i \(0.631098\pi\)
\(44\) 4.59665 + 7.05405i 0.692971 + 1.06344i
\(45\) −0.627835 2.34311i −0.0935921 0.349290i
\(46\) −2.17487 0.226869i −0.320667 0.0334500i
\(47\) −1.56283 2.70690i −0.227962 0.394842i 0.729242 0.684256i \(-0.239873\pi\)
−0.957204 + 0.289414i \(0.906540\pi\)
\(48\) 3.15244 + 2.53652i 0.455016 + 0.366115i
\(49\) 0 0
\(50\) −2.01339 4.51265i −0.284736 0.638185i
\(51\) 0.258496 + 0.0692639i 0.0361967 + 0.00969889i
\(52\) −5.09516 2.58609i −0.706572 0.358626i
\(53\) −0.588145 + 0.157593i −0.0807879 + 0.0216471i −0.298987 0.954257i \(-0.596649\pi\)
0.218199 + 0.975904i \(0.429982\pi\)
\(54\) 1.11923 + 7.03099i 0.152309 + 0.956796i
\(55\) 5.16599i 0.696582i
\(56\) 0 0
\(57\) 6.49412i 0.860167i
\(58\) 0.648097 0.103168i 0.0850994 0.0135466i
\(59\) 6.31978 1.69338i 0.822765 0.220459i 0.177210 0.984173i \(-0.443293\pi\)
0.645555 + 0.763714i \(0.276626\pi\)
\(60\) −0.770868 2.35993i −0.0995187 0.304665i
\(61\) −6.64943 1.78171i −0.851372 0.228125i −0.193356 0.981129i \(-0.561937\pi\)
−0.658016 + 0.753004i \(0.728604\pi\)
\(62\) 7.80108 3.48057i 0.990738 0.442033i
\(63\) 0 0
\(64\) −6.49412 4.67187i −0.811765 0.583984i
\(65\) 1.75294 + 3.03618i 0.217425 + 0.376592i
\(66\) −0.624819 + 5.98980i −0.0769100 + 0.737294i
\(67\) 1.22389 + 4.56764i 0.149523 + 0.558026i 0.999512 + 0.0312266i \(0.00994134\pi\)
−0.849990 + 0.526799i \(0.823392\pi\)
\(68\) −0.517726 0.109200i −0.0627835 0.0132425i
\(69\) −1.10597 1.10597i −0.133143 0.133143i
\(70\) 0 0
\(71\) 9.03885i 1.07271i 0.843991 + 0.536357i \(0.180200\pi\)
−0.843991 + 0.536357i \(0.819800\pi\)
\(72\) −1.17528 5.46620i −0.138508 0.644198i
\(73\) −12.8298 7.40731i −1.50162 0.866960i −0.999998 0.00187294i \(-0.999404\pi\)
−0.501621 0.865087i \(-0.667263\pi\)
\(74\) −10.3274 + 8.37632i −1.20053 + 0.973727i
\(75\) 0.914793 3.41405i 0.105631 0.394221i
\(76\) 0.692037 + 12.8212i 0.0793820 + 1.47070i
\(77\) 0 0
\(78\) −1.66525 3.73237i −0.188553 0.422607i
\(79\) −6.29520 10.9036i −0.708265 1.22675i −0.965500 0.260402i \(-0.916145\pi\)
0.257235 0.966349i \(-0.417189\pi\)
\(80\) 1.77340 + 4.57702i 0.198272 + 0.511726i
\(81\) 0.418932 0.725612i 0.0465480 0.0806235i
\(82\) −9.16111 + 12.6299i −1.01168 + 1.39474i
\(83\) −0.715276 + 0.715276i −0.0785117 + 0.0785117i −0.745272 0.666760i \(-0.767680\pi\)
0.666760 + 0.745272i \(0.267680\pi\)
\(84\) 0 0
\(85\) 0.229563 + 0.229563i 0.0248996 + 0.0248996i
\(86\) −1.06400 6.68399i −0.114734 0.720753i
\(87\) 0.406517 + 0.234703i 0.0435832 + 0.0251628i
\(88\) 0.595277 11.8922i 0.0634567 1.26771i
\(89\) −9.51968 + 5.49619i −1.00908 + 0.582595i −0.910923 0.412576i \(-0.864629\pi\)
−0.0981604 + 0.995171i \(0.531296\pi\)
\(90\) −1.22690 + 3.20366i −0.129326 + 0.337695i
\(91\) 0 0
\(92\) 2.30135 + 2.06564i 0.239932 + 0.215357i
\(93\) 5.90192 + 1.58141i 0.612000 + 0.163985i
\(94\) −0.458616 + 4.39650i −0.0473026 + 0.453464i
\(95\) 3.93910 6.82272i 0.404143 0.699996i
\(96\) −1.50261 5.52140i −0.153360 0.563525i
\(97\) −14.2452 −1.44638 −0.723189 0.690650i \(-0.757325\pi\)
−0.723189 + 0.690650i \(0.757325\pi\)
\(98\) 0 0
\(99\) 5.88434 5.88434i 0.591399 0.591399i
\(100\) −1.44225 + 6.83780i −0.144225 + 0.683780i
\(101\) 14.3841 3.85421i 1.43127 0.383508i 0.541804 0.840505i \(-0.317741\pi\)
0.889469 + 0.456996i \(0.151075\pi\)
\(102\) −0.238406 0.293936i −0.0236057 0.0291040i
\(103\) 11.2464 6.49311i 1.10814 0.639785i 0.169794 0.985480i \(-0.445690\pi\)
0.938347 + 0.345694i \(0.112357\pi\)
\(104\) 3.68542 + 7.19130i 0.361385 + 0.705165i
\(105\) 0 0
\(106\) 0.804151 + 0.307963i 0.0781060 + 0.0299121i
\(107\) −0.454354 + 1.69567i −0.0439241 + 0.163927i −0.984404 0.175922i \(-0.943709\pi\)
0.940480 + 0.339849i \(0.110376\pi\)
\(108\) 4.55698 8.97825i 0.438495 0.863932i
\(109\) −4.00927 14.9628i −0.384018 1.43318i −0.839709 0.543037i \(-0.817274\pi\)
0.455691 0.890138i \(-0.349392\pi\)
\(110\) −4.28963 + 5.91389i −0.409000 + 0.563867i
\(111\) −9.51121 −0.902764
\(112\) 0 0
\(113\) 7.63302 0.718054 0.359027 0.933327i \(-0.383109\pi\)
0.359027 + 0.933327i \(0.383109\pi\)
\(114\) −5.39245 + 7.43429i −0.505050 + 0.696285i
\(115\) −0.491088 1.83277i −0.0457942 0.170906i
\(116\) −0.827590 0.420050i −0.0768398 0.0390006i
\(117\) −1.46168 + 5.45506i −0.135132 + 0.504321i
\(118\) −8.64082 3.30915i −0.795452 0.304632i
\(119\) 0 0
\(120\) −1.07712 + 3.34168i −0.0983270 + 0.305052i
\(121\) 5.82160 3.36110i 0.529237 0.305555i
\(122\) 6.13262 + 7.56107i 0.555222 + 0.684547i
\(123\) −10.7799 + 2.88846i −0.971990 + 0.260444i
\(124\) −11.8206 2.49323i −1.06152 0.223899i
\(125\) 7.37052 7.37052i 0.659240 0.659240i
\(126\) 0 0
\(127\) −10.7393 −0.952959 −0.476479 0.879186i \(-0.658087\pi\)
−0.476479 + 0.879186i \(0.658087\pi\)
\(128\) 3.55496 + 10.7407i 0.314217 + 0.949351i
\(129\) 2.42055 4.19251i 0.213117 0.369130i
\(130\) 0.514403 4.93130i 0.0451162 0.432504i
\(131\) 17.6038 + 4.71692i 1.53805 + 0.412120i 0.925636 0.378416i \(-0.123531\pi\)
0.612416 + 0.790536i \(0.290198\pi\)
\(132\) 5.68896 6.33813i 0.495161 0.551664i
\(133\) 0 0
\(134\) 2.39170 6.24518i 0.206611 0.539501i
\(135\) −5.35009 + 3.08887i −0.460462 + 0.265848i
\(136\) 0.502003 + 0.554908i 0.0430464 + 0.0475830i
\(137\) −6.35987 3.67187i −0.543360 0.313709i 0.203079 0.979162i \(-0.434905\pi\)
−0.746440 + 0.665453i \(0.768238\pi\)
\(138\) 0.347730 + 2.18443i 0.0296008 + 0.185951i
\(139\) 8.36184 + 8.36184i 0.709242 + 0.709242i 0.966376 0.257134i \(-0.0827781\pi\)
−0.257134 + 0.966376i \(0.582778\pi\)
\(140\) 0 0
\(141\) −2.23571 + 2.23571i −0.188281 + 0.188281i
\(142\) 7.50549 10.3474i 0.629847 0.868337i
\(143\) −6.01355 + 10.4158i −0.502878 + 0.871011i
\(144\) −3.19348 + 7.23346i −0.266123 + 0.602789i
\(145\) 0.284724 + 0.493157i 0.0236450 + 0.0409544i
\(146\) 8.53652 + 19.1331i 0.706487 + 1.58346i
\(147\) 0 0
\(148\) 18.7778 1.01355i 1.54353 0.0833132i
\(149\) −4.71375 + 17.5919i −0.386165 + 1.44119i 0.450157 + 0.892949i \(0.351368\pi\)
−0.836322 + 0.548239i \(0.815299\pi\)
\(150\) −3.88212 + 3.14871i −0.316974 + 0.257091i
\(151\) 11.2731 + 6.50855i 0.917394 + 0.529658i 0.882803 0.469744i \(-0.155654\pi\)
0.0345916 + 0.999402i \(0.488987\pi\)
\(152\) 9.85401 15.2520i 0.799266 1.23710i
\(153\) 0.522969i 0.0422796i
\(154\) 0 0
\(155\) 5.24132 + 5.24132i 0.420993 + 0.420993i
\(156\) −1.19287 + 5.65547i −0.0955059 + 0.452800i
\(157\) 5.36485 + 20.0219i 0.428162 + 1.59792i 0.756921 + 0.653507i \(0.226703\pi\)
−0.328759 + 0.944414i \(0.606630\pi\)
\(158\) −1.84734 + 17.7094i −0.146966 + 1.40889i
\(159\) 0.307963 + 0.533408i 0.0244231 + 0.0423020i
\(160\) 1.77044 6.71220i 0.139965 0.530646i
\(161\) 0 0
\(162\) −1.08210 + 0.482796i −0.0850178 + 0.0379321i
\(163\) −6.07559 1.62795i −0.475877 0.127511i 0.0129051 0.999917i \(-0.495892\pi\)
−0.488782 + 0.872406i \(0.662559\pi\)
\(164\) 20.9748 6.85139i 1.63785 0.535004i
\(165\) −5.04762 + 1.35250i −0.392956 + 0.105292i
\(166\) 1.41276 0.224892i 0.109652 0.0174550i
\(167\) 5.45765i 0.422326i 0.977451 + 0.211163i \(0.0677250\pi\)
−0.977451 + 0.211163i \(0.932275\pi\)
\(168\) 0 0
\(169\) 4.83786i 0.372143i
\(170\) −0.0721777 0.453417i −0.00553577 0.0347755i
\(171\) 12.2583 3.28460i 0.937414 0.251179i
\(172\) −4.33208 + 8.53515i −0.330318 + 0.650799i
\(173\) −15.8764 4.25406i −1.20706 0.323430i −0.401452 0.915880i \(-0.631494\pi\)
−0.805607 + 0.592450i \(0.798161\pi\)
\(174\) −0.270482 0.606236i −0.0205052 0.0459586i
\(175\) 0 0
\(176\) −10.5562 + 13.1195i −0.795705 + 0.988921i
\(177\) −3.30915 5.73162i −0.248731 0.430815i
\(178\) 15.4617 + 1.61287i 1.15890 + 0.120889i
\(179\) 4.73701 + 17.6788i 0.354061 + 1.32137i 0.881662 + 0.471882i \(0.156425\pi\)
−0.527601 + 0.849492i \(0.676908\pi\)
\(180\) 4.06470 2.64869i 0.302965 0.197422i
\(181\) 1.39069 + 1.39069i 0.103369 + 0.103369i 0.756900 0.653531i \(-0.226713\pi\)
−0.653531 + 0.756900i \(0.726713\pi\)
\(182\) 0 0
\(183\) 6.96353i 0.514759i
\(184\) −0.919299 4.27563i −0.0677716 0.315203i
\(185\) −9.99247 5.76916i −0.734661 0.424157i
\(186\) −5.44321 6.71107i −0.399116 0.492080i
\(187\) −0.288255 + 1.07578i −0.0210793 + 0.0786691i
\(188\) 4.17568 4.65217i 0.304543 0.339295i
\(189\) 0 0
\(190\) −10.1747 + 4.53959i −0.738149 + 0.329337i
\(191\) 1.73544 + 3.00587i 0.125572 + 0.217497i 0.921956 0.387294i \(-0.126590\pi\)
−0.796384 + 0.604791i \(0.793257\pi\)
\(192\) −2.86460 + 7.56845i −0.206734 + 0.546206i
\(193\) 3.79327 6.57014i 0.273046 0.472929i −0.696595 0.717465i \(-0.745302\pi\)
0.969640 + 0.244536i \(0.0786357\pi\)
\(194\) 16.3075 + 11.8286i 1.17081 + 0.849245i
\(195\) 2.50767 2.50767i 0.179578 0.179578i
\(196\) 0 0
\(197\) 7.82786 + 7.82786i 0.557712 + 0.557712i 0.928655 0.370944i \(-0.120966\pi\)
−0.370944 + 0.928655i \(0.620966\pi\)
\(198\) −11.6224 + 1.85011i −0.825965 + 0.131482i
\(199\) 17.0344 + 9.83479i 1.20753 + 0.697170i 0.962220 0.272274i \(-0.0877757\pi\)
0.245314 + 0.969444i \(0.421109\pi\)
\(200\) 7.32887 6.63014i 0.518230 0.468822i
\(201\) 4.14254 2.39170i 0.292192 0.168697i
\(202\) −19.6669 7.53178i −1.38376 0.529935i
\(203\) 0 0
\(204\) 0.0288475 + 0.534452i 0.00201973 + 0.0374192i
\(205\) −13.0774 3.50407i −0.913364 0.244735i
\(206\) −18.2662 1.90542i −1.27267 0.132757i
\(207\) 1.52824 2.64699i 0.106220 0.183979i
\(208\) 1.75239 11.2926i 0.121507 0.783002i
\(209\) 27.0266 1.86947
\(210\) 0 0
\(211\) −1.13890 + 1.13890i −0.0784048 + 0.0784048i −0.745222 0.666817i \(-0.767656\pi\)
0.666817 + 0.745222i \(0.267656\pi\)
\(212\) −0.664849 1.02028i −0.0456620 0.0700732i
\(213\) 8.83173 2.36645i 0.605140 0.162147i
\(214\) 1.92815 1.56388i 0.131806 0.106905i
\(215\) 5.08605 2.93643i 0.346865 0.200263i
\(216\) −12.6719 + 6.49412i −0.862212 + 0.441869i
\(217\) 0 0
\(218\) −7.83479 + 20.4581i −0.530639 + 1.38560i
\(219\) −3.87860 + 14.4751i −0.262092 + 0.978140i
\(220\) 9.82130 3.20812i 0.662152 0.216291i
\(221\) −0.195623 0.730076i −0.0131590 0.0491102i
\(222\) 10.8882 + 7.89772i 0.730766 + 0.530060i
\(223\) −8.02710 −0.537534 −0.268767 0.963205i \(-0.586616\pi\)
−0.268767 + 0.963205i \(0.586616\pi\)
\(224\) 0 0
\(225\) 6.90704 0.460469
\(226\) −8.73807 6.33815i −0.581248 0.421607i
\(227\) −1.30829 4.88260i −0.0868342 0.324070i 0.908821 0.417186i \(-0.136984\pi\)
−0.995655 + 0.0931165i \(0.970317\pi\)
\(228\) 12.3463 4.03290i 0.817651 0.267085i
\(229\) 0.232826 0.868918i 0.0153856 0.0574197i −0.957806 0.287415i \(-0.907204\pi\)
0.973192 + 0.229995i \(0.0738709\pi\)
\(230\) −0.959669 + 2.50588i −0.0632787 + 0.165233i
\(231\) 0 0
\(232\) 0.598610 + 1.16806i 0.0393007 + 0.0766868i
\(233\) 21.2724 12.2816i 1.39360 0.804598i 0.399892 0.916562i \(-0.369048\pi\)
0.993712 + 0.111965i \(0.0357144\pi\)
\(234\) 6.20295 5.03109i 0.405500 0.328892i
\(235\) −3.70494 + 0.992735i −0.241683 + 0.0647589i
\(236\) 7.14399 + 10.9632i 0.465034 + 0.713645i
\(237\) −9.00561 + 9.00561i −0.584977 + 0.584977i
\(238\) 0 0
\(239\) −29.3026 −1.89543 −0.947714 0.319122i \(-0.896612\pi\)
−0.947714 + 0.319122i \(0.896612\pi\)
\(240\) 4.00785 2.93106i 0.258705 0.189199i
\(241\) −3.97014 + 6.87649i −0.255739 + 0.442954i −0.965096 0.261896i \(-0.915652\pi\)
0.709357 + 0.704850i \(0.248986\pi\)
\(242\) −9.45533 0.986322i −0.607812 0.0634032i
\(243\) −15.4068 4.12825i −0.988348 0.264827i
\(244\) −0.742058 13.7480i −0.0475054 0.880124i
\(245\) 0 0
\(246\) 14.7390 + 5.64455i 0.939723 + 0.359883i
\(247\) −15.8842 + 9.17073i −1.01069 + 0.583519i
\(248\) 11.4616 + 12.6695i 0.727812 + 0.804515i
\(249\) 0.886151 + 0.511620i 0.0561576 + 0.0324226i
\(250\) −14.5578 + 2.31739i −0.920713 + 0.146565i
\(251\) 6.93336 + 6.93336i 0.437630 + 0.437630i 0.891214 0.453584i \(-0.149855\pi\)
−0.453584 + 0.891214i \(0.649855\pi\)
\(252\) 0 0
\(253\) 4.60269 4.60269i 0.289369 0.289369i
\(254\) 12.2941 + 8.91748i 0.771397 + 0.559532i
\(255\) 0.164201 0.284404i 0.0102827 0.0178101i
\(256\) 4.84900 15.2475i 0.303063 0.952971i
\(257\) 4.15244 + 7.19225i 0.259022 + 0.448640i 0.965980 0.258616i \(-0.0832663\pi\)
−0.706958 + 0.707256i \(0.749933\pi\)
\(258\) −6.25226 + 2.78955i −0.389249 + 0.173670i
\(259\) 0 0
\(260\) −4.68363 + 5.21808i −0.290466 + 0.323612i
\(261\) −0.237416 + 0.886048i −0.0146957 + 0.0548450i
\(262\) −16.2356 20.0173i −1.00304 1.23667i
\(263\) −11.9975 6.92674i −0.739795 0.427121i 0.0821996 0.996616i \(-0.473806\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(264\) −11.7755 + 2.53184i −0.724732 + 0.155824i
\(265\) 0.747198i 0.0459000i
\(266\) 0 0
\(267\) 7.86258 + 7.86258i 0.481182 + 0.481182i
\(268\) −7.92369 + 5.16334i −0.484016 + 0.315401i
\(269\) 0.470782 + 1.75698i 0.0287041 + 0.107125i 0.978792 0.204858i \(-0.0656733\pi\)
−0.950088 + 0.311983i \(0.899007\pi\)
\(270\) 8.68951 + 0.906436i 0.528827 + 0.0551640i
\(271\) 8.18515 + 14.1771i 0.497212 + 0.861197i 0.999995 0.00321582i \(-0.00102363\pi\)
−0.502782 + 0.864413i \(0.667690\pi\)
\(272\) −0.113906 1.05209i −0.00690658 0.0637921i
\(273\) 0 0
\(274\) 4.23163 + 9.48443i 0.255642 + 0.572975i
\(275\) 14.2083 + 3.80709i 0.856790 + 0.229576i
\(276\) 1.41579 2.78941i 0.0852204 0.167903i
\(277\) −11.2949 + 3.02645i −0.678643 + 0.181842i −0.581645 0.813443i \(-0.697591\pi\)
−0.0969979 + 0.995285i \(0.530924\pi\)
\(278\) −2.62907 16.5157i −0.157681 0.990548i
\(279\) 11.9403i 0.714846i
\(280\) 0 0
\(281\) 30.2126i 1.80233i −0.433476 0.901165i \(-0.642713\pi\)
0.433476 0.901165i \(-0.357287\pi\)
\(282\) 4.41582 0.702937i 0.262958 0.0418593i
\(283\) 16.1296 4.32192i 0.958806 0.256911i 0.254711 0.967017i \(-0.418020\pi\)
0.704095 + 0.710106i \(0.251353\pi\)
\(284\) −17.1842 + 5.61319i −1.01969 + 0.333082i
\(285\) −7.69767 2.06258i −0.455970 0.122177i
\(286\) 15.5330 6.93028i 0.918484 0.409796i
\(287\) 0 0
\(288\) 9.66218 5.62894i 0.569349 0.331688i
\(289\) 8.46500 + 14.6618i 0.497941 + 0.862460i
\(290\) 0.0835528 0.800975i 0.00490639 0.0470349i
\(291\) 3.72952 + 13.9188i 0.218628 + 0.815932i
\(292\) 6.11494 28.9914i 0.357850 1.69659i
\(293\) 15.3849 + 15.3849i 0.898793 + 0.898793i 0.995329 0.0965365i \(-0.0307765\pi\)
−0.0965365 + 0.995329i \(0.530776\pi\)
\(294\) 0 0
\(295\) 8.02885i 0.467458i
\(296\) −22.3380 14.4321i −1.29837 0.838847i
\(297\) −18.3538 10.5965i −1.06499 0.614874i
\(298\) 20.0038 16.2247i 1.15879 0.939870i
\(299\) −1.14332 + 4.26691i −0.0661197 + 0.246762i
\(300\) 7.05870 0.380999i 0.407534 0.0219970i
\(301\) 0 0
\(302\) −7.50074 16.8116i −0.431619 0.967396i
\(303\) −7.53178 13.0454i −0.432690 0.749441i
\(304\) −23.9453 + 9.27775i −1.37336 + 0.532115i
\(305\) −4.22382 + 7.31587i −0.241855 + 0.418906i
\(306\) 0.434252 0.598681i 0.0248246 0.0342243i
\(307\) −8.15291 + 8.15291i −0.465311 + 0.465311i −0.900392 0.435080i \(-0.856720\pi\)
0.435080 + 0.900392i \(0.356720\pi\)
\(308\) 0 0
\(309\) −9.28874 9.28874i −0.528418 0.528418i
\(310\) −1.64794 10.3523i −0.0935967 0.587971i
\(311\) −26.9396 15.5536i −1.52761 0.881964i −0.999462 0.0328102i \(-0.989554\pi\)
−0.528145 0.849154i \(-0.677112\pi\)
\(312\) 6.06163 5.48372i 0.343172 0.310454i
\(313\) 2.75384 1.58993i 0.155656 0.0898681i −0.420149 0.907455i \(-0.638022\pi\)
0.575805 + 0.817587i \(0.304689\pi\)
\(314\) 10.4838 27.3753i 0.591637 1.54488i
\(315\) 0 0
\(316\) 16.8200 18.7393i 0.946197 1.05417i
\(317\) −2.14391 0.574458i −0.120414 0.0322648i 0.198109 0.980180i \(-0.436520\pi\)
−0.318523 + 0.947915i \(0.603187\pi\)
\(318\) 0.0903725 0.866351i 0.00506784 0.0485826i
\(319\) −0.976761 + 1.69180i −0.0546881 + 0.0947226i
\(320\) −7.60029 + 6.21384i −0.424869 + 0.347364i
\(321\) 1.77577 0.0991139
\(322\) 0 0
\(323\) −1.20099 + 1.20099i −0.0668248 + 0.0668248i
\(324\) 1.63965 + 0.345840i 0.0910918 + 0.0192134i
\(325\) −9.64237 + 2.58366i −0.534862 + 0.143316i
\(326\) 5.60339 + 6.90856i 0.310343 + 0.382630i
\(327\) −13.5703 + 7.83479i −0.750437 + 0.433265i
\(328\) −29.7004 9.57331i −1.63993 0.528597i
\(329\) 0 0
\(330\) 6.90143 + 2.64302i 0.379911 + 0.145494i
\(331\) 0.717289 2.67696i 0.0394258 0.147139i −0.943407 0.331637i \(-0.892399\pi\)
0.982833 + 0.184498i \(0.0590658\pi\)
\(332\) −1.80403 0.915651i −0.0990093 0.0502529i
\(333\) −4.81058 17.9533i −0.263618 0.983837i
\(334\) 4.53181 6.24777i 0.247970 0.341863i
\(335\) 5.80287 0.317045
\(336\) 0 0
\(337\) −28.7067 −1.56375 −0.781876 0.623434i \(-0.785737\pi\)
−0.781876 + 0.623434i \(0.785737\pi\)
\(338\) 4.01717 5.53825i 0.218505 0.301241i
\(339\) −1.99839 7.45811i −0.108538 0.405069i
\(340\) −0.293872 + 0.578993i −0.0159375 + 0.0314003i
\(341\) −6.58136 + 24.5620i −0.356401 + 1.33011i
\(342\) −16.7603 6.41866i −0.906295 0.347082i
\(343\) 0 0
\(344\) 12.0465 6.17362i 0.649503 0.332859i
\(345\) −1.66220 + 0.959669i −0.0894896 + 0.0516669i
\(346\) 14.6424 + 18.0530i 0.787183 + 0.970537i
\(347\) −6.03619 + 1.61739i −0.324039 + 0.0868261i −0.417172 0.908828i \(-0.636979\pi\)
0.0931324 + 0.995654i \(0.470312\pi\)
\(348\) −0.193754 + 0.918599i −0.0103863 + 0.0492421i
\(349\) −7.46427 + 7.46427i −0.399553 + 0.399553i −0.878075 0.478522i \(-0.841173\pi\)
0.478522 + 0.878075i \(0.341173\pi\)
\(350\) 0 0
\(351\) 14.3826 0.767686
\(352\) 22.9784 6.25341i 1.22475 0.333308i
\(353\) 3.35343 5.80832i 0.178485 0.309146i −0.762877 0.646544i \(-0.776214\pi\)
0.941362 + 0.337399i \(0.109547\pi\)
\(354\) −0.971077 + 9.30919i −0.0516122 + 0.494778i
\(355\) 10.7140 + 2.87081i 0.568641 + 0.152367i
\(356\) −16.3608 14.6851i −0.867122 0.778309i
\(357\) 0 0
\(358\) 9.25693 24.1716i 0.489244 1.27751i
\(359\) 10.1793 5.87700i 0.537241 0.310176i −0.206719 0.978400i \(-0.566279\pi\)
0.743960 + 0.668224i \(0.232945\pi\)
\(360\) −6.85252 0.343012i −0.361160 0.0180783i
\(361\) 19.2394 + 11.1079i 1.01260 + 0.584626i
\(362\) −0.437251 2.74680i −0.0229814 0.144368i
\(363\) −4.80823 4.80823i −0.252367 0.252367i
\(364\) 0 0
\(365\) −12.8550 + 12.8550i −0.672859 + 0.672859i
\(366\) 5.78223 7.97165i 0.302242 0.416685i
\(367\) −17.2352 + 29.8522i −0.899669 + 1.55827i −0.0717506 + 0.997423i \(0.522859\pi\)
−0.827918 + 0.560849i \(0.810475\pi\)
\(368\) −2.49792 + 5.65797i −0.130213 + 0.294942i
\(369\) −10.9045 18.8872i −0.567666 0.983226i
\(370\) 6.64863 + 14.9017i 0.345646 + 0.774703i
\(371\) 0 0
\(372\) 0.658638 + 12.2025i 0.0341488 + 0.632668i
\(373\) −3.22012 + 12.0177i −0.166732 + 0.622251i 0.831081 + 0.556151i \(0.187722\pi\)
−0.997813 + 0.0660999i \(0.978944\pi\)
\(374\) 1.22327 0.992172i 0.0632540 0.0513040i
\(375\) −9.13130 5.27196i −0.471538 0.272243i
\(376\) −8.64318 + 1.85836i −0.445738 + 0.0958378i
\(377\) 1.32575i 0.0682795i
\(378\) 0 0
\(379\) −0.171601 0.171601i −0.00881456 0.00881456i 0.702686 0.711500i \(-0.251984\pi\)
−0.711500 + 0.702686i \(0.751984\pi\)
\(380\) 15.4172 + 3.25184i 0.790885 + 0.166816i
\(381\) 2.81165 + 10.4932i 0.144045 + 0.537583i
\(382\) 0.509269 4.88208i 0.0260564 0.249789i
\(383\) −10.8580 18.8067i −0.554819 0.960975i −0.997918 0.0645023i \(-0.979454\pi\)
0.443098 0.896473i \(-0.353879\pi\)
\(384\) 9.56384 6.28551i 0.488053 0.320756i
\(385\) 0 0
\(386\) −9.79800 + 4.37153i −0.498705 + 0.222505i
\(387\) 9.13803 + 2.44853i 0.464512 + 0.124466i
\(388\) −8.84636 27.0821i −0.449106 1.37489i
\(389\) −15.4798 + 4.14779i −0.784856 + 0.210302i −0.628925 0.777466i \(-0.716505\pi\)
−0.155931 + 0.987768i \(0.549838\pi\)
\(390\) −4.95298 + 0.788445i −0.250804 + 0.0399244i
\(391\) 0.409063i 0.0206872i
\(392\) 0 0
\(393\) 18.4353i 0.929940i
\(394\) −2.46118 15.4611i −0.123993 0.778916i
\(395\) −14.9238 + 3.99881i −0.750896 + 0.201202i
\(396\) 14.8412 + 7.53277i 0.745799 + 0.378536i
\(397\) 20.1457 + 5.39802i 1.01108 + 0.270919i 0.726082 0.687608i \(-0.241339\pi\)
0.285001 + 0.958527i \(0.408006\pi\)
\(398\) −11.3341 25.4032i −0.568125 1.27335i
\(399\) 0 0
\(400\) −13.8953 + 1.50440i −0.694764 + 0.0752200i
\(401\) 0.0734423 + 0.127206i 0.00366753 + 0.00635235i 0.867853 0.496820i \(-0.165499\pi\)
−0.864186 + 0.503173i \(0.832166\pi\)
\(402\) −6.72824 0.701849i −0.335574 0.0350050i
\(403\) −4.46641 16.6689i −0.222488 0.830336i
\(404\) 16.2601 + 24.9528i 0.808968 + 1.24145i
\(405\) −0.727032 0.727032i −0.0361265 0.0361265i
\(406\) 0 0
\(407\) 39.5828i 1.96205i
\(408\) 0.410764 0.635780i 0.0203358 0.0314758i
\(409\) −1.96730 1.13582i −0.0972768 0.0561628i 0.450572 0.892740i \(-0.351220\pi\)
−0.547849 + 0.836577i \(0.684553\pi\)
\(410\) 12.0610 + 14.8703i 0.595649 + 0.734391i
\(411\) −1.92266 + 7.17546i −0.0948378 + 0.353939i
\(412\) 19.3284 + 17.3488i 0.952244 + 0.854712i
\(413\) 0 0
\(414\) −3.94744 + 1.76121i −0.194006 + 0.0865590i
\(415\) 0.620660 + 1.07501i 0.0304670 + 0.0527704i
\(416\) −11.3830 + 11.4724i −0.558099 + 0.562479i
\(417\) 5.98102 10.3594i 0.292892 0.507304i
\(418\) −30.9393 22.4417i −1.51329 1.09766i
\(419\) 19.3654 19.3654i 0.946061 0.946061i −0.0525570 0.998618i \(-0.516737\pi\)
0.998618 + 0.0525570i \(0.0167371\pi\)
\(420\) 0 0
\(421\) 8.11005 + 8.11005i 0.395260 + 0.395260i 0.876557 0.481298i \(-0.159834\pi\)
−0.481298 + 0.876557i \(0.659834\pi\)
\(422\) 2.24947 0.358084i 0.109502 0.0174313i
\(423\) −5.35090 3.08934i −0.260170 0.150209i
\(424\) −0.0860995 + 1.72005i −0.00418136 + 0.0835332i
\(425\) −0.800554 + 0.462200i −0.0388326 + 0.0224200i
\(426\) −12.0753 4.62446i −0.585051 0.224056i
\(427\) 0 0
\(428\) −3.50588 + 0.189233i −0.169463 + 0.00914690i
\(429\) 11.7515 + 3.14880i 0.567368 + 0.152026i
\(430\) −8.26066 0.861701i −0.398364 0.0415549i
\(431\) 5.38288 9.32343i 0.259284 0.449094i −0.706766 0.707447i \(-0.749847\pi\)
0.966050 + 0.258354i \(0.0831800\pi\)
\(432\) 19.8989 + 3.08791i 0.957384 + 0.148567i
\(433\) 4.99439 0.240015 0.120008 0.992773i \(-0.461708\pi\)
0.120008 + 0.992773i \(0.461708\pi\)
\(434\) 0 0
\(435\) 0.407313 0.407313i 0.0195291 0.0195291i
\(436\) 25.9566 16.9142i 1.24310 0.810043i
\(437\) 9.58835 2.56919i 0.458673 0.122901i
\(438\) 16.4597 13.3501i 0.786475 0.637893i
\(439\) −1.47159 + 0.849621i −0.0702350 + 0.0405502i −0.534706 0.845038i \(-0.679578\pi\)
0.464471 + 0.885588i \(0.346244\pi\)
\(440\) −13.9070 4.48264i −0.662992 0.213701i
\(441\) 0 0
\(442\) −0.382281 + 0.998208i −0.0181833 + 0.0474799i
\(443\) −2.89267 + 10.7956i −0.137435 + 0.512913i 0.862541 + 0.505987i \(0.168872\pi\)
−0.999976 + 0.00692670i \(0.997795\pi\)
\(444\) −5.90653 18.0822i −0.280312 0.858143i
\(445\) 3.49126 + 13.0296i 0.165502 + 0.617661i
\(446\) 9.18920 + 6.66537i 0.435121 + 0.315615i
\(447\) 18.4229 0.871375
\(448\) 0 0
\(449\) 4.05419 0.191329 0.0956646 0.995414i \(-0.469502\pi\)
0.0956646 + 0.995414i \(0.469502\pi\)
\(450\) −7.90699 5.73533i −0.372739 0.270366i
\(451\) −12.0209 44.8626i −0.566042 2.11250i
\(452\) 4.74016 + 14.5115i 0.222958 + 0.682562i
\(453\) 3.40799 12.7188i 0.160122 0.597582i
\(454\) −2.55662 + 6.67582i −0.119988 + 0.313312i
\(455\) 0 0
\(456\) −17.4824 5.63508i −0.818689 0.263887i
\(457\) −8.79002 + 5.07492i −0.411180 + 0.237395i −0.691296 0.722571i \(-0.742960\pi\)
0.280117 + 0.959966i \(0.409627\pi\)
\(458\) −0.988047 + 0.801384i −0.0461684 + 0.0374462i
\(459\) 1.28647 0.344710i 0.0600475 0.0160897i
\(460\) 3.17938 2.07179i 0.148239 0.0965977i
\(461\) 1.02609 1.02609i 0.0477897 0.0477897i −0.682808 0.730598i \(-0.739241\pi\)
0.730598 + 0.682808i \(0.239241\pi\)
\(462\) 0 0
\(463\) 10.5945 0.492369 0.246185 0.969223i \(-0.420823\pi\)
0.246185 + 0.969223i \(0.420823\pi\)
\(464\) 0.284635 1.83422i 0.0132139 0.0851517i
\(465\) 3.74899 6.49344i 0.173855 0.301126i
\(466\) −34.5503 3.60407i −1.60051 0.166955i
\(467\) −12.6595 3.39211i −0.585812 0.156968i −0.0462738 0.998929i \(-0.514735\pi\)
−0.539539 + 0.841961i \(0.681401\pi\)
\(468\) −11.2786 + 0.608770i −0.521352 + 0.0281404i
\(469\) 0 0
\(470\) 5.06564 + 1.93997i 0.233660 + 0.0894843i
\(471\) 18.1585 10.4838i 0.836701 0.483069i
\(472\) 0.925163 18.4825i 0.0425841 0.850724i
\(473\) 17.4479 + 10.0736i 0.802257 + 0.463184i
\(474\) 17.7873 2.83148i 0.816996 0.130054i
\(475\) 15.8619 + 15.8619i 0.727793 + 0.727793i
\(476\) 0 0
\(477\) −0.851098 + 0.851098i −0.0389691 + 0.0389691i
\(478\) 33.5448 + 24.3317i 1.53430 + 1.11291i
\(479\) −16.7383 + 28.9916i −0.764792 + 1.32466i 0.175564 + 0.984468i \(0.443825\pi\)
−0.940356 + 0.340191i \(0.889508\pi\)
\(480\) −7.02191 + 0.0274484i −0.320505 + 0.00125284i
\(481\) 13.4313 + 23.2638i 0.612416 + 1.06074i
\(482\) 10.2549 4.57537i 0.467096 0.208402i
\(483\) 0 0
\(484\) 10.0052 + 8.98044i 0.454782 + 0.408202i
\(485\) −4.52438 + 16.8852i −0.205441 + 0.766718i
\(486\) 14.2094 + 17.5191i 0.644550 + 0.794682i
\(487\) 19.9401 + 11.5124i 0.903571 + 0.521677i 0.878357 0.478005i \(-0.158640\pi\)
0.0252137 + 0.999682i \(0.491973\pi\)
\(488\) −10.5663 + 16.3545i −0.478313 + 0.740333i
\(489\) 6.36258i 0.287726i
\(490\) 0 0
\(491\) −21.9341 21.9341i −0.989874 0.989874i 0.0100754 0.999949i \(-0.496793\pi\)
−0.999949 + 0.0100754i \(0.996793\pi\)
\(492\) −12.1858 18.7004i −0.549377 0.843078i
\(493\) −0.0317744 0.118584i −0.00143105 0.00534074i
\(494\) 25.7987 + 2.69117i 1.16074 + 0.121081i
\(495\) −5.10597 8.84379i −0.229496 0.397499i
\(496\) −2.60068 24.0209i −0.116774 1.07857i
\(497\) 0 0
\(498\) −0.589613 1.32151i −0.0264212 0.0592184i
\(499\) −8.36254 2.24074i −0.374359 0.100309i 0.0667336 0.997771i \(-0.478742\pi\)
−0.441092 + 0.897462i \(0.645409\pi\)
\(500\) 18.5896 + 9.43528i 0.831351 + 0.421959i
\(501\) 5.33259 1.42886i 0.238242 0.0638369i
\(502\) −2.17994 13.6943i −0.0972954 0.611206i
\(503\) 11.5286i 0.514034i −0.966407 0.257017i \(-0.917260\pi\)
0.966407 0.257017i \(-0.0827396\pi\)
\(504\) 0 0
\(505\) 18.2740i 0.813183i
\(506\) −9.09092 + 1.44715i −0.404141 + 0.0643335i
\(507\) 4.72701 1.26660i 0.209934 0.0562516i
\(508\) −6.66918 20.4170i −0.295897 0.905856i
\(509\) 24.4978 + 6.56418i 1.08585 + 0.290952i 0.756989 0.653427i \(-0.226669\pi\)
0.328859 + 0.944379i \(0.393336\pi\)
\(510\) −0.424131 + 0.189233i −0.0187808 + 0.00837936i
\(511\) 0 0
\(512\) −18.2119 + 13.4285i −0.804861 + 0.593463i
\(513\) −16.1598 27.9897i −0.713475 1.23577i
\(514\) 1.21854 11.6815i 0.0537476 0.515249i
\(515\) −4.12453 15.3929i −0.181748 0.678294i
\(516\) 9.47374 + 1.99823i 0.417058 + 0.0879671i
\(517\) −9.30435 9.30435i −0.409205 0.409205i
\(518\) 0 0
\(519\) 16.6263i 0.729815i
\(520\) 9.69457 2.08442i 0.425135 0.0914079i
\(521\) −0.249004 0.143762i −0.0109091 0.00629835i 0.494536 0.869157i \(-0.335338\pi\)
−0.505445 + 0.862859i \(0.668672\pi\)
\(522\) 1.00752 0.817183i 0.0440982 0.0357671i
\(523\) −1.40664 + 5.24964i −0.0615079 + 0.229551i −0.989837 0.142210i \(-0.954579\pi\)
0.928329 + 0.371761i \(0.121246\pi\)
\(524\) 1.96454 + 36.3966i 0.0858211 + 1.58999i
\(525\) 0 0
\(526\) 7.98268 + 17.8917i 0.348062 + 0.780117i
\(527\) −0.799011 1.38393i −0.0348055 0.0602848i
\(528\) 15.5826 + 6.87951i 0.678145 + 0.299392i
\(529\) −10.3046 + 17.8481i −0.448027 + 0.776005i
\(530\) 0.620442 0.855371i 0.0269503 0.0371549i
\(531\) 9.14529 9.14529i 0.396872 0.396872i
\(532\) 0 0
\(533\) 22.2879 + 22.2879i 0.965396 + 0.965396i
\(534\) −2.47210 15.5296i −0.106978 0.672033i
\(535\) 1.86562 + 1.07712i 0.0806580 + 0.0465679i
\(536\) 13.3582 + 0.668664i 0.576988 + 0.0288819i
\(537\) 16.0335 9.25693i 0.691896 0.399466i
\(538\) 0.919989 2.40226i 0.0396635 0.103569i
\(539\) 0 0
\(540\) −9.19484 8.25308i −0.395683 0.355156i
\(541\) −35.9992 9.64594i −1.54772 0.414712i −0.618972 0.785413i \(-0.712451\pi\)
−0.928752 + 0.370701i \(0.879117\pi\)
\(542\) 2.40195 23.0262i 0.103172 0.989058i
\(543\) 0.994727 1.72292i 0.0426878 0.0739375i
\(544\) −0.743213 + 1.29898i −0.0318650 + 0.0556934i
\(545\) −19.0092 −0.814264
\(546\) 0 0
\(547\) 10.4205 10.4205i 0.445550 0.445550i −0.448322 0.893872i \(-0.647978\pi\)
0.893872 + 0.448322i \(0.147978\pi\)
\(548\) 3.03123 14.3713i 0.129488 0.613911i
\(549\) −13.1443 + 3.52201i −0.560986 + 0.150316i
\(550\) −13.1040 16.1562i −0.558755 0.688903i
\(551\) −2.58001 + 1.48957i −0.109912 + 0.0634578i
\(552\) −3.93697 + 2.01763i −0.167569 + 0.0858761i
\(553\) 0 0
\(554\) 15.4431 + 5.91420i 0.656114 + 0.251270i
\(555\) −3.02084 + 11.2739i −0.128227 + 0.478551i
\(556\) −10.7043 + 21.0898i −0.453964 + 0.894408i
\(557\) 2.83567 + 10.5829i 0.120151 + 0.448411i 0.999621 0.0275450i \(-0.00876897\pi\)
−0.879469 + 0.475956i \(0.842102\pi\)
\(558\) 9.91473 13.6689i 0.419724 0.578651i
\(559\) −13.6728 −0.578297
\(560\) 0 0
\(561\) 1.12660 0.0475651
\(562\) −25.0873 + 34.5865i −1.05824 + 1.45894i
\(563\) 5.14520 + 19.2022i 0.216844 + 0.809274i 0.985509 + 0.169622i \(0.0542548\pi\)
−0.768665 + 0.639652i \(0.779079\pi\)
\(564\) −5.63880 2.86202i −0.237436 0.120513i
\(565\) 2.42431 9.04763i 0.101991 0.380637i
\(566\) −22.0535 8.44576i −0.926977 0.355002i
\(567\) 0 0
\(568\) 24.3329 + 7.84320i 1.02099 + 0.329093i
\(569\) −23.3519 + 13.4822i −0.978963 + 0.565205i −0.901957 0.431826i \(-0.857869\pi\)
−0.0770061 + 0.997031i \(0.524536\pi\)
\(570\) 7.09939 + 8.75302i 0.297361 + 0.366624i
\(571\) −29.7973 + 7.98417i −1.24698 + 0.334127i −0.821169 0.570686i \(-0.806678\pi\)
−0.425810 + 0.904813i \(0.640011\pi\)
\(572\) −23.5363 4.96435i −0.984104 0.207570i
\(573\) 2.48264 2.48264i 0.103714 0.103714i
\(574\) 0 0
\(575\) 5.40264 0.225306
\(576\) −15.7350 1.57923i −0.655626 0.0658013i
\(577\) −4.08125 + 7.06893i −0.169905 + 0.294283i −0.938386 0.345589i \(-0.887679\pi\)
0.768482 + 0.639872i \(0.221013\pi\)
\(578\) 2.48407 23.8134i 0.103324 0.990508i
\(579\) −7.41269 1.98623i −0.308061 0.0825447i
\(580\) −0.760746 + 0.847555i −0.0315883 + 0.0351928i
\(581\) 0 0
\(582\) 7.28811 19.0306i 0.302102 0.788845i
\(583\) −2.21988 + 1.28165i −0.0919382 + 0.0530805i
\(584\) −31.0735 + 28.1109i −1.28583 + 1.16324i
\(585\) 6.00180 + 3.46514i 0.248144 + 0.143266i
\(586\) −4.83720 30.3871i −0.199823 1.25528i
\(587\) −0.0166226 0.0166226i −0.000686087 0.000686087i 0.706764 0.707450i \(-0.250154\pi\)
−0.707450 + 0.706764i \(0.750154\pi\)
\(588\) 0 0
\(589\) −27.4206 + 27.4206i −1.12985 + 1.12985i
\(590\) −6.66683 + 9.19120i −0.274469 + 0.378396i
\(591\) 5.59908 9.69789i 0.230315 0.398918i
\(592\) 13.5881 + 35.0700i 0.558467 + 1.44137i
\(593\) −8.35729 14.4753i −0.343193 0.594427i 0.641831 0.766846i \(-0.278175\pi\)
−0.985024 + 0.172419i \(0.944842\pi\)
\(594\) 12.2119 + 27.3708i 0.501062 + 1.12304i
\(595\) 0 0
\(596\) −36.3721 + 1.96321i −1.48986 + 0.0804163i
\(597\) 5.14968 19.2189i 0.210762 0.786575i
\(598\) 4.85191 3.93528i 0.198409 0.160926i
\(599\) −15.2174 8.78578i −0.621767 0.358977i 0.155790 0.987790i \(-0.450208\pi\)
−0.777556 + 0.628813i \(0.783541\pi\)
\(600\) −8.39697 5.42510i −0.342805 0.221479i
\(601\) 6.99237i 0.285225i −0.989779 0.142612i \(-0.954450\pi\)
0.989779 0.142612i \(-0.0455503\pi\)
\(602\) 0 0
\(603\) 6.60978 + 6.60978i 0.269171 + 0.269171i
\(604\) −5.37299 + 25.4737i −0.218624 + 1.03651i
\(605\) −2.13503 7.96802i −0.0868011 0.323946i
\(606\) −2.21022 + 21.1881i −0.0897839 + 0.860709i
\(607\) 3.12773 + 5.41738i 0.126951 + 0.219885i 0.922494 0.386012i \(-0.126148\pi\)
−0.795543 + 0.605897i \(0.792814\pi\)
\(608\) 35.1157 + 9.26227i 1.42413 + 0.375635i
\(609\) 0 0
\(610\) 10.9101 4.86772i 0.441738 0.197088i
\(611\) 8.62557 + 2.31121i 0.348953 + 0.0935017i
\(612\) −0.994240 + 0.324768i −0.0401898 + 0.0131280i
\(613\) 7.78494 2.08597i 0.314431 0.0842514i −0.0981525 0.995171i \(-0.531293\pi\)
0.412583 + 0.910920i \(0.364627\pi\)
\(614\) 16.1031 2.56338i 0.649867 0.103450i
\(615\) 13.6951i 0.552240i
\(616\) 0 0
\(617\) 44.4895i 1.79108i 0.444980 + 0.895541i \(0.353211\pi\)
−0.444980 + 0.895541i \(0.646789\pi\)
\(618\) 2.92050 + 18.3465i 0.117480 + 0.738003i
\(619\) 18.9538 5.07865i 0.761816 0.204128i 0.143063 0.989714i \(-0.454305\pi\)
0.618753 + 0.785586i \(0.287638\pi\)
\(620\) −6.70961 + 13.2194i −0.269464 + 0.530904i
\(621\) −7.51878 2.01465i −0.301718 0.0808451i
\(622\) 17.9247 + 40.1749i 0.718714 + 1.61087i
\(623\) 0 0
\(624\) −11.4926 + 1.24427i −0.460074 + 0.0498108i
\(625\) 2.33975 + 4.05256i 0.0935899 + 0.162103i
\(626\) −4.47273 0.466568i −0.178766 0.0186478i
\(627\) −7.07580 26.4072i −0.282580 1.05460i
\(628\) −34.7329 + 22.6331i −1.38599 + 0.903159i
\(629\) 1.75895 + 1.75895i 0.0701341 + 0.0701341i
\(630\) 0 0
\(631\) 8.64101i 0.343993i 0.985098 + 0.171997i \(0.0550218\pi\)
−0.985098 + 0.171997i \(0.944978\pi\)
\(632\) −34.8154 + 7.48562i −1.38488 + 0.297762i
\(633\) 1.41097 + 0.814625i 0.0560811 + 0.0323784i
\(634\) 1.97728 + 2.43784i 0.0785277 + 0.0968188i
\(635\) −3.41088 + 12.7296i −0.135357 + 0.505159i
\(636\) −0.822839 + 0.916733i −0.0326277 + 0.0363508i
\(637\) 0 0
\(638\) 2.52297 1.12566i 0.0998853 0.0445654i
\(639\) 8.93382 + 15.4738i 0.353417 + 0.612136i
\(640\) 13.8603 0.802470i 0.547877 0.0317204i
\(641\) −7.54432 + 13.0672i −0.297983 + 0.516122i −0.975674 0.219225i \(-0.929647\pi\)
0.677691 + 0.735346i \(0.262981\pi\)
\(642\) −2.03285 1.47453i −0.0802304 0.0581950i
\(643\) −12.3557 + 12.3557i −0.487261 + 0.487261i −0.907441 0.420180i \(-0.861967\pi\)
0.420180 + 0.907441i \(0.361967\pi\)
\(644\) 0 0
\(645\) −4.20072 4.20072i −0.165403 0.165403i
\(646\) 2.37211 0.377607i 0.0933295 0.0148567i
\(647\) 35.3412 + 20.4042i 1.38941 + 0.802173i 0.993248 0.116009i \(-0.0370103\pi\)
0.396157 + 0.918183i \(0.370344\pi\)
\(648\) −1.58986 1.75741i −0.0624555 0.0690376i
\(649\) 23.8533 13.7717i 0.936323 0.540586i
\(650\) 13.1837 + 5.04892i 0.517107 + 0.198035i
\(651\) 0 0
\(652\) −0.678019 12.5615i −0.0265533 0.491948i
\(653\) 13.5015 + 3.61772i 0.528356 + 0.141572i 0.513129 0.858312i \(-0.328486\pi\)
0.0152268 + 0.999884i \(0.495153\pi\)
\(654\) 22.0405 + 2.29913i 0.861853 + 0.0899033i
\(655\) 11.1822 19.3682i 0.436925 0.756776i
\(656\) 26.0510 + 35.6213i 1.01712 + 1.39078i
\(657\) −29.2850 −1.14252
\(658\) 0 0
\(659\) −2.71835 + 2.71835i −0.105892 + 0.105892i −0.758068 0.652176i \(-0.773856\pi\)
0.652176 + 0.758068i \(0.273856\pi\)
\(660\) −5.70591 8.75633i −0.222102 0.340840i
\(661\) 13.3501 3.57716i 0.519260 0.139135i 0.0103356 0.999947i \(-0.496710\pi\)
0.508924 + 0.860811i \(0.330043\pi\)
\(662\) −3.04397 + 2.46890i −0.118307 + 0.0959565i
\(663\) −0.662130 + 0.382281i −0.0257150 + 0.0148466i
\(664\) 1.30489 + 2.54621i 0.0506395 + 0.0988121i
\(665\) 0 0
\(666\) −9.40070 + 24.5470i −0.364270 + 0.951177i
\(667\) −0.185705 + 0.693060i −0.00719053 + 0.0268354i
\(668\) −10.3758 + 3.38924i −0.401451 + 0.131134i
\(669\) 2.10157 + 7.84316i 0.0812513 + 0.303234i
\(670\) −6.64296 4.81847i −0.256640 0.186154i
\(671\) −28.9801 −1.11876
\(672\) 0 0
\(673\) −19.1036 −0.736391 −0.368195 0.929748i \(-0.620024\pi\)
−0.368195 + 0.929748i \(0.620024\pi\)
\(674\) 32.8626 + 23.8369i 1.26582 + 0.918161i
\(675\) −4.55271 16.9909i −0.175234 0.653981i
\(676\) −9.19748 + 3.00435i −0.353749 + 0.115552i
\(677\) 3.81488 14.2373i 0.146618 0.547186i −0.853060 0.521813i \(-0.825256\pi\)
0.999678 0.0253729i \(-0.00807731\pi\)
\(678\) −3.90520 + 10.1972i −0.149978 + 0.391622i
\(679\) 0 0
\(680\) 0.817189 0.418796i 0.0313378 0.0160601i
\(681\) −4.42820 + 2.55662i −0.169689 + 0.0979699i
\(682\) 27.9294 22.6530i 1.06947 0.867427i
\(683\) 47.8769 12.8286i 1.83196 0.490872i 0.833830 0.552022i \(-0.186143\pi\)
0.998129 + 0.0611498i \(0.0194767\pi\)
\(684\) 13.8570 + 21.2650i 0.529835 + 0.813088i
\(685\) −6.37232 + 6.37232i −0.243474 + 0.243474i
\(686\) 0 0
\(687\) −0.909963 −0.0347172
\(688\) −18.9168 2.93552i −0.721196 0.111916i
\(689\) 0.869786 1.50651i 0.0331362 0.0573936i
\(690\) 2.69971 + 0.281617i 0.102776 + 0.0107210i
\(691\) −5.48399 1.46943i −0.208621 0.0558997i 0.152995 0.988227i \(-0.451108\pi\)
−0.361616 + 0.932327i \(0.617775\pi\)
\(692\) −1.77176 32.8251i −0.0673522 1.24782i
\(693\) 0 0
\(694\) 8.25308 + 3.16066i 0.313282 + 0.119977i
\(695\) 12.5673 7.25574i 0.476705 0.275226i
\(696\) 0.984571 0.890702i 0.0373201 0.0337620i
\(697\) 2.52775 + 1.45940i 0.0957455 + 0.0552787i
\(698\) 14.7429 2.34686i 0.558027 0.0888301i
\(699\) −17.5695 17.5695i −0.664541 0.664541i
\(700\) 0 0
\(701\) 6.91144 6.91144i 0.261041 0.261041i −0.564436 0.825477i \(-0.690906\pi\)
0.825477 + 0.564436i \(0.190906\pi\)
\(702\) −16.4648 11.9427i −0.621424 0.450749i
\(703\) 30.1821 52.2769i 1.13834 1.97166i
\(704\) −31.4976 11.9216i −1.18711 0.449311i
\(705\) 1.93997 + 3.36013i 0.0730636 + 0.126550i
\(706\) −8.66191 + 3.86465i −0.325995 + 0.145448i
\(707\) 0 0
\(708\) 8.84163 9.85056i 0.332289 0.370207i
\(709\) 6.77484 25.2840i 0.254434 0.949562i −0.713970 0.700176i \(-0.753105\pi\)
0.968404 0.249385i \(-0.0802286\pi\)
\(710\) −9.88130 12.1829i −0.370839 0.457216i
\(711\) −21.5538 12.4441i −0.808331 0.466690i
\(712\) 6.53552 + 30.3965i 0.244929 + 1.13916i
\(713\) 9.33961i 0.349771i
\(714\) 0 0
\(715\) 10.4362 + 10.4362i 0.390290 + 0.390290i
\(716\) −30.6682 + 19.9844i −1.14612 + 0.746852i
\(717\) 7.67169 + 28.6311i 0.286504 + 1.06925i
\(718\) −16.5330 1.72462i −0.617005 0.0643622i
\(719\) −7.26709 12.5870i −0.271017 0.469415i 0.698106 0.715995i \(-0.254027\pi\)
−0.969122 + 0.246580i \(0.920693\pi\)
\(720\) 7.55976 + 6.08273i 0.281736 + 0.226690i
\(721\) 0 0
\(722\) −12.8012 28.6917i −0.476413 1.06779i
\(723\) 7.75834 + 2.07884i 0.288536 + 0.0773129i
\(724\) −1.78027 + 3.50753i −0.0661634 + 0.130356i
\(725\) −1.56618 + 0.419656i −0.0581664 + 0.0155856i
\(726\) 1.51177 + 9.49689i 0.0561071 + 0.352463i
\(727\) 35.2605i 1.30774i −0.756607 0.653870i \(-0.773144\pi\)
0.756607 0.653870i \(-0.226856\pi\)
\(728\) 0 0
\(729\) 13.6210i 0.504481i
\(730\) 25.3902 4.04177i 0.939734 0.149593i
\(731\) −1.22298 + 0.327697i −0.0452337 + 0.0121203i
\(732\) −13.2387 + 4.32440i −0.489315 + 0.159834i
\(733\) 6.39419 + 1.71332i 0.236175 + 0.0632828i 0.374965 0.927039i \(-0.377655\pi\)
−0.138790 + 0.990322i \(0.544321\pi\)
\(734\) 44.5184 19.8626i 1.64320 0.733141i
\(735\) 0 0
\(736\) 7.55769 4.40291i 0.278580 0.162294i
\(737\) 9.95352 + 17.2400i 0.366643 + 0.635044i
\(738\) −3.19995 + 30.6762i −0.117792 + 1.12921i
\(739\) 4.06431 + 15.1682i 0.149508 + 0.557972i 0.999513 + 0.0311973i \(0.00993203\pi\)
−0.850005 + 0.526774i \(0.823401\pi\)
\(740\) 4.76260 22.5798i 0.175077 0.830051i
\(741\) 13.1192 + 13.1192i 0.481946 + 0.481946i
\(742\) 0 0
\(743\) 9.88941i 0.362807i −0.983409 0.181404i \(-0.941936\pi\)
0.983409 0.181404i \(-0.0580641\pi\)
\(744\) 9.37844 14.5160i 0.343830 0.532181i
\(745\) 19.3551 + 11.1747i 0.709116 + 0.409408i
\(746\) 13.6653 11.0836i 0.500321 0.405800i
\(747\) −0.517534 + 1.93146i −0.0189356 + 0.0706686i
\(748\) −2.22423 + 0.120054i −0.0813258 + 0.00438963i
\(749\) 0 0
\(750\) 6.07564 + 13.6175i 0.221851 + 0.497239i
\(751\) 1.95848 + 3.39219i 0.0714659 + 0.123783i 0.899544 0.436830i \(-0.143899\pi\)
−0.828078 + 0.560613i \(0.810566\pi\)
\(752\) 11.4376 + 5.04954i 0.417086 + 0.184138i
\(753\) 4.95926 8.58970i 0.180726 0.313026i
\(754\) −1.10085 + 1.51768i −0.0400905 + 0.0552707i
\(755\) 11.2952 11.2952i 0.411074 0.411074i
\(756\) 0 0
\(757\) 30.8256 + 30.8256i 1.12037 + 1.12037i 0.991685 + 0.128689i \(0.0410770\pi\)
0.128689 + 0.991685i \(0.458923\pi\)
\(758\) 0.0539537 + 0.338935i 0.00195969 + 0.0123107i
\(759\) −5.70225 3.29220i −0.206979 0.119499i
\(760\) −14.9490 16.5244i −0.542256 0.599403i
\(761\) 26.7482 15.4431i 0.969622 0.559812i 0.0705012 0.997512i \(-0.477540\pi\)
0.899121 + 0.437700i \(0.144207\pi\)
\(762\) 5.49444 14.3470i 0.199042 0.519737i
\(763\) 0 0
\(764\) −4.63688 + 5.16599i −0.167756 + 0.186899i
\(765\) 0.619890 + 0.166099i 0.0224122 + 0.00600533i
\(766\) −3.18631 + 30.5454i −0.115126 + 1.10365i
\(767\) −9.34610 + 16.1879i −0.337468 + 0.584512i
\(768\) −16.1676 0.745947i −0.583400 0.0269170i
\(769\) 32.1016 1.15761 0.578807 0.815465i \(-0.303519\pi\)
0.578807 + 0.815465i \(0.303519\pi\)
\(770\) 0 0
\(771\) 5.94029 5.94029i 0.213934 0.213934i
\(772\) 14.8464 + 3.13145i 0.534335 + 0.112703i
\(773\) 42.3105 11.3371i 1.52180 0.407766i 0.601469 0.798896i \(-0.294582\pi\)
0.920335 + 0.391130i \(0.127916\pi\)
\(774\) −8.42781 10.3909i −0.302931 0.373492i
\(775\) −18.2780 + 10.5528i −0.656566 + 0.379069i
\(776\) −12.3608 + 38.3485i −0.443728 + 1.37663i
\(777\) 0 0
\(778\) 21.1650 + 8.10550i 0.758801 + 0.290596i
\(779\) 18.3320 68.4160i 0.656812 2.45126i
\(780\) 6.32472 + 3.21016i 0.226461 + 0.114942i
\(781\) 9.84846 + 36.7550i 0.352406 + 1.31520i
\(782\) 0.339669 0.468284i 0.0121465 0.0167458i
\(783\) 2.33612 0.0834860
\(784\) 0 0
\(785\) 25.4364 0.907865
\(786\) −15.3080 + 21.1043i −0.546017 + 0.752765i
\(787\) 8.96793 + 33.4688i 0.319672 + 1.19303i 0.919560 + 0.392949i \(0.128545\pi\)
−0.599888 + 0.800084i \(0.704788\pi\)
\(788\) −10.0207 + 19.7430i −0.356974 + 0.703317i
\(789\) −3.62697 + 13.5360i −0.129123 + 0.481895i
\(790\) 20.4047 + 7.81435i 0.725968 + 0.278022i
\(791\) 0 0
\(792\) −10.7349 20.9468i −0.381448 0.744313i
\(793\) 17.0323 9.83360i 0.604835 0.349201i
\(794\) −18.5799 22.9077i −0.659377 0.812962i
\(795\) 0.730076 0.195623i 0.0258931 0.00693804i
\(796\) −8.11890 + 38.4922i −0.287767 + 1.36432i
\(797\) −10.8522 + 10.8522i −0.384403 + 0.384403i −0.872686 0.488283i \(-0.837624\pi\)
0.488283 + 0.872686i \(0.337624\pi\)
\(798\) 0 0
\(799\) 0.826921 0.0292544
\(800\) 17.1561 + 9.81588i 0.606561 + 0.347044i
\(801\) −10.8646 + 18.8181i −0.383883 + 0.664906i
\(802\) 0.0215518 0.206605i 0.000761020 0.00729548i
\(803\) −60.2412 16.1416i −2.12586 0.569624i
\(804\) 7.11951 + 6.39031i 0.251086 + 0.225369i
\(805\) 0 0
\(806\) −8.72813 + 22.7908i −0.307435 + 0.802772i
\(807\) 1.59347 0.919989i 0.0560927 0.0323851i
\(808\) 2.10571 42.0669i 0.0740787 1.47991i
\(809\) −34.7775 20.0788i −1.22271 0.705932i −0.257216 0.966354i \(-0.582805\pi\)
−0.965495 + 0.260422i \(0.916138\pi\)
\(810\) 0.228589 + 1.43598i 0.00803178 + 0.0504553i
\(811\) −15.7147 15.7147i −0.551819 0.551819i 0.375147 0.926966i \(-0.377592\pi\)
−0.926966 + 0.375147i \(0.877592\pi\)
\(812\) 0 0
\(813\) 11.7093 11.7093i 0.410662 0.410662i
\(814\) −32.8679 + 45.3133i −1.15202 + 1.58823i
\(815\) −3.85931 + 6.68452i −0.135186 + 0.234149i
\(816\) −0.998157 + 0.386742i −0.0349425 + 0.0135387i
\(817\) 15.3623 + 26.6083i 0.537459 + 0.930907i
\(818\) 1.30897 + 2.93382i 0.0457671 + 0.102579i
\(819\) 0 0
\(820\) −1.45940 27.0380i −0.0509644 0.944209i
\(821\) −0.837392 + 3.12519i −0.0292252 + 0.109070i −0.978998 0.203871i \(-0.934648\pi\)
0.949773 + 0.312941i \(0.101314\pi\)
\(822\) 8.15922 6.61777i 0.284585 0.230821i
\(823\) 9.16184 + 5.28959i 0.319362 + 0.184384i 0.651108 0.758985i \(-0.274304\pi\)
−0.331746 + 0.943369i \(0.607638\pi\)
\(824\) −7.72096 35.9099i −0.268973 1.25098i
\(825\) 14.8794i 0.518034i
\(826\) 0 0
\(827\) 16.8200 + 16.8200i 0.584887 + 0.584887i 0.936242 0.351355i \(-0.114279\pi\)
−0.351355 + 0.936242i \(0.614279\pi\)
\(828\) 5.98137 + 1.26161i 0.207867 + 0.0438439i
\(829\) 2.00157 + 7.46997i 0.0695175 + 0.259443i 0.991934 0.126753i \(-0.0404556\pi\)
−0.922417 + 0.386196i \(0.873789\pi\)
\(830\) 0.182134 1.74602i 0.00632196 0.0606051i
\(831\) 5.91420 + 10.2437i 0.205161 + 0.355350i
\(832\) 22.5572 3.68125i 0.782029 0.127624i
\(833\) 0 0
\(834\) −15.4490 + 6.89280i −0.534954 + 0.238678i
\(835\) 6.46911 + 1.73339i 0.223873 + 0.0599865i
\(836\) 16.7837 + 51.3814i 0.580476 + 1.77706i
\(837\) 29.3724 7.87032i 1.01526 0.272038i
\(838\) −38.2492 + 6.08873i −1.32130 + 0.210332i
\(839\) 6.99735i 0.241575i 0.992678 + 0.120788i \(0.0385420\pi\)
−0.992678 + 0.120788i \(0.961458\pi\)
\(840\) 0 0
\(841\) 28.7847i 0.992575i
\(842\) −2.54991 16.0184i −0.0878756 0.552031i
\(843\) −29.5202 + 7.90993i −1.01673 + 0.272432i
\(844\) −2.87247 1.45794i −0.0988745 0.0501845i
\(845\) 5.73446 + 1.53654i 0.197271 + 0.0528587i
\(846\) 3.56030 + 7.97976i 0.122406 + 0.274350i
\(847\) 0 0
\(848\) 1.52683 1.89758i 0.0524315 0.0651631i
\(849\) −8.44576 14.6285i −0.289858 0.502048i
\(850\) 1.30024 + 0.135634i 0.0445980 + 0.00465219i
\(851\) −3.76280 14.0430i −0.128987 0.481387i
\(852\) 9.98354 + 15.3208i 0.342030 + 0.524882i
\(853\) −32.6377 32.6377i −1.11749 1.11749i −0.992108 0.125384i \(-0.959984\pi\)
−0.125384 0.992108i \(-0.540016\pi\)
\(854\) 0 0
\(855\) 15.5733i 0.532596i
\(856\) 4.17056 + 2.69451i 0.142547 + 0.0920965i
\(857\) 37.8047 + 21.8266i 1.29139 + 0.745582i 0.978900 0.204341i \(-0.0655051\pi\)
0.312486 + 0.949923i \(0.398838\pi\)
\(858\) −10.8382 13.3626i −0.370008 0.456193i
\(859\) 2.42878 9.06433i 0.0828689 0.309271i −0.912033 0.410116i \(-0.865488\pi\)
0.994902 + 0.100845i \(0.0321547\pi\)
\(860\) 8.74105 + 7.84576i 0.298067 + 0.267538i
\(861\) 0 0
\(862\) −13.9040 + 6.20347i −0.473571 + 0.211291i
\(863\) 4.05796 + 7.02860i 0.138135 + 0.239256i 0.926791 0.375579i \(-0.122556\pi\)
−0.788656 + 0.614835i \(0.789223\pi\)
\(864\) −20.2156 20.0582i −0.687748 0.682392i
\(865\) −10.0849 + 17.4676i −0.342898 + 0.593916i
\(866\) −5.71744 4.14714i −0.194287 0.140926i
\(867\) 12.1096 12.1096i 0.411265 0.411265i
\(868\) 0 0
\(869\) −37.4786 37.4786i −1.27137 1.27137i
\(870\) −0.804496 + 0.128064i −0.0272750 + 0.00434179i
\(871\) −11.6999 6.75491i −0.396434 0.228881i
\(872\) −43.7593 2.19043i −1.48188 0.0741772i
\(873\) −24.3867 + 14.0797i −0.825364 + 0.476524i
\(874\) −13.1098 5.02063i −0.443446 0.169825i
\(875\) 0 0
\(876\) −29.9280 + 1.61539i −1.01117 + 0.0545789i
\(877\) −31.7089 8.49639i −1.07074 0.286903i −0.319940 0.947438i \(-0.603663\pi\)
−0.750795 + 0.660535i \(0.770329\pi\)
\(878\) 2.39012 + 0.249323i 0.0806627 + 0.00841424i
\(879\) 11.0044 19.0602i 0.371170 0.642885i
\(880\) 12.1982 + 16.6794i 0.411201 + 0.562264i
\(881\) −12.2614 −0.413096 −0.206548 0.978436i \(-0.566223\pi\)
−0.206548 + 0.978436i \(0.566223\pi\)
\(882\) 0 0
\(883\) 4.12180 4.12180i 0.138710 0.138710i −0.634342 0.773052i \(-0.718729\pi\)
0.773052 + 0.634342i \(0.218729\pi\)
\(884\) 1.26650 0.825290i 0.0425969 0.0277575i
\(885\) −7.84487 + 2.10203i −0.263702 + 0.0706588i
\(886\) 12.2757 9.95653i 0.412409 0.334496i
\(887\) −20.6829 + 11.9413i −0.694465 + 0.400949i −0.805283 0.592891i \(-0.797986\pi\)
0.110818 + 0.993841i \(0.464653\pi\)
\(888\) −8.25308 + 25.6045i −0.276955 + 0.859232i
\(889\) 0 0
\(890\) 6.82252 17.8149i 0.228692 0.597157i
\(891\) 0.912912 3.40703i 0.0305837 0.114140i
\(892\) −4.98489 15.2607i −0.166906 0.510965i
\(893\) −5.19362 19.3829i −0.173798 0.648622i
\(894\) −21.0901 15.2976i −0.705357 0.511630i
\(895\) 22.4597 0.750744
\(896\) 0 0
\(897\) 4.46847 0.149198
\(898\) −4.64113 3.36644i −0.154876 0.112339i
\(899\) −0.725465 2.70747i −0.0241956 0.0902992i
\(900\) 4.28932 + 13.1313i 0.142977 + 0.437709i
\(901\) 0.0416926 0.155599i 0.00138898 0.00518375i
\(902\) −23.4909 + 61.3392i −0.782161 + 2.04237i
\(903\) 0 0
\(904\) 6.62333 20.5484i 0.220289 0.683428i
\(905\) 2.09012 1.20673i 0.0694779 0.0401131i
\(906\) −14.4626 + 11.7303i −0.480486 + 0.389712i
\(907\) −46.2279 + 12.3867i −1.53497 + 0.411295i −0.924637 0.380849i \(-0.875632\pi\)
−0.610335 + 0.792143i \(0.708965\pi\)
\(908\) 8.47008 5.51938i 0.281089 0.183167i
\(909\) 20.8151 20.8151i 0.690393 0.690393i
\(910\) 0 0
\(911\) 0.866439 0.0287064 0.0143532 0.999897i \(-0.495431\pi\)
0.0143532 + 0.999897i \(0.495431\pi\)
\(912\) 15.3342 + 20.9676i 0.507767 + 0.694306i
\(913\) −2.12921 + 3.68789i −0.0704664 + 0.122051i
\(914\) 14.2766 + 1.48924i 0.472227 + 0.0492598i
\(915\) 8.25407 + 2.21167i 0.272871 + 0.0731156i
\(916\) 1.79653 0.0969689i 0.0593589 0.00320394i
\(917\) 0 0
\(918\) −1.75895 0.673622i −0.0580541 0.0222328i
\(919\) 28.1635 16.2602i 0.929028 0.536375i 0.0425240 0.999095i \(-0.486460\pi\)
0.886504 + 0.462721i \(0.153127\pi\)
\(920\) −5.36000 0.268301i −0.176714 0.00884564i
\(921\) 10.1006 + 5.83158i 0.332826 + 0.192157i
\(922\) −2.02666 + 0.322616i −0.0667445 + 0.0106248i
\(923\) −18.2600 18.2600i −0.601034 0.601034i
\(924\) 0 0
\(925\) 23.2311 23.2311i 0.763835 0.763835i
\(926\) −12.1283 8.79726i −0.398561 0.289096i
\(927\) 12.8353 22.2314i 0.421568 0.730176i
\(928\) −1.84891 + 1.86342i −0.0606933 + 0.0611697i
\(929\) −5.10083 8.83489i −0.167353 0.289863i 0.770136 0.637880i \(-0.220189\pi\)
−0.937488 + 0.348017i \(0.886855\pi\)
\(930\) −9.68363 + 4.32050i −0.317539 + 0.141675i
\(931\) 0 0
\(932\) 36.5595 + 32.8150i 1.19755 + 1.07489i
\(933\) −8.14415 + 30.3944i −0.266628 + 0.995068i
\(934\) 11.6756 + 14.3951i 0.382037 + 0.471023i
\(935\) 1.18360 + 0.683354i 0.0387080 + 0.0223481i
\(936\) 13.4169 + 8.66837i 0.438545 + 0.283334i
\(937\) 5.06532i 0.165477i 0.996571 + 0.0827384i \(0.0263666\pi\)
−0.996571 + 0.0827384i \(0.973633\pi\)
\(938\) 0 0
\(939\) −2.27447 2.27447i −0.0742247 0.0742247i
\(940\) −4.18812 6.42712i −0.136602 0.209630i
\(941\) −10.7693 40.1915i −0.351069 1.31021i −0.885360 0.464906i \(-0.846088\pi\)
0.534292 0.845300i \(-0.320578\pi\)
\(942\) −29.4927 3.07650i −0.960925 0.100238i
\(943\) −8.52943 14.7734i −0.277757 0.481088i
\(944\) −16.4062 + 20.3900i −0.533976 + 0.663638i
\(945\) 0 0
\(946\) −11.6092 26.0200i −0.377449 0.845984i
\(947\) −25.9598 6.95589i −0.843579 0.226036i −0.188950 0.981987i \(-0.560508\pi\)
−0.654629 + 0.755951i \(0.727175\pi\)
\(948\) −22.7135 11.5284i −0.737701 0.374425i
\(949\) 40.8824 10.9544i 1.32710 0.355595i
\(950\) −4.98719 31.3293i −0.161806 1.01646i
\(951\) 2.24518i 0.0728049i
\(952\) 0 0
\(953\) 39.1113i 1.26694i 0.773767 + 0.633470i \(0.218370\pi\)
−0.773767 + 0.633470i \(0.781630\pi\)
\(954\) 1.68103 0.267596i 0.0544254 0.00866375i
\(955\) 4.11414 1.10238i 0.133130 0.0356722i
\(956\) −18.1971 55.7085i −0.588537 1.80174i
\(957\) 1.90876 + 0.511450i 0.0617013 + 0.0165328i
\(958\) 43.2349 19.2900i 1.39686 0.623230i
\(959\) 0 0
\(960\) 8.06128 + 5.79928i 0.260177 + 0.187171i
\(961\) −2.74280 4.75066i −0.0884773 0.153247i
\(962\) 3.94145 37.7845i 0.127077 1.21822i
\(963\) 0.898150 + 3.35194i 0.0289425 + 0.108015i
\(964\) −15.5387 3.27747i −0.500468 0.105560i
\(965\) −6.58300 6.58300i −0.211914 0.211914i
\(966\) 0 0
\(967\) 53.9124i 1.73371i 0.498565 + 0.866853i \(0.333861\pi\)
−0.498565 + 0.866853i \(0.666139\pi\)
\(968\) −3.99669 18.5885i −0.128458 0.597456i
\(969\) 1.48790 + 0.859038i 0.0477982 + 0.0275963i
\(970\) 19.2002 15.5729i 0.616480 0.500015i
\(971\) 9.55711 35.6676i 0.306702 1.14463i −0.624768 0.780811i \(-0.714806\pi\)
0.931470 0.363818i \(-0.118527\pi\)
\(972\) −1.71936 31.8543i −0.0551485 1.02173i
\(973\) 0 0
\(974\) −13.2674 29.7365i −0.425115 0.952819i
\(975\) 5.04892 + 8.74499i 0.161695 + 0.280064i
\(976\) 25.6761 9.94836i 0.821871 0.318439i
\(977\) 28.5378 49.4289i 0.913004 1.58137i 0.103207 0.994660i \(-0.467090\pi\)
0.809797 0.586710i \(-0.199577\pi\)
\(978\) 5.28323 7.28371i 0.168939 0.232907i
\(979\) −32.7217 + 32.7217i −1.04579 + 1.04579i
\(980\) 0 0
\(981\) −21.6525 21.6525i −0.691311 0.691311i
\(982\) 6.89638 + 43.3228i 0.220072 + 1.38249i
\(983\) −40.3197 23.2786i −1.28600 0.742471i −0.308060 0.951367i \(-0.599680\pi\)
−0.977938 + 0.208896i \(0.933013\pi\)
\(984\) −1.57809 + 31.5262i −0.0503075 + 1.00502i
\(985\) 11.7648 6.79239i 0.374857 0.216424i
\(986\) −0.0620926 + 0.162136i −0.00197743 + 0.00516345i
\(987\) 0 0
\(988\) −27.2991 24.5030i −0.868499 0.779544i
\(989\) 7.14771 + 1.91522i 0.227284 + 0.0609005i
\(990\) −1.49836 + 14.3639i −0.0476209 + 0.456515i
\(991\) −26.4721 + 45.8511i −0.840915 + 1.45651i 0.0482069 + 0.998837i \(0.484649\pi\)
−0.889122 + 0.457670i \(0.848684\pi\)
\(992\) −16.9688 + 29.6580i −0.538761 + 0.941643i
\(993\) −2.80341 −0.0889635
\(994\) 0 0
\(995\) 17.0677 17.0677i 0.541082 0.541082i
\(996\) −0.422356 + 2.00242i −0.0133829 + 0.0634491i
\(997\) −21.9178 + 5.87285i −0.694143 + 0.185995i −0.588606 0.808420i \(-0.700323\pi\)
−0.105537 + 0.994415i \(0.533656\pi\)
\(998\) 7.71259 + 9.50905i 0.244138 + 0.301004i
\(999\) −40.9933 + 23.6675i −1.29697 + 0.748807i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.x.k.165.2 16
7.2 even 3 inner 784.2.x.k.373.2 16
7.3 odd 6 784.2.m.g.197.4 8
7.4 even 3 112.2.m.c.85.4 yes 8
7.5 odd 6 784.2.x.j.373.2 16
7.6 odd 2 784.2.x.j.165.2 16
16.13 even 4 inner 784.2.x.k.557.2 16
28.11 odd 6 448.2.m.c.113.3 8
56.11 odd 6 896.2.m.f.225.2 8
56.53 even 6 896.2.m.e.225.3 8
112.11 odd 12 896.2.m.f.673.2 8
112.13 odd 4 784.2.x.j.557.2 16
112.45 odd 12 784.2.m.g.589.4 8
112.53 even 12 896.2.m.e.673.3 8
112.61 odd 12 784.2.x.j.765.2 16
112.67 odd 12 448.2.m.c.337.3 8
112.93 even 12 inner 784.2.x.k.765.2 16
112.109 even 12 112.2.m.c.29.4 8
224.67 odd 24 7168.2.a.bd.1.5 8
224.109 even 24 7168.2.a.bc.1.5 8
224.179 odd 24 7168.2.a.bd.1.4 8
224.221 even 24 7168.2.a.bc.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.m.c.29.4 8 112.109 even 12
112.2.m.c.85.4 yes 8 7.4 even 3
448.2.m.c.113.3 8 28.11 odd 6
448.2.m.c.337.3 8 112.67 odd 12
784.2.m.g.197.4 8 7.3 odd 6
784.2.m.g.589.4 8 112.45 odd 12
784.2.x.j.165.2 16 7.6 odd 2
784.2.x.j.373.2 16 7.5 odd 6
784.2.x.j.557.2 16 112.13 odd 4
784.2.x.j.765.2 16 112.61 odd 12
784.2.x.k.165.2 16 1.1 even 1 trivial
784.2.x.k.373.2 16 7.2 even 3 inner
784.2.x.k.557.2 16 16.13 even 4 inner
784.2.x.k.765.2 16 112.93 even 12 inner
896.2.m.e.225.3 8 56.53 even 6
896.2.m.e.673.3 8 112.53 even 12
896.2.m.f.225.2 8 56.11 odd 6
896.2.m.f.673.2 8 112.11 odd 12
7168.2.a.bc.1.4 8 224.221 even 24
7168.2.a.bc.1.5 8 224.109 even 24
7168.2.a.bd.1.4 8 224.179 odd 24
7168.2.a.bd.1.5 8 224.67 odd 24