Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [88,6,Mod(45,88)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(88, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("88.45");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 88 = 2^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 88.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(14.1137761435\) |
Analytic rank: | \(0\) |
Dimension: | \(50\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
45.1 | −5.64233 | − | 0.405172i | 23.7812i | 31.6717 | + | 4.57222i | 29.2444i | 9.63548 | − | 134.181i | −155.388 | −176.849 | − | 38.6304i | −322.547 | 11.8490 | − | 165.007i | ||||||||
45.2 | −5.64233 | + | 0.405172i | − | 23.7812i | 31.6717 | − | 4.57222i | − | 29.2444i | 9.63548 | + | 134.181i | −155.388 | −176.849 | + | 38.6304i | −322.547 | 11.8490 | + | 165.007i | ||||||
45.3 | −5.46626 | − | 1.45602i | 10.1508i | 27.7600 | + | 15.9180i | 11.8120i | 14.7798 | − | 55.4868i | 105.581 | −128.566 | − | 127.431i | 139.962 | 17.1986 | − | 64.5677i | ||||||||
45.4 | −5.46626 | + | 1.45602i | − | 10.1508i | 27.7600 | − | 15.9180i | − | 11.8120i | 14.7798 | + | 55.4868i | 105.581 | −128.566 | + | 127.431i | 139.962 | 17.1986 | + | 64.5677i | ||||||
45.5 | −5.37187 | − | 1.77287i | − | 1.79889i | 25.7139 | + | 19.0472i | − | 96.2311i | −3.18921 | + | 9.66342i | 15.2477 | −104.363 | − | 147.906i | 239.764 | −170.605 | + | 516.941i | ||||||
45.6 | −5.37187 | + | 1.77287i | 1.79889i | 25.7139 | − | 19.0472i | 96.2311i | −3.18921 | − | 9.66342i | 15.2477 | −104.363 | + | 147.906i | 239.764 | −170.605 | − | 516.941i | ||||||||
45.7 | −5.25739 | − | 2.08803i | − | 15.3551i | 23.2803 | + | 21.9551i | 106.563i | −32.0619 | + | 80.7278i | −90.6215 | −76.5507 | − | 164.037i | 7.22042 | 222.506 | − | 560.242i | |||||||
45.8 | −5.25739 | + | 2.08803i | 15.3551i | 23.2803 | − | 21.9551i | − | 106.563i | −32.0619 | − | 80.7278i | −90.6215 | −76.5507 | + | 164.037i | 7.22042 | 222.506 | + | 560.242i | |||||||
45.9 | −4.22471 | − | 3.76190i | − | 2.50880i | 3.69627 | + | 31.7858i | − | 0.695436i | −9.43785 | + | 10.5989i | −230.038 | 103.959 | − | 148.191i | 236.706 | −2.61616 | + | 2.93801i | ||||||
45.10 | −4.22471 | + | 3.76190i | 2.50880i | 3.69627 | − | 31.7858i | 0.695436i | −9.43785 | − | 10.5989i | −230.038 | 103.959 | + | 148.191i | 236.706 | −2.61616 | − | 2.93801i | ||||||||
45.11 | −4.04438 | − | 3.95512i | 30.7355i | 0.713979 | + | 31.9920i | − | 80.1293i | 121.563 | − | 124.306i | 31.2790 | 123.645 | − | 132.212i | −701.671 | −316.921 | + | 324.073i | |||||||
45.12 | −4.04438 | + | 3.95512i | − | 30.7355i | 0.713979 | − | 31.9920i | 80.1293i | 121.563 | + | 124.306i | 31.2790 | 123.645 | + | 132.212i | −701.671 | −316.921 | − | 324.073i | |||||||
45.13 | −3.59816 | − | 4.36501i | 19.0047i | −6.10654 | + | 31.4119i | 96.1103i | 82.9554 | − | 68.3817i | 182.403 | 159.086 | − | 86.3700i | −118.177 | 419.522 | − | 345.820i | ||||||||
45.14 | −3.59816 | + | 4.36501i | − | 19.0047i | −6.10654 | − | 31.4119i | − | 96.1103i | 82.9554 | + | 68.3817i | 182.403 | 159.086 | + | 86.3700i | −118.177 | 419.522 | + | 345.820i | ||||||
45.15 | −3.58284 | − | 4.37758i | 9.64835i | −6.32647 | + | 31.3684i | − | 18.4321i | 42.2365 | − | 34.5685i | −36.8402 | 159.984 | − | 84.6934i | 149.909 | −80.6880 | + | 66.0393i | |||||||
45.16 | −3.58284 | + | 4.37758i | − | 9.64835i | −6.32647 | − | 31.3684i | 18.4321i | 42.2365 | + | 34.5685i | −36.8402 | 159.984 | + | 84.6934i | 149.909 | −80.6880 | − | 66.0393i | |||||||
45.17 | −2.36733 | − | 5.13768i | − | 24.4516i | −20.7915 | + | 24.3252i | − | 74.8784i | −125.625 | + | 57.8852i | −108.926 | 174.195 | + | 49.2339i | −354.882 | −384.701 | + | 177.262i | ||||||
45.18 | −2.36733 | + | 5.13768i | 24.4516i | −20.7915 | − | 24.3252i | 74.8784i | −125.625 | − | 57.8852i | −108.926 | 174.195 | − | 49.2339i | −354.882 | −384.701 | − | 177.262i | ||||||||
45.19 | −2.35408 | − | 5.14376i | − | 12.4417i | −20.9166 | + | 24.2177i | 50.7268i | −63.9971 | + | 29.2887i | 63.3730 | 173.809 | + | 50.5798i | 88.2044 | 260.927 | − | 119.415i | |||||||
45.20 | −2.35408 | + | 5.14376i | 12.4417i | −20.9166 | − | 24.2177i | − | 50.7268i | −63.9971 | − | 29.2887i | 63.3730 | 173.809 | − | 50.5798i | 88.2044 | 260.927 | + | 119.415i | |||||||
See all 50 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 88.6.c.a | ✓ | 50 |
4.b | odd | 2 | 1 | 352.6.c.a | 50 | ||
8.b | even | 2 | 1 | inner | 88.6.c.a | ✓ | 50 |
8.d | odd | 2 | 1 | 352.6.c.a | 50 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
88.6.c.a | ✓ | 50 | 1.a | even | 1 | 1 | trivial |
88.6.c.a | ✓ | 50 | 8.b | even | 2 | 1 | inner |
352.6.c.a | 50 | 4.b | odd | 2 | 1 | ||
352.6.c.a | 50 | 8.d | odd | 2 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(88, [\chi])\).