Properties

Label 891.2.n.g.379.2
Level $891$
Weight $2$
Character 891.379
Analytic conductor $7.115$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 297)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 379.2
Character \(\chi\) \(=\) 891.379
Dual form 891.2.n.g.757.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.655019 - 0.139229i) q^{2} +(-1.41743 - 0.631078i) q^{4} +(2.70426 - 0.574808i) q^{5} +(-0.157889 - 1.50221i) q^{7} +(1.92410 + 1.39794i) q^{8} -1.85137 q^{10} +(-3.05136 - 1.29969i) q^{11} +(0.993724 - 1.10364i) q^{13} +(-0.105731 + 1.00596i) q^{14} +(1.01071 + 1.12251i) q^{16} +(1.46138 - 4.49766i) q^{17} +(2.87328 + 2.08756i) q^{19} +(-4.19583 - 0.891852i) q^{20} +(1.81775 + 1.27616i) q^{22} +(-1.04751 - 1.81434i) q^{23} +(2.41489 - 1.07518i) q^{25} +(-0.804567 + 0.584552i) q^{26} +(-0.724217 + 2.22891i) q^{28} +(-0.821016 - 7.81145i) q^{29} +(-5.86662 + 6.51554i) q^{31} +(-2.88407 - 4.99535i) q^{32} +(-1.58343 + 2.74259i) q^{34} +(-1.29045 - 3.97161i) q^{35} +(4.16960 - 3.02939i) q^{37} +(-1.59140 - 1.76743i) q^{38} +(6.00680 + 2.67440i) q^{40} +(-0.734494 + 6.98824i) q^{41} +(-1.45808 + 2.52546i) q^{43} +(3.50487 + 3.76786i) q^{44} +(0.433531 + 1.33427i) q^{46} +(1.98762 - 0.884945i) q^{47} +(4.61532 - 0.981018i) q^{49} +(-1.73149 + 0.368040i) q^{50} +(-2.10501 + 0.937212i) q^{52} +(-4.13417 - 12.7237i) q^{53} +(-8.99874 - 1.76076i) q^{55} +(1.79621 - 3.11112i) q^{56} +(-0.549796 + 5.23096i) q^{58} +(-6.14001 - 2.73371i) q^{59} +(-6.93526 - 7.70239i) q^{61} +(4.74990 - 3.45100i) q^{62} +(0.260092 + 0.800479i) q^{64} +(2.05290 - 3.55573i) q^{65} +(-6.01970 - 10.4264i) q^{67} +(-4.90977 + 5.45286i) q^{68} +(0.292311 + 2.78115i) q^{70} +(3.34410 - 10.2921i) q^{71} +(3.63900 - 2.64389i) q^{73} +(-3.15295 + 1.40378i) q^{74} +(-2.75524 - 4.77222i) q^{76} +(-1.47064 + 4.78899i) q^{77} +(15.0895 + 3.20738i) q^{79} +(3.37845 + 2.45459i) q^{80} +(1.45407 - 4.47517i) q^{82} +(2.24043 + 2.48824i) q^{83} +(1.36666 - 13.0029i) q^{85} +(1.30668 - 1.45122i) q^{86} +(-4.05422 - 6.76635i) q^{88} -10.6583 q^{89} +(-1.81480 - 1.31853i) q^{91} +(0.339776 + 3.23276i) q^{92} +(-1.42514 + 0.302923i) q^{94} +(8.97003 + 3.99371i) q^{95} +(-2.17186 - 0.461642i) q^{97} -3.15971 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{4} - 8 q^{7} - 24 q^{10} - 8 q^{13} + 2 q^{16} + 20 q^{19} + 24 q^{22} + 16 q^{25} - 60 q^{28} + 6 q^{31} - 32 q^{34} + 24 q^{37} + 40 q^{40} + 80 q^{43} - 24 q^{46} - 40 q^{49} - 12 q^{52}+ \cdots + 46 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.655019 0.139229i −0.463168 0.0984495i −0.0295838 0.999562i \(-0.509418\pi\)
−0.433585 + 0.901113i \(0.642752\pi\)
\(3\) 0 0
\(4\) −1.41743 0.631078i −0.708713 0.315539i
\(5\) 2.70426 0.574808i 1.20938 0.257062i 0.441268 0.897375i \(-0.354529\pi\)
0.768114 + 0.640313i \(0.221196\pi\)
\(6\) 0 0
\(7\) −0.157889 1.50221i −0.0596763 0.567782i −0.982980 0.183712i \(-0.941189\pi\)
0.923304 0.384070i \(-0.125478\pi\)
\(8\) 1.92410 + 1.39794i 0.680271 + 0.494246i
\(9\) 0 0
\(10\) −1.85137 −0.585455
\(11\) −3.05136 1.29969i −0.920020 0.391872i
\(12\) 0 0
\(13\) 0.993724 1.10364i 0.275609 0.306095i −0.589410 0.807834i \(-0.700640\pi\)
0.865019 + 0.501739i \(0.167306\pi\)
\(14\) −0.105731 + 1.00596i −0.0282577 + 0.268854i
\(15\) 0 0
\(16\) 1.01071 + 1.12251i 0.252678 + 0.280627i
\(17\) 1.46138 4.49766i 0.354436 1.09084i −0.601899 0.798572i \(-0.705589\pi\)
0.956336 0.292271i \(-0.0944109\pi\)
\(18\) 0 0
\(19\) 2.87328 + 2.08756i 0.659175 + 0.478919i 0.866384 0.499378i \(-0.166438\pi\)
−0.207209 + 0.978297i \(0.566438\pi\)
\(20\) −4.19583 0.891852i −0.938217 0.199424i
\(21\) 0 0
\(22\) 1.81775 + 1.27616i 0.387545 + 0.272078i
\(23\) −1.04751 1.81434i −0.218421 0.378316i 0.735904 0.677086i \(-0.236757\pi\)
−0.954325 + 0.298769i \(0.903424\pi\)
\(24\) 0 0
\(25\) 2.41489 1.07518i 0.482977 0.215035i
\(26\) −0.804567 + 0.584552i −0.157788 + 0.114640i
\(27\) 0 0
\(28\) −0.724217 + 2.22891i −0.136864 + 0.421225i
\(29\) −0.821016 7.81145i −0.152459 1.45055i −0.756708 0.653753i \(-0.773193\pi\)
0.604249 0.796796i \(-0.293473\pi\)
\(30\) 0 0
\(31\) −5.86662 + 6.51554i −1.05368 + 1.17023i −0.0686815 + 0.997639i \(0.521879\pi\)
−0.984994 + 0.172587i \(0.944787\pi\)
\(32\) −2.88407 4.99535i −0.509836 0.883061i
\(33\) 0 0
\(34\) −1.58343 + 2.74259i −0.271557 + 0.470350i
\(35\) −1.29045 3.97161i −0.218127 0.671325i
\(36\) 0 0
\(37\) 4.16960 3.02939i 0.685478 0.498029i −0.189693 0.981844i \(-0.560749\pi\)
0.875170 + 0.483815i \(0.160749\pi\)
\(38\) −1.59140 1.76743i −0.258160 0.286715i
\(39\) 0 0
\(40\) 6.00680 + 2.67440i 0.949759 + 0.422860i
\(41\) −0.734494 + 6.98824i −0.114709 + 1.09138i 0.774088 + 0.633078i \(0.218209\pi\)
−0.888796 + 0.458302i \(0.848458\pi\)
\(42\) 0 0
\(43\) −1.45808 + 2.52546i −0.222355 + 0.385129i −0.955522 0.294918i \(-0.904708\pi\)
0.733168 + 0.680048i \(0.238041\pi\)
\(44\) 3.50487 + 3.76786i 0.528379 + 0.568027i
\(45\) 0 0
\(46\) 0.433531 + 1.33427i 0.0639207 + 0.196728i
\(47\) 1.98762 0.884945i 0.289924 0.129083i −0.256621 0.966512i \(-0.582609\pi\)
0.546545 + 0.837430i \(0.315943\pi\)
\(48\) 0 0
\(49\) 4.61532 0.981018i 0.659332 0.140145i
\(50\) −1.73149 + 0.368040i −0.244870 + 0.0520487i
\(51\) 0 0
\(52\) −2.10501 + 0.937212i −0.291913 + 0.129968i
\(53\) −4.13417 12.7237i −0.567872 1.74773i −0.659260 0.751915i \(-0.729130\pi\)
0.0913880 0.995815i \(-0.470870\pi\)
\(54\) 0 0
\(55\) −8.99874 1.76076i −1.21339 0.237421i
\(56\) 1.79621 3.11112i 0.240028 0.415741i
\(57\) 0 0
\(58\) −0.549796 + 5.23096i −0.0721917 + 0.686858i
\(59\) −6.14001 2.73371i −0.799361 0.355899i −0.0339365 0.999424i \(-0.510804\pi\)
−0.765425 + 0.643525i \(0.777471\pi\)
\(60\) 0 0
\(61\) −6.93526 7.70239i −0.887969 0.986190i 0.112002 0.993708i \(-0.464274\pi\)
−0.999972 + 0.00751803i \(0.997607\pi\)
\(62\) 4.74990 3.45100i 0.603238 0.438278i
\(63\) 0 0
\(64\) 0.260092 + 0.800479i 0.0325114 + 0.100060i
\(65\) 2.05290 3.55573i 0.254631 0.441035i
\(66\) 0 0
\(67\) −6.01970 10.4264i −0.735423 1.27379i −0.954538 0.298091i \(-0.903650\pi\)
0.219115 0.975699i \(-0.429683\pi\)
\(68\) −4.90977 + 5.45286i −0.595397 + 0.661256i
\(69\) 0 0
\(70\) 0.292311 + 2.78115i 0.0349378 + 0.332411i
\(71\) 3.34410 10.2921i 0.396872 1.22145i −0.530622 0.847608i \(-0.678042\pi\)
0.927494 0.373838i \(-0.121958\pi\)
\(72\) 0 0
\(73\) 3.63900 2.64389i 0.425913 0.309444i −0.354099 0.935208i \(-0.615213\pi\)
0.780013 + 0.625764i \(0.215213\pi\)
\(74\) −3.15295 + 1.40378i −0.366522 + 0.163186i
\(75\) 0 0
\(76\) −2.75524 4.77222i −0.316048 0.547411i
\(77\) −1.47064 + 4.78899i −0.167595 + 0.545756i
\(78\) 0 0
\(79\) 15.0895 + 3.20738i 1.69770 + 0.360858i 0.952161 0.305598i \(-0.0988564\pi\)
0.745544 + 0.666456i \(0.232190\pi\)
\(80\) 3.37845 + 2.45459i 0.377723 + 0.274432i
\(81\) 0 0
\(82\) 1.45407 4.47517i 0.160575 0.494200i
\(83\) 2.24043 + 2.48824i 0.245919 + 0.273120i 0.853449 0.521176i \(-0.174506\pi\)
−0.607531 + 0.794296i \(0.707840\pi\)
\(84\) 0 0
\(85\) 1.36666 13.0029i 0.148235 1.41036i
\(86\) 1.30668 1.45122i 0.140903 0.156489i
\(87\) 0 0
\(88\) −4.05422 6.76635i −0.432182 0.721295i
\(89\) −10.6583 −1.12978 −0.564888 0.825167i \(-0.691081\pi\)
−0.564888 + 0.825167i \(0.691081\pi\)
\(90\) 0 0
\(91\) −1.81480 1.31853i −0.190243 0.138219i
\(92\) 0.339776 + 3.23276i 0.0354241 + 0.337038i
\(93\) 0 0
\(94\) −1.42514 + 0.302923i −0.146992 + 0.0312441i
\(95\) 8.97003 + 3.99371i 0.920306 + 0.409746i
\(96\) 0 0
\(97\) −2.17186 0.461642i −0.220519 0.0468727i 0.0963273 0.995350i \(-0.469290\pi\)
−0.316846 + 0.948477i \(0.602624\pi\)
\(98\) −3.15971 −0.319179
\(99\) 0 0
\(100\) −4.10144 −0.410144
\(101\) 0.475271 + 0.101022i 0.0472912 + 0.0100521i 0.231497 0.972836i \(-0.425638\pi\)
−0.184205 + 0.982888i \(0.558971\pi\)
\(102\) 0 0
\(103\) −5.84003 2.60015i −0.575435 0.256200i 0.0983201 0.995155i \(-0.468653\pi\)
−0.673755 + 0.738955i \(0.735320\pi\)
\(104\) 3.45484 0.734350i 0.338775 0.0720089i
\(105\) 0 0
\(106\) 0.936462 + 8.90984i 0.0909572 + 0.865400i
\(107\) 9.78725 + 7.11085i 0.946169 + 0.687432i 0.949898 0.312561i \(-0.101187\pi\)
−0.00372856 + 0.999993i \(0.501187\pi\)
\(108\) 0 0
\(109\) −4.73854 −0.453870 −0.226935 0.973910i \(-0.572871\pi\)
−0.226935 + 0.973910i \(0.572871\pi\)
\(110\) 5.64920 + 2.40621i 0.538630 + 0.229423i
\(111\) 0 0
\(112\) 1.52667 1.69553i 0.144256 0.160213i
\(113\) 1.92115 18.2786i 0.180727 1.71950i −0.409539 0.912293i \(-0.634310\pi\)
0.590266 0.807209i \(-0.299023\pi\)
\(114\) 0 0
\(115\) −3.87564 4.30433i −0.361405 0.401381i
\(116\) −3.76591 + 11.5903i −0.349656 + 1.07613i
\(117\) 0 0
\(118\) 3.64121 + 2.64550i 0.335201 + 0.243538i
\(119\) −6.98717 1.48517i −0.640513 0.136145i
\(120\) 0 0
\(121\) 7.62160 + 7.93166i 0.692873 + 0.721060i
\(122\) 3.47034 + 6.01080i 0.314190 + 0.544192i
\(123\) 0 0
\(124\) 12.4273 5.53300i 1.11601 0.496878i
\(125\) −5.27088 + 3.82952i −0.471442 + 0.342523i
\(126\) 0 0
\(127\) −6.90430 + 21.2493i −0.612658 + 1.88557i −0.181156 + 0.983454i \(0.557984\pi\)
−0.431501 + 0.902112i \(0.642016\pi\)
\(128\) 1.14695 + 10.9125i 0.101377 + 0.964540i
\(129\) 0 0
\(130\) −1.83975 + 2.04325i −0.161357 + 0.179205i
\(131\) 1.98522 + 3.43851i 0.173450 + 0.300424i 0.939624 0.342209i \(-0.111175\pi\)
−0.766174 + 0.642633i \(0.777842\pi\)
\(132\) 0 0
\(133\) 2.68229 4.64587i 0.232584 0.402848i
\(134\) 2.49136 + 7.66762i 0.215221 + 0.662381i
\(135\) 0 0
\(136\) 9.09929 6.61102i 0.780258 0.566890i
\(137\) 4.00879 + 4.45221i 0.342494 + 0.380378i 0.889643 0.456657i \(-0.150953\pi\)
−0.547149 + 0.837035i \(0.684287\pi\)
\(138\) 0 0
\(139\) 15.7023 + 6.99113i 1.33186 + 0.592980i 0.944367 0.328895i \(-0.106676\pi\)
0.387488 + 0.921875i \(0.373343\pi\)
\(140\) −0.677275 + 6.44384i −0.0572402 + 0.544604i
\(141\) 0 0
\(142\) −3.62340 + 6.27592i −0.304069 + 0.526664i
\(143\) −4.46660 + 2.07607i −0.373516 + 0.173610i
\(144\) 0 0
\(145\) −6.71032 20.6522i −0.557262 1.71508i
\(146\) −2.75172 + 1.22515i −0.227734 + 0.101394i
\(147\) 0 0
\(148\) −7.82188 + 1.66259i −0.642955 + 0.136664i
\(149\) 12.5939 2.67691i 1.03173 0.219301i 0.339218 0.940708i \(-0.389838\pi\)
0.692511 + 0.721407i \(0.256504\pi\)
\(150\) 0 0
\(151\) −7.68194 + 3.42022i −0.625147 + 0.278334i −0.694761 0.719240i \(-0.744490\pi\)
0.0696138 + 0.997574i \(0.477823\pi\)
\(152\) 2.61019 + 8.03333i 0.211714 + 0.651589i
\(153\) 0 0
\(154\) 1.63006 2.93213i 0.131354 0.236278i
\(155\) −12.1197 + 20.9919i −0.973476 + 1.68611i
\(156\) 0 0
\(157\) −1.23471 + 11.7475i −0.0985406 + 0.937552i 0.827840 + 0.560964i \(0.189569\pi\)
−0.926381 + 0.376588i \(0.877097\pi\)
\(158\) −9.43737 4.20179i −0.750797 0.334276i
\(159\) 0 0
\(160\) −10.6706 11.8509i −0.843587 0.936898i
\(161\) −2.56013 + 1.86005i −0.201767 + 0.146592i
\(162\) 0 0
\(163\) 1.42569 + 4.38781i 0.111668 + 0.343680i 0.991238 0.132091i \(-0.0421691\pi\)
−0.879569 + 0.475771i \(0.842169\pi\)
\(164\) 5.45122 9.44179i 0.425669 0.737280i
\(165\) 0 0
\(166\) −1.12109 1.94178i −0.0870132 0.150711i
\(167\) 6.58855 7.31732i 0.509837 0.566231i −0.432184 0.901786i \(-0.642257\pi\)
0.942021 + 0.335554i \(0.108924\pi\)
\(168\) 0 0
\(169\) 1.12833 + 10.7354i 0.0867947 + 0.825797i
\(170\) −2.70556 + 8.32684i −0.207507 + 0.638640i
\(171\) 0 0
\(172\) 3.66048 2.65949i 0.279109 0.202785i
\(173\) 13.4172 5.97372i 1.02009 0.454173i 0.172604 0.984991i \(-0.444782\pi\)
0.847486 + 0.530818i \(0.178115\pi\)
\(174\) 0 0
\(175\) −1.99643 3.45791i −0.150916 0.261393i
\(176\) −1.62513 4.73880i −0.122499 0.357200i
\(177\) 0 0
\(178\) 6.98139 + 1.48394i 0.523277 + 0.111226i
\(179\) 9.16182 + 6.65645i 0.684787 + 0.497527i 0.874942 0.484227i \(-0.160899\pi\)
−0.190156 + 0.981754i \(0.560899\pi\)
\(180\) 0 0
\(181\) −1.94459 + 5.98485i −0.144541 + 0.444850i −0.996952 0.0780221i \(-0.975140\pi\)
0.852411 + 0.522872i \(0.175140\pi\)
\(182\) 1.00515 + 1.11633i 0.0745068 + 0.0827482i
\(183\) 0 0
\(184\) 0.520826 4.95533i 0.0383958 0.365311i
\(185\) 9.53436 10.5890i 0.700980 0.778517i
\(186\) 0 0
\(187\) −10.3048 + 11.8246i −0.753559 + 0.864704i
\(188\) −3.37577 −0.246204
\(189\) 0 0
\(190\) −5.31950 3.86484i −0.385917 0.280385i
\(191\) 0.383598 + 3.64969i 0.0277562 + 0.264082i 0.999596 + 0.0284381i \(0.00905335\pi\)
−0.971839 + 0.235644i \(0.924280\pi\)
\(192\) 0 0
\(193\) −1.37495 + 0.292255i −0.0989711 + 0.0210370i −0.257131 0.966377i \(-0.582777\pi\)
0.158160 + 0.987414i \(0.449444\pi\)
\(194\) 1.35833 + 0.604769i 0.0975227 + 0.0434199i
\(195\) 0 0
\(196\) −7.16098 1.52211i −0.511498 0.108722i
\(197\) −3.38982 −0.241514 −0.120757 0.992682i \(-0.538532\pi\)
−0.120757 + 0.992682i \(0.538532\pi\)
\(198\) 0 0
\(199\) 7.38470 0.523487 0.261744 0.965137i \(-0.415703\pi\)
0.261744 + 0.965137i \(0.415703\pi\)
\(200\) 6.14951 + 1.30712i 0.434836 + 0.0924272i
\(201\) 0 0
\(202\) −0.297246 0.132343i −0.0209142 0.00931159i
\(203\) −11.6048 + 2.46668i −0.814498 + 0.173127i
\(204\) 0 0
\(205\) 2.03064 + 19.3202i 0.141826 + 1.34938i
\(206\) 3.46332 + 2.51625i 0.241301 + 0.175315i
\(207\) 0 0
\(208\) 2.24322 0.155539
\(209\) −6.05422 10.1043i −0.418779 0.698927i
\(210\) 0 0
\(211\) −1.30097 + 1.44488i −0.0895626 + 0.0994693i −0.786260 0.617896i \(-0.787985\pi\)
0.696697 + 0.717365i \(0.254652\pi\)
\(212\) −2.16975 + 20.6438i −0.149019 + 1.41782i
\(213\) 0 0
\(214\) −5.42080 6.02041i −0.370558 0.411547i
\(215\) −2.49136 + 7.66762i −0.169909 + 0.522927i
\(216\) 0 0
\(217\) 10.7140 + 7.78417i 0.727313 + 0.528424i
\(218\) 3.10384 + 0.659741i 0.210218 + 0.0446833i
\(219\) 0 0
\(220\) 11.6439 + 8.17466i 0.785030 + 0.551135i
\(221\) −3.51160 6.08227i −0.236216 0.409138i
\(222\) 0 0
\(223\) 15.5108 6.90587i 1.03868 0.462452i 0.184723 0.982791i \(-0.440861\pi\)
0.853960 + 0.520339i \(0.174194\pi\)
\(224\) −7.04870 + 5.12118i −0.470961 + 0.342173i
\(225\) 0 0
\(226\) −3.80329 + 11.7053i −0.252991 + 0.778626i
\(227\) 1.70425 + 16.2149i 0.113115 + 1.07622i 0.892926 + 0.450203i \(0.148648\pi\)
−0.779811 + 0.626015i \(0.784685\pi\)
\(228\) 0 0
\(229\) −13.5976 + 15.1017i −0.898554 + 0.997946i 0.101441 + 0.994842i \(0.467655\pi\)
−0.999995 + 0.00310418i \(0.999012\pi\)
\(230\) 1.93933 + 3.35902i 0.127876 + 0.221487i
\(231\) 0 0
\(232\) 9.34021 16.1777i 0.613215 1.06212i
\(233\) −0.139989 0.430843i −0.00917101 0.0282255i 0.946366 0.323096i \(-0.104724\pi\)
−0.955537 + 0.294870i \(0.904724\pi\)
\(234\) 0 0
\(235\) 4.86637 3.53562i 0.317447 0.230639i
\(236\) 6.97782 + 7.74966i 0.454217 + 0.504460i
\(237\) 0 0
\(238\) 4.36995 + 1.94563i 0.283262 + 0.126116i
\(239\) 1.99061 18.9394i 0.128762 1.22509i −0.719113 0.694893i \(-0.755452\pi\)
0.847875 0.530196i \(-0.177882\pi\)
\(240\) 0 0
\(241\) 8.93559 15.4769i 0.575592 0.996955i −0.420385 0.907346i \(-0.638105\pi\)
0.995977 0.0896090i \(-0.0285617\pi\)
\(242\) −3.88798 6.25653i −0.249929 0.402185i
\(243\) 0 0
\(244\) 4.96941 + 15.2943i 0.318134 + 0.979114i
\(245\) 11.9171 5.30585i 0.761358 0.338978i
\(246\) 0 0
\(247\) 5.15916 1.09661i 0.328269 0.0697758i
\(248\) −20.3963 + 4.33536i −1.29516 + 0.275296i
\(249\) 0 0
\(250\) 3.98571 1.77455i 0.252078 0.112232i
\(251\) −3.85401 11.8614i −0.243263 0.748687i −0.995917 0.0902709i \(-0.971227\pi\)
0.752654 0.658416i \(-0.228773\pi\)
\(252\) 0 0
\(253\) 0.838246 + 6.89765i 0.0527001 + 0.433652i
\(254\) 7.48095 12.9574i 0.469397 0.813019i
\(255\) 0 0
\(256\) 0.944018 8.98173i 0.0590011 0.561358i
\(257\) 22.0169 + 9.80254i 1.37337 + 0.611465i 0.954945 0.296784i \(-0.0959142\pi\)
0.418429 + 0.908249i \(0.362581\pi\)
\(258\) 0 0
\(259\) −5.20912 5.78531i −0.323679 0.359482i
\(260\) −5.15379 + 3.74444i −0.319624 + 0.232221i
\(261\) 0 0
\(262\) −0.821621 2.52869i −0.0507599 0.156223i
\(263\) −9.07714 + 15.7221i −0.559720 + 0.969464i 0.437799 + 0.899073i \(0.355758\pi\)
−0.997519 + 0.0703912i \(0.977575\pi\)
\(264\) 0 0
\(265\) −18.4935 32.0317i −1.13605 1.96769i
\(266\) −2.40379 + 2.66968i −0.147386 + 0.163689i
\(267\) 0 0
\(268\) 1.95258 + 18.5776i 0.119273 + 1.13481i
\(269\) −4.12310 + 12.6896i −0.251390 + 0.773698i 0.743130 + 0.669147i \(0.233340\pi\)
−0.994520 + 0.104551i \(0.966660\pi\)
\(270\) 0 0
\(271\) 5.26488 3.82516i 0.319819 0.232362i −0.416279 0.909237i \(-0.636666\pi\)
0.736098 + 0.676875i \(0.236666\pi\)
\(272\) 6.52570 2.90543i 0.395679 0.176168i
\(273\) 0 0
\(274\) −2.00596 3.47442i −0.121184 0.209898i
\(275\) −8.76609 + 0.142142i −0.528615 + 0.00857148i
\(276\) 0 0
\(277\) 13.2624 + 2.81902i 0.796862 + 0.169378i 0.588313 0.808634i \(-0.299792\pi\)
0.208549 + 0.978012i \(0.433126\pi\)
\(278\) −9.31197 6.76554i −0.558495 0.405770i
\(279\) 0 0
\(280\) 3.06911 9.44574i 0.183414 0.564491i
\(281\) 20.4620 + 22.7254i 1.22066 + 1.35568i 0.914955 + 0.403556i \(0.132226\pi\)
0.305707 + 0.952126i \(0.401107\pi\)
\(282\) 0 0
\(283\) 0.0784979 0.746858i 0.00466622 0.0443961i −0.991941 0.126700i \(-0.959561\pi\)
0.996607 + 0.0823044i \(0.0262280\pi\)
\(284\) −11.2351 + 12.4779i −0.666682 + 0.740426i
\(285\) 0 0
\(286\) 3.21476 0.737989i 0.190093 0.0436382i
\(287\) 10.6138 0.626512
\(288\) 0 0
\(289\) −4.34004 3.15323i −0.255297 0.185484i
\(290\) 1.52001 + 14.4619i 0.0892578 + 0.849231i
\(291\) 0 0
\(292\) −6.82652 + 1.45102i −0.399492 + 0.0849146i
\(293\) −13.8990 6.18825i −0.811990 0.361521i −0.0416320 0.999133i \(-0.513256\pi\)
−0.770358 + 0.637612i \(0.779922\pi\)
\(294\) 0 0
\(295\) −18.1755 3.86333i −1.05822 0.224932i
\(296\) 12.2576 0.712460
\(297\) 0 0
\(298\) −8.62192 −0.499454
\(299\) −3.04332 0.646878i −0.176000 0.0374099i
\(300\) 0 0
\(301\) 4.02399 + 1.79160i 0.231939 + 0.103266i
\(302\) 5.50801 1.17076i 0.316950 0.0673699i
\(303\) 0 0
\(304\) 0.560752 + 5.33520i 0.0321613 + 0.305995i
\(305\) −23.1821 16.8428i −1.32741 0.964417i
\(306\) 0 0
\(307\) 2.79291 0.159400 0.0797000 0.996819i \(-0.474604\pi\)
0.0797000 + 0.996819i \(0.474604\pi\)
\(308\) 5.10675 5.85995i 0.290984 0.333902i
\(309\) 0 0
\(310\) 10.8613 12.0627i 0.616880 0.685114i
\(311\) −2.43054 + 23.1250i −0.137823 + 1.31130i 0.678883 + 0.734246i \(0.262464\pi\)
−0.816706 + 0.577053i \(0.804202\pi\)
\(312\) 0 0
\(313\) −9.31595 10.3464i −0.526569 0.584814i 0.419916 0.907563i \(-0.362060\pi\)
−0.946485 + 0.322749i \(0.895393\pi\)
\(314\) 2.44435 7.52292i 0.137942 0.424543i
\(315\) 0 0
\(316\) −19.3642 14.0689i −1.08932 0.791437i
\(317\) 6.35962 + 1.35178i 0.357192 + 0.0759235i 0.383013 0.923743i \(-0.374887\pi\)
−0.0258206 + 0.999667i \(0.508220\pi\)
\(318\) 0 0
\(319\) −7.64726 + 24.9026i −0.428164 + 1.39428i
\(320\) 1.16348 + 2.01520i 0.0650403 + 0.112653i
\(321\) 0 0
\(322\) 1.93591 0.861922i 0.107884 0.0480330i
\(323\) 13.5881 9.87231i 0.756061 0.549310i
\(324\) 0 0
\(325\) 1.21312 3.73360i 0.0672918 0.207103i
\(326\) −0.322943 3.07260i −0.0178861 0.170175i
\(327\) 0 0
\(328\) −11.1824 + 12.4193i −0.617443 + 0.685740i
\(329\) −1.64320 2.84610i −0.0905924 0.156911i
\(330\) 0 0
\(331\) 6.50427 11.2657i 0.357507 0.619220i −0.630037 0.776565i \(-0.716960\pi\)
0.987544 + 0.157345i \(0.0502935\pi\)
\(332\) −1.60536 4.94079i −0.0881055 0.271161i
\(333\) 0 0
\(334\) −5.33441 + 3.87567i −0.291886 + 0.212067i
\(335\) −22.2720 24.7356i −1.21685 1.35145i
\(336\) 0 0
\(337\) 26.6480 + 11.8644i 1.45161 + 0.646297i 0.972805 0.231626i \(-0.0744046\pi\)
0.478802 + 0.877923i \(0.341071\pi\)
\(338\) 0.755590 7.18896i 0.0410987 0.391028i
\(339\) 0 0
\(340\) −10.1430 + 17.5681i −0.550079 + 0.952765i
\(341\) 26.3694 12.2565i 1.42798 0.663725i
\(342\) 0 0
\(343\) −5.46976 16.8342i −0.295339 0.908961i
\(344\) −6.33592 + 2.82093i −0.341610 + 0.152095i
\(345\) 0 0
\(346\) −9.62023 + 2.04484i −0.517187 + 0.109931i
\(347\) 22.6451 4.81337i 1.21565 0.258395i 0.444931 0.895565i \(-0.353228\pi\)
0.770724 + 0.637170i \(0.219895\pi\)
\(348\) 0 0
\(349\) −7.75634 + 3.45335i −0.415188 + 0.184853i −0.603690 0.797219i \(-0.706303\pi\)
0.188502 + 0.982073i \(0.439637\pi\)
\(350\) 0.826257 + 2.54296i 0.0441653 + 0.135927i
\(351\) 0 0
\(352\) 2.30791 + 18.9910i 0.123012 + 1.01222i
\(353\) −0.687569 + 1.19090i −0.0365956 + 0.0633854i −0.883743 0.467972i \(-0.844985\pi\)
0.847148 + 0.531358i \(0.178318\pi\)
\(354\) 0 0
\(355\) 3.12734 29.7547i 0.165982 1.57922i
\(356\) 15.1073 + 6.72622i 0.800687 + 0.356489i
\(357\) 0 0
\(358\) −5.07440 5.63569i −0.268190 0.297856i
\(359\) −16.8945 + 12.2746i −0.891658 + 0.647827i −0.936310 0.351175i \(-0.885782\pi\)
0.0446518 + 0.999003i \(0.485782\pi\)
\(360\) 0 0
\(361\) −1.97350 6.07381i −0.103868 0.319674i
\(362\) 2.10701 3.64945i 0.110742 0.191811i
\(363\) 0 0
\(364\) 1.74025 + 3.01420i 0.0912138 + 0.157987i
\(365\) 8.32108 9.24150i 0.435545 0.483722i
\(366\) 0 0
\(367\) −1.30131 12.3811i −0.0679276 0.646288i −0.974523 0.224287i \(-0.927995\pi\)
0.906595 0.422001i \(-0.138672\pi\)
\(368\) 0.977884 3.00962i 0.0509757 0.156887i
\(369\) 0 0
\(370\) −7.71948 + 5.60853i −0.401316 + 0.291574i
\(371\) −18.4609 + 8.21932i −0.958442 + 0.426726i
\(372\) 0 0
\(373\) 14.2488 + 24.6796i 0.737774 + 1.27786i 0.953496 + 0.301407i \(0.0974563\pi\)
−0.215722 + 0.976455i \(0.569210\pi\)
\(374\) 8.39615 6.31065i 0.434155 0.326316i
\(375\) 0 0
\(376\) 5.06147 + 1.07585i 0.261026 + 0.0554827i
\(377\) −9.43690 6.85631i −0.486025 0.353118i
\(378\) 0 0
\(379\) −1.33092 + 4.09616i −0.0683649 + 0.210405i −0.979402 0.201918i \(-0.935283\pi\)
0.911038 + 0.412323i \(0.135283\pi\)
\(380\) −10.1940 11.3216i −0.522941 0.580785i
\(381\) 0 0
\(382\) 0.256877 2.44403i 0.0131430 0.125047i
\(383\) −12.0374 + 13.3688i −0.615081 + 0.683116i −0.967542 0.252710i \(-0.918678\pi\)
0.352461 + 0.935826i \(0.385345\pi\)
\(384\) 0 0
\(385\) −1.22423 + 13.7960i −0.0623926 + 0.703110i
\(386\) 0.941309 0.0479114
\(387\) 0 0
\(388\) 2.78711 + 2.02496i 0.141494 + 0.102802i
\(389\) −3.75231 35.7009i −0.190250 1.81011i −0.507379 0.861723i \(-0.669386\pi\)
0.317130 0.948382i \(-0.397281\pi\)
\(390\) 0 0
\(391\) −9.69111 + 2.05991i −0.490100 + 0.104174i
\(392\) 10.2517 + 4.56437i 0.517791 + 0.230535i
\(393\) 0 0
\(394\) 2.22039 + 0.471959i 0.111862 + 0.0237770i
\(395\) 42.6496 2.14594
\(396\) 0 0
\(397\) 19.8332 0.995398 0.497699 0.867350i \(-0.334178\pi\)
0.497699 + 0.867350i \(0.334178\pi\)
\(398\) −4.83712 1.02816i −0.242463 0.0515371i
\(399\) 0 0
\(400\) 3.64765 + 1.62404i 0.182383 + 0.0812019i
\(401\) −13.4891 + 2.86721i −0.673616 + 0.143181i −0.532005 0.846741i \(-0.678561\pi\)
−0.141610 + 0.989922i \(0.545228\pi\)
\(402\) 0 0
\(403\) 1.36103 + 12.9493i 0.0677975 + 0.645050i
\(404\) −0.609908 0.443124i −0.0303440 0.0220462i
\(405\) 0 0
\(406\) 7.94480 0.394294
\(407\) −16.6602 + 3.82457i −0.825817 + 0.189577i
\(408\) 0 0
\(409\) 24.6982 27.4302i 1.22125 1.35633i 0.306726 0.951798i \(-0.400766\pi\)
0.914522 0.404536i \(-0.132567\pi\)
\(410\) 1.35982 12.9378i 0.0671568 0.638954i
\(411\) 0 0
\(412\) 6.63691 + 7.37103i 0.326977 + 0.363145i
\(413\) −3.13717 + 9.65521i −0.154370 + 0.475102i
\(414\) 0 0
\(415\) 7.48895 + 5.44104i 0.367618 + 0.267090i
\(416\) −8.37904 1.78102i −0.410816 0.0873217i
\(417\) 0 0
\(418\) 2.55883 + 7.46141i 0.125156 + 0.364949i
\(419\) 1.16856 + 2.02400i 0.0570879 + 0.0988791i 0.893157 0.449745i \(-0.148485\pi\)
−0.836069 + 0.548624i \(0.815152\pi\)
\(420\) 0 0
\(421\) −14.0095 + 6.23742i −0.682781 + 0.303993i −0.718659 0.695363i \(-0.755244\pi\)
0.0358784 + 0.999356i \(0.488577\pi\)
\(422\) 1.05333 0.765289i 0.0512753 0.0372537i
\(423\) 0 0
\(424\) 9.83236 30.2609i 0.477502 1.46960i
\(425\) −1.30672 12.4326i −0.0633851 0.603069i
\(426\) 0 0
\(427\) −10.4756 + 11.6343i −0.506950 + 0.563025i
\(428\) −9.38519 16.2556i −0.453650 0.785745i
\(429\) 0 0
\(430\) 2.69944 4.67557i 0.130179 0.225476i
\(431\) −2.41444 7.43087i −0.116299 0.357932i 0.875917 0.482463i \(-0.160258\pi\)
−0.992216 + 0.124530i \(0.960258\pi\)
\(432\) 0 0
\(433\) −20.3571 + 14.7903i −0.978301 + 0.710777i −0.957328 0.289003i \(-0.906676\pi\)
−0.0209724 + 0.999780i \(0.506676\pi\)
\(434\) −5.93409 6.59047i −0.284845 0.316353i
\(435\) 0 0
\(436\) 6.71653 + 2.99039i 0.321664 + 0.143214i
\(437\) 0.777755 7.39984i 0.0372051 0.353983i
\(438\) 0 0
\(439\) −0.492942 + 0.853801i −0.0235268 + 0.0407497i −0.877549 0.479487i \(-0.840823\pi\)
0.854022 + 0.520236i \(0.174156\pi\)
\(440\) −14.8530 15.9676i −0.708090 0.761224i
\(441\) 0 0
\(442\) 1.45334 + 4.47292i 0.0691283 + 0.212755i
\(443\) 9.84382 4.38275i 0.467694 0.208231i −0.159338 0.987224i \(-0.550936\pi\)
0.627032 + 0.778993i \(0.284269\pi\)
\(444\) 0 0
\(445\) −28.8228 + 6.12647i −1.36633 + 0.290423i
\(446\) −11.1214 + 2.36393i −0.526613 + 0.111935i
\(447\) 0 0
\(448\) 1.16142 0.517099i 0.0548721 0.0244306i
\(449\) 7.13830 + 21.9694i 0.336877 + 1.03680i 0.965790 + 0.259326i \(0.0835003\pi\)
−0.628913 + 0.777476i \(0.716500\pi\)
\(450\) 0 0
\(451\) 11.3238 20.3690i 0.533216 0.959140i
\(452\) −14.2583 + 24.6961i −0.670654 + 1.16161i
\(453\) 0 0
\(454\) 1.14126 10.8583i 0.0535618 0.509606i
\(455\) −5.66559 2.52248i −0.265607 0.118256i
\(456\) 0 0
\(457\) 18.3131 + 20.3388i 0.856651 + 0.951407i 0.999264 0.0383713i \(-0.0122170\pi\)
−0.142613 + 0.989779i \(0.545550\pi\)
\(458\) 11.0093 7.99870i 0.514429 0.373755i
\(459\) 0 0
\(460\) 2.77706 + 8.54690i 0.129481 + 0.398501i
\(461\) 9.76471 16.9130i 0.454788 0.787715i −0.543888 0.839158i \(-0.683048\pi\)
0.998676 + 0.0514422i \(0.0163818\pi\)
\(462\) 0 0
\(463\) −7.29658 12.6380i −0.339101 0.587340i 0.645163 0.764045i \(-0.276789\pi\)
−0.984264 + 0.176705i \(0.943456\pi\)
\(464\) 7.93861 8.81672i 0.368541 0.409306i
\(465\) 0 0
\(466\) 0.0317100 + 0.301701i 0.00146894 + 0.0139760i
\(467\) 1.87684 5.77631i 0.0868496 0.267296i −0.898194 0.439598i \(-0.855121\pi\)
0.985044 + 0.172303i \(0.0551208\pi\)
\(468\) 0 0
\(469\) −14.7122 + 10.6891i −0.679348 + 0.493575i
\(470\) −3.67982 + 1.63836i −0.169738 + 0.0755720i
\(471\) 0 0
\(472\) −7.99242 13.8433i −0.367881 0.637189i
\(473\) 7.73144 5.81104i 0.355492 0.267192i
\(474\) 0 0
\(475\) 9.18313 + 1.95193i 0.421351 + 0.0895609i
\(476\) 8.96654 + 6.51457i 0.410980 + 0.298595i
\(477\) 0 0
\(478\) −3.94080 + 12.1285i −0.180248 + 0.554746i
\(479\) −27.1789 30.1853i −1.24184 1.37920i −0.897895 0.440210i \(-0.854904\pi\)
−0.343943 0.938990i \(-0.611763\pi\)
\(480\) 0 0
\(481\) 0.800066 7.61212i 0.0364799 0.347083i
\(482\) −8.00781 + 8.89358i −0.364746 + 0.405091i
\(483\) 0 0
\(484\) −5.79755 16.0524i −0.263525 0.729653i
\(485\) −6.13862 −0.278740
\(486\) 0 0
\(487\) −11.9767 8.70158i −0.542716 0.394306i 0.282377 0.959304i \(-0.408877\pi\)
−0.825093 + 0.564998i \(0.808877\pi\)
\(488\) −2.57665 24.5152i −0.116640 1.10975i
\(489\) 0 0
\(490\) −8.54468 + 1.81623i −0.386009 + 0.0820488i
\(491\) −36.0682 16.0586i −1.62774 0.724715i −0.629120 0.777308i \(-0.716585\pi\)
−0.998616 + 0.0525930i \(0.983251\pi\)
\(492\) 0 0
\(493\) −36.3331 7.72283i −1.63636 0.347819i
\(494\) −3.53203 −0.158913
\(495\) 0 0
\(496\) −13.2432 −0.594638
\(497\) −15.9889 3.39854i −0.717199 0.152445i
\(498\) 0 0
\(499\) −2.90214 1.29211i −0.129917 0.0578430i 0.340748 0.940155i \(-0.389320\pi\)
−0.470666 + 0.882312i \(0.655986\pi\)
\(500\) 9.88781 2.10172i 0.442196 0.0939917i
\(501\) 0 0
\(502\) 0.873002 + 8.30606i 0.0389640 + 0.370717i
\(503\) −14.8735 10.8062i −0.663174 0.481824i 0.204559 0.978854i \(-0.434424\pi\)
−0.867733 + 0.497030i \(0.834424\pi\)
\(504\) 0 0
\(505\) 1.34332 0.0597771
\(506\) 0.411283 4.63480i 0.0182838 0.206042i
\(507\) 0 0
\(508\) 23.1963 25.7621i 1.02917 1.14301i
\(509\) 1.63651 15.5703i 0.0725370 0.690144i −0.896469 0.443106i \(-0.853876\pi\)
0.969006 0.247037i \(-0.0794570\pi\)
\(510\) 0 0
\(511\) −4.54624 5.04911i −0.201114 0.223360i
\(512\) 4.91260 15.1194i 0.217108 0.668190i
\(513\) 0 0
\(514\) −13.0567 9.48623i −0.575905 0.418419i
\(515\) −17.2875 3.67458i −0.761780 0.161921i
\(516\) 0 0
\(517\) −7.21510 + 0.116993i −0.317320 + 0.00514533i
\(518\) 2.60659 + 4.51475i 0.114527 + 0.198367i
\(519\) 0 0
\(520\) 8.92069 3.97174i 0.391198 0.174173i
\(521\) 14.6674 10.6565i 0.642592 0.466870i −0.218148 0.975916i \(-0.570001\pi\)
0.860740 + 0.509045i \(0.170001\pi\)
\(522\) 0 0
\(523\) 5.24113 16.1305i 0.229178 0.705339i −0.768662 0.639655i \(-0.779077\pi\)
0.997840 0.0656837i \(-0.0209228\pi\)
\(524\) −0.643938 6.12666i −0.0281306 0.267644i
\(525\) 0 0
\(526\) 8.13466 9.03446i 0.354688 0.393921i
\(527\) 20.7313 + 35.9077i 0.903071 + 1.56417i
\(528\) 0 0
\(529\) 9.30544 16.1175i 0.404584 0.700761i
\(530\) 7.65389 + 23.5562i 0.332464 + 1.02322i
\(531\) 0 0
\(532\) −6.73386 + 4.89243i −0.291950 + 0.212114i
\(533\) 6.98263 + 7.75500i 0.302451 + 0.335906i
\(534\) 0 0
\(535\) 30.5546 + 13.6038i 1.32099 + 0.588144i
\(536\) 2.99301 28.4766i 0.129278 1.23000i
\(537\) 0 0
\(538\) 4.46746 7.73787i 0.192606 0.333603i
\(539\) −15.3580 3.00506i −0.661518 0.129437i
\(540\) 0 0
\(541\) −2.07721 6.39299i −0.0893062 0.274856i 0.896422 0.443202i \(-0.146158\pi\)
−0.985728 + 0.168346i \(0.946158\pi\)
\(542\) −3.98117 + 1.77253i −0.171006 + 0.0761368i
\(543\) 0 0
\(544\) −26.6821 + 5.67145i −1.14399 + 0.243162i
\(545\) −12.8142 + 2.72375i −0.548902 + 0.116673i
\(546\) 0 0
\(547\) 41.8550 18.6350i 1.78959 0.796777i 0.812810 0.582529i \(-0.197937\pi\)
0.976779 0.214247i \(-0.0687299\pi\)
\(548\) −2.87247 8.84054i −0.122706 0.377649i
\(549\) 0 0
\(550\) 5.76175 + 1.12738i 0.245682 + 0.0480719i
\(551\) 13.9478 24.1584i 0.594198 1.02918i
\(552\) 0 0
\(553\) 2.43569 23.1741i 0.103576 0.985461i
\(554\) −8.29465 3.69302i −0.352406 0.156901i
\(555\) 0 0
\(556\) −17.8449 19.8188i −0.756794 0.840505i
\(557\) 9.67054 7.02606i 0.409754 0.297704i −0.363748 0.931497i \(-0.618503\pi\)
0.773502 + 0.633794i \(0.218503\pi\)
\(558\) 0 0
\(559\) 1.33828 + 4.11881i 0.0566033 + 0.174207i
\(560\) 3.15389 5.46270i 0.133276 0.230841i
\(561\) 0 0
\(562\) −10.2390 17.7345i −0.431906 0.748083i
\(563\) −23.0203 + 25.5666i −0.970190 + 1.07750i 0.0267742 + 0.999642i \(0.491476\pi\)
−0.996964 + 0.0778635i \(0.975190\pi\)
\(564\) 0 0
\(565\) −5.31136 50.5342i −0.223451 2.12599i
\(566\) −0.155402 + 0.478277i −0.00653202 + 0.0201035i
\(567\) 0 0
\(568\) 20.8221 15.1281i 0.873675 0.634762i
\(569\) 10.5116 4.68005i 0.440668 0.196198i −0.174395 0.984676i \(-0.555797\pi\)
0.615063 + 0.788478i \(0.289130\pi\)
\(570\) 0 0
\(571\) 18.2755 + 31.6542i 0.764807 + 1.32469i 0.940348 + 0.340213i \(0.110499\pi\)
−0.175541 + 0.984472i \(0.556167\pi\)
\(572\) 7.64124 0.123903i 0.319496 0.00518063i
\(573\) 0 0
\(574\) −6.95223 1.47774i −0.290181 0.0616798i
\(575\) −4.48036 3.25517i −0.186844 0.135750i
\(576\) 0 0
\(577\) −6.88976 + 21.2045i −0.286824 + 0.882754i 0.699022 + 0.715101i \(0.253619\pi\)
−0.985846 + 0.167654i \(0.946381\pi\)
\(578\) 2.40379 + 2.66968i 0.0999846 + 0.111044i
\(579\) 0 0
\(580\) −3.52181 + 33.5078i −0.146235 + 1.39133i
\(581\) 3.38413 3.75846i 0.140397 0.155927i
\(582\) 0 0
\(583\) −3.92201 + 44.1976i −0.162433 + 1.83048i
\(584\) 10.6978 0.442678
\(585\) 0 0
\(586\) 8.24255 + 5.98856i 0.340497 + 0.247385i
\(587\) 2.45942 + 23.3998i 0.101511 + 0.965814i 0.920166 + 0.391528i \(0.128054\pi\)
−0.818655 + 0.574286i \(0.805280\pi\)
\(588\) 0 0
\(589\) −30.4580 + 6.47404i −1.25500 + 0.266758i
\(590\) 11.3674 + 5.06111i 0.467990 + 0.208363i
\(591\) 0 0
\(592\) 7.61478 + 1.61857i 0.312966 + 0.0665229i
\(593\) −26.7811 −1.09977 −0.549884 0.835241i \(-0.685328\pi\)
−0.549884 + 0.835241i \(0.685328\pi\)
\(594\) 0 0
\(595\) −19.7488 −0.809622
\(596\) −19.5402 4.15340i −0.800397 0.170130i
\(597\) 0 0
\(598\) 1.90337 + 0.847434i 0.0778345 + 0.0346542i
\(599\) −10.3705 + 2.20431i −0.423726 + 0.0900657i −0.414839 0.909895i \(-0.636162\pi\)
−0.00888668 + 0.999961i \(0.502829\pi\)
\(600\) 0 0
\(601\) 4.09108 + 38.9241i 0.166879 + 1.58775i 0.682472 + 0.730912i \(0.260905\pi\)
−0.515593 + 0.856834i \(0.672428\pi\)
\(602\) −2.38635 1.73378i −0.0972603 0.0706638i
\(603\) 0 0
\(604\) 13.0470 0.530875
\(605\) 25.1700 + 17.0683i 1.02330 + 0.693925i
\(606\) 0 0
\(607\) 5.74813 6.38395i 0.233309 0.259116i −0.615110 0.788442i \(-0.710888\pi\)
0.848419 + 0.529325i \(0.177555\pi\)
\(608\) 2.14136 20.3737i 0.0868436 0.826261i
\(609\) 0 0
\(610\) 12.8397 + 14.2600i 0.519866 + 0.577370i
\(611\) 0.998482 3.07301i 0.0403943 0.124321i
\(612\) 0 0
\(613\) 8.05694 + 5.85371i 0.325417 + 0.236429i 0.738483 0.674272i \(-0.235542\pi\)
−0.413067 + 0.910701i \(0.635542\pi\)
\(614\) −1.82941 0.388853i −0.0738290 0.0156928i
\(615\) 0 0
\(616\) −9.52437 + 7.15863i −0.383748 + 0.288429i
\(617\) 3.64515 + 6.31358i 0.146748 + 0.254175i 0.930024 0.367499i \(-0.119786\pi\)
−0.783276 + 0.621674i \(0.786453\pi\)
\(618\) 0 0
\(619\) −30.0908 + 13.3973i −1.20945 + 0.538483i −0.909593 0.415501i \(-0.863606\pi\)
−0.299859 + 0.953984i \(0.596940\pi\)
\(620\) 30.4263 22.1060i 1.22195 0.887797i
\(621\) 0 0
\(622\) 4.81171 14.8089i 0.192932 0.593784i
\(623\) 1.68282 + 16.0110i 0.0674209 + 0.641467i
\(624\) 0 0
\(625\) −20.8966 + 23.2080i −0.835863 + 0.928320i
\(626\) 4.66161 + 8.07415i 0.186315 + 0.322708i
\(627\) 0 0
\(628\) 9.16370 15.8720i 0.365671 0.633361i
\(629\) −7.53181 23.1805i −0.300313 0.924268i
\(630\) 0 0
\(631\) 6.31372 4.58719i 0.251345 0.182613i −0.454978 0.890503i \(-0.650353\pi\)
0.706323 + 0.707890i \(0.250353\pi\)
\(632\) 24.5500 + 27.2655i 0.976547 + 1.08457i
\(633\) 0 0
\(634\) −3.97747 1.77088i −0.157965 0.0703308i
\(635\) −6.45678 + 61.4321i −0.256229 + 2.43786i
\(636\) 0 0
\(637\) 3.50367 6.06853i 0.138820 0.240444i
\(638\) 8.47626 15.2470i 0.335578 0.603633i
\(639\) 0 0
\(640\) 9.37426 + 28.8510i 0.370550 + 1.14044i
\(641\) 10.9954 4.89547i 0.434293 0.193359i −0.177933 0.984043i \(-0.556941\pi\)
0.612226 + 0.790683i \(0.290274\pi\)
\(642\) 0 0
\(643\) 33.0817 7.03173i 1.30461 0.277304i 0.497378 0.867534i \(-0.334296\pi\)
0.807236 + 0.590229i \(0.200963\pi\)
\(644\) 4.80263 1.02083i 0.189250 0.0402264i
\(645\) 0 0
\(646\) −10.2750 + 4.57471i −0.404263 + 0.179989i
\(647\) 5.98134 + 18.4087i 0.235151 + 0.723719i 0.997101 + 0.0760844i \(0.0242418\pi\)
−0.761951 + 0.647635i \(0.775758\pi\)
\(648\) 0 0
\(649\) 15.1824 + 16.3217i 0.595961 + 0.640681i
\(650\) −1.31444 + 2.27668i −0.0515566 + 0.0892986i
\(651\) 0 0
\(652\) 0.748249 7.11911i 0.0293037 0.278806i
\(653\) 2.42243 + 1.07853i 0.0947970 + 0.0422063i 0.453587 0.891212i \(-0.350144\pi\)
−0.358790 + 0.933418i \(0.616811\pi\)
\(654\) 0 0
\(655\) 7.34504 + 8.15749i 0.286994 + 0.318740i
\(656\) −8.58673 + 6.23863i −0.335256 + 0.243577i
\(657\) 0 0
\(658\) 0.680067 + 2.09303i 0.0265118 + 0.0815948i
\(659\) −1.34963 + 2.33764i −0.0525743 + 0.0910614i −0.891115 0.453778i \(-0.850076\pi\)
0.838541 + 0.544839i \(0.183409\pi\)
\(660\) 0 0
\(661\) 6.28133 + 10.8796i 0.244315 + 0.423167i 0.961939 0.273265i \(-0.0881035\pi\)
−0.717624 + 0.696431i \(0.754770\pi\)
\(662\) −5.82893 + 6.47369i −0.226548 + 0.251607i
\(663\) 0 0
\(664\) 0.832384 + 7.91960i 0.0323028 + 0.307340i
\(665\) 4.58313 14.1054i 0.177726 0.546985i
\(666\) 0 0
\(667\) −13.3126 + 9.67218i −0.515466 + 0.374508i
\(668\) −13.9566 + 6.21387i −0.539996 + 0.240422i
\(669\) 0 0
\(670\) 11.1447 + 19.3032i 0.430557 + 0.745747i
\(671\) 11.1512 + 32.5165i 0.430489 + 1.25528i
\(672\) 0 0
\(673\) 22.1705 + 4.71248i 0.854609 + 0.181653i 0.614328 0.789051i \(-0.289427\pi\)
0.240281 + 0.970703i \(0.422760\pi\)
\(674\) −15.8031 11.4816i −0.608711 0.442254i
\(675\) 0 0
\(676\) 5.17553 15.9286i 0.199059 0.612640i
\(677\) 19.7553 + 21.9404i 0.759256 + 0.843240i 0.991593 0.129396i \(-0.0413038\pi\)
−0.232337 + 0.972635i \(0.574637\pi\)
\(678\) 0 0
\(679\) −0.350572 + 3.33547i −0.0134537 + 0.128004i
\(680\) 20.8068 23.1083i 0.797903 0.886161i
\(681\) 0 0
\(682\) −18.9789 + 4.35685i −0.726739 + 0.166832i
\(683\) 16.5916 0.634859 0.317430 0.948282i \(-0.397180\pi\)
0.317430 + 0.948282i \(0.397180\pi\)
\(684\) 0 0
\(685\) 13.4000 + 9.73565i 0.511987 + 0.371980i
\(686\) 1.23900 + 11.7883i 0.0473051 + 0.450078i
\(687\) 0 0
\(688\) −4.30855 + 0.915811i −0.164262 + 0.0349150i
\(689\) −18.1506 8.08117i −0.691483 0.307868i
\(690\) 0 0
\(691\) −23.0121 4.89136i −0.875420 0.186076i −0.251777 0.967785i \(-0.581015\pi\)
−0.623643 + 0.781709i \(0.714348\pi\)
\(692\) −22.7877 −0.866260
\(693\) 0 0
\(694\) −15.5032 −0.588492
\(695\) 46.4818 + 9.88000i 1.76315 + 0.374770i
\(696\) 0 0
\(697\) 30.3574 + 13.5160i 1.14987 + 0.511954i
\(698\) 5.56136 1.18210i 0.210501 0.0447433i
\(699\) 0 0
\(700\) 0.647572 + 6.16123i 0.0244759 + 0.232873i
\(701\) 18.3698 + 13.3465i 0.693819 + 0.504089i 0.877913 0.478820i \(-0.158935\pi\)
−0.184095 + 0.982909i \(0.558935\pi\)
\(702\) 0 0
\(703\) 18.3044 0.690365
\(704\) 0.246744 2.78059i 0.00929952 0.104797i
\(705\) 0 0
\(706\) 0.616179 0.684336i 0.0231902 0.0257553i
\(707\) 0.0767163 0.729907i 0.00288521 0.0274510i
\(708\) 0 0
\(709\) −7.69668 8.54803i −0.289055 0.321028i 0.581075 0.813850i \(-0.302632\pi\)
−0.870130 + 0.492822i \(0.835965\pi\)
\(710\) −6.19118 + 19.0545i −0.232351 + 0.715102i
\(711\) 0 0
\(712\) −20.5076 14.8996i −0.768555 0.558388i
\(713\) 17.9668 + 3.81895i 0.672861 + 0.143021i
\(714\) 0 0
\(715\) −10.8855 + 8.18168i −0.407095 + 0.305978i
\(716\) −8.78545 15.2169i −0.328328 0.568680i
\(717\) 0 0
\(718\) 12.7752 5.68789i 0.476766 0.212270i
\(719\) −37.1445 + 26.9870i −1.38526 + 1.00645i −0.388888 + 0.921285i \(0.627141\pi\)
−0.996367 + 0.0851620i \(0.972859\pi\)
\(720\) 0 0
\(721\) −2.98390 + 9.18349i −0.111126 + 0.342011i
\(722\) 0.447033 + 4.25323i 0.0166368 + 0.158289i
\(723\) 0 0
\(724\) 6.53322 7.25588i 0.242805 0.269663i
\(725\) −10.3813 17.9810i −0.385554 0.667798i
\(726\) 0 0
\(727\) 0.417822 0.723690i 0.0154962 0.0268402i −0.858173 0.513360i \(-0.828401\pi\)
0.873670 + 0.486520i \(0.161734\pi\)
\(728\) −1.64863 5.07396i −0.0611023 0.188053i
\(729\) 0 0
\(730\) −6.73715 + 4.89483i −0.249353 + 0.181166i
\(731\) 9.22787 + 10.2486i 0.341305 + 0.379058i
\(732\) 0 0
\(733\) −29.1994 13.0004i −1.07850 0.480181i −0.210936 0.977500i \(-0.567651\pi\)
−0.867568 + 0.497319i \(0.834318\pi\)
\(734\) −0.871423 + 8.29104i −0.0321648 + 0.306028i
\(735\) 0 0
\(736\) −6.04218 + 10.4654i −0.222718 + 0.385758i
\(737\) 4.81712 + 39.6385i 0.177441 + 1.46010i
\(738\) 0 0
\(739\) 2.00537 + 6.17190i 0.0737687 + 0.227037i 0.981142 0.193289i \(-0.0619156\pi\)
−0.907373 + 0.420326i \(0.861916\pi\)
\(740\) −20.1967 + 8.99216i −0.742446 + 0.330558i
\(741\) 0 0
\(742\) 13.2366 2.81353i 0.485931 0.103288i
\(743\) 10.8978 2.31639i 0.399800 0.0849801i −0.00362357 0.999993i \(-0.501153\pi\)
0.403424 + 0.915013i \(0.367820\pi\)
\(744\) 0 0
\(745\) 32.5183 14.4781i 1.19138 0.530437i
\(746\) −5.89712 18.1495i −0.215909 0.664499i
\(747\) 0 0
\(748\) 22.0685 10.2574i 0.806905 0.375049i
\(749\) 9.13670 15.8252i 0.333848 0.578242i
\(750\) 0 0
\(751\) 3.73172 35.5050i 0.136173 1.29560i −0.686521 0.727110i \(-0.740863\pi\)
0.822693 0.568485i \(-0.192470\pi\)
\(752\) 3.00227 + 1.33670i 0.109482 + 0.0487443i
\(753\) 0 0
\(754\) 5.22676 + 5.80490i 0.190347 + 0.211402i
\(755\) −18.8080 + 13.6648i −0.684493 + 0.497313i
\(756\) 0 0
\(757\) −1.57431 4.84524i −0.0572194 0.176103i 0.918362 0.395741i \(-0.129512\pi\)
−0.975581 + 0.219638i \(0.929512\pi\)
\(758\) 1.44208 2.49776i 0.0523788 0.0907227i
\(759\) 0 0
\(760\) 11.6762 + 20.2238i 0.423542 + 0.733596i
\(761\) 8.35928 9.28392i 0.303024 0.336542i −0.572332 0.820022i \(-0.693961\pi\)
0.875355 + 0.483481i \(0.160628\pi\)
\(762\) 0 0
\(763\) 0.748162 + 7.11829i 0.0270853 + 0.257699i
\(764\) 1.75952 5.41525i 0.0636572 0.195917i
\(765\) 0 0
\(766\) 9.74603 7.08091i 0.352138 0.255844i
\(767\) −9.11851 + 4.05982i −0.329250 + 0.146592i
\(768\) 0 0
\(769\) −2.74929 4.76192i −0.0991421 0.171719i 0.812188 0.583396i \(-0.198277\pi\)
−0.911330 + 0.411677i \(0.864943\pi\)
\(770\) 2.72269 8.86620i 0.0981191 0.319516i
\(771\) 0 0
\(772\) 2.13332 + 0.453452i 0.0767800 + 0.0163201i
\(773\) 39.4097 + 28.6328i 1.41747 + 1.02985i 0.992183 + 0.124790i \(0.0398258\pi\)
0.425284 + 0.905060i \(0.360174\pi\)
\(774\) 0 0
\(775\) −7.16186 + 22.0419i −0.257262 + 0.791770i
\(776\) −3.53352 3.92437i −0.126846 0.140877i
\(777\) 0 0
\(778\) −2.51275 + 23.9072i −0.0900863 + 0.857114i
\(779\) −16.6988 + 18.5459i −0.598295 + 0.664474i
\(780\) 0 0
\(781\) −23.5806 + 27.0586i −0.843781 + 0.968232i
\(782\) 6.63466 0.237255
\(783\) 0 0
\(784\) 5.76597 + 4.18922i 0.205927 + 0.149615i
\(785\) 3.41357 + 32.4780i 0.121836 + 1.15919i
\(786\) 0 0
\(787\) −19.8941 + 4.22862i −0.709148 + 0.150734i −0.548345 0.836252i \(-0.684742\pi\)
−0.160803 + 0.986986i \(0.551409\pi\)
\(788\) 4.80481 + 2.13924i 0.171164 + 0.0762073i
\(789\) 0 0
\(790\) −27.9363 5.93805i −0.993930 0.211266i
\(791\) −27.7616 −0.987088
\(792\) 0 0
\(793\) −15.3924 −0.546601
\(794\) −12.9911 2.76134i −0.461037 0.0979964i
\(795\) 0 0
\(796\) −10.4673 4.66032i −0.371002 0.165181i
\(797\) 16.9058 3.59344i 0.598835 0.127286i 0.101486 0.994837i \(-0.467640\pi\)
0.497349 + 0.867551i \(0.334307\pi\)
\(798\) 0 0
\(799\) −1.07552 10.2329i −0.0380491 0.362013i
\(800\) −12.3356 8.96232i −0.436128 0.316866i
\(801\) 0 0
\(802\) 9.23484 0.326094
\(803\) −14.5402 + 3.33788i −0.513111 + 0.117791i
\(804\) 0 0
\(805\) −5.85410 + 6.50163i −0.206330 + 0.229152i
\(806\) 0.911414 8.67153i 0.0321032 0.305442i
\(807\) 0 0
\(808\) 0.773244 + 0.858775i 0.0272026 + 0.0302116i
\(809\) −3.94755 + 12.1493i −0.138789 + 0.427147i −0.996160 0.0875508i \(-0.972096\pi\)
0.857371 + 0.514698i \(0.172096\pi\)
\(810\) 0 0
\(811\) −14.3899 10.4549i −0.505298 0.367121i 0.305739 0.952115i \(-0.401097\pi\)
−0.811037 + 0.584995i \(0.801097\pi\)
\(812\) 18.0056 + 3.82721i 0.631873 + 0.134309i
\(813\) 0 0
\(814\) 11.4453 0.185585i 0.401156 0.00650474i
\(815\) 6.37757 + 11.0463i 0.223397 + 0.386934i
\(816\) 0 0
\(817\) −9.46150 + 4.21253i −0.331016 + 0.147378i
\(818\) −19.9969 + 14.5286i −0.699174 + 0.507980i
\(819\) 0 0
\(820\) 9.31430 28.6665i 0.325269 1.00108i
\(821\) −3.17615 30.2191i −0.110848 1.05465i −0.898633 0.438701i \(-0.855439\pi\)
0.787784 0.615951i \(-0.211228\pi\)
\(822\) 0 0
\(823\) 17.1549 19.0525i 0.597983 0.664128i −0.365837 0.930679i \(-0.619217\pi\)
0.963821 + 0.266551i \(0.0858841\pi\)
\(824\) −7.60194 13.1669i −0.264826 0.458692i
\(825\) 0 0
\(826\) 3.39919 5.88756i 0.118273 0.204855i
\(827\) 3.14133 + 9.66803i 0.109235 + 0.336190i 0.990701 0.136057i \(-0.0434430\pi\)
−0.881466 + 0.472247i \(0.843443\pi\)
\(828\) 0 0
\(829\) −2.17360 + 1.57922i −0.0754924 + 0.0548484i −0.624891 0.780712i \(-0.714857\pi\)
0.549399 + 0.835560i \(0.314857\pi\)
\(830\) −4.14786 4.60667i −0.143974 0.159900i
\(831\) 0 0
\(832\) 1.14190 + 0.508407i 0.0395883 + 0.0176259i
\(833\) 2.33245 22.1918i 0.0808147 0.768901i
\(834\) 0 0
\(835\) 13.6111 23.5751i 0.471031 0.815850i
\(836\) 2.20482 + 18.1427i 0.0762553 + 0.627479i
\(837\) 0 0
\(838\) −0.483630 1.48846i −0.0167067 0.0514180i
\(839\) −11.9655 + 5.32740i −0.413096 + 0.183922i −0.602752 0.797928i \(-0.705929\pi\)
0.189656 + 0.981851i \(0.439263\pi\)
\(840\) 0 0
\(841\) −31.9783 + 6.79721i −1.10270 + 0.234386i
\(842\) 10.0449 2.13511i 0.346170 0.0735808i
\(843\) 0 0
\(844\) 2.75586 1.22699i 0.0948606 0.0422347i
\(845\) 9.22207 + 28.3826i 0.317249 + 0.976391i
\(846\) 0 0
\(847\) 10.7117 12.7016i 0.368057 0.436431i
\(848\) 10.1040 17.5006i 0.346972 0.600973i
\(849\) 0 0
\(850\) −0.875047 + 8.32551i −0.0300139 + 0.285563i
\(851\) −9.86405 4.39176i −0.338135 0.150548i
\(852\) 0 0
\(853\) 1.07948 + 1.19889i 0.0369609 + 0.0410492i 0.761342 0.648351i \(-0.224541\pi\)
−0.724381 + 0.689400i \(0.757874\pi\)
\(854\) 8.48156 6.16221i 0.290233 0.210867i
\(855\) 0 0
\(856\) 8.89109 + 27.3639i 0.303891 + 0.935281i
\(857\) −20.7735 + 35.9807i −0.709608 + 1.22908i 0.255395 + 0.966837i \(0.417795\pi\)
−0.965003 + 0.262240i \(0.915539\pi\)
\(858\) 0 0
\(859\) −19.0349 32.9695i −0.649463 1.12490i −0.983251 0.182255i \(-0.941660\pi\)
0.333788 0.942648i \(-0.391673\pi\)
\(860\) 8.37019 9.29603i 0.285421 0.316992i
\(861\) 0 0
\(862\) 0.546912 + 5.20352i 0.0186279 + 0.177233i
\(863\) −13.1442 + 40.4536i −0.447433 + 1.37706i 0.432360 + 0.901701i \(0.357681\pi\)
−0.879793 + 0.475357i \(0.842319\pi\)
\(864\) 0 0
\(865\) 32.8498 23.8668i 1.11693 0.811495i
\(866\) 15.3935 6.85364i 0.523094 0.232896i
\(867\) 0 0
\(868\) −10.2739 17.7948i −0.348717 0.603996i
\(869\) −41.8750 29.3986i −1.42051 0.997280i
\(870\) 0 0
\(871\) −17.4889 3.71739i −0.592590 0.125959i
\(872\) −9.11742 6.62419i −0.308755 0.224323i
\(873\) 0 0
\(874\) −1.53971 + 4.73875i −0.0520816 + 0.160291i
\(875\) 6.58496 + 7.31334i 0.222612 + 0.247236i
\(876\) 0 0
\(877\) 0.826551 7.86411i 0.0279107 0.265552i −0.971663 0.236369i \(-0.924043\pi\)
0.999574 0.0291834i \(-0.00929068\pi\)
\(878\) 0.441760 0.490624i 0.0149087 0.0165578i
\(879\) 0 0
\(880\) −7.11867 11.8808i −0.239970 0.400501i
\(881\) −41.5877 −1.40113 −0.700563 0.713591i \(-0.747068\pi\)
−0.700563 + 0.713591i \(0.747068\pi\)
\(882\) 0 0
\(883\) −9.71314 7.05701i −0.326873 0.237487i 0.412229 0.911080i \(-0.364750\pi\)
−0.739103 + 0.673593i \(0.764750\pi\)
\(884\) 1.13904 + 10.8373i 0.0383101 + 0.364497i
\(885\) 0 0
\(886\) −7.05810 + 1.50024i −0.237121 + 0.0504017i
\(887\) 43.5917 + 19.4083i 1.46367 + 0.651666i 0.975282 0.220963i \(-0.0709199\pi\)
0.488384 + 0.872629i \(0.337587\pi\)
\(888\) 0 0
\(889\) 33.0110 + 7.01670i 1.10715 + 0.235333i
\(890\) 19.7325 0.661434
\(891\) 0 0
\(892\) −26.3436 −0.882050
\(893\) 7.55836 + 1.60658i 0.252931 + 0.0537621i
\(894\) 0 0
\(895\) 28.6021 + 12.7345i 0.956063 + 0.425667i
\(896\) 16.2118 3.44593i 0.541599 0.115120i
\(897\) 0 0
\(898\) −1.61695 15.3843i −0.0539583 0.513379i
\(899\) 55.7124 + 40.4774i 1.85811 + 1.35000i
\(900\) 0 0
\(901\) −63.2683 −2.10777
\(902\) −10.2532 + 11.7655i −0.341396 + 0.391749i
\(903\) 0 0
\(904\) 29.2488 32.4841i 0.972800 1.08040i
\(905\) −1.81855 + 17.3023i −0.0604506 + 0.575149i
\(906\) 0 0
\(907\) −1.50348 1.66979i −0.0499223 0.0554444i 0.717666 0.696387i \(-0.245210\pi\)
−0.767589 + 0.640943i \(0.778544\pi\)
\(908\) 7.81720 24.0589i 0.259423 0.798422i
\(909\) 0 0
\(910\) 3.35987 + 2.44109i 0.111379 + 0.0809213i
\(911\) 12.5203 + 2.66127i 0.414816 + 0.0881719i 0.410592 0.911819i \(-0.365322\pi\)
0.00422413 + 0.999991i \(0.498655\pi\)
\(912\) 0 0
\(913\) −3.60239 10.5044i −0.119222 0.347645i
\(914\) −9.16370 15.8720i −0.303108 0.524999i
\(915\) 0 0
\(916\) 28.8039 12.8243i 0.951708 0.423728i
\(917\) 4.85192 3.52513i 0.160224 0.116410i
\(918\) 0 0
\(919\) 3.53256 10.8721i 0.116528 0.358637i −0.875734 0.482793i \(-0.839622\pi\)
0.992263 + 0.124156i \(0.0396223\pi\)
\(920\) −1.43991 13.6999i −0.0474725 0.451671i
\(921\) 0 0
\(922\) −8.75084 + 9.71879i −0.288194 + 0.320071i
\(923\) −8.03567 13.9182i −0.264497 0.458123i
\(924\) 0 0
\(925\) 6.81198 11.7987i 0.223976 0.387939i
\(926\) 3.01982 + 9.29405i 0.0992375 + 0.305422i
\(927\) 0 0
\(928\) −36.6530 + 26.6300i −1.20319 + 0.874172i
\(929\) 6.18101 + 6.86471i 0.202792 + 0.225224i 0.835959 0.548792i \(-0.184912\pi\)
−0.633167 + 0.774015i \(0.718245\pi\)
\(930\) 0 0
\(931\) 15.3090 + 6.81602i 0.501733 + 0.223386i
\(932\) −0.0734712 + 0.699032i −0.00240663 + 0.0228976i
\(933\) 0 0
\(934\) −2.03359 + 3.52228i −0.0665411 + 0.115253i
\(935\) −21.0699 + 37.9002i −0.689058 + 1.23947i
\(936\) 0 0
\(937\) −10.4711 32.2266i −0.342075 1.05280i −0.963131 0.269032i \(-0.913296\pi\)
0.621056 0.783766i \(-0.286704\pi\)
\(938\) 11.1250 4.95318i 0.363245 0.161727i
\(939\) 0 0
\(940\) −9.12896 + 1.94042i −0.297754 + 0.0632896i
\(941\) −10.3450 + 2.19890i −0.337237 + 0.0716820i −0.373418 0.927663i \(-0.621814\pi\)
0.0361806 + 0.999345i \(0.488481\pi\)
\(942\) 0 0
\(943\) 13.4485 5.98764i 0.437942 0.194984i
\(944\) −3.13717 9.65521i −0.102106 0.314250i
\(945\) 0 0
\(946\) −5.87331 + 2.72991i −0.190958 + 0.0887570i
\(947\) 1.82612 3.16292i 0.0593408 0.102781i −0.834829 0.550510i \(-0.814433\pi\)
0.894170 + 0.447728i \(0.147767\pi\)
\(948\) 0 0
\(949\) 0.698255 6.64346i 0.0226663 0.215656i
\(950\) −5.74336 2.55711i −0.186339 0.0829636i
\(951\) 0 0
\(952\) −11.3678 12.6252i −0.368433 0.409187i
\(953\) 11.6292 8.44909i 0.376706 0.273693i −0.383280 0.923632i \(-0.625206\pi\)
0.759986 + 0.649939i \(0.225206\pi\)
\(954\) 0 0
\(955\) 3.13522 + 9.64922i 0.101453 + 0.312241i
\(956\) −14.7738 + 25.5890i −0.477819 + 0.827607i
\(957\) 0 0
\(958\) 13.6001 + 23.5560i 0.439399 + 0.761061i
\(959\) 6.05522 6.72500i 0.195533 0.217162i
\(960\) 0 0
\(961\) −4.79467 45.6182i −0.154667 1.47155i
\(962\) −1.58388 + 4.87469i −0.0510665 + 0.157166i
\(963\) 0 0
\(964\) −22.4327 + 16.2983i −0.722508 + 0.524933i
\(965\) −3.55023 + 1.58066i −0.114286 + 0.0508834i
\(966\) 0 0
\(967\) −17.6955 30.6496i −0.569050 0.985623i −0.996660 0.0816600i \(-0.973978\pi\)
0.427610 0.903963i \(-0.359356\pi\)
\(968\) 3.57673 + 25.9158i 0.114960 + 0.832966i
\(969\) 0 0
\(970\) 4.02091 + 0.854671i 0.129104 + 0.0274418i
\(971\) −0.118477 0.0860787i −0.00380211 0.00276240i 0.585883 0.810396i \(-0.300748\pi\)
−0.589685 + 0.807634i \(0.700748\pi\)
\(972\) 0 0
\(973\) 8.02293 24.6920i 0.257203 0.791591i
\(974\) 6.63345 + 7.36720i 0.212550 + 0.236060i
\(975\) 0 0
\(976\) 1.63645 15.5698i 0.0523815 0.498377i
\(977\) 26.7730 29.7344i 0.856544 0.951289i −0.142715 0.989764i \(-0.545583\pi\)
0.999260 + 0.0384748i \(0.0122499\pi\)
\(978\) 0 0
\(979\) 32.5223 + 13.8525i 1.03942 + 0.442728i
\(980\) −20.2401 −0.646545
\(981\) 0 0
\(982\) 21.3896 + 15.5404i 0.682568 + 0.495915i
\(983\) −1.59628 15.1876i −0.0509134 0.484408i −0.990035 0.140823i \(-0.955025\pi\)
0.939121 0.343585i \(-0.111641\pi\)
\(984\) 0 0
\(985\) −9.16694 + 1.94849i −0.292083 + 0.0620842i
\(986\) 22.7236 + 10.1172i 0.723667 + 0.322197i
\(987\) 0 0
\(988\) −8.00477 1.70147i −0.254666 0.0541309i
\(989\) 6.10940 0.194268
\(990\) 0 0
\(991\) 21.5067 0.683184 0.341592 0.939848i \(-0.389034\pi\)
0.341592 + 0.939848i \(0.389034\pi\)
\(992\) 49.4671 + 10.5146i 1.57058 + 0.333838i
\(993\) 0 0
\(994\) 9.99985 + 4.45222i 0.317176 + 0.141216i
\(995\) 19.9701 4.24478i 0.633096 0.134569i
\(996\) 0 0
\(997\) 2.30559 + 21.9363i 0.0730189 + 0.694729i 0.968396 + 0.249419i \(0.0802397\pi\)
−0.895377 + 0.445309i \(0.853094\pi\)
\(998\) 1.72106 + 1.25042i 0.0544791 + 0.0395814i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.g.379.2 32
3.2 odd 2 inner 891.2.n.g.379.3 32
9.2 odd 6 297.2.f.c.82.2 16
9.4 even 3 inner 891.2.n.g.676.3 32
9.5 odd 6 inner 891.2.n.g.676.2 32
9.7 even 3 297.2.f.c.82.3 yes 16
11.9 even 5 inner 891.2.n.g.460.3 32
33.20 odd 10 inner 891.2.n.g.460.2 32
99.20 odd 30 297.2.f.c.163.2 yes 16
99.25 even 15 3267.2.a.bg.1.5 8
99.31 even 15 inner 891.2.n.g.757.2 32
99.47 odd 30 3267.2.a.bg.1.4 8
99.52 odd 30 3267.2.a.bh.1.4 8
99.74 even 30 3267.2.a.bh.1.5 8
99.86 odd 30 inner 891.2.n.g.757.3 32
99.97 even 15 297.2.f.c.163.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.f.c.82.2 16 9.2 odd 6
297.2.f.c.82.3 yes 16 9.7 even 3
297.2.f.c.163.2 yes 16 99.20 odd 30
297.2.f.c.163.3 yes 16 99.97 even 15
891.2.n.g.379.2 32 1.1 even 1 trivial
891.2.n.g.379.3 32 3.2 odd 2 inner
891.2.n.g.460.2 32 33.20 odd 10 inner
891.2.n.g.460.3 32 11.9 even 5 inner
891.2.n.g.676.2 32 9.5 odd 6 inner
891.2.n.g.676.3 32 9.4 even 3 inner
891.2.n.g.757.2 32 99.31 even 15 inner
891.2.n.g.757.3 32 99.86 odd 30 inner
3267.2.a.bg.1.4 8 99.47 odd 30
3267.2.a.bg.1.5 8 99.25 even 15
3267.2.a.bh.1.4 8 99.52 odd 30
3267.2.a.bh.1.5 8 99.74 even 30