Properties

Label 845.2.o.g.357.2
Level $845$
Weight $2$
Character 845.357
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(258,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.258");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 357.2
Root \(-1.02262i\) of defining polynomial
Character \(\chi\) \(=\) 845.357
Dual form 845.2.o.g.258.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.511309 + 0.885613i) q^{2} +(-0.721300 - 2.69193i) q^{3} +(0.477126 + 0.826407i) q^{4} +(1.69584 - 1.45744i) q^{5} +(2.75281 + 0.737614i) q^{6} +(-0.834479 + 0.481787i) q^{7} -3.02107 q^{8} +(-4.12812 + 2.38337i) q^{9} +(0.423625 + 2.24706i) q^{10} +(-1.60661 + 0.430490i) q^{11} +(1.88048 - 1.88048i) q^{12} -0.985368i q^{14} +(-5.14652 - 3.51384i) q^{15} +(0.590448 - 1.02269i) q^{16} +(-7.00342 - 1.87656i) q^{17} -4.87456i q^{18} +(0.707496 - 2.64041i) q^{19} +(2.01357 + 0.706075i) q^{20} +(1.89884 + 1.89884i) q^{21} +(0.440226 - 1.64295i) q^{22} +(-3.72214 + 0.997344i) q^{23} +(2.17910 + 8.13250i) q^{24} +(0.751762 - 4.94316i) q^{25} +(3.48159 + 3.48159i) q^{27} +(-0.796304 - 0.459747i) q^{28} +(0.253107 + 0.146132i) q^{29} +(5.74336 - 2.76117i) q^{30} +(0.125649 - 0.125649i) q^{31} +(-2.41727 - 4.18683i) q^{32} +(2.31769 + 4.01436i) q^{33} +(5.24282 - 5.24282i) q^{34} +(-0.712972 + 2.03323i) q^{35} +(-3.93927 - 2.27434i) q^{36} +(-3.53443 - 2.04061i) q^{37} +(1.97663 + 1.97663i) q^{38} +(-5.12326 + 4.40302i) q^{40} +(1.79277 + 6.69071i) q^{41} +(-2.65254 + 0.710745i) q^{42} +(2.05706 - 7.67707i) q^{43} +(-1.12232 - 1.12232i) q^{44} +(-3.52703 + 10.0583i) q^{45} +(1.01990 - 3.80633i) q^{46} +7.84582i q^{47} +(-3.17888 - 0.851780i) q^{48} +(-3.03576 + 5.25810i) q^{49} +(3.99335 + 3.19325i) q^{50} +20.2063i q^{51} +(-1.99855 + 1.99855i) q^{53} +(-4.86351 + 1.30317i) q^{54} +(-2.09714 + 3.07157i) q^{55} +(2.52102 - 1.45551i) q^{56} -7.61811 q^{57} +(-0.258832 + 0.149437i) q^{58} +(-4.87924 - 1.30739i) q^{59} +(0.448318 - 5.92967i) q^{60} +(-1.04169 - 1.80425i) q^{61} +(0.0470311 + 0.175522i) q^{62} +(2.29655 - 3.97775i) q^{63} +7.30568 q^{64} -4.74023 q^{66} +(3.64915 - 6.32050i) q^{67} +(-1.79071 - 6.68304i) q^{68} +(5.36956 + 9.30034i) q^{69} +(-1.43611 - 1.67103i) q^{70} +(-12.6082 - 3.37837i) q^{71} +(12.4713 - 7.20034i) q^{72} -3.22747 q^{73} +(3.61437 - 2.08676i) q^{74} +(-13.8489 + 1.54181i) q^{75} +(2.51962 - 0.675130i) q^{76} +(1.13328 - 1.13328i) q^{77} -13.5845i q^{79} +(-0.489192 - 2.59485i) q^{80} +(-0.289196 + 0.500902i) q^{81} +(-6.84204 - 1.83332i) q^{82} -8.56854i q^{83} +(-0.663230 + 2.47521i) q^{84} +(-14.6117 + 7.02469i) q^{85} +(5.74712 + 5.74712i) q^{86} +(0.210809 - 0.786751i) q^{87} +(4.85368 - 1.30054i) q^{88} +(-0.134207 - 0.500868i) q^{89} +(-7.10435 - 8.26648i) q^{90} +(-2.60014 - 2.60014i) q^{92} +(-0.428870 - 0.247608i) q^{93} +(-6.94836 - 4.01164i) q^{94} +(-2.64843 - 5.50885i) q^{95} +(-9.52707 + 9.52707i) q^{96} +(3.75660 + 6.50662i) q^{97} +(-3.10442 - 5.37702i) q^{98} +(5.60626 - 5.60626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} - 2 q^{3} - 6 q^{4} + 6 q^{5} + 8 q^{6} + 6 q^{7} - 12 q^{8} - 12 q^{9} - 10 q^{10} + 16 q^{11} + 24 q^{12} - 12 q^{15} - 2 q^{16} - 10 q^{17} - 20 q^{19} - 14 q^{20} - 4 q^{21} + 16 q^{22}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.511309 + 0.885613i −0.361550 + 0.626223i −0.988216 0.153065i \(-0.951086\pi\)
0.626666 + 0.779288i \(0.284419\pi\)
\(3\) −0.721300 2.69193i −0.416443 1.55418i −0.781929 0.623368i \(-0.785764\pi\)
0.365486 0.930817i \(-0.380903\pi\)
\(4\) 0.477126 + 0.826407i 0.238563 + 0.413204i
\(5\) 1.69584 1.45744i 0.758404 0.651785i
\(6\) 2.75281 + 0.737614i 1.12383 + 0.301130i
\(7\) −0.834479 + 0.481787i −0.315404 + 0.182098i −0.649342 0.760497i \(-0.724956\pi\)
0.333938 + 0.942595i \(0.391622\pi\)
\(8\) −3.02107 −1.06811
\(9\) −4.12812 + 2.38337i −1.37604 + 0.794457i
\(10\) 0.423625 + 2.24706i 0.133962 + 0.710583i
\(11\) −1.60661 + 0.430490i −0.484411 + 0.129797i −0.492756 0.870168i \(-0.664010\pi\)
0.00834492 + 0.999965i \(0.497344\pi\)
\(12\) 1.88048 1.88048i 0.542847 0.542847i
\(13\) 0 0
\(14\) 0.985368i 0.263351i
\(15\) −5.14652 3.51384i −1.32883 0.907268i
\(16\) 0.590448 1.02269i 0.147612 0.255671i
\(17\) −7.00342 1.87656i −1.69858 0.455133i −0.725998 0.687697i \(-0.758622\pi\)
−0.972581 + 0.232564i \(0.925289\pi\)
\(18\) 4.87456i 1.14894i
\(19\) 0.707496 2.64041i 0.162311 0.605752i −0.836057 0.548642i \(-0.815145\pi\)
0.998368 0.0571095i \(-0.0181884\pi\)
\(20\) 2.01357 + 0.706075i 0.450247 + 0.157883i
\(21\) 1.89884 + 1.89884i 0.414362 + 0.414362i
\(22\) 0.440226 1.64295i 0.0938565 0.350277i
\(23\) −3.72214 + 0.997344i −0.776120 + 0.207961i −0.625073 0.780566i \(-0.714931\pi\)
−0.151046 + 0.988527i \(0.548264\pi\)
\(24\) 2.17910 + 8.13250i 0.444806 + 1.66004i
\(25\) 0.751762 4.94316i 0.150352 0.988632i
\(26\) 0 0
\(27\) 3.48159 + 3.48159i 0.670033 + 0.670033i
\(28\) −0.796304 0.459747i −0.150487 0.0868839i
\(29\) 0.253107 + 0.146132i 0.0470008 + 0.0271360i 0.523316 0.852139i \(-0.324695\pi\)
−0.476315 + 0.879274i \(0.658028\pi\)
\(30\) 5.74336 2.76117i 1.04859 0.504118i
\(31\) 0.125649 0.125649i 0.0225673 0.0225673i −0.695733 0.718300i \(-0.744920\pi\)
0.718300 + 0.695733i \(0.244920\pi\)
\(32\) −2.41727 4.18683i −0.427317 0.740134i
\(33\) 2.31769 + 4.01436i 0.403458 + 0.698811i
\(34\) 5.24282 5.24282i 0.899136 0.899136i
\(35\) −0.712972 + 2.03323i −0.120514 + 0.343679i
\(36\) −3.93927 2.27434i −0.656545 0.379057i
\(37\) −3.53443 2.04061i −0.581057 0.335474i 0.180496 0.983576i \(-0.442230\pi\)
−0.761553 + 0.648102i \(0.775563\pi\)
\(38\) 1.97663 + 1.97663i 0.320652 + 0.320652i
\(39\) 0 0
\(40\) −5.12326 + 4.40302i −0.810059 + 0.696178i
\(41\) 1.79277 + 6.69071i 0.279984 + 1.04491i 0.952427 + 0.304765i \(0.0985780\pi\)
−0.672444 + 0.740148i \(0.734755\pi\)
\(42\) −2.65254 + 0.710745i −0.409295 + 0.109670i
\(43\) 2.05706 7.67707i 0.313699 1.17074i −0.611495 0.791248i \(-0.709432\pi\)
0.925194 0.379494i \(-0.123902\pi\)
\(44\) −1.12232 1.12232i −0.169195 0.169195i
\(45\) −3.52703 + 10.0583i −0.525779 + 1.49940i
\(46\) 1.01990 3.80633i 0.150376 0.561212i
\(47\) 7.84582i 1.14443i 0.820103 + 0.572215i \(0.193916\pi\)
−0.820103 + 0.572215i \(0.806084\pi\)
\(48\) −3.17888 0.851780i −0.458832 0.122944i
\(49\) −3.03576 + 5.25810i −0.433680 + 0.751156i
\(50\) 3.99335 + 3.19325i 0.564744 + 0.451594i
\(51\) 20.2063i 2.82944i
\(52\) 0 0
\(53\) −1.99855 + 1.99855i −0.274522 + 0.274522i −0.830918 0.556395i \(-0.812184\pi\)
0.556395 + 0.830918i \(0.312184\pi\)
\(54\) −4.86351 + 1.30317i −0.661840 + 0.177339i
\(55\) −2.09714 + 3.07157i −0.282779 + 0.414171i
\(56\) 2.52102 1.45551i 0.336886 0.194501i
\(57\) −7.61811 −1.00904
\(58\) −0.258832 + 0.149437i −0.0339863 + 0.0196220i
\(59\) −4.87924 1.30739i −0.635223 0.170207i −0.0731843 0.997318i \(-0.523316\pi\)
−0.562039 + 0.827111i \(0.689983\pi\)
\(60\) 0.448318 5.92967i 0.0578776 0.765517i
\(61\) −1.04169 1.80425i −0.133374 0.231011i 0.791601 0.611038i \(-0.209248\pi\)
−0.924975 + 0.380027i \(0.875915\pi\)
\(62\) 0.0470311 + 0.175522i 0.00597296 + 0.0222914i
\(63\) 2.29655 3.97775i 0.289339 0.501149i
\(64\) 7.30568 0.913209
\(65\) 0 0
\(66\) −4.74023 −0.583482
\(67\) 3.64915 6.32050i 0.445814 0.772173i −0.552294 0.833649i \(-0.686248\pi\)
0.998109 + 0.0614765i \(0.0195809\pi\)
\(68\) −1.79071 6.68304i −0.217156 0.810437i
\(69\) 5.36956 + 9.30034i 0.646419 + 1.11963i
\(70\) −1.43611 1.67103i −0.171648 0.199726i
\(71\) −12.6082 3.37837i −1.49632 0.400939i −0.584457 0.811425i \(-0.698692\pi\)
−0.911867 + 0.410486i \(0.865359\pi\)
\(72\) 12.4713 7.20034i 1.46976 0.848568i
\(73\) −3.22747 −0.377746 −0.188873 0.982001i \(-0.560483\pi\)
−0.188873 + 0.982001i \(0.560483\pi\)
\(74\) 3.61437 2.08676i 0.420163 0.242581i
\(75\) −13.8489 + 1.54181i −1.59913 + 0.178033i
\(76\) 2.51962 0.675130i 0.289020 0.0774427i
\(77\) 1.13328 1.13328i 0.129149 0.129149i
\(78\) 0 0
\(79\) 13.5845i 1.52838i −0.644992 0.764190i \(-0.723139\pi\)
0.644992 0.764190i \(-0.276861\pi\)
\(80\) −0.489192 2.59485i −0.0546934 0.290113i
\(81\) −0.289196 + 0.500902i −0.0321329 + 0.0556558i
\(82\) −6.84204 1.83332i −0.755577 0.202456i
\(83\) 8.56854i 0.940519i −0.882528 0.470260i \(-0.844160\pi\)
0.882528 0.470260i \(-0.155840\pi\)
\(84\) −0.663230 + 2.47521i −0.0723643 + 0.270067i
\(85\) −14.6117 + 7.02469i −1.58486 + 0.761934i
\(86\) 5.74712 + 5.74712i 0.619728 + 0.619728i
\(87\) 0.210809 0.786751i 0.0226011 0.0843486i
\(88\) 4.85368 1.30054i 0.517404 0.138638i
\(89\) −0.134207 0.500868i −0.0142259 0.0530919i 0.958448 0.285267i \(-0.0920823\pi\)
−0.972674 + 0.232175i \(0.925416\pi\)
\(90\) −7.10435 8.26648i −0.748864 0.871363i
\(91\) 0 0
\(92\) −2.60014 2.60014i −0.271084 0.271084i
\(93\) −0.428870 0.247608i −0.0444718 0.0256758i
\(94\) −6.94836 4.01164i −0.716669 0.413769i
\(95\) −2.64843 5.50885i −0.271723 0.565196i
\(96\) −9.52707 + 9.52707i −0.972353 + 0.972353i
\(97\) 3.75660 + 6.50662i 0.381425 + 0.660648i 0.991266 0.131876i \(-0.0421001\pi\)
−0.609841 + 0.792524i \(0.708767\pi\)
\(98\) −3.10442 5.37702i −0.313594 0.543161i
\(99\) 5.60626 5.60626i 0.563450 0.563450i
\(100\) 4.44375 1.73725i 0.444375 0.173725i
\(101\) 8.44685 + 4.87679i 0.840493 + 0.485259i 0.857432 0.514598i \(-0.172059\pi\)
−0.0169388 + 0.999857i \(0.505392\pi\)
\(102\) −17.8949 10.3316i −1.77186 1.02298i
\(103\) −2.52321 2.52321i −0.248619 0.248619i 0.571784 0.820404i \(-0.306251\pi\)
−0.820404 + 0.571784i \(0.806251\pi\)
\(104\) 0 0
\(105\) 5.98759 + 0.452697i 0.584329 + 0.0441787i
\(106\) −0.748066 2.79182i −0.0726586 0.271166i
\(107\) 0.429359 0.115046i 0.0415077 0.0111220i −0.238005 0.971264i \(-0.576494\pi\)
0.279513 + 0.960142i \(0.409827\pi\)
\(108\) −1.21605 + 4.53837i −0.117015 + 0.436705i
\(109\) 6.42134 + 6.42134i 0.615053 + 0.615053i 0.944258 0.329206i \(-0.106781\pi\)
−0.329206 + 0.944258i \(0.606781\pi\)
\(110\) −1.64793 3.42778i −0.157124 0.326826i
\(111\) −2.94378 + 10.9863i −0.279411 + 1.04278i
\(112\) 1.13788i 0.107520i
\(113\) −1.86865 0.500704i −0.175788 0.0471023i 0.169851 0.985470i \(-0.445671\pi\)
−0.345639 + 0.938367i \(0.612338\pi\)
\(114\) 3.89521 6.74670i 0.364820 0.631886i
\(115\) −4.85860 + 7.11612i −0.453066 + 0.663581i
\(116\) 0.278893i 0.0258946i
\(117\) 0 0
\(118\) 3.65264 3.65264i 0.336253 0.336253i
\(119\) 6.74831 1.80821i 0.618617 0.165758i
\(120\) 15.5480 + 10.6155i 1.41933 + 0.969062i
\(121\) −7.13041 + 4.11674i −0.648219 + 0.374249i
\(122\) 2.13050 0.192886
\(123\) 16.7178 9.65202i 1.50739 0.870293i
\(124\) 0.163788 + 0.0438869i 0.0147086 + 0.00394116i
\(125\) −5.92947 9.47847i −0.530348 0.847780i
\(126\) 2.34850 + 4.06772i 0.209221 + 0.362381i
\(127\) −0.562967 2.10102i −0.0499553 0.186436i 0.936440 0.350829i \(-0.114100\pi\)
−0.986395 + 0.164393i \(0.947433\pi\)
\(128\) 1.09908 1.90366i 0.0971460 0.168262i
\(129\) −22.1499 −1.95019
\(130\) 0 0
\(131\) −0.0622493 −0.00543874 −0.00271937 0.999996i \(-0.500866\pi\)
−0.00271937 + 0.999996i \(0.500866\pi\)
\(132\) −2.21166 + 3.83072i −0.192501 + 0.333421i
\(133\) 0.681725 + 2.54423i 0.0591130 + 0.220613i
\(134\) 3.73168 + 6.46346i 0.322368 + 0.558358i
\(135\) 10.9784 + 0.830034i 0.944872 + 0.0714380i
\(136\) 21.1578 + 5.66923i 1.81427 + 0.486132i
\(137\) 3.82564 2.20873i 0.326846 0.188705i −0.327594 0.944819i \(-0.606238\pi\)
0.654440 + 0.756114i \(0.272904\pi\)
\(138\) −10.9820 −0.934850
\(139\) 11.9066 6.87430i 1.00991 0.583070i 0.0987430 0.995113i \(-0.468518\pi\)
0.911165 + 0.412043i \(0.135184\pi\)
\(140\) −2.02046 + 0.380905i −0.170760 + 0.0321923i
\(141\) 21.1204 5.65919i 1.77866 0.476590i
\(142\) 9.43864 9.43864i 0.792073 0.792073i
\(143\) 0 0
\(144\) 5.62903i 0.469085i
\(145\) 0.642207 0.121072i 0.0533324 0.0100544i
\(146\) 1.65023 2.85829i 0.136574 0.236553i
\(147\) 16.3441 + 4.37939i 1.34804 + 0.361206i
\(148\) 3.89451i 0.320127i
\(149\) 1.12129 4.18471i 0.0918596 0.342825i −0.904665 0.426124i \(-0.859879\pi\)
0.996525 + 0.0832987i \(0.0265456\pi\)
\(150\) 5.71560 13.0531i 0.466677 1.06578i
\(151\) −4.74990 4.74990i −0.386542 0.386542i 0.486910 0.873452i \(-0.338124\pi\)
−0.873452 + 0.486910i \(0.838124\pi\)
\(152\) −2.13740 + 7.97687i −0.173366 + 0.647010i
\(153\) 33.3835 8.94508i 2.69890 0.723167i
\(154\) 0.424190 + 1.58310i 0.0341822 + 0.127570i
\(155\) 0.0299556 0.396208i 0.00240610 0.0318242i
\(156\) 0 0
\(157\) 14.4488 + 14.4488i 1.15314 + 1.15314i 0.985920 + 0.167218i \(0.0534784\pi\)
0.167218 + 0.985920i \(0.446522\pi\)
\(158\) 12.0306 + 6.94589i 0.957106 + 0.552586i
\(159\) 6.82151 + 3.93840i 0.540981 + 0.312336i
\(160\) −10.2013 3.57719i −0.806487 0.282802i
\(161\) 2.62554 2.62554i 0.206922 0.206922i
\(162\) −0.295737 0.512231i −0.0232353 0.0402447i
\(163\) 10.6926 + 18.5201i 0.837508 + 1.45061i 0.891972 + 0.452091i \(0.149322\pi\)
−0.0544633 + 0.998516i \(0.517345\pi\)
\(164\) −4.67387 + 4.67387i −0.364968 + 0.364968i
\(165\) 9.78111 + 3.42984i 0.761459 + 0.267012i
\(166\) 7.58841 + 4.38117i 0.588975 + 0.340045i
\(167\) −1.48475 0.857220i −0.114893 0.0663337i 0.441452 0.897285i \(-0.354464\pi\)
−0.556345 + 0.830951i \(0.687797\pi\)
\(168\) −5.73655 5.73655i −0.442584 0.442584i
\(169\) 0 0
\(170\) 1.24992 16.5321i 0.0958646 1.26795i
\(171\) 3.37245 + 12.5862i 0.257898 + 0.962488i
\(172\) 7.32587 1.96296i 0.558592 0.149674i
\(173\) −3.92804 + 14.6596i −0.298643 + 1.11455i 0.639638 + 0.768677i \(0.279084\pi\)
−0.938281 + 0.345875i \(0.887582\pi\)
\(174\) 0.588968 + 0.588968i 0.0446496 + 0.0446496i
\(175\) 1.75422 + 4.48716i 0.132607 + 0.339197i
\(176\) −0.508363 + 1.89724i −0.0383193 + 0.143010i
\(177\) 14.0776i 1.05814i
\(178\) 0.512196 + 0.137243i 0.0383907 + 0.0102868i
\(179\) 1.37961 2.38956i 0.103117 0.178604i −0.809850 0.586637i \(-0.800452\pi\)
0.912967 + 0.408033i \(0.133785\pi\)
\(180\) −9.99508 + 1.88431i −0.744990 + 0.140448i
\(181\) 10.3568i 0.769818i −0.922954 0.384909i \(-0.874233\pi\)
0.922954 0.384909i \(-0.125767\pi\)
\(182\) 0 0
\(183\) −4.10555 + 4.10555i −0.303491 + 0.303491i
\(184\) 11.2449 3.01305i 0.828981 0.222125i
\(185\) −8.96789 + 1.69066i −0.659333 + 0.124300i
\(186\) 0.438570 0.253209i 0.0321575 0.0185662i
\(187\) 12.0596 0.881885
\(188\) −6.48384 + 3.74345i −0.472883 + 0.273019i
\(189\) −4.58270 1.22793i −0.333342 0.0893188i
\(190\) 6.23287 + 0.471242i 0.452180 + 0.0341875i
\(191\) −9.28983 16.0905i −0.672189 1.16427i −0.977282 0.211943i \(-0.932021\pi\)
0.305093 0.952322i \(-0.401312\pi\)
\(192\) −5.26958 19.6663i −0.380299 1.41930i
\(193\) 6.28576 10.8872i 0.452459 0.783681i −0.546079 0.837733i \(-0.683880\pi\)
0.998538 + 0.0540520i \(0.0172137\pi\)
\(194\) −7.68313 −0.551617
\(195\) 0 0
\(196\) −5.79377 −0.413841
\(197\) 7.14308 12.3722i 0.508924 0.881481i −0.491023 0.871147i \(-0.663377\pi\)
0.999947 0.0103349i \(-0.00328975\pi\)
\(198\) 2.09845 + 7.83150i 0.149130 + 0.556561i
\(199\) −7.36781 12.7614i −0.522291 0.904634i −0.999664 0.0259331i \(-0.991744\pi\)
0.477373 0.878701i \(-0.341589\pi\)
\(200\) −2.27113 + 14.9336i −0.160593 + 1.05597i
\(201\) −19.6465 5.26425i −1.38575 0.371312i
\(202\) −8.63790 + 4.98709i −0.607760 + 0.350891i
\(203\) −0.281617 −0.0197656
\(204\) −16.6986 + 9.64094i −1.16914 + 0.675001i
\(205\) 12.7915 + 8.73354i 0.893400 + 0.609977i
\(206\) 3.52473 0.944449i 0.245580 0.0658029i
\(207\) 12.9884 12.9884i 0.902756 0.902756i
\(208\) 0 0
\(209\) 4.54668i 0.314500i
\(210\) −3.46242 + 5.07122i −0.238930 + 0.349947i
\(211\) 4.26604 7.38900i 0.293686 0.508680i −0.680992 0.732291i \(-0.738451\pi\)
0.974678 + 0.223611i \(0.0717845\pi\)
\(212\) −2.60518 0.698056i −0.178925 0.0479427i
\(213\) 36.3773i 2.49253i
\(214\) −0.117649 + 0.439070i −0.00804229 + 0.0300142i
\(215\) −7.70038 16.0171i −0.525161 1.09236i
\(216\) −10.5181 10.5181i −0.715669 0.715669i
\(217\) −0.0443156 + 0.165388i −0.00300834 + 0.0112273i
\(218\) −8.97011 + 2.40353i −0.607532 + 0.162788i
\(219\) 2.32797 + 8.68810i 0.157310 + 0.587087i
\(220\) −3.53897 0.267567i −0.238597 0.0180394i
\(221\) 0 0
\(222\) −8.22445 8.22445i −0.551989 0.551989i
\(223\) −6.11483 3.53040i −0.409479 0.236413i 0.281087 0.959682i \(-0.409305\pi\)
−0.690566 + 0.723269i \(0.742638\pi\)
\(224\) 4.03432 + 2.32922i 0.269555 + 0.155627i
\(225\) 8.67803 + 22.1977i 0.578535 + 1.47985i
\(226\) 1.39889 1.39889i 0.0930527 0.0930527i
\(227\) −8.58775 14.8744i −0.569989 0.987249i −0.996566 0.0827985i \(-0.973614\pi\)
0.426578 0.904451i \(-0.359719\pi\)
\(228\) −3.63480 6.29566i −0.240721 0.416940i
\(229\) −8.90647 + 8.90647i −0.588556 + 0.588556i −0.937240 0.348684i \(-0.886629\pi\)
0.348684 + 0.937240i \(0.386629\pi\)
\(230\) −3.81788 7.94137i −0.251744 0.523638i
\(231\) −3.86813 2.23327i −0.254504 0.146938i
\(232\) −0.764655 0.441474i −0.0502021 0.0289842i
\(233\) 17.5822 + 17.5822i 1.15185 + 1.15185i 0.986182 + 0.165666i \(0.0529773\pi\)
0.165666 + 0.986182i \(0.447023\pi\)
\(234\) 0 0
\(235\) 11.4348 + 13.3053i 0.745923 + 0.867940i
\(236\) −1.24758 4.65603i −0.0812105 0.303082i
\(237\) −36.5686 + 9.79852i −2.37538 + 0.636482i
\(238\) −1.84910 + 6.90095i −0.119860 + 0.447322i
\(239\) −2.23488 2.23488i −0.144562 0.144562i 0.631122 0.775684i \(-0.282595\pi\)
−0.775684 + 0.631122i \(0.782595\pi\)
\(240\) −6.63230 + 3.18854i −0.428113 + 0.205819i
\(241\) 4.66361 17.4048i 0.300409 1.12114i −0.636416 0.771346i \(-0.719584\pi\)
0.936825 0.349797i \(-0.113750\pi\)
\(242\) 8.41971i 0.541239i
\(243\) 15.8248 + 4.24025i 1.01516 + 0.272012i
\(244\) 0.994033 1.72172i 0.0636364 0.110222i
\(245\) 2.51516 + 13.3413i 0.160688 + 0.852346i
\(246\) 19.7406i 1.25862i
\(247\) 0 0
\(248\) −0.379596 + 0.379596i −0.0241044 + 0.0241044i
\(249\) −23.0659 + 6.18048i −1.46174 + 0.391672i
\(250\) 11.4260 0.404792i 0.722647 0.0256013i
\(251\) 12.1009 6.98644i 0.763800 0.440980i −0.0668586 0.997762i \(-0.521298\pi\)
0.830658 + 0.556782i \(0.187964\pi\)
\(252\) 4.38299 0.276102
\(253\) 5.55068 3.20468i 0.348968 0.201477i
\(254\) 2.14854 + 0.575700i 0.134812 + 0.0361227i
\(255\) 29.4493 + 34.2666i 1.84419 + 2.14586i
\(256\) 8.42962 + 14.6005i 0.526851 + 0.912533i
\(257\) −5.99887 22.3881i −0.374199 1.39653i −0.854511 0.519433i \(-0.826143\pi\)
0.480312 0.877098i \(-0.340524\pi\)
\(258\) 11.3254 19.6162i 0.705090 1.22125i
\(259\) 3.93255 0.244357
\(260\) 0 0
\(261\) −1.39314 −0.0862334
\(262\) 0.0318286 0.0551288i 0.00196638 0.00340587i
\(263\) 0.336737 + 1.25672i 0.0207641 + 0.0774926i 0.975530 0.219864i \(-0.0705615\pi\)
−0.954766 + 0.297357i \(0.903895\pi\)
\(264\) −7.00191 12.1277i −0.430938 0.746407i
\(265\) −0.476468 + 6.30199i −0.0292692 + 0.387128i
\(266\) −2.60178 0.697144i −0.159525 0.0427446i
\(267\) −1.25150 + 0.722551i −0.0765903 + 0.0442194i
\(268\) 6.96441 0.425419
\(269\) 6.87429 3.96887i 0.419133 0.241986i −0.275574 0.961280i \(-0.588868\pi\)
0.694706 + 0.719294i \(0.255534\pi\)
\(270\) −6.34846 + 9.29823i −0.386355 + 0.565872i
\(271\) 0.865041 0.231787i 0.0525475 0.0140801i −0.232450 0.972608i \(-0.574674\pi\)
0.284997 + 0.958528i \(0.408007\pi\)
\(272\) −6.05429 + 6.05429i −0.367095 + 0.367095i
\(273\) 0 0
\(274\) 4.51738i 0.272905i
\(275\) 0.920192 + 8.26535i 0.0554897 + 0.498420i
\(276\) −5.12391 + 8.87488i −0.308423 + 0.534205i
\(277\) 9.22930 + 2.47298i 0.554535 + 0.148587i 0.525194 0.850982i \(-0.323993\pi\)
0.0293404 + 0.999569i \(0.490659\pi\)
\(278\) 14.0596i 0.843236i
\(279\) −0.219227 + 0.818165i −0.0131248 + 0.0489823i
\(280\) 2.15394 6.14255i 0.128723 0.367087i
\(281\) −5.58408 5.58408i −0.333118 0.333118i 0.520651 0.853769i \(-0.325689\pi\)
−0.853769 + 0.520651i \(0.825689\pi\)
\(282\) −5.78719 + 21.5981i −0.344622 + 1.28615i
\(283\) −20.3851 + 5.46218i −1.21177 + 0.324693i −0.807457 0.589927i \(-0.799157\pi\)
−0.404314 + 0.914620i \(0.632490\pi\)
\(284\) −3.22382 12.0315i −0.191298 0.713936i
\(285\) −12.9191 + 11.1029i −0.765262 + 0.657679i
\(286\) 0 0
\(287\) −4.71953 4.71953i −0.278585 0.278585i
\(288\) 19.9576 + 11.5225i 1.17601 + 0.678970i
\(289\) 30.8040 + 17.7847i 1.81200 + 1.04616i
\(290\) −0.221144 + 0.630652i −0.0129860 + 0.0370332i
\(291\) 14.8057 14.8057i 0.867927 0.867927i
\(292\) −1.53991 2.66720i −0.0901164 0.156086i
\(293\) 2.01079 + 3.48280i 0.117472 + 0.203467i 0.918765 0.394805i \(-0.129188\pi\)
−0.801293 + 0.598272i \(0.795854\pi\)
\(294\) −12.2353 + 12.2353i −0.713579 + 0.713579i
\(295\) −10.1799 + 4.89405i −0.592694 + 0.284943i
\(296\) 10.6778 + 6.16482i 0.620633 + 0.358323i
\(297\) −7.09234 4.09477i −0.411539 0.237602i
\(298\) 3.13271 + 3.13271i 0.181473 + 0.181473i
\(299\) 0 0
\(300\) −7.88183 10.7092i −0.455058 0.618294i
\(301\) 1.98213 + 7.39742i 0.114248 + 0.426380i
\(302\) 6.63524 1.77791i 0.381815 0.102307i
\(303\) 7.03525 26.2559i 0.404165 1.50836i
\(304\) −2.28257 2.28257i −0.130914 0.130914i
\(305\) −4.39612 1.54154i −0.251721 0.0882683i
\(306\) −9.14740 + 34.1386i −0.522922 + 1.95157i
\(307\) 24.2191i 1.38226i −0.722732 0.691128i \(-0.757114\pi\)
0.722732 0.691128i \(-0.242886\pi\)
\(308\) 1.47727 + 0.395832i 0.0841750 + 0.0225546i
\(309\) −4.97231 + 8.61229i −0.282865 + 0.489936i
\(310\) 0.335570 + 0.229114i 0.0190591 + 0.0130128i
\(311\) 7.87243i 0.446405i 0.974772 + 0.223202i \(0.0716511\pi\)
−0.974772 + 0.223202i \(0.928349\pi\)
\(312\) 0 0
\(313\) 3.39121 3.39121i 0.191683 0.191683i −0.604740 0.796423i \(-0.706723\pi\)
0.796423 + 0.604740i \(0.206723\pi\)
\(314\) −20.1838 + 5.40824i −1.13904 + 0.305204i
\(315\) −1.90272 10.0927i −0.107206 0.568660i
\(316\) 11.2264 6.48154i 0.631532 0.364615i
\(317\) −22.9255 −1.28762 −0.643812 0.765184i \(-0.722648\pi\)
−0.643812 + 0.765184i \(0.722648\pi\)
\(318\) −6.97580 + 4.02748i −0.391183 + 0.225850i
\(319\) −0.469553 0.125816i −0.0262899 0.00704436i
\(320\) 12.3893 10.6476i 0.692581 0.595216i
\(321\) −0.619393 1.07282i −0.0345712 0.0598790i
\(322\) 0.982751 + 3.66768i 0.0547666 + 0.204392i
\(323\) −9.90979 + 17.1643i −0.551395 + 0.955044i
\(324\) −0.551932 −0.0306629
\(325\) 0 0
\(326\) −21.8689 −1.21120
\(327\) 12.6541 21.9175i 0.699771 1.21204i
\(328\) −5.41609 20.2131i −0.299053 1.11608i
\(329\) −3.78001 6.54718i −0.208399 0.360958i
\(330\) −8.03868 + 6.90858i −0.442515 + 0.380305i
\(331\) 32.4118 + 8.68470i 1.78151 + 0.477354i 0.990858 0.134910i \(-0.0430745\pi\)
0.790653 + 0.612264i \(0.209741\pi\)
\(332\) 7.08110 4.08828i 0.388626 0.224373i
\(333\) 19.4541 1.06608
\(334\) 1.51833 0.876609i 0.0830794 0.0479659i
\(335\) −3.02336 16.0370i −0.165184 0.876194i
\(336\) 3.06309 0.820752i 0.167105 0.0447757i
\(337\) 14.5544 14.5544i 0.792826 0.792826i −0.189126 0.981953i \(-0.560566\pi\)
0.981953 + 0.189126i \(0.0605656\pi\)
\(338\) 0 0
\(339\) 5.39143i 0.292822i
\(340\) −12.7769 8.72352i −0.692923 0.473099i
\(341\) −0.147779 + 0.255960i −0.00800267 + 0.0138610i
\(342\) −12.8708 3.44873i −0.695975 0.186486i
\(343\) 12.5954i 0.680087i
\(344\) −6.21454 + 23.1930i −0.335065 + 1.25048i
\(345\) 22.6606 + 7.94613i 1.22000 + 0.427805i
\(346\) −10.9743 10.9743i −0.589983 0.589983i
\(347\) 5.90442 22.0356i 0.316966 1.18293i −0.605179 0.796089i \(-0.706899\pi\)
0.922145 0.386844i \(-0.126435\pi\)
\(348\) 0.750759 0.201165i 0.0402449 0.0107836i
\(349\) −2.68798 10.0317i −0.143884 0.536983i −0.999803 0.0198718i \(-0.993674\pi\)
0.855918 0.517111i \(-0.172992\pi\)
\(350\) −4.87083 0.740762i −0.260357 0.0395954i
\(351\) 0 0
\(352\) 5.68599 + 5.68599i 0.303064 + 0.303064i
\(353\) −3.72420 2.15017i −0.198219 0.114442i 0.397605 0.917556i \(-0.369841\pi\)
−0.595825 + 0.803115i \(0.703175\pi\)
\(354\) −12.4673 7.19799i −0.662629 0.382569i
\(355\) −26.3054 + 12.6465i −1.39614 + 0.671208i
\(356\) 0.349887 0.349887i 0.0185440 0.0185440i
\(357\) −9.73511 16.8617i −0.515237 0.892416i
\(358\) 1.41082 + 2.44361i 0.0745640 + 0.129149i
\(359\) −10.4273 + 10.4273i −0.550333 + 0.550333i −0.926537 0.376204i \(-0.877229\pi\)
0.376204 + 0.926537i \(0.377229\pi\)
\(360\) 10.6554 30.3868i 0.561589 1.60153i
\(361\) 9.98326 + 5.76384i 0.525435 + 0.303360i
\(362\) 9.17216 + 5.29555i 0.482078 + 0.278328i
\(363\) 16.2251 + 16.2251i 0.851599 + 0.851599i
\(364\) 0 0
\(365\) −5.47327 + 4.70382i −0.286484 + 0.246209i
\(366\) −1.53673 5.73514i −0.0803259 0.299780i
\(367\) −11.0341 + 2.95657i −0.575973 + 0.154331i −0.535034 0.844830i \(-0.679701\pi\)
−0.0409383 + 0.999162i \(0.513035\pi\)
\(368\) −1.17776 + 4.39546i −0.0613950 + 0.229129i
\(369\) −23.3472 23.3472i −1.21541 1.21541i
\(370\) 3.08809 8.80653i 0.160542 0.457830i
\(371\) 0.704874 2.63063i 0.0365953 0.136575i
\(372\) 0.472562i 0.0245012i
\(373\) −27.1975 7.28755i −1.40823 0.377335i −0.526939 0.849903i \(-0.676661\pi\)
−0.881294 + 0.472568i \(0.843327\pi\)
\(374\) −6.16618 + 10.6801i −0.318846 + 0.552257i
\(375\) −21.2384 + 22.7985i −1.09675 + 1.17731i
\(376\) 23.7028i 1.22238i
\(377\) 0 0
\(378\) 3.43065 3.43065i 0.176453 0.176453i
\(379\) 16.3551 4.38232i 0.840103 0.225105i 0.186987 0.982362i \(-0.440128\pi\)
0.653116 + 0.757258i \(0.273461\pi\)
\(380\) 3.28892 4.81710i 0.168718 0.247112i
\(381\) −5.24973 + 3.03093i −0.268952 + 0.155279i
\(382\) 18.9999 0.972119
\(383\) 5.71918 3.30197i 0.292236 0.168723i −0.346714 0.937971i \(-0.612702\pi\)
0.638950 + 0.769248i \(0.279369\pi\)
\(384\) −5.91729 1.58553i −0.301966 0.0809114i
\(385\) 0.270181 3.57354i 0.0137697 0.182124i
\(386\) 6.42793 + 11.1335i 0.327173 + 0.566680i
\(387\) 9.80550 + 36.5946i 0.498441 + 1.86021i
\(388\) −3.58475 + 6.20897i −0.181988 + 0.315212i
\(389\) −33.6949 −1.70840 −0.854199 0.519946i \(-0.825952\pi\)
−0.854199 + 0.519946i \(0.825952\pi\)
\(390\) 0 0
\(391\) 27.9393 1.41295
\(392\) 9.17126 15.8851i 0.463218 0.802318i
\(393\) 0.0449004 + 0.167570i 0.00226492 + 0.00845281i
\(394\) 7.30464 + 12.6520i 0.368003 + 0.637399i
\(395\) −19.7986 23.0372i −0.996175 1.15913i
\(396\) 7.30795 + 1.95816i 0.367238 + 0.0984012i
\(397\) −5.04104 + 2.91045i −0.253002 + 0.146071i −0.621138 0.783701i \(-0.713329\pi\)
0.368136 + 0.929772i \(0.379996\pi\)
\(398\) 15.0689 0.755337
\(399\) 6.35716 3.67031i 0.318256 0.183745i
\(400\) −4.61142 3.68750i −0.230571 0.184375i
\(401\) −0.255004 + 0.0683280i −0.0127343 + 0.00341214i −0.265181 0.964199i \(-0.585432\pi\)
0.252446 + 0.967611i \(0.418765\pi\)
\(402\) 14.7075 14.7075i 0.733544 0.733544i
\(403\) 0 0
\(404\) 9.30738i 0.463060i
\(405\) 0.239602 + 1.27094i 0.0119059 + 0.0631533i
\(406\) 0.143993 0.249404i 0.00714627 0.0123777i
\(407\) 6.55691 + 1.75692i 0.325014 + 0.0870872i
\(408\) 61.0446i 3.02216i
\(409\) −9.61872 + 35.8975i −0.475615 + 1.77502i 0.143427 + 0.989661i \(0.454188\pi\)
−0.619042 + 0.785358i \(0.712479\pi\)
\(410\) −14.2750 + 6.86281i −0.704990 + 0.338930i
\(411\) −8.70518 8.70518i −0.429395 0.429395i
\(412\) 0.881310 3.28909i 0.0434190 0.162042i
\(413\) 4.70151 1.25977i 0.231346 0.0619890i
\(414\) 4.86161 + 18.1438i 0.238935 + 0.891718i
\(415\) −12.4881 14.5309i −0.613016 0.713293i
\(416\) 0 0
\(417\) −27.0934 27.0934i −1.32677 1.32677i
\(418\) −4.02660 2.32476i −0.196947 0.113708i
\(419\) −29.3721 16.9580i −1.43492 0.828451i −0.437428 0.899253i \(-0.644111\pi\)
−0.997490 + 0.0708027i \(0.977444\pi\)
\(420\) 2.48272 + 5.16418i 0.121145 + 0.251986i
\(421\) 21.5599 21.5599i 1.05076 1.05076i 0.0521230 0.998641i \(-0.483401\pi\)
0.998641 0.0521230i \(-0.0165988\pi\)
\(422\) 4.36253 + 7.55613i 0.212365 + 0.367826i
\(423\) −18.6995 32.3885i −0.909201 1.57478i
\(424\) 6.03777 6.03777i 0.293220 0.293220i
\(425\) −14.5411 + 33.2083i −0.705345 + 1.61084i
\(426\) −32.2162 18.6000i −1.56088 0.901175i
\(427\) 1.73853 + 1.00374i 0.0841335 + 0.0485745i
\(428\) 0.299934 + 0.299934i 0.0144979 + 0.0144979i
\(429\) 0 0
\(430\) 18.1223 + 1.37015i 0.873933 + 0.0660745i
\(431\) −1.19014 4.44167i −0.0573271 0.213948i 0.931320 0.364201i \(-0.118658\pi\)
−0.988648 + 0.150253i \(0.951991\pi\)
\(432\) 5.61627 1.50488i 0.270213 0.0724033i
\(433\) −1.03596 + 3.86627i −0.0497853 + 0.185801i −0.986341 0.164719i \(-0.947328\pi\)
0.936555 + 0.350520i \(0.113995\pi\)
\(434\) −0.123811 0.123811i −0.00594311 0.00594311i
\(435\) −0.789140 1.64145i −0.0378364 0.0787013i
\(436\) −2.24285 + 8.37043i −0.107413 + 0.400871i
\(437\) 10.5336i 0.503890i
\(438\) −8.88461 2.38062i −0.424523 0.113751i
\(439\) −11.3618 + 19.6793i −0.542271 + 0.939242i 0.456502 + 0.889723i \(0.349102\pi\)
−0.998773 + 0.0495192i \(0.984231\pi\)
\(440\) 6.33562 9.27944i 0.302039 0.442380i
\(441\) 28.9414i 1.37816i
\(442\) 0 0
\(443\) 1.84874 1.84874i 0.0878361 0.0878361i −0.661824 0.749660i \(-0.730217\pi\)
0.749660 + 0.661824i \(0.230217\pi\)
\(444\) −10.4837 + 2.80911i −0.497536 + 0.133314i
\(445\) −0.957576 0.653794i −0.0453935 0.0309928i
\(446\) 6.25313 3.61025i 0.296094 0.170950i
\(447\) −12.0737 −0.571067
\(448\) −6.09644 + 3.51978i −0.288030 + 0.166294i
\(449\) 31.0770 + 8.32705i 1.46661 + 0.392978i 0.901769 0.432219i \(-0.142269\pi\)
0.564845 + 0.825197i \(0.308936\pi\)
\(450\) −24.0957 3.66451i −1.13588 0.172746i
\(451\) −5.76056 9.97759i −0.271254 0.469826i
\(452\) −0.477798 1.78317i −0.0224737 0.0838731i
\(453\) −9.36029 + 16.2125i −0.439785 + 0.761729i
\(454\) 17.5640 0.824318
\(455\) 0 0
\(456\) 23.0149 1.07777
\(457\) −14.1837 + 24.5669i −0.663486 + 1.14919i 0.316208 + 0.948690i \(0.397590\pi\)
−0.979693 + 0.200501i \(0.935743\pi\)
\(458\) −3.33373 12.4416i −0.155775 0.581360i
\(459\) −17.8496 30.9165i −0.833149 1.44306i
\(460\) −8.19898 0.619891i −0.382279 0.0289026i
\(461\) 11.1174 + 2.97890i 0.517790 + 0.138741i 0.508244 0.861213i \(-0.330295\pi\)
0.00954570 + 0.999954i \(0.496961\pi\)
\(462\) 3.95562 2.28378i 0.184032 0.106251i
\(463\) −29.9456 −1.39169 −0.695845 0.718192i \(-0.744970\pi\)
−0.695845 + 0.718192i \(0.744970\pi\)
\(464\) 0.298893 0.172566i 0.0138758 0.00801118i
\(465\) −1.08817 + 0.205146i −0.0504626 + 0.00951342i
\(466\) −24.5609 + 6.58109i −1.13776 + 0.304863i
\(467\) −16.1332 + 16.1332i −0.746557 + 0.746557i −0.973831 0.227274i \(-0.927019\pi\)
0.227274 + 0.973831i \(0.427019\pi\)
\(468\) 0 0
\(469\) 7.03244i 0.324728i
\(470\) −17.6300 + 3.32368i −0.813213 + 0.153310i
\(471\) 28.4732 49.3170i 1.31197 2.27241i
\(472\) 14.7405 + 3.94971i 0.678488 + 0.181800i
\(473\) 13.2196i 0.607837i
\(474\) 10.0201 37.3957i 0.460240 1.71764i
\(475\) −12.5201 5.48223i −0.574462 0.251542i
\(476\) 4.71411 + 4.71411i 0.216071 + 0.216071i
\(477\) 3.48697 13.0136i 0.159657 0.595850i
\(478\) 3.12195 0.836524i 0.142795 0.0382617i
\(479\) −10.0493 37.5043i −0.459162 1.71362i −0.675555 0.737309i \(-0.736096\pi\)
0.216393 0.976306i \(-0.430571\pi\)
\(480\) −2.27132 + 30.0415i −0.103671 + 1.37120i
\(481\) 0 0
\(482\) 13.0294 + 13.0294i 0.593473 + 0.593473i
\(483\) −8.96157 5.17396i −0.407765 0.235424i
\(484\) −6.80421 3.92841i −0.309282 0.178564i
\(485\) 15.8536 + 5.55920i 0.719874 + 0.252430i
\(486\) −11.8466 + 11.8466i −0.537372 + 0.537372i
\(487\) 14.4718 + 25.0660i 0.655782 + 1.13585i 0.981697 + 0.190448i \(0.0609941\pi\)
−0.325916 + 0.945399i \(0.605673\pi\)
\(488\) 3.14701 + 5.45078i 0.142458 + 0.246745i
\(489\) 42.1422 42.1422i 1.90574 1.90574i
\(490\) −13.1013 4.59408i −0.591855 0.207539i
\(491\) 6.30003 + 3.63733i 0.284317 + 0.164150i 0.635376 0.772203i \(-0.280845\pi\)
−0.351059 + 0.936353i \(0.614178\pi\)
\(492\) 15.9530 + 9.21046i 0.719216 + 0.415240i
\(493\) −1.49839 1.49839i −0.0674842 0.0674842i
\(494\) 0 0
\(495\) 1.33657 17.6781i 0.0600743 0.794571i
\(496\) −0.0543104 0.202689i −0.00243861 0.00910102i
\(497\) 12.1490 3.25531i 0.544956 0.146021i
\(498\) 6.32027 23.5876i 0.283218 1.05698i
\(499\) 4.24201 + 4.24201i 0.189899 + 0.189899i 0.795652 0.605754i \(-0.207128\pi\)
−0.605754 + 0.795652i \(0.707128\pi\)
\(500\) 5.00397 9.42259i 0.223784 0.421391i
\(501\) −1.23663 + 4.61515i −0.0552483 + 0.206190i
\(502\) 14.2889i 0.637745i
\(503\) −3.50677 0.939636i −0.156359 0.0418963i 0.179790 0.983705i \(-0.442458\pi\)
−0.336149 + 0.941809i \(0.609125\pi\)
\(504\) −6.93805 + 12.0171i −0.309046 + 0.535283i
\(505\) 21.4321 4.04047i 0.953717 0.179799i
\(506\) 6.55433i 0.291376i
\(507\) 0 0
\(508\) 1.46769 1.46769i 0.0651184 0.0651184i
\(509\) −22.5037 + 6.02986i −0.997460 + 0.267269i −0.720381 0.693578i \(-0.756033\pi\)
−0.277079 + 0.960847i \(0.589366\pi\)
\(510\) −45.4047 + 8.55987i −2.01055 + 0.379038i
\(511\) 2.69325 1.55495i 0.119143 0.0687870i
\(512\) −12.8442 −0.567640
\(513\) 11.6560 6.72962i 0.514627 0.297120i
\(514\) 22.8945 + 6.13455i 1.00983 + 0.270584i
\(515\) −7.95639 0.601550i −0.350600 0.0265075i
\(516\) −10.5683 18.3048i −0.465243 0.805824i
\(517\) −3.37754 12.6052i −0.148544 0.554375i
\(518\) −2.01075 + 3.48272i −0.0883472 + 0.153022i
\(519\) 42.2960 1.85659
\(520\) 0 0
\(521\) −13.0530 −0.571862 −0.285931 0.958250i \(-0.592303\pi\)
−0.285931 + 0.958250i \(0.592303\pi\)
\(522\) 0.712327 1.23379i 0.0311777 0.0540013i
\(523\) 4.40520 + 16.4404i 0.192626 + 0.718890i 0.992869 + 0.119214i \(0.0380374\pi\)
−0.800243 + 0.599677i \(0.795296\pi\)
\(524\) −0.0297008 0.0514432i −0.00129748 0.00224731i
\(525\) 10.8138 7.95882i 0.471952 0.347351i
\(526\) −1.28514 0.344353i −0.0560349 0.0150145i
\(527\) −1.11577 + 0.644187i −0.0486035 + 0.0280612i
\(528\) 5.47391 0.238221
\(529\) −7.05896 + 4.07549i −0.306911 + 0.177195i
\(530\) −5.33750 3.64423i −0.231846 0.158295i
\(531\) 23.2581 6.23198i 1.00931 0.270445i
\(532\) −1.77730 + 1.77730i −0.0770558 + 0.0770558i
\(533\) 0 0
\(534\) 1.47779i 0.0639501i
\(535\) 0.560453 0.820864i 0.0242305 0.0354891i
\(536\) −11.0243 + 19.0947i −0.476178 + 0.824765i
\(537\) −7.42764 1.99023i −0.320526 0.0858847i
\(538\) 8.11728i 0.349961i
\(539\) 2.61373 9.75457i 0.112581 0.420159i
\(540\) 4.55215 + 9.46868i 0.195893 + 0.407467i
\(541\) 10.9728 + 10.9728i 0.471756 + 0.471756i 0.902483 0.430727i \(-0.141743\pi\)
−0.430727 + 0.902483i \(0.641743\pi\)
\(542\) −0.237029 + 0.884606i −0.0101813 + 0.0379971i
\(543\) −27.8799 + 7.47039i −1.19644 + 0.320585i
\(544\) 9.07231 + 33.8583i 0.388972 + 1.45166i
\(545\) 20.2483 + 1.53089i 0.867340 + 0.0655761i
\(546\) 0 0
\(547\) −20.4450 20.4450i −0.874167 0.874167i 0.118756 0.992923i \(-0.462109\pi\)
−0.992923 + 0.118756i \(0.962109\pi\)
\(548\) 3.65063 + 2.10769i 0.155947 + 0.0900361i
\(549\) 8.60042 + 4.96545i 0.367057 + 0.211920i
\(550\) −7.79041 3.41121i −0.332184 0.145455i
\(551\) 0.564920 0.564920i 0.0240664 0.0240664i
\(552\) −16.2218 28.0970i −0.690446 1.19589i
\(553\) 6.54485 + 11.3360i 0.278315 + 0.482056i
\(554\) −6.90913 + 6.90913i −0.293541 + 0.293541i
\(555\) 11.0197 + 22.9214i 0.467759 + 0.972961i
\(556\) 11.3619 + 6.55982i 0.481854 + 0.278198i
\(557\) −11.7609 6.79015i −0.498324 0.287708i 0.229697 0.973262i \(-0.426226\pi\)
−0.728021 + 0.685555i \(0.759560\pi\)
\(558\) −0.612485 0.612485i −0.0259286 0.0259286i
\(559\) 0 0
\(560\) 1.65839 + 1.92967i 0.0700797 + 0.0815432i
\(561\) −8.69858 32.4636i −0.367254 1.37061i
\(562\) 7.80052 2.09014i 0.329045 0.0881673i
\(563\) 1.25538 4.68514i 0.0529080 0.197455i −0.934413 0.356191i \(-0.884075\pi\)
0.987321 + 0.158736i \(0.0507418\pi\)
\(564\) 14.7539 + 14.7539i 0.621251 + 0.621251i
\(565\) −3.89868 + 1.87433i −0.164019 + 0.0788535i
\(566\) 5.58573 20.8462i 0.234786 0.876232i
\(567\) 0.557323i 0.0234054i
\(568\) 38.0904 + 10.2063i 1.59824 + 0.428247i
\(569\) −0.124396 + 0.215461i −0.00521497 + 0.00903259i −0.868621 0.495477i \(-0.834993\pi\)
0.863406 + 0.504509i \(0.168327\pi\)
\(570\) −3.22722 17.1183i −0.135173 0.717009i
\(571\) 7.72842i 0.323424i 0.986838 + 0.161712i \(0.0517016\pi\)
−0.986838 + 0.161712i \(0.948298\pi\)
\(572\) 0 0
\(573\) −36.6136 + 36.6136i −1.52955 + 1.52955i
\(574\) 6.59281 1.76654i 0.275179 0.0737339i
\(575\) 2.13187 + 19.1489i 0.0889052 + 0.798565i
\(576\) −30.1587 + 17.4121i −1.25661 + 0.725506i
\(577\) 12.1339 0.505141 0.252570 0.967578i \(-0.418724\pi\)
0.252570 + 0.967578i \(0.418724\pi\)
\(578\) −31.5007 + 18.1869i −1.31026 + 0.756477i
\(579\) −33.8416 9.06783i −1.40641 0.376846i
\(580\) 0.406469 + 0.472958i 0.0168777 + 0.0196385i
\(581\) 4.12821 + 7.15027i 0.171267 + 0.296643i
\(582\) 5.54184 + 20.6824i 0.229717 + 0.857315i
\(583\) 2.35054 4.07125i 0.0973492 0.168614i
\(584\) 9.75040 0.403475
\(585\) 0 0
\(586\) −4.11255 −0.169888
\(587\) −18.2647 + 31.6354i −0.753865 + 1.30573i 0.192072 + 0.981381i \(0.438479\pi\)
−0.945937 + 0.324351i \(0.894854\pi\)
\(588\) 4.17904 + 15.5964i 0.172341 + 0.643185i
\(589\) −0.242870 0.420663i −0.0100073 0.0173331i
\(590\) 0.870813 11.5178i 0.0358508 0.474180i
\(591\) −38.4573 10.3046i −1.58192 0.423875i
\(592\) −4.17380 + 2.40974i −0.171542 + 0.0990398i
\(593\) 16.6936 0.685525 0.342762 0.939422i \(-0.388637\pi\)
0.342762 + 0.939422i \(0.388637\pi\)
\(594\) 7.25276 4.18738i 0.297584 0.171810i
\(595\) 8.80873 12.9017i 0.361123 0.528917i
\(596\) 3.99327 1.06999i 0.163571 0.0438287i
\(597\) −29.0384 + 29.0384i −1.18846 + 1.18846i
\(598\) 0 0
\(599\) 13.2549i 0.541579i −0.962639 0.270789i \(-0.912715\pi\)
0.962639 0.270789i \(-0.0872847\pi\)
\(600\) 41.8384 4.65793i 1.70805 0.190159i
\(601\) −0.546605 + 0.946748i −0.0222965 + 0.0386187i −0.876958 0.480566i \(-0.840431\pi\)
0.854662 + 0.519185i \(0.173764\pi\)
\(602\) −7.56474 2.02696i −0.308316 0.0826129i
\(603\) 34.7891i 1.41672i
\(604\) 1.65905 6.19166i 0.0675058 0.251935i
\(605\) −6.09216 + 17.3735i −0.247682 + 0.706332i
\(606\) 19.6554 + 19.6554i 0.798446 + 0.798446i
\(607\) −10.8348 + 40.4361i −0.439771 + 1.64125i 0.289612 + 0.957144i \(0.406474\pi\)
−0.729384 + 0.684105i \(0.760193\pi\)
\(608\) −12.7652 + 3.42042i −0.517696 + 0.138716i
\(609\) 0.203130 + 0.758093i 0.00823126 + 0.0307195i
\(610\) 3.61298 3.10506i 0.146285 0.125720i
\(611\) 0 0
\(612\) 23.3204 + 23.3204i 0.942673 + 0.942673i
\(613\) −24.1705 13.9548i −0.976235 0.563630i −0.0751039 0.997176i \(-0.523929\pi\)
−0.901131 + 0.433546i \(0.857262\pi\)
\(614\) 21.4487 + 12.3834i 0.865601 + 0.499755i
\(615\) 14.2835 40.7334i 0.575967 1.64253i
\(616\) −3.42371 + 3.42371i −0.137945 + 0.137945i
\(617\) 2.19132 + 3.79548i 0.0882193 + 0.152800i 0.906758 0.421650i \(-0.138549\pi\)
−0.818539 + 0.574451i \(0.805216\pi\)
\(618\) −5.08477 8.80708i −0.204540 0.354273i
\(619\) 8.67268 8.67268i 0.348584 0.348584i −0.510998 0.859582i \(-0.670724\pi\)
0.859582 + 0.510998i \(0.170724\pi\)
\(620\) 0.341722 0.164286i 0.0137239 0.00659787i
\(621\) −16.4313 9.48662i −0.659366 0.380685i
\(622\) −6.97193 4.02525i −0.279549 0.161398i
\(623\) 0.353304 + 0.353304i 0.0141548 + 0.0141548i
\(624\) 0 0
\(625\) −23.8697 7.43216i −0.954788 0.297287i
\(626\) 1.26934 + 4.73726i 0.0507332 + 0.189339i
\(627\) 12.2393 3.27952i 0.488791 0.130971i
\(628\) −5.04668 + 18.8345i −0.201385 + 0.751577i
\(629\) 20.9238 + 20.9238i 0.834287 + 0.834287i
\(630\) 9.91112 + 3.47542i 0.394868 + 0.138464i
\(631\) 6.55800 24.4748i 0.261070 0.974326i −0.703542 0.710653i \(-0.748399\pi\)
0.964612 0.263673i \(-0.0849339\pi\)
\(632\) 41.0398i 1.63248i
\(633\) −22.9677 6.15419i −0.912886 0.244607i
\(634\) 11.7220 20.3031i 0.465540 0.806340i
\(635\) −4.01681 2.74251i −0.159402 0.108833i
\(636\) 7.51646i 0.298047i
\(637\) 0 0
\(638\) 0.351511 0.351511i 0.0139164 0.0139164i
\(639\) 60.1003 16.1038i 2.37753 0.637057i
\(640\) −0.910600 4.83016i −0.0359946 0.190929i
\(641\) −1.41675 + 0.817961i −0.0559582 + 0.0323075i −0.527718 0.849420i \(-0.676952\pi\)
0.471760 + 0.881727i \(0.343619\pi\)
\(642\) 1.26681 0.0499968
\(643\) −34.3541 + 19.8344i −1.35479 + 0.782191i −0.988917 0.148472i \(-0.952565\pi\)
−0.365878 + 0.930663i \(0.619231\pi\)
\(644\) 3.42248 + 0.917051i 0.134865 + 0.0361369i
\(645\) −37.5627 + 32.2820i −1.47903 + 1.27110i
\(646\) −10.1339 17.5525i −0.398714 0.690593i
\(647\) −3.84742 14.3588i −0.151258 0.564501i −0.999397 0.0347277i \(-0.988944\pi\)
0.848139 0.529773i \(-0.177723\pi\)
\(648\) 0.873682 1.51326i 0.0343215 0.0594465i
\(649\) 8.40185 0.329801
\(650\) 0 0
\(651\) 0.477178 0.0187021
\(652\) −10.2034 + 17.6729i −0.399597 + 0.692123i
\(653\) 3.32718 + 12.4172i 0.130203 + 0.485922i 0.999972 0.00753655i \(-0.00239898\pi\)
−0.869769 + 0.493459i \(0.835732\pi\)
\(654\) 12.9403 + 22.4132i 0.506005 + 0.876426i
\(655\) −0.105565 + 0.0907243i −0.00412476 + 0.00354489i
\(656\) 7.90103 + 2.11708i 0.308483 + 0.0826579i
\(657\) 13.3234 7.69225i 0.519794 0.300103i
\(658\) 7.73102 0.301387
\(659\) −20.8742 + 12.0517i −0.813144 + 0.469469i −0.848047 0.529922i \(-0.822221\pi\)
0.0349025 + 0.999391i \(0.488888\pi\)
\(660\) 1.83239 + 9.71965i 0.0713256 + 0.378337i
\(661\) −37.8150 + 10.1325i −1.47083 + 0.394108i −0.903217 0.429185i \(-0.858801\pi\)
−0.567616 + 0.823293i \(0.692134\pi\)
\(662\) −24.2637 + 24.2637i −0.943036 + 0.943036i
\(663\) 0 0
\(664\) 25.8862i 1.00458i
\(665\) 4.86415 + 3.32104i 0.188624 + 0.128785i
\(666\) −9.94705 + 17.2288i −0.385440 + 0.667602i
\(667\) −1.08784 0.291487i −0.0421215 0.0112864i
\(668\) 1.63601i 0.0632991i
\(669\) −5.09295 + 19.0071i −0.196905 + 0.734858i
\(670\) 15.7484 + 5.52232i 0.608415 + 0.213346i
\(671\) 2.45030 + 2.45030i 0.0945926 + 0.0945926i
\(672\) 3.36013 12.5402i 0.129620 0.483747i
\(673\) −9.87723 + 2.64660i −0.380739 + 0.102019i −0.444112 0.895971i \(-0.646481\pi\)
0.0633730 + 0.997990i \(0.479814\pi\)
\(674\) 5.44776 + 20.3313i 0.209840 + 0.783132i
\(675\) 19.8274 14.5927i 0.763157 0.561675i
\(676\) 0 0
\(677\) 29.8933 + 29.8933i 1.14889 + 1.14889i 0.986771 + 0.162121i \(0.0518333\pi\)
0.162121 + 0.986771i \(0.448167\pi\)
\(678\) −4.77472 2.75669i −0.183372 0.105870i
\(679\) −6.26961 3.61976i −0.240606 0.138914i
\(680\) 44.1429 21.2221i 1.69280 0.813829i
\(681\) −33.8465 + 33.8465i −1.29700 + 1.29700i
\(682\) −0.151121 0.261750i −0.00578673 0.0100229i
\(683\) 10.0103 + 17.3384i 0.383035 + 0.663436i 0.991494 0.130149i \(-0.0415455\pi\)
−0.608459 + 0.793585i \(0.708212\pi\)
\(684\) −8.79221 + 8.79221i −0.336178 + 0.336178i
\(685\) 3.26859 9.32129i 0.124886 0.356148i
\(686\) 11.1546 + 6.44013i 0.425886 + 0.245885i
\(687\) 30.3998 + 17.5513i 1.15983 + 0.669625i
\(688\) −6.63664 6.63664i −0.253019 0.253019i
\(689\) 0 0
\(690\) −18.6238 + 16.0056i −0.708994 + 0.609322i
\(691\) 9.15886 + 34.1813i 0.348420 + 1.30032i 0.888566 + 0.458749i \(0.151702\pi\)
−0.540147 + 0.841571i \(0.681631\pi\)
\(692\) −13.9890 + 3.74834i −0.531782 + 0.142491i
\(693\) −1.97729 + 7.37933i −0.0751109 + 0.280318i
\(694\) 16.4960 + 16.4960i 0.626181 + 0.626181i
\(695\) 10.1729 29.0109i 0.385881 1.10045i
\(696\) −0.636870 + 2.37683i −0.0241405 + 0.0900935i
\(697\) 50.2221i 1.90230i
\(698\) 10.2586 + 2.74877i 0.388292 + 0.104043i
\(699\) 34.6479 60.0120i 1.31051 2.26986i
\(700\) −2.87123 + 3.59064i −0.108522 + 0.135714i
\(701\) 37.1781i 1.40420i −0.712080 0.702098i \(-0.752247\pi\)
0.712080 0.702098i \(-0.247753\pi\)
\(702\) 0 0
\(703\) −7.88864 + 7.88864i −0.297526 + 0.297526i
\(704\) −11.7374 + 3.14502i −0.442368 + 0.118532i
\(705\) 27.5689 40.3787i 1.03831 1.52075i
\(706\) 3.80843 2.19880i 0.143332 0.0827529i
\(707\) −9.39830 −0.353459
\(708\) −11.6338 + 6.71678i −0.437225 + 0.252432i
\(709\) −46.5506 12.4732i −1.74824 0.468440i −0.763994 0.645224i \(-0.776764\pi\)
−0.984250 + 0.176783i \(0.943431\pi\)
\(710\) 2.25023 29.7626i 0.0844497 1.11697i
\(711\) 32.3770 + 56.0786i 1.21423 + 2.10311i
\(712\) 0.405449 + 1.51316i 0.0151948 + 0.0567079i
\(713\) −0.342369 + 0.593001i −0.0128218 + 0.0222080i
\(714\) 19.9106 0.745135
\(715\) 0 0
\(716\) 2.63300 0.0983998
\(717\) −4.40411 + 7.62814i −0.164474 + 0.284878i
\(718\) −3.90299 14.5662i −0.145658 0.543604i
\(719\) 16.6992 + 28.9239i 0.622777 + 1.07868i 0.988966 + 0.148141i \(0.0473288\pi\)
−0.366190 + 0.930540i \(0.619338\pi\)
\(720\) 8.20394 + 9.54594i 0.305743 + 0.355756i
\(721\) 3.32122 + 0.889918i 0.123689 + 0.0331423i
\(722\) −10.2091 + 5.89421i −0.379942 + 0.219360i
\(723\) −50.2164 −1.86757
\(724\) 8.55897 4.94153i 0.318092 0.183650i
\(725\) 0.912629 1.14129i 0.0338942 0.0423866i
\(726\) −22.6652 + 6.07313i −0.841186 + 0.225395i
\(727\) −23.6487 + 23.6487i −0.877083 + 0.877083i −0.993232 0.116149i \(-0.962945\pi\)
0.116149 + 0.993232i \(0.462945\pi\)
\(728\) 0 0
\(729\) 43.9226i 1.62676i
\(730\) −1.36723 7.25231i −0.0506036 0.268420i
\(731\) −28.8130 + 49.9055i −1.06569 + 1.84582i
\(732\) −5.35173 1.43399i −0.197806 0.0530018i
\(733\) 14.7049i 0.543138i −0.962419 0.271569i \(-0.912458\pi\)
0.962419 0.271569i \(-0.0875424\pi\)
\(734\) 3.02344 11.2836i 0.111597 0.416486i
\(735\) 34.0997 16.3937i 1.25779 0.604692i
\(736\) 13.1731 + 13.1731i 0.485568 + 0.485568i
\(737\) −3.14184 + 11.7255i −0.115731 + 0.431914i
\(738\) 32.6142 8.73896i 1.20055 0.321686i
\(739\) −5.32432 19.8706i −0.195858 0.730953i −0.992043 0.125900i \(-0.959818\pi\)
0.796185 0.605054i \(-0.206848\pi\)
\(740\) −5.67600 6.60447i −0.208654 0.242785i
\(741\) 0 0
\(742\) 1.96931 + 1.96931i 0.0722956 + 0.0722956i
\(743\) 38.6601 + 22.3204i 1.41830 + 0.818856i 0.996150 0.0876692i \(-0.0279419\pi\)
0.422151 + 0.906526i \(0.361275\pi\)
\(744\) 1.29565 + 0.748042i 0.0475007 + 0.0274246i
\(745\) −4.19742 8.73082i −0.153781 0.319872i
\(746\) 20.3603 20.3603i 0.745443 0.745443i
\(747\) 20.4220 + 35.3720i 0.747202 + 1.29419i
\(748\) 5.75395 + 9.96614i 0.210385 + 0.364398i
\(749\) −0.302864 + 0.302864i −0.0110664 + 0.0110664i
\(750\) −9.33127 30.4661i −0.340730 1.11246i
\(751\) 15.2247 + 8.78996i 0.555555 + 0.320750i 0.751360 0.659893i \(-0.229398\pi\)
−0.195804 + 0.980643i \(0.562732\pi\)
\(752\) 8.02381 + 4.63255i 0.292598 + 0.168932i
\(753\) −27.5353 27.5353i −1.00344 1.00344i
\(754\) 0 0
\(755\) −14.9778 1.13241i −0.545097 0.0412125i
\(756\) −1.17176 4.37306i −0.0426164 0.159047i
\(757\) 33.9933 9.10848i 1.23551 0.331053i 0.418786 0.908085i \(-0.362456\pi\)
0.816722 + 0.577032i \(0.195789\pi\)
\(758\) −4.48144 + 16.7250i −0.162773 + 0.607478i
\(759\) −12.6305 12.6305i −0.458457 0.458457i
\(760\) 8.00109 + 16.6426i 0.290230 + 0.603692i
\(761\) 3.03122 11.3127i 0.109882 0.410084i −0.888972 0.457962i \(-0.848579\pi\)
0.998853 + 0.0478787i \(0.0152461\pi\)
\(762\) 6.19897i 0.224565i
\(763\) −8.45219 2.26476i −0.305990 0.0819897i
\(764\) 8.86485 15.3544i 0.320719 0.555502i
\(765\) 43.5763 63.8238i 1.57550 2.30755i
\(766\) 6.75331i 0.244007i
\(767\) 0 0
\(768\) 33.2233 33.2233i 1.19884 1.19884i
\(769\) 18.3227 4.90954i 0.660732 0.177043i 0.0871555 0.996195i \(-0.472222\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(770\) 3.02663 + 2.06646i 0.109072 + 0.0744700i
\(771\) −55.9401 + 32.2971i −2.01463 + 1.16315i
\(772\) 11.9964 0.431760
\(773\) 14.2114 8.20497i 0.511149 0.295112i −0.222157 0.975011i \(-0.571310\pi\)
0.733306 + 0.679899i \(0.237976\pi\)
\(774\) −37.4223 10.0273i −1.34512 0.360423i
\(775\) −0.526647 0.715564i −0.0189177 0.0257038i
\(776\) −11.3490 19.6570i −0.407404 0.705644i
\(777\) −2.83655 10.5861i −0.101761 0.379775i
\(778\) 17.2285 29.8406i 0.617671 1.06984i
\(779\) 18.9346 0.678403
\(780\) 0 0
\(781\) 21.7109 0.776876
\(782\) −14.2856 + 24.7434i −0.510852 + 0.884822i
\(783\) 0.372446 + 1.38999i 0.0133101 + 0.0496741i
\(784\) 3.58492 + 6.20926i 0.128033 + 0.221759i
\(785\) 45.5610 + 3.44468i 1.62614 + 0.122946i
\(786\) −0.171361 0.0459159i −0.00611223 0.00163777i
\(787\) 11.7781 6.80008i 0.419844 0.242397i −0.275167 0.961396i \(-0.588733\pi\)
0.695010 + 0.719000i \(0.255400\pi\)
\(788\) 13.6326 0.485642
\(789\) 3.14011 1.81294i 0.111791 0.0645424i
\(790\) 30.5253 5.75474i 1.08604 0.204745i
\(791\) 1.80058 0.482465i 0.0640214 0.0171545i
\(792\) −16.9369 + 16.9369i −0.601827 + 0.601827i
\(793\) 0 0
\(794\) 5.95255i 0.211248i
\(795\) 17.3082 3.26301i 0.613858 0.115727i
\(796\) 7.03076 12.1776i 0.249199 0.431625i
\(797\) −28.9148 7.74769i −1.02421 0.274437i −0.292657 0.956218i \(-0.594539\pi\)
−0.731557 + 0.681780i \(0.761206\pi\)
\(798\) 7.50664i 0.265732i
\(799\) 14.7232 54.9476i 0.520868 1.94391i
\(800\) −22.5134 + 8.80145i −0.795969 + 0.311178i
\(801\) 1.74778 + 1.74778i 0.0617546 + 0.0617546i
\(802\) 0.0698734 0.260771i 0.00246732 0.00920815i
\(803\) 5.18527 1.38939i 0.182984 0.0490305i
\(804\) −5.02343 18.7477i −0.177163 0.661180i
\(805\) 0.625946 8.27906i 0.0220617 0.291799i
\(806\) 0 0
\(807\) −15.6423 15.6423i −0.550636 0.550636i
\(808\) −25.5185 14.7331i −0.897739 0.518310i
\(809\) 2.54661 + 1.47029i 0.0895342 + 0.0516926i 0.544099 0.839021i \(-0.316872\pi\)
−0.454564 + 0.890714i \(0.650205\pi\)
\(810\) −1.24807 0.437646i −0.0438526 0.0153773i
\(811\) −16.3366 + 16.3366i −0.573657 + 0.573657i −0.933148 0.359492i \(-0.882950\pi\)
0.359492 + 0.933148i \(0.382950\pi\)
\(812\) −0.134367 0.232730i −0.00471536 0.00816724i
\(813\) −1.24791 2.16144i −0.0437660 0.0758050i
\(814\) −4.90856 + 4.90856i −0.172045 + 0.172045i
\(815\) 45.1248 + 15.8234i 1.58065 + 0.554270i
\(816\) 20.6647 + 11.9307i 0.723408 + 0.417660i
\(817\) −18.8153 10.8630i −0.658262 0.380048i
\(818\) −26.8732 26.8732i −0.939599 0.939599i
\(819\) 0 0
\(820\) −1.11428 + 14.7380i −0.0389124 + 0.514674i
\(821\) −11.8735 44.3125i −0.414388 1.54652i −0.786059 0.618151i \(-0.787882\pi\)
0.371672 0.928364i \(-0.378785\pi\)
\(822\) 12.1605 3.25838i 0.424145 0.113649i
\(823\) −4.58752 + 17.1209i −0.159911 + 0.596796i 0.838724 + 0.544557i \(0.183302\pi\)
−0.998635 + 0.0522385i \(0.983364\pi\)
\(824\) 7.62280 + 7.62280i 0.265553 + 0.265553i
\(825\) 21.5860 8.43889i 0.751528 0.293804i
\(826\) −1.28826 + 4.80785i −0.0448242 + 0.167286i
\(827\) 5.79276i 0.201434i −0.994915 0.100717i \(-0.967886\pi\)
0.994915 0.100717i \(-0.0321137\pi\)
\(828\) 16.9308 + 4.53660i 0.588387 + 0.157658i
\(829\) −16.8799 + 29.2368i −0.586262 + 1.01544i 0.408454 + 0.912779i \(0.366068\pi\)
−0.994717 + 0.102657i \(0.967265\pi\)
\(830\) 19.2540 3.62985i 0.668317 0.125994i
\(831\) 26.6284i 0.923727i
\(832\) 0 0
\(833\) 31.1279 31.1279i 1.07852 1.07852i
\(834\) 37.8473 10.1412i 1.31055 0.351160i
\(835\) −3.76724 + 0.710216i −0.130371 + 0.0245780i
\(836\) −3.75741 + 2.16934i −0.129953 + 0.0750282i
\(837\) 0.874920 0.0302417
\(838\) 30.0364 17.3415i 1.03759 0.599053i
\(839\) 37.8626 + 10.1452i 1.30716 + 0.350253i 0.844154 0.536101i \(-0.180103\pi\)
0.463008 + 0.886354i \(0.346770\pi\)
\(840\) −18.0889 1.36763i −0.624127 0.0471877i
\(841\) −14.4573 25.0408i −0.498527 0.863475i
\(842\) 8.06995 + 30.1175i 0.278109 + 1.03792i
\(843\) −11.0041 + 19.0597i −0.379002 + 0.656451i
\(844\) 8.14177 0.280251
\(845\) 0 0
\(846\) 38.2449 1.31489
\(847\) 3.96679 6.87068i 0.136300 0.236079i
\(848\) 0.863850 + 3.22393i 0.0296647 + 0.110710i
\(849\) 29.4076 + 50.9354i 1.00927 + 1.74810i
\(850\) −21.9748 29.8575i −0.753728 1.02410i
\(851\) 15.1908 + 4.07037i 0.520735 + 0.139531i
\(852\) −30.0625 + 17.3566i −1.02992 + 0.594626i
\(853\) −40.6417 −1.39154 −0.695772 0.718262i \(-0.744938\pi\)
−0.695772 + 0.718262i \(0.744938\pi\)
\(854\) −1.77785 + 1.02644i −0.0608369 + 0.0351242i
\(855\) 24.0627 + 16.4290i 0.822926 + 0.561860i
\(856\) −1.29713 + 0.347564i −0.0443348 + 0.0118795i
\(857\) 27.2327 27.2327i 0.930252 0.930252i −0.0674695 0.997721i \(-0.521493\pi\)
0.997721 + 0.0674695i \(0.0214925\pi\)
\(858\) 0 0
\(859\) 44.5502i 1.52003i −0.649904 0.760016i \(-0.725191\pi\)
0.649904 0.760016i \(-0.274809\pi\)
\(860\) 9.56262 14.0058i 0.326083 0.477595i
\(861\) −9.30043 + 16.1088i −0.316958 + 0.548987i
\(862\) 4.54213 + 1.21706i 0.154706 + 0.0414532i
\(863\) 55.4497i 1.88753i 0.330615 + 0.943766i \(0.392744\pi\)
−0.330615 + 0.943766i \(0.607256\pi\)
\(864\) 6.16090 22.9928i 0.209598 0.782230i
\(865\) 14.7041 + 30.5853i 0.499956 + 1.03993i
\(866\) −2.89432 2.89432i −0.0983531 0.0983531i
\(867\) 25.6562 95.7502i 0.871330 3.25185i
\(868\) −0.157822 + 0.0422883i −0.00535683 + 0.00143536i
\(869\) 5.84800 + 21.8250i 0.198380 + 0.740363i
\(870\) 1.85718 + 0.140414i 0.0629643 + 0.00476048i
\(871\) 0 0
\(872\) −19.3993 19.3993i −0.656944 0.656944i
\(873\) −31.0154 17.9068i −1.04971 0.606052i
\(874\) −9.32869 5.38592i −0.315548 0.182181i
\(875\) 9.51462 + 5.05285i 0.321653 + 0.170817i
\(876\) −6.06917 + 6.06917i −0.205058 + 0.205058i
\(877\) 2.68849 + 4.65661i 0.0907839 + 0.157242i 0.907841 0.419314i \(-0.137729\pi\)
−0.817057 + 0.576557i \(0.804396\pi\)
\(878\) −11.6188 20.1244i −0.392116 0.679166i
\(879\) 7.92505 7.92505i 0.267305 0.267305i
\(880\) 1.90300 + 3.95832i 0.0641500 + 0.133435i
\(881\) −37.0890 21.4133i −1.24956 0.721434i −0.278538 0.960425i \(-0.589850\pi\)
−0.971022 + 0.238992i \(0.923183\pi\)
\(882\) 25.6309 + 14.7980i 0.863037 + 0.498274i
\(883\) −32.9568 32.9568i −1.10908 1.10908i −0.993271 0.115813i \(-0.963053\pi\)
−0.115813 0.993271i \(-0.536947\pi\)
\(884\) 0 0
\(885\) 20.5172 + 23.8733i 0.689677 + 0.802494i
\(886\) 0.691990 + 2.58254i 0.0232478 + 0.0867622i
\(887\) 20.4194 5.47136i 0.685616 0.183710i 0.100837 0.994903i \(-0.467848\pi\)
0.584779 + 0.811193i \(0.301181\pi\)
\(888\) 8.89336 33.1905i 0.298442 1.11380i
\(889\) 1.48203 + 1.48203i 0.0497057 + 0.0497057i
\(890\) 1.06863 0.513751i 0.0358204 0.0172210i
\(891\) 0.248992 0.929249i 0.00834153 0.0311310i
\(892\) 6.73778i 0.225598i
\(893\) 20.7162 + 5.55089i 0.693241 + 0.185753i
\(894\) 6.17340 10.6926i 0.206469 0.357616i
\(895\) −1.14302 6.06302i −0.0382071 0.202664i
\(896\) 2.11809i 0.0707605i
\(897\) 0 0
\(898\) −23.2645 + 23.2645i −0.776346 + 0.776346i
\(899\) 0.0501642 0.0134414i 0.00167307 0.000448297i
\(900\) −14.2038 + 17.7627i −0.473461 + 0.592090i
\(901\) 17.7471 10.2463i 0.591242 0.341354i
\(902\) 11.7817 0.392288
\(903\) 18.4836 10.6715i 0.615096 0.355126i
\(904\) 5.64533 + 1.51266i 0.187761 + 0.0503104i
\(905\) −15.0944 17.5636i −0.501756 0.583833i
\(906\) −9.57200 16.5792i −0.318008 0.550807i
\(907\) 2.86355 + 10.6869i 0.0950825 + 0.354853i 0.997032 0.0769889i \(-0.0245306\pi\)
−0.901949 + 0.431842i \(0.857864\pi\)
\(908\) 8.19488 14.1940i 0.271957 0.471043i
\(909\) −46.4928 −1.54207
\(910\) 0 0
\(911\) −15.0479 −0.498560 −0.249280 0.968431i \(-0.580194\pi\)
−0.249280 + 0.968431i \(0.580194\pi\)
\(912\) −4.49810 + 7.79093i −0.148947 + 0.257983i
\(913\) 3.68867 + 13.7663i 0.122077 + 0.455598i
\(914\) −14.5045 25.1226i −0.479767 0.830980i
\(915\) −0.978791 + 12.9459i −0.0323578 + 0.427980i
\(916\) −11.6099 3.11086i −0.383602 0.102786i
\(917\) 0.0519457 0.0299909i 0.00171540 0.000990386i
\(918\) 36.5067 1.20490
\(919\) 10.8342 6.25513i 0.357388 0.206338i −0.310547 0.950558i \(-0.600512\pi\)
0.667934 + 0.744220i \(0.267179\pi\)
\(920\) 14.6782 21.4983i 0.483925 0.708778i
\(921\) −65.1960 + 17.4692i −2.14828 + 0.575630i
\(922\) −8.32259 + 8.32259i −0.274090 + 0.274090i
\(923\) 0 0
\(924\) 4.26220i 0.140216i
\(925\) −12.7441 + 15.9372i −0.419023 + 0.524013i
\(926\) 15.3114 26.5202i 0.503165 0.871508i
\(927\) 16.4299 + 4.40237i 0.539628 + 0.144593i
\(928\) 1.41296i 0.0463826i
\(929\) −12.6170 + 47.0874i −0.413952 + 1.54489i 0.372975 + 0.927841i \(0.378338\pi\)
−0.786926 + 0.617047i \(0.788329\pi\)
\(930\) 0.374711 1.06859i 0.0122872 0.0350404i
\(931\) 11.7357 + 11.7357i 0.384623 + 0.384623i
\(932\) −6.14112 + 22.9190i −0.201159 + 0.750736i
\(933\) 21.1920 5.67838i 0.693795 0.185902i
\(934\) −6.03874 22.5369i −0.197594 0.737429i
\(935\) 20.4512 17.5761i 0.668825 0.574800i
\(936\) 0 0
\(937\) 7.38027 + 7.38027i 0.241103 + 0.241103i 0.817306 0.576203i \(-0.195466\pi\)
−0.576203 + 0.817306i \(0.695466\pi\)
\(938\) −6.22802 3.59575i −0.203352 0.117405i
\(939\) −11.5750 6.68281i −0.377735 0.218085i
\(940\) −5.53974 + 15.7981i −0.180686 + 0.515277i
\(941\) 1.54410 1.54410i 0.0503363 0.0503363i −0.681491 0.731827i \(-0.738668\pi\)
0.731827 + 0.681491i \(0.238668\pi\)
\(942\) 29.1172 + 50.4324i 0.948688 + 1.64318i
\(943\) −13.3459 23.1158i −0.434602 0.752753i
\(944\) −4.21798 + 4.21798i −0.137284 + 0.137284i
\(945\) −9.56117 + 4.59662i −0.311025 + 0.149528i
\(946\) −11.7074 6.75929i −0.380642 0.219764i
\(947\) −5.81670 3.35827i −0.189017 0.109129i 0.402505 0.915418i \(-0.368140\pi\)
−0.591522 + 0.806289i \(0.701473\pi\)
\(948\) −25.5454 25.5454i −0.829676 0.829676i
\(949\) 0 0
\(950\) 11.2568 8.28486i 0.365218 0.268796i
\(951\) 16.5361 + 61.7137i 0.536221 + 2.00121i
\(952\) −20.3871 + 5.46272i −0.660751 + 0.177048i
\(953\) −4.67309 + 17.4402i −0.151376 + 0.564944i 0.848012 + 0.529977i \(0.177799\pi\)
−0.999388 + 0.0349673i \(0.988867\pi\)
\(954\) 9.74205 + 9.74205i 0.315411 + 0.315411i
\(955\) −39.2049 13.7476i −1.26864 0.444860i
\(956\) 0.780600 2.91324i 0.0252464 0.0942208i
\(957\) 1.35475i 0.0437929i
\(958\) 38.3526 + 10.2765i 1.23912 + 0.332020i
\(959\) −2.12828 + 3.68629i −0.0687257 + 0.119036i
\(960\) −37.5988 25.6709i −1.21350 0.828526i
\(961\) 30.9684i 0.998981i
\(962\) 0 0
\(963\) −1.49825 + 1.49825i −0.0482804 + 0.0482804i
\(964\) 16.6086 4.45026i 0.534927 0.143333i
\(965\) −5.20782 27.6241i −0.167646 0.889253i
\(966\) 9.16426 5.29099i 0.294855 0.170235i
\(967\) −60.0570 −1.93130 −0.965651 0.259841i \(-0.916330\pi\)
−0.965651 + 0.259841i \(0.916330\pi\)
\(968\) 21.5415 12.4370i 0.692369 0.399740i
\(969\) 53.3528 + 14.2958i 1.71394 + 0.459249i
\(970\) −13.0294 + 11.1977i −0.418348 + 0.359536i
\(971\) 20.4589 + 35.4359i 0.656558 + 1.13719i 0.981501 + 0.191459i \(0.0613218\pi\)
−0.324942 + 0.945734i \(0.605345\pi\)
\(972\) 4.04627 + 15.1009i 0.129784 + 0.484361i
\(973\) −6.62390 + 11.4729i −0.212352 + 0.367805i
\(974\) −29.5983 −0.948391
\(975\) 0 0
\(976\) −2.46025 −0.0787506
\(977\) 18.7479 32.4724i 0.599800 1.03888i −0.393050 0.919517i \(-0.628580\pi\)
0.992850 0.119367i \(-0.0380865\pi\)
\(978\) 15.7740 + 58.8694i 0.504397 + 1.88244i
\(979\) 0.431236 + 0.746923i 0.0137824 + 0.0238718i
\(980\) −9.82532 + 8.44405i −0.313858 + 0.269735i
\(981\) −41.8125 11.2036i −1.33497 0.357704i
\(982\) −6.44253 + 3.71959i −0.205589 + 0.118697i
\(983\) 46.1176 1.47092 0.735461 0.677567i \(-0.236966\pi\)
0.735461 + 0.677567i \(0.236966\pi\)
\(984\) −50.5056 + 29.1594i −1.61006 + 0.929569i
\(985\) −5.91812 31.3919i −0.188567 1.00023i
\(986\) 2.09314 0.560854i 0.0666591 0.0178612i
\(987\) −14.8980 + 14.8980i −0.474208 + 0.474208i
\(988\) 0 0
\(989\) 30.6267i 0.973873i
\(990\) 14.9725 + 10.2226i 0.475859 + 0.324897i
\(991\) −0.401099 + 0.694724i −0.0127413 + 0.0220686i −0.872326 0.488925i \(-0.837389\pi\)
0.859584 + 0.510994i \(0.170722\pi\)
\(992\) −0.829802 0.222345i −0.0263462 0.00705945i
\(993\) 93.5143i 2.96759i
\(994\) −3.32894 + 12.4238i −0.105587 + 0.394058i
\(995\) −31.0936 10.9033i −0.985734 0.345656i
\(996\) −16.1129 16.1129i −0.510558 0.510558i
\(997\) 4.04012 15.0779i 0.127952 0.477522i −0.871976 0.489549i \(-0.837162\pi\)
0.999928 + 0.0120264i \(0.00382820\pi\)
\(998\) −5.92576 + 1.58780i −0.187577 + 0.0502610i
\(999\) −5.20090 19.4100i −0.164549 0.614106i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.o.g.357.2 20
5.3 odd 4 845.2.t.g.188.4 20
13.2 odd 12 65.2.t.a.37.2 yes 20
13.3 even 3 845.2.o.f.587.2 20
13.4 even 6 845.2.k.e.577.3 20
13.5 odd 4 845.2.t.f.657.4 20
13.6 odd 12 845.2.f.e.437.3 20
13.7 odd 12 845.2.f.d.437.8 20
13.8 odd 4 845.2.t.e.657.2 20
13.9 even 3 845.2.k.d.577.8 20
13.10 even 6 845.2.o.e.587.4 20
13.11 odd 12 845.2.t.g.427.4 20
13.12 even 2 65.2.o.a.32.4 20
39.2 even 12 585.2.dp.a.37.4 20
39.38 odd 2 585.2.cf.a.487.2 20
65.2 even 12 325.2.s.b.193.2 20
65.3 odd 12 845.2.t.e.418.2 20
65.8 even 4 845.2.o.f.488.2 20
65.12 odd 4 325.2.x.b.318.4 20
65.18 even 4 845.2.o.e.488.4 20
65.23 odd 12 845.2.t.f.418.4 20
65.28 even 12 65.2.o.a.63.4 yes 20
65.33 even 12 845.2.k.d.268.8 20
65.38 odd 4 65.2.t.a.58.2 yes 20
65.43 odd 12 845.2.f.e.408.8 20
65.48 odd 12 845.2.f.d.408.3 20
65.54 odd 12 325.2.x.b.232.4 20
65.58 even 12 845.2.k.e.268.3 20
65.63 even 12 inner 845.2.o.g.258.2 20
65.64 even 2 325.2.s.b.32.2 20
195.38 even 4 585.2.dp.a.253.4 20
195.158 odd 12 585.2.cf.a.388.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.4 20 13.12 even 2
65.2.o.a.63.4 yes 20 65.28 even 12
65.2.t.a.37.2 yes 20 13.2 odd 12
65.2.t.a.58.2 yes 20 65.38 odd 4
325.2.s.b.32.2 20 65.64 even 2
325.2.s.b.193.2 20 65.2 even 12
325.2.x.b.232.4 20 65.54 odd 12
325.2.x.b.318.4 20 65.12 odd 4
585.2.cf.a.388.2 20 195.158 odd 12
585.2.cf.a.487.2 20 39.38 odd 2
585.2.dp.a.37.4 20 39.2 even 12
585.2.dp.a.253.4 20 195.38 even 4
845.2.f.d.408.3 20 65.48 odd 12
845.2.f.d.437.8 20 13.7 odd 12
845.2.f.e.408.8 20 65.43 odd 12
845.2.f.e.437.3 20 13.6 odd 12
845.2.k.d.268.8 20 65.33 even 12
845.2.k.d.577.8 20 13.9 even 3
845.2.k.e.268.3 20 65.58 even 12
845.2.k.e.577.3 20 13.4 even 6
845.2.o.e.488.4 20 65.18 even 4
845.2.o.e.587.4 20 13.10 even 6
845.2.o.f.488.2 20 65.8 even 4
845.2.o.f.587.2 20 13.3 even 3
845.2.o.g.258.2 20 65.63 even 12 inner
845.2.o.g.357.2 20 1.1 even 1 trivial
845.2.t.e.418.2 20 65.3 odd 12
845.2.t.e.657.2 20 13.8 odd 4
845.2.t.f.418.4 20 65.23 odd 12
845.2.t.f.657.4 20 13.5 odd 4
845.2.t.g.188.4 20 5.3 odd 4
845.2.t.g.427.4 20 13.11 odd 12