Properties

Label 840.2.bg.e.121.1
Level $840$
Weight $2$
Character 840.121
Analytic conductor $6.707$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [840,2,Mod(121,840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(840, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("840.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bg (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 840.121
Dual form 840.2.bg.e.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{5} +(0.500000 + 2.59808i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(1.00000 + 1.73205i) q^{11} +1.00000 q^{13} +1.00000 q^{15} +(-1.50000 + 2.59808i) q^{19} +(-2.00000 + 1.73205i) q^{21} +(-0.500000 - 0.866025i) q^{25} -1.00000 q^{27} +(4.50000 + 7.79423i) q^{31} +(-1.00000 + 1.73205i) q^{33} +(2.50000 + 0.866025i) q^{35} +(-1.50000 + 2.59808i) q^{37} +(0.500000 + 0.866025i) q^{39} +2.00000 q^{41} +3.00000 q^{43} +(0.500000 + 0.866025i) q^{45} +(3.00000 - 5.19615i) q^{47} +(-6.50000 + 2.59808i) q^{49} +2.00000 q^{55} -3.00000 q^{57} +(2.00000 + 3.46410i) q^{59} +(-1.00000 + 1.73205i) q^{61} +(-2.50000 - 0.866025i) q^{63} +(0.500000 - 0.866025i) q^{65} +(-2.50000 - 4.33013i) q^{67} +14.0000 q^{71} +(-0.500000 - 0.866025i) q^{73} +(0.500000 - 0.866025i) q^{75} +(-4.00000 + 3.46410i) q^{77} +(-4.50000 + 7.79423i) q^{79} +(-0.500000 - 0.866025i) q^{81} -6.00000 q^{83} +(2.00000 - 3.46410i) q^{89} +(0.500000 + 2.59808i) q^{91} +(-4.50000 + 7.79423i) q^{93} +(1.50000 + 2.59808i) q^{95} -14.0000 q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + q^{5} + q^{7} - q^{9} + 2 q^{11} + 2 q^{13} + 2 q^{15} - 3 q^{19} - 4 q^{21} - q^{25} - 2 q^{27} + 9 q^{31} - 2 q^{33} + 5 q^{35} - 3 q^{37} + q^{39} + 4 q^{41} + 6 q^{43} + q^{45}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.00000 + 1.73205i 0.301511 + 0.522233i 0.976478 0.215615i \(-0.0691756\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −1.50000 + 2.59808i −0.344124 + 0.596040i −0.985194 0.171442i \(-0.945157\pi\)
0.641071 + 0.767482i \(0.278491\pi\)
\(20\) 0 0
\(21\) −2.00000 + 1.73205i −0.436436 + 0.377964i
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 4.50000 + 7.79423i 0.808224 + 1.39988i 0.914093 + 0.405505i \(0.132904\pi\)
−0.105869 + 0.994380i \(0.533762\pi\)
\(32\) 0 0
\(33\) −1.00000 + 1.73205i −0.174078 + 0.301511i
\(34\) 0 0
\(35\) 2.50000 + 0.866025i 0.422577 + 0.146385i
\(36\) 0 0
\(37\) −1.50000 + 2.59808i −0.246598 + 0.427121i −0.962580 0.270998i \(-0.912646\pi\)
0.715981 + 0.698119i \(0.245980\pi\)
\(38\) 0 0
\(39\) 0.500000 + 0.866025i 0.0800641 + 0.138675i
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 3.00000 0.457496 0.228748 0.973486i \(-0.426537\pi\)
0.228748 + 0.973486i \(0.426537\pi\)
\(44\) 0 0
\(45\) 0.500000 + 0.866025i 0.0745356 + 0.129099i
\(46\) 0 0
\(47\) 3.00000 5.19615i 0.437595 0.757937i −0.559908 0.828554i \(-0.689164\pi\)
0.997503 + 0.0706177i \(0.0224970\pi\)
\(48\) 0 0
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) −3.00000 −0.397360
\(58\) 0 0
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) 0 0
\(61\) −1.00000 + 1.73205i −0.128037 + 0.221766i −0.922916 0.385002i \(-0.874201\pi\)
0.794879 + 0.606768i \(0.207534\pi\)
\(62\) 0 0
\(63\) −2.50000 0.866025i −0.314970 0.109109i
\(64\) 0 0
\(65\) 0.500000 0.866025i 0.0620174 0.107417i
\(66\) 0 0
\(67\) −2.50000 4.33013i −0.305424 0.529009i 0.671932 0.740613i \(-0.265465\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.0000 1.66149 0.830747 0.556650i \(-0.187914\pi\)
0.830747 + 0.556650i \(0.187914\pi\)
\(72\) 0 0
\(73\) −0.500000 0.866025i −0.0585206 0.101361i 0.835281 0.549823i \(-0.185305\pi\)
−0.893801 + 0.448463i \(0.851972\pi\)
\(74\) 0 0
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0 0
\(77\) −4.00000 + 3.46410i −0.455842 + 0.394771i
\(78\) 0 0
\(79\) −4.50000 + 7.79423i −0.506290 + 0.876919i 0.493684 + 0.869641i \(0.335650\pi\)
−0.999974 + 0.00727784i \(0.997683\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.00000 3.46410i 0.212000 0.367194i −0.740341 0.672232i \(-0.765336\pi\)
0.952340 + 0.305038i \(0.0986691\pi\)
\(90\) 0 0
\(91\) 0.500000 + 2.59808i 0.0524142 + 0.272352i
\(92\) 0 0
\(93\) −4.50000 + 7.79423i −0.466628 + 0.808224i
\(94\) 0 0
\(95\) 1.50000 + 2.59808i 0.153897 + 0.266557i
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 1.00000 + 1.73205i 0.0995037 + 0.172345i 0.911479 0.411346i \(-0.134941\pi\)
−0.811976 + 0.583691i \(0.801608\pi\)
\(102\) 0 0
\(103\) −1.50000 + 2.59808i −0.147799 + 0.255996i −0.930414 0.366511i \(-0.880552\pi\)
0.782614 + 0.622507i \(0.213886\pi\)
\(104\) 0 0
\(105\) 0.500000 + 2.59808i 0.0487950 + 0.253546i
\(106\) 0 0
\(107\) 8.00000 13.8564i 0.773389 1.33955i −0.162306 0.986740i \(-0.551893\pi\)
0.935695 0.352809i \(-0.114773\pi\)
\(108\) 0 0
\(109\) −6.50000 11.2583i −0.622587 1.07835i −0.989002 0.147901i \(-0.952748\pi\)
0.366415 0.930451i \(-0.380585\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.500000 + 0.866025i −0.0462250 + 0.0800641i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 0 0
\(123\) 1.00000 + 1.73205i 0.0901670 + 0.156174i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) 0 0
\(129\) 1.50000 + 2.59808i 0.132068 + 0.228748i
\(130\) 0 0
\(131\) 9.00000 15.5885i 0.786334 1.36197i −0.141865 0.989886i \(-0.545310\pi\)
0.928199 0.372084i \(-0.121357\pi\)
\(132\) 0 0
\(133\) −7.50000 2.59808i −0.650332 0.225282i
\(134\) 0 0
\(135\) −0.500000 + 0.866025i −0.0430331 + 0.0745356i
\(136\) 0 0
\(137\) −4.00000 6.92820i −0.341743 0.591916i 0.643013 0.765855i \(-0.277684\pi\)
−0.984757 + 0.173939i \(0.944351\pi\)
\(138\) 0 0
\(139\) −9.00000 −0.763370 −0.381685 0.924292i \(-0.624656\pi\)
−0.381685 + 0.924292i \(0.624656\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) 1.00000 + 1.73205i 0.0836242 + 0.144841i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5.50000 4.33013i −0.453632 0.357143i
\(148\) 0 0
\(149\) 10.0000 17.3205i 0.819232 1.41895i −0.0870170 0.996207i \(-0.527733\pi\)
0.906249 0.422744i \(-0.138933\pi\)
\(150\) 0 0
\(151\) 8.00000 + 13.8564i 0.651031 + 1.12762i 0.982873 + 0.184284i \(0.0589965\pi\)
−0.331842 + 0.943335i \(0.607670\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.00000 0.722897
\(156\) 0 0
\(157\) −5.00000 8.66025i −0.399043 0.691164i 0.594565 0.804048i \(-0.297324\pi\)
−0.993608 + 0.112884i \(0.963991\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.00000 10.3923i 0.469956 0.813988i −0.529454 0.848339i \(-0.677603\pi\)
0.999410 + 0.0343508i \(0.0109363\pi\)
\(164\) 0 0
\(165\) 1.00000 + 1.73205i 0.0778499 + 0.134840i
\(166\) 0 0
\(167\) −18.0000 −1.39288 −0.696441 0.717614i \(-0.745234\pi\)
−0.696441 + 0.717614i \(0.745234\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −1.50000 2.59808i −0.114708 0.198680i
\(172\) 0 0
\(173\) −2.00000 + 3.46410i −0.152057 + 0.263371i −0.931984 0.362500i \(-0.881923\pi\)
0.779926 + 0.625871i \(0.215256\pi\)
\(174\) 0 0
\(175\) 2.00000 1.73205i 0.151186 0.130931i
\(176\) 0 0
\(177\) −2.00000 + 3.46410i −0.150329 + 0.260378i
\(178\) 0 0
\(179\) −5.00000 8.66025i −0.373718 0.647298i 0.616417 0.787420i \(-0.288584\pi\)
−0.990134 + 0.140122i \(0.955250\pi\)
\(180\) 0 0
\(181\) 25.0000 1.85824 0.929118 0.369784i \(-0.120568\pi\)
0.929118 + 0.369784i \(0.120568\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) 1.50000 + 2.59808i 0.110282 + 0.191014i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.500000 2.59808i −0.0363696 0.188982i
\(190\) 0 0
\(191\) 11.0000 19.0526i 0.795932 1.37859i −0.126314 0.991990i \(-0.540315\pi\)
0.922246 0.386604i \(-0.126352\pi\)
\(192\) 0 0
\(193\) −11.5000 19.9186i −0.827788 1.43377i −0.899770 0.436365i \(-0.856266\pi\)
0.0719816 0.997406i \(-0.477068\pi\)
\(194\) 0 0
\(195\) 1.00000 0.0716115
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 12.0000 + 20.7846i 0.850657 + 1.47338i 0.880616 + 0.473831i \(0.157129\pi\)
−0.0299585 + 0.999551i \(0.509538\pi\)
\(200\) 0 0
\(201\) 2.50000 4.33013i 0.176336 0.305424i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.00000 1.73205i 0.0698430 0.120972i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 7.00000 + 12.1244i 0.479632 + 0.830747i
\(214\) 0 0
\(215\) 1.50000 2.59808i 0.102299 0.177187i
\(216\) 0 0
\(217\) −18.0000 + 15.5885i −1.22192 + 1.05821i
\(218\) 0 0
\(219\) 0.500000 0.866025i 0.0337869 0.0585206i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −13.0000 22.5167i −0.862840 1.49448i −0.869176 0.494503i \(-0.835350\pi\)
0.00633544 0.999980i \(-0.497983\pi\)
\(228\) 0 0
\(229\) 11.5000 19.9186i 0.759941 1.31626i −0.182939 0.983124i \(-0.558561\pi\)
0.942880 0.333133i \(-0.108106\pi\)
\(230\) 0 0
\(231\) −5.00000 1.73205i −0.328976 0.113961i
\(232\) 0 0
\(233\) 11.0000 19.0526i 0.720634 1.24817i −0.240112 0.970745i \(-0.577184\pi\)
0.960746 0.277429i \(-0.0894825\pi\)
\(234\) 0 0
\(235\) −3.00000 5.19615i −0.195698 0.338960i
\(236\) 0 0
\(237\) −9.00000 −0.584613
\(238\) 0 0
\(239\) −22.0000 −1.42306 −0.711531 0.702655i \(-0.751998\pi\)
−0.711531 + 0.702655i \(0.751998\pi\)
\(240\) 0 0
\(241\) 9.00000 + 15.5885i 0.579741 + 1.00414i 0.995509 + 0.0946700i \(0.0301796\pi\)
−0.415768 + 0.909471i \(0.636487\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) −1.00000 + 6.92820i −0.0638877 + 0.442627i
\(246\) 0 0
\(247\) −1.50000 + 2.59808i −0.0954427 + 0.165312i
\(248\) 0 0
\(249\) −3.00000 5.19615i −0.190117 0.329293i
\(250\) 0 0
\(251\) −16.0000 −1.00991 −0.504956 0.863145i \(-0.668491\pi\)
−0.504956 + 0.863145i \(0.668491\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.00000 + 15.5885i −0.561405 + 0.972381i 0.435970 + 0.899961i \(0.356405\pi\)
−0.997374 + 0.0724199i \(0.976928\pi\)
\(258\) 0 0
\(259\) −7.50000 2.59808i −0.466027 0.161437i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.00000 + 10.3923i 0.369976 + 0.640817i 0.989561 0.144112i \(-0.0460326\pi\)
−0.619586 + 0.784929i \(0.712699\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4.00000 0.244796
\(268\) 0 0
\(269\) 1.00000 + 1.73205i 0.0609711 + 0.105605i 0.894900 0.446267i \(-0.147247\pi\)
−0.833929 + 0.551872i \(0.813914\pi\)
\(270\) 0 0
\(271\) −8.00000 + 13.8564i −0.485965 + 0.841717i −0.999870 0.0161307i \(-0.994865\pi\)
0.513905 + 0.857847i \(0.328199\pi\)
\(272\) 0 0
\(273\) −2.00000 + 1.73205i −0.121046 + 0.104828i
\(274\) 0 0
\(275\) 1.00000 1.73205i 0.0603023 0.104447i
\(276\) 0 0
\(277\) −2.50000 4.33013i −0.150210 0.260172i 0.781094 0.624413i \(-0.214662\pi\)
−0.931305 + 0.364241i \(0.881328\pi\)
\(278\) 0 0
\(279\) −9.00000 −0.538816
\(280\) 0 0
\(281\) 8.00000 0.477240 0.238620 0.971113i \(-0.423305\pi\)
0.238620 + 0.971113i \(0.423305\pi\)
\(282\) 0 0
\(283\) −5.50000 9.52628i −0.326941 0.566279i 0.654962 0.755662i \(-0.272685\pi\)
−0.981903 + 0.189383i \(0.939351\pi\)
\(284\) 0 0
\(285\) −1.50000 + 2.59808i −0.0888523 + 0.153897i
\(286\) 0 0
\(287\) 1.00000 + 5.19615i 0.0590281 + 0.306719i
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) −7.00000 12.1244i −0.410347 0.710742i
\(292\) 0 0
\(293\) 8.00000 0.467365 0.233682 0.972313i \(-0.424922\pi\)
0.233682 + 0.972313i \(0.424922\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 0 0
\(297\) −1.00000 1.73205i −0.0580259 0.100504i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.50000 + 7.79423i 0.0864586 + 0.449252i
\(302\) 0 0
\(303\) −1.00000 + 1.73205i −0.0574485 + 0.0995037i
\(304\) 0 0
\(305\) 1.00000 + 1.73205i 0.0572598 + 0.0991769i
\(306\) 0 0
\(307\) −15.0000 −0.856095 −0.428048 0.903756i \(-0.640798\pi\)
−0.428048 + 0.903756i \(0.640798\pi\)
\(308\) 0 0
\(309\) −3.00000 −0.170664
\(310\) 0 0
\(311\) 7.00000 + 12.1244i 0.396934 + 0.687509i 0.993346 0.115169i \(-0.0367410\pi\)
−0.596412 + 0.802678i \(0.703408\pi\)
\(312\) 0 0
\(313\) 6.50000 11.2583i 0.367402 0.636358i −0.621757 0.783210i \(-0.713581\pi\)
0.989158 + 0.146852i \(0.0469141\pi\)
\(314\) 0 0
\(315\) −2.00000 + 1.73205i −0.112687 + 0.0975900i
\(316\) 0 0
\(317\) −6.00000 + 10.3923i −0.336994 + 0.583690i −0.983866 0.178908i \(-0.942743\pi\)
0.646872 + 0.762598i \(0.276077\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 16.0000 0.893033
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.500000 0.866025i −0.0277350 0.0480384i
\(326\) 0 0
\(327\) 6.50000 11.2583i 0.359451 0.622587i
\(328\) 0 0
\(329\) 15.0000 + 5.19615i 0.826977 + 0.286473i
\(330\) 0 0
\(331\) −6.50000 + 11.2583i −0.357272 + 0.618814i −0.987504 0.157593i \(-0.949627\pi\)
0.630232 + 0.776407i \(0.282960\pi\)
\(332\) 0 0
\(333\) −1.50000 2.59808i −0.0821995 0.142374i
\(334\) 0 0
\(335\) −5.00000 −0.273179
\(336\) 0 0
\(337\) 1.00000 0.0544735 0.0272367 0.999629i \(-0.491329\pi\)
0.0272367 + 0.999629i \(0.491329\pi\)
\(338\) 0 0
\(339\) 3.00000 + 5.19615i 0.162938 + 0.282216i
\(340\) 0 0
\(341\) −9.00000 + 15.5885i −0.487377 + 0.844162i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.00000 + 3.46410i 0.107366 + 0.185963i 0.914702 0.404128i \(-0.132425\pi\)
−0.807337 + 0.590091i \(0.799092\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) 15.0000 + 25.9808i 0.798369 + 1.38282i 0.920677 + 0.390324i \(0.127637\pi\)
−0.122308 + 0.992492i \(0.539030\pi\)
\(354\) 0 0
\(355\) 7.00000 12.1244i 0.371521 0.643494i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 0 0
\(361\) 5.00000 + 8.66025i 0.263158 + 0.455803i
\(362\) 0 0
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) −1.00000 −0.0523424
\(366\) 0 0
\(367\) 17.5000 + 30.3109i 0.913493 + 1.58222i 0.809093 + 0.587680i \(0.199959\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(368\) 0 0
\(369\) −1.00000 + 1.73205i −0.0520579 + 0.0901670i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 16.5000 28.5788i 0.854338 1.47976i −0.0229205 0.999737i \(-0.507296\pi\)
0.877258 0.480019i \(-0.159370\pi\)
\(374\) 0 0
\(375\) −0.500000 0.866025i −0.0258199 0.0447214i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.00000 0.0513665 0.0256833 0.999670i \(-0.491824\pi\)
0.0256833 + 0.999670i \(0.491824\pi\)
\(380\) 0 0
\(381\) 5.50000 + 9.52628i 0.281774 + 0.488046i
\(382\) 0 0
\(383\) −12.0000 + 20.7846i −0.613171 + 1.06204i 0.377531 + 0.925997i \(0.376773\pi\)
−0.990702 + 0.136047i \(0.956560\pi\)
\(384\) 0 0
\(385\) 1.00000 + 5.19615i 0.0509647 + 0.264820i
\(386\) 0 0
\(387\) −1.50000 + 2.59808i −0.0762493 + 0.132068i
\(388\) 0 0
\(389\) 7.00000 + 12.1244i 0.354914 + 0.614729i 0.987103 0.160085i \(-0.0511768\pi\)
−0.632189 + 0.774814i \(0.717843\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 18.0000 0.907980
\(394\) 0 0
\(395\) 4.50000 + 7.79423i 0.226420 + 0.392170i
\(396\) 0 0
\(397\) −3.50000 + 6.06218i −0.175660 + 0.304252i −0.940389 0.340099i \(-0.889539\pi\)
0.764730 + 0.644351i \(0.222873\pi\)
\(398\) 0 0
\(399\) −1.50000 7.79423i −0.0750939 0.390199i
\(400\) 0 0
\(401\) 12.0000 20.7846i 0.599251 1.03793i −0.393680 0.919247i \(-0.628798\pi\)
0.992932 0.118686i \(-0.0378683\pi\)
\(402\) 0 0
\(403\) 4.50000 + 7.79423i 0.224161 + 0.388258i
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) 9.50000 + 16.4545i 0.469745 + 0.813622i 0.999402 0.0345902i \(-0.0110126\pi\)
−0.529657 + 0.848212i \(0.677679\pi\)
\(410\) 0 0
\(411\) 4.00000 6.92820i 0.197305 0.341743i
\(412\) 0 0
\(413\) −8.00000 + 6.92820i −0.393654 + 0.340915i
\(414\) 0 0
\(415\) −3.00000 + 5.19615i −0.147264 + 0.255069i
\(416\) 0 0
\(417\) −4.50000 7.79423i −0.220366 0.381685i
\(418\) 0 0
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) 5.00000 0.243685 0.121843 0.992549i \(-0.461120\pi\)
0.121843 + 0.992549i \(0.461120\pi\)
\(422\) 0 0
\(423\) 3.00000 + 5.19615i 0.145865 + 0.252646i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5.00000 1.73205i −0.241967 0.0838198i
\(428\) 0 0
\(429\) −1.00000 + 1.73205i −0.0482805 + 0.0836242i
\(430\) 0 0
\(431\) 17.0000 + 29.4449i 0.818861 + 1.41831i 0.906522 + 0.422159i \(0.138728\pi\)
−0.0876607 + 0.996150i \(0.527939\pi\)
\(432\) 0 0
\(433\) 3.00000 0.144171 0.0720854 0.997398i \(-0.477035\pi\)
0.0720854 + 0.997398i \(0.477035\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −4.00000 + 6.92820i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(440\) 0 0
\(441\) 1.00000 6.92820i 0.0476190 0.329914i
\(442\) 0 0
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 0 0
\(445\) −2.00000 3.46410i −0.0948091 0.164214i
\(446\) 0 0
\(447\) 20.0000 0.945968
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 2.00000 + 3.46410i 0.0941763 + 0.163118i
\(452\) 0 0
\(453\) −8.00000 + 13.8564i −0.375873 + 0.651031i
\(454\) 0 0
\(455\) 2.50000 + 0.866025i 0.117202 + 0.0405999i
\(456\) 0 0
\(457\) −8.50000 + 14.7224i −0.397613 + 0.688686i −0.993431 0.114433i \(-0.963495\pi\)
0.595818 + 0.803120i \(0.296828\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −24.0000 −1.11779 −0.558896 0.829238i \(-0.688775\pi\)
−0.558896 + 0.829238i \(0.688775\pi\)
\(462\) 0 0
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) 0 0
\(465\) 4.50000 + 7.79423i 0.208683 + 0.361449i
\(466\) 0 0
\(467\) 9.00000 15.5885i 0.416470 0.721348i −0.579111 0.815249i \(-0.696600\pi\)
0.995582 + 0.0939008i \(0.0299336\pi\)
\(468\) 0 0
\(469\) 10.0000 8.66025i 0.461757 0.399893i
\(470\) 0 0
\(471\) 5.00000 8.66025i 0.230388 0.399043i
\(472\) 0 0
\(473\) 3.00000 + 5.19615i 0.137940 + 0.238919i
\(474\) 0 0
\(475\) 3.00000 0.137649
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.0000 + 20.7846i 0.548294 + 0.949673i 0.998392 + 0.0566937i \(0.0180558\pi\)
−0.450098 + 0.892979i \(0.648611\pi\)
\(480\) 0 0
\(481\) −1.50000 + 2.59808i −0.0683941 + 0.118462i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.00000 + 12.1244i −0.317854 + 0.550539i
\(486\) 0 0
\(487\) −2.50000 4.33013i −0.113286 0.196217i 0.803807 0.594890i \(-0.202804\pi\)
−0.917093 + 0.398673i \(0.869471\pi\)
\(488\) 0 0
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −1.00000 + 1.73205i −0.0449467 + 0.0778499i
\(496\) 0 0
\(497\) 7.00000 + 36.3731i 0.313993 + 1.63156i
\(498\) 0 0
\(499\) 0.500000 0.866025i 0.0223831 0.0387686i −0.854617 0.519259i \(-0.826208\pi\)
0.877000 + 0.480490i \(0.159541\pi\)
\(500\) 0 0
\(501\) −9.00000 15.5885i −0.402090 0.696441i
\(502\) 0 0
\(503\) −22.0000 −0.980932 −0.490466 0.871460i \(-0.663173\pi\)
−0.490466 + 0.871460i \(0.663173\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) 0 0
\(507\) −6.00000 10.3923i −0.266469 0.461538i
\(508\) 0 0
\(509\) −15.0000 + 25.9808i −0.664863 + 1.15158i 0.314459 + 0.949271i \(0.398177\pi\)
−0.979322 + 0.202306i \(0.935156\pi\)
\(510\) 0 0
\(511\) 2.00000 1.73205i 0.0884748 0.0766214i
\(512\) 0 0
\(513\) 1.50000 2.59808i 0.0662266 0.114708i
\(514\) 0 0
\(515\) 1.50000 + 2.59808i 0.0660979 + 0.114485i
\(516\) 0 0
\(517\) 12.0000 0.527759
\(518\) 0 0
\(519\) −4.00000 −0.175581
\(520\) 0 0
\(521\) −6.00000 10.3923i −0.262865 0.455295i 0.704137 0.710064i \(-0.251334\pi\)
−0.967002 + 0.254769i \(0.918001\pi\)
\(522\) 0 0
\(523\) −0.500000 + 0.866025i −0.0218635 + 0.0378686i −0.876750 0.480946i \(-0.840293\pi\)
0.854887 + 0.518815i \(0.173627\pi\)
\(524\) 0 0
\(525\) 2.50000 + 0.866025i 0.109109 + 0.0377964i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) 2.00000 0.0866296
\(534\) 0 0
\(535\) −8.00000 13.8564i −0.345870 0.599065i
\(536\) 0 0
\(537\) 5.00000 8.66025i 0.215766 0.373718i
\(538\) 0 0
\(539\) −11.0000 8.66025i −0.473804 0.373024i
\(540\) 0 0
\(541\) −16.5000 + 28.5788i −0.709390 + 1.22870i 0.255693 + 0.966758i \(0.417696\pi\)
−0.965084 + 0.261942i \(0.915637\pi\)
\(542\) 0 0
\(543\) 12.5000 + 21.6506i 0.536426 + 0.929118i
\(544\) 0 0
\(545\) −13.0000 −0.556859
\(546\) 0 0
\(547\) 44.0000 1.88130 0.940652 0.339372i \(-0.110215\pi\)
0.940652 + 0.339372i \(0.110215\pi\)
\(548\) 0 0
\(549\) −1.00000 1.73205i −0.0426790 0.0739221i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −22.5000 7.79423i −0.956797 0.331444i
\(554\) 0 0
\(555\) −1.50000 + 2.59808i −0.0636715 + 0.110282i
\(556\) 0 0
\(557\) −3.00000 5.19615i −0.127114 0.220168i 0.795443 0.606028i \(-0.207238\pi\)
−0.922557 + 0.385860i \(0.873905\pi\)
\(558\) 0 0
\(559\) 3.00000 0.126886
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.00000 + 1.73205i 0.0421450 + 0.0729972i 0.886328 0.463057i \(-0.153248\pi\)
−0.844183 + 0.536054i \(0.819914\pi\)
\(564\) 0 0
\(565\) 3.00000 5.19615i 0.126211 0.218604i
\(566\) 0 0
\(567\) 2.00000 1.73205i 0.0839921 0.0727393i
\(568\) 0 0
\(569\) 19.0000 32.9090i 0.796521 1.37962i −0.125347 0.992113i \(-0.540004\pi\)
0.921869 0.387503i \(-0.126662\pi\)
\(570\) 0 0
\(571\) −7.50000 12.9904i −0.313865 0.543631i 0.665330 0.746549i \(-0.268291\pi\)
−0.979196 + 0.202919i \(0.934957\pi\)
\(572\) 0 0
\(573\) 22.0000 0.919063
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 6.50000 + 11.2583i 0.270599 + 0.468690i 0.969015 0.247001i \(-0.0794451\pi\)
−0.698417 + 0.715691i \(0.746112\pi\)
\(578\) 0 0
\(579\) 11.5000 19.9186i 0.477924 0.827788i
\(580\) 0 0
\(581\) −3.00000 15.5885i −0.124461 0.646718i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0.500000 + 0.866025i 0.0206725 + 0.0358057i
\(586\) 0 0
\(587\) −28.0000 −1.15568 −0.577842 0.816149i \(-0.696105\pi\)
−0.577842 + 0.816149i \(0.696105\pi\)
\(588\) 0 0
\(589\) −27.0000 −1.11252
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −19.0000 + 32.9090i −0.780236 + 1.35141i 0.151567 + 0.988447i \(0.451568\pi\)
−0.931804 + 0.362962i \(0.881765\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −12.0000 + 20.7846i −0.491127 + 0.850657i
\(598\) 0 0
\(599\) 6.00000 + 10.3923i 0.245153 + 0.424618i 0.962175 0.272433i \(-0.0878284\pi\)
−0.717021 + 0.697051i \(0.754495\pi\)
\(600\) 0 0
\(601\) 23.0000 0.938190 0.469095 0.883148i \(-0.344580\pi\)
0.469095 + 0.883148i \(0.344580\pi\)
\(602\) 0 0
\(603\) 5.00000 0.203616
\(604\) 0 0
\(605\) −3.50000 6.06218i −0.142295 0.246463i
\(606\) 0 0
\(607\) 21.5000 37.2391i 0.872658 1.51149i 0.0134214 0.999910i \(-0.495728\pi\)
0.859237 0.511578i \(-0.170939\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.00000 5.19615i 0.121367 0.210214i
\(612\) 0 0
\(613\) −13.0000 22.5167i −0.525065 0.909439i −0.999574 0.0291886i \(-0.990708\pi\)
0.474509 0.880251i \(-0.342626\pi\)
\(614\) 0 0
\(615\) 2.00000 0.0806478
\(616\) 0 0
\(617\) 34.0000 1.36879 0.684394 0.729112i \(-0.260067\pi\)
0.684394 + 0.729112i \(0.260067\pi\)
\(618\) 0 0
\(619\) 15.5000 + 26.8468i 0.622998 + 1.07906i 0.988924 + 0.148420i \(0.0474187\pi\)
−0.365927 + 0.930644i \(0.619248\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.0000 + 3.46410i 0.400642 + 0.138786i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −3.00000 5.19615i −0.119808 0.207514i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 24.0000 0.955425 0.477712 0.878516i \(-0.341466\pi\)
0.477712 + 0.878516i \(0.341466\pi\)
\(632\) 0 0
\(633\) 2.00000 + 3.46410i 0.0794929 + 0.137686i
\(634\) 0 0
\(635\) 5.50000 9.52628i 0.218261 0.378039i
\(636\) 0 0
\(637\) −6.50000 + 2.59808i −0.257539 + 0.102940i
\(638\) 0 0
\(639\) −7.00000 + 12.1244i −0.276916 + 0.479632i
\(640\) 0 0
\(641\) −20.0000 34.6410i −0.789953 1.36824i −0.925995 0.377535i \(-0.876772\pi\)
0.136043 0.990703i \(-0.456562\pi\)
\(642\) 0 0
\(643\) 11.0000 0.433798 0.216899 0.976194i \(-0.430406\pi\)
0.216899 + 0.976194i \(0.430406\pi\)
\(644\) 0 0
\(645\) 3.00000 0.118125
\(646\) 0 0
\(647\) −9.00000 15.5885i −0.353827 0.612845i 0.633090 0.774078i \(-0.281786\pi\)
−0.986916 + 0.161233i \(0.948453\pi\)
\(648\) 0 0
\(649\) −4.00000 + 6.92820i −0.157014 + 0.271956i
\(650\) 0 0
\(651\) −22.5000 7.79423i −0.881845 0.305480i
\(652\) 0 0
\(653\) −3.00000 + 5.19615i −0.117399 + 0.203341i −0.918736 0.394872i \(-0.870789\pi\)
0.801337 + 0.598213i \(0.204122\pi\)
\(654\) 0 0
\(655\) −9.00000 15.5885i −0.351659 0.609091i
\(656\) 0 0
\(657\) 1.00000 0.0390137
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) −17.5000 30.3109i −0.680671 1.17896i −0.974776 0.223184i \(-0.928355\pi\)
0.294105 0.955773i \(-0.404978\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.00000 + 5.19615i −0.232670 + 0.201498i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −8.00000 13.8564i −0.309298 0.535720i
\(670\) 0 0
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) −13.0000 −0.501113 −0.250557 0.968102i \(-0.580614\pi\)
−0.250557 + 0.968102i \(0.580614\pi\)
\(674\) 0 0
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) 0 0
\(679\) −7.00000 36.3731i −0.268635 1.39587i
\(680\) 0 0
\(681\) 13.0000 22.5167i 0.498161 0.862840i
\(682\) 0 0
\(683\) 22.0000 + 38.1051i 0.841807 + 1.45805i 0.888366 + 0.459136i \(0.151841\pi\)
−0.0465592 + 0.998916i \(0.514826\pi\)
\(684\) 0 0
\(685\) −8.00000 −0.305664
\(686\) 0 0
\(687\) 23.0000 0.877505
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −8.50000 + 14.7224i −0.323355 + 0.560068i −0.981178 0.193105i \(-0.938144\pi\)
0.657823 + 0.753173i \(0.271478\pi\)
\(692\) 0 0
\(693\) −1.00000 5.19615i −0.0379869 0.197386i
\(694\) 0 0
\(695\) −4.50000 + 7.79423i −0.170695 + 0.295652i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 22.0000 0.832116
\(700\) 0 0
\(701\) −48.0000 −1.81293 −0.906467 0.422276i \(-0.861231\pi\)
−0.906467 + 0.422276i \(0.861231\pi\)
\(702\) 0 0
\(703\) −4.50000 7.79423i −0.169721 0.293965i
\(704\) 0 0
\(705\) 3.00000 5.19615i 0.112987 0.195698i
\(706\) 0 0
\(707\) −4.00000 + 3.46410i −0.150435 + 0.130281i
\(708\) 0 0
\(709\) 13.0000 22.5167i 0.488225 0.845631i −0.511683 0.859174i \(-0.670978\pi\)
0.999908 + 0.0135434i \(0.00431112\pi\)
\(710\) 0 0
\(711\) −4.50000 7.79423i −0.168763 0.292306i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 2.00000 0.0747958
\(716\) 0 0
\(717\) −11.0000 19.0526i −0.410803 0.711531i
\(718\) 0 0
\(719\) −1.00000 + 1.73205i −0.0372937 + 0.0645946i −0.884070 0.467355i \(-0.845207\pi\)
0.846776 + 0.531949i \(0.178540\pi\)
\(720\) 0 0
\(721\) −7.50000 2.59808i −0.279315 0.0967574i
\(722\) 0 0
\(723\) −9.00000 + 15.5885i −0.334714 + 0.579741i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 17.0000 0.630495 0.315248 0.949009i \(-0.397912\pi\)
0.315248 + 0.949009i \(0.397912\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 15.5000 26.8468i 0.572506 0.991609i −0.423802 0.905755i \(-0.639305\pi\)
0.996308 0.0858539i \(-0.0273618\pi\)
\(734\) 0 0
\(735\) −6.50000 + 2.59808i −0.239756 + 0.0958315i
\(736\) 0 0
\(737\) 5.00000 8.66025i 0.184177 0.319005i
\(738\) 0 0
\(739\) −5.50000 9.52628i −0.202321 0.350430i 0.746955 0.664875i \(-0.231515\pi\)
−0.949276 + 0.314445i \(0.898182\pi\)
\(740\) 0 0
\(741\) −3.00000 −0.110208
\(742\) 0 0
\(743\) −30.0000 −1.10059 −0.550297 0.834969i \(-0.685485\pi\)
−0.550297 + 0.834969i \(0.685485\pi\)
\(744\) 0 0
\(745\) −10.0000 17.3205i −0.366372 0.634574i
\(746\) 0 0
\(747\) 3.00000 5.19615i 0.109764 0.190117i
\(748\) 0 0
\(749\) 40.0000 + 13.8564i 1.46157 + 0.506302i
\(750\) 0 0
\(751\) −9.50000 + 16.4545i −0.346660 + 0.600433i −0.985654 0.168779i \(-0.946018\pi\)
0.638994 + 0.769212i \(0.279351\pi\)
\(752\) 0 0
\(753\) −8.00000 13.8564i −0.291536 0.504956i
\(754\) 0 0
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.00000 + 6.92820i −0.145000 + 0.251147i −0.929373 0.369142i \(-0.879652\pi\)
0.784373 + 0.620289i \(0.212985\pi\)
\(762\) 0 0
\(763\) 26.0000 22.5167i 0.941263 0.815158i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.00000 + 3.46410i 0.0722158 + 0.125081i
\(768\) 0 0
\(769\) −25.0000 −0.901523 −0.450762 0.892644i \(-0.648848\pi\)
−0.450762 + 0.892644i \(0.648848\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 0 0
\(773\) −17.0000 29.4449i −0.611448 1.05906i −0.990997 0.133887i \(-0.957254\pi\)
0.379549 0.925172i \(-0.376079\pi\)
\(774\) 0 0
\(775\) 4.50000 7.79423i 0.161645 0.279977i
\(776\) 0 0
\(777\) −1.50000 7.79423i −0.0538122 0.279616i
\(778\) 0 0
\(779\) −3.00000 + 5.19615i −0.107486 + 0.186171i
\(780\) 0 0
\(781\) 14.0000 + 24.2487i 0.500959 + 0.867687i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) −4.00000 6.92820i −0.142585 0.246964i 0.785885 0.618373i \(-0.212208\pi\)
−0.928469 + 0.371409i \(0.878875\pi\)
\(788\) 0 0
\(789\) −6.00000 + 10.3923i −0.213606 + 0.369976i
\(790\) 0 0
\(791\) 3.00000 + 15.5885i 0.106668 + 0.554262i
\(792\) 0 0
\(793\) −1.00000 + 1.73205i −0.0355110 + 0.0615069i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 32.0000 1.13350 0.566749 0.823890i \(-0.308201\pi\)
0.566749 + 0.823890i \(0.308201\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 2.00000 + 3.46410i 0.0706665 + 0.122398i
\(802\) 0 0
\(803\) 1.00000 1.73205i 0.0352892 0.0611227i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.00000 + 1.73205i −0.0352017 + 0.0609711i
\(808\) 0 0
\(809\) −5.00000 8.66025i −0.175791 0.304478i 0.764644 0.644453i \(-0.222915\pi\)
−0.940435 + 0.339975i \(0.889582\pi\)
\(810\) 0 0
\(811\) −40.0000 −1.40459 −0.702295 0.711886i \(-0.747841\pi\)
−0.702295 + 0.711886i \(0.747841\pi\)
\(812\) 0 0
\(813\) −16.0000 −0.561144
\(814\) 0 0
\(815\) −6.00000 10.3923i −0.210171 0.364027i
\(816\) 0 0
\(817\) −4.50000 + 7.79423i −0.157435 + 0.272686i
\(818\) 0 0
\(819\) −2.50000 0.866025i −0.0873571 0.0302614i
\(820\) 0 0
\(821\) −1.00000 + 1.73205i −0.0349002 + 0.0604490i −0.882948 0.469471i \(-0.844445\pi\)
0.848048 + 0.529920i \(0.177778\pi\)
\(822\) 0 0
\(823\) −16.0000 27.7128i −0.557725 0.966008i −0.997686 0.0679910i \(-0.978341\pi\)
0.439961 0.898017i \(-0.354992\pi\)
\(824\) 0 0
\(825\) 2.00000 0.0696311
\(826\) 0 0
\(827\) 50.0000 1.73867 0.869335 0.494223i \(-0.164547\pi\)
0.869335 + 0.494223i \(0.164547\pi\)
\(828\) 0 0
\(829\) 5.50000 + 9.52628i 0.191023 + 0.330861i 0.945589 0.325362i \(-0.105486\pi\)
−0.754567 + 0.656223i \(0.772153\pi\)
\(830\) 0 0
\(831\) 2.50000 4.33013i 0.0867240 0.150210i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −9.00000 + 15.5885i −0.311458 + 0.539461i
\(836\) 0 0
\(837\) −4.50000 7.79423i −0.155543 0.269408i
\(838\) 0 0
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 4.00000 + 6.92820i 0.137767 + 0.238620i
\(844\) 0 0
\(845\) −6.00000 + 10.3923i −0.206406 + 0.357506i
\(846\) 0 0
\(847\) 17.5000 + 6.06218i 0.601307 + 0.208299i
\(848\) 0 0
\(849\) 5.50000 9.52628i 0.188760 0.326941i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 43.0000 1.47229 0.736146 0.676823i \(-0.236644\pi\)
0.736146 + 0.676823i \(0.236644\pi\)
\(854\) 0 0
\(855\) −3.00000 −0.102598
\(856\) 0 0
\(857\) −26.0000 45.0333i −0.888143 1.53831i −0.842068 0.539371i \(-0.818662\pi\)
−0.0460748 0.998938i \(-0.514671\pi\)
\(858\) 0 0
\(859\) 8.00000 13.8564i 0.272956 0.472774i −0.696661 0.717400i \(-0.745332\pi\)
0.969618 + 0.244626i \(0.0786652\pi\)
\(860\) 0 0
\(861\) −4.00000 + 3.46410i −0.136320 + 0.118056i
\(862\) 0 0
\(863\) 17.0000 29.4449i 0.578687 1.00231i −0.416944 0.908932i \(-0.636899\pi\)
0.995630 0.0933825i \(-0.0297679\pi\)
\(864\) 0 0
\(865\) 2.00000 + 3.46410i 0.0680020 + 0.117783i
\(866\) 0 0
\(867\) 17.0000 0.577350
\(868\) 0 0
\(869\) −18.0000 −0.610608
\(870\) 0 0
\(871\) −2.50000 4.33013i −0.0847093 0.146721i
\(872\) 0 0
\(873\) 7.00000 12.1244i 0.236914 0.410347i
\(874\) 0 0
\(875\) −0.500000 2.59808i −0.0169031 0.0878310i
\(876\) 0 0
\(877\) −1.00000 + 1.73205i −0.0337676 + 0.0584872i −0.882415 0.470471i \(-0.844084\pi\)
0.848648 + 0.528958i \(0.177417\pi\)
\(878\) 0 0
\(879\) 4.00000 + 6.92820i 0.134917 + 0.233682i
\(880\) 0 0
\(881\) −52.0000 −1.75192 −0.875962 0.482380i \(-0.839773\pi\)
−0.875962 + 0.482380i \(0.839773\pi\)
\(882\) 0 0
\(883\) 29.0000 0.975928 0.487964 0.872864i \(-0.337740\pi\)
0.487964 + 0.872864i \(0.337740\pi\)
\(884\) 0 0
\(885\) 2.00000 + 3.46410i 0.0672293 + 0.116445i
\(886\) 0 0
\(887\) 1.00000 1.73205i 0.0335767 0.0581566i −0.848749 0.528796i \(-0.822644\pi\)
0.882325 + 0.470640i \(0.155977\pi\)
\(888\) 0 0
\(889\) 5.50000 + 28.5788i 0.184464 + 0.958503i
\(890\) 0 0
\(891\) 1.00000 1.73205i 0.0335013 0.0580259i
\(892\) 0 0
\(893\) 9.00000 + 15.5885i 0.301174 + 0.521648i
\(894\) 0 0
\(895\) −10.0000 −0.334263
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −6.00000 + 5.19615i −0.199667 + 0.172917i
\(904\) 0 0
\(905\) 12.5000 21.6506i 0.415514 0.719691i
\(906\) 0 0
\(907\) 1.50000 + 2.59808i 0.0498067 + 0.0862677i 0.889854 0.456246i \(-0.150806\pi\)
−0.840047 + 0.542513i \(0.817473\pi\)
\(908\) 0 0
\(909\) −2.00000 −0.0663358
\(910\) 0 0
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) 0 0
\(913\) −6.00000 10.3923i −0.198571 0.343935i
\(914\) 0 0
\(915\) −1.00000 + 1.73205i −0.0330590 + 0.0572598i
\(916\) 0 0
\(917\) 45.0000 + 15.5885i 1.48603 + 0.514776i
\(918\) 0 0
\(919\) −12.5000 + 21.6506i −0.412337 + 0.714189i −0.995145 0.0984214i \(-0.968621\pi\)
0.582808 + 0.812610i \(0.301954\pi\)
\(920\) 0 0
\(921\) −7.50000 12.9904i −0.247133 0.428048i
\(922\) 0 0
\(923\) 14.0000 0.460816
\(924\) 0 0
\(925\) 3.00000 0.0986394
\(926\) 0 0
\(927\) −1.50000 2.59808i −0.0492665 0.0853320i
\(928\) 0 0
\(929\) 9.00000 15.5885i 0.295280 0.511441i −0.679770 0.733426i \(-0.737920\pi\)
0.975050 + 0.221985i \(0.0712536\pi\)
\(930\) 0 0
\(931\) 3.00000 20.7846i 0.0983210 0.681188i
\(932\) 0 0
\(933\) −7.00000 + 12.1244i −0.229170 + 0.396934i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −5.00000 −0.163343 −0.0816714 0.996659i \(-0.526026\pi\)
−0.0816714 + 0.996659i \(0.526026\pi\)
\(938\) 0 0
\(939\) 13.0000 0.424239
\(940\) 0 0
\(941\) −26.0000 45.0333i −0.847576 1.46804i −0.883365 0.468685i \(-0.844728\pi\)
0.0357896 0.999359i \(-0.488605\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −2.50000 0.866025i −0.0813250 0.0281718i
\(946\) 0 0
\(947\) −19.0000 + 32.9090i −0.617417 + 1.06940i 0.372538 + 0.928017i \(0.378488\pi\)
−0.989955 + 0.141381i \(0.954846\pi\)
\(948\) 0 0
\(949\) −0.500000 0.866025i −0.0162307 0.0281124i
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) −16.0000 −0.518291 −0.259145 0.965838i \(-0.583441\pi\)
−0.259145 + 0.965838i \(0.583441\pi\)
\(954\) 0 0
\(955\) −11.0000 19.0526i −0.355952 0.616526i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 16.0000 13.8564i 0.516667 0.447447i
\(960\) 0 0
\(961\) −25.0000 + 43.3013i −0.806452 + 1.39682i
\(962\) 0 0
\(963\) 8.00000 + 13.8564i 0.257796 + 0.446516i
\(964\) 0 0
\(965\) −23.0000 −0.740396
\(966\) 0 0
\(967\) 49.0000 1.57573 0.787867 0.615846i \(-0.211185\pi\)
0.787867 + 0.615846i \(0.211185\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −8.00000 + 13.8564i −0.256732 + 0.444673i −0.965365 0.260905i \(-0.915979\pi\)
0.708632 + 0.705578i \(0.249313\pi\)
\(972\) 0 0
\(973\) −4.50000 23.3827i −0.144263 0.749614i
\(974\) 0 0
\(975\) 0.500000 0.866025i 0.0160128 0.0277350i
\(976\) 0 0
\(977\) 3.00000 + 5.19615i 0.0959785 + 0.166240i 0.910017 0.414572i \(-0.136069\pi\)
−0.814038 + 0.580812i \(0.802735\pi\)
\(978\) 0 0
\(979\) 8.00000 0.255681
\(980\) 0 0
\(981\) 13.0000 0.415058
\(982\) 0 0
\(983\) −18.0000 31.1769i −0.574111 0.994389i −0.996138 0.0878058i \(-0.972015\pi\)
0.422027 0.906583i \(-0.361319\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 3.00000 + 15.5885i 0.0954911 + 0.496186i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −11.5000 19.9186i −0.365310 0.632735i 0.623516 0.781810i \(-0.285704\pi\)
−0.988826 + 0.149076i \(0.952370\pi\)
\(992\) 0 0
\(993\) −13.0000 −0.412543
\(994\) 0 0
\(995\) 24.0000 0.760851
\(996\) 0 0
\(997\) −5.50000 9.52628i −0.174187 0.301700i 0.765693 0.643206i \(-0.222396\pi\)
−0.939880 + 0.341506i \(0.889063\pi\)
\(998\) 0 0
\(999\) 1.50000 2.59808i 0.0474579 0.0821995i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bg.e.121.1 2
3.2 odd 2 2520.2.bi.c.1801.1 2
4.3 odd 2 1680.2.bg.h.961.1 2
7.2 even 3 5880.2.a.c.1.1 1
7.4 even 3 inner 840.2.bg.e.361.1 yes 2
7.5 odd 6 5880.2.a.bc.1.1 1
21.11 odd 6 2520.2.bi.c.361.1 2
28.11 odd 6 1680.2.bg.h.1201.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bg.e.121.1 2 1.1 even 1 trivial
840.2.bg.e.361.1 yes 2 7.4 even 3 inner
1680.2.bg.h.961.1 2 4.3 odd 2
1680.2.bg.h.1201.1 2 28.11 odd 6
2520.2.bi.c.361.1 2 21.11 odd 6
2520.2.bi.c.1801.1 2 3.2 odd 2
5880.2.a.c.1.1 1 7.2 even 3
5880.2.a.bc.1.1 1 7.5 odd 6