Properties

Label 891.2.n.g.460.2
Level $891$
Weight $2$
Character 891.460
Analytic conductor $7.115$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 297)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 460.2
Character \(\chi\) \(=\) 891.460
Dual form 891.2.n.g.676.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.448085 - 0.497649i) q^{2} +(0.162183 - 1.54307i) q^{4} +(1.84993 - 2.05455i) q^{5} +(1.37990 - 0.614370i) q^{7} +(-1.92410 + 1.39794i) q^{8} -1.85137 q^{10} +(-2.65125 - 1.99271i) q^{11} +(-1.45264 + 0.308769i) q^{13} +(-0.924052 - 0.411414i) q^{14} +(-1.47748 - 0.314048i) q^{16} +(-1.46138 - 4.49766i) q^{17} +(2.87328 - 2.08756i) q^{19} +(-2.87028 - 3.18777i) q^{20} +(0.196315 + 2.21229i) q^{22} +(1.04751 + 1.81434i) q^{23} +(-0.276313 - 2.62894i) q^{25} +(0.804567 + 0.584552i) q^{26} +(-0.724217 - 2.22891i) q^{28} +(-7.17542 + 3.19470i) q^{29} +(8.57593 - 1.82287i) q^{31} +(2.88407 + 4.99535i) q^{32} +(-1.58343 + 2.74259i) q^{34} +(1.29045 - 3.97161i) q^{35} +(4.16960 + 3.02939i) q^{37} +(-2.32634 - 0.494480i) q^{38} +(-0.687303 + 6.53925i) q^{40} +(-6.41924 - 2.85803i) q^{41} +(-1.45808 + 2.52546i) q^{43} +(-3.50487 + 3.76786i) q^{44} +(0.433531 - 1.33427i) q^{46} +(0.227425 + 2.16380i) q^{47} +(-3.15725 + 3.50648i) q^{49} +(-1.18448 + 1.31550i) q^{50} +(0.240857 + 2.29160i) q^{52} +(4.13417 - 12.7237i) q^{53} +(-8.99874 + 1.76076i) q^{55} +(-1.79621 + 3.11112i) q^{56} +(4.80504 + 2.13934i) q^{58} +(-0.702544 + 6.68426i) q^{59} +(10.1381 + 2.15492i) q^{61} +(-4.74990 - 3.45100i) q^{62} +(0.260092 - 0.800479i) q^{64} +(-2.05290 + 3.55573i) q^{65} +(-6.01970 - 10.4264i) q^{67} +(-7.17720 + 1.52556i) q^{68} +(-2.55470 + 1.13743i) q^{70} +(-3.34410 - 10.2921i) q^{71} +(3.63900 + 2.64389i) q^{73} +(-0.360762 - 3.43242i) q^{74} +(-2.75524 - 4.77222i) q^{76} +(-4.88271 - 1.12089i) q^{77} +(-10.3224 - 11.4642i) q^{79} +(-3.37845 + 2.45459i) q^{80} +(1.45407 + 4.47517i) q^{82} +(3.27510 + 0.696143i) q^{83} +(-11.9441 - 5.31787i) q^{85} +(1.91014 - 0.406012i) q^{86} +(7.88694 + 0.127887i) q^{88} +10.6583 q^{89} +(-1.81480 + 1.31853i) q^{91} +(2.96954 - 1.32212i) q^{92} +(0.974908 - 1.08275i) q^{94} +(1.02636 - 9.76513i) q^{95} +(1.48572 + 1.65006i) q^{97} +3.15971 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{4} - 8 q^{7} - 24 q^{10} - 8 q^{13} + 2 q^{16} + 20 q^{19} + 24 q^{22} + 16 q^{25} - 60 q^{28} + 6 q^{31} - 32 q^{34} + 24 q^{37} + 40 q^{40} + 80 q^{43} - 24 q^{46} - 40 q^{49} - 12 q^{52}+ \cdots + 46 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.448085 0.497649i −0.316844 0.351891i 0.563594 0.826052i \(-0.309418\pi\)
−0.880438 + 0.474161i \(0.842752\pi\)
\(3\) 0 0
\(4\) 0.162183 1.54307i 0.0810914 0.771533i
\(5\) 1.84993 2.05455i 0.827313 0.918824i −0.170471 0.985363i \(-0.554529\pi\)
0.997784 + 0.0665386i \(0.0211955\pi\)
\(6\) 0 0
\(7\) 1.37990 0.614370i 0.521552 0.232210i −0.129037 0.991640i \(-0.541189\pi\)
0.650589 + 0.759430i \(0.274522\pi\)
\(8\) −1.92410 + 1.39794i −0.680271 + 0.494246i
\(9\) 0 0
\(10\) −1.85137 −0.585455
\(11\) −2.65125 1.99271i −0.799381 0.600824i
\(12\) 0 0
\(13\) −1.45264 + 0.308769i −0.402891 + 0.0856371i −0.404900 0.914361i \(-0.632694\pi\)
0.00200934 + 0.999998i \(0.499360\pi\)
\(14\) −0.924052 0.411414i −0.246963 0.109955i
\(15\) 0 0
\(16\) −1.47748 0.314048i −0.369369 0.0785119i
\(17\) −1.46138 4.49766i −0.354436 1.09084i −0.956336 0.292271i \(-0.905589\pi\)
0.601899 0.798572i \(-0.294411\pi\)
\(18\) 0 0
\(19\) 2.87328 2.08756i 0.659175 0.478919i −0.207209 0.978297i \(-0.566438\pi\)
0.866384 + 0.499378i \(0.166438\pi\)
\(20\) −2.87028 3.18777i −0.641815 0.712808i
\(21\) 0 0
\(22\) 0.196315 + 2.21229i 0.0418544 + 0.471663i
\(23\) 1.04751 + 1.81434i 0.218421 + 0.378316i 0.954325 0.298769i \(-0.0965760\pi\)
−0.735904 + 0.677086i \(0.763243\pi\)
\(24\) 0 0
\(25\) −0.276313 2.62894i −0.0552626 0.525788i
\(26\) 0.804567 + 0.584552i 0.157788 + 0.114640i
\(27\) 0 0
\(28\) −0.724217 2.22891i −0.136864 0.421225i
\(29\) −7.17542 + 3.19470i −1.33244 + 0.593241i −0.944521 0.328451i \(-0.893473\pi\)
−0.387921 + 0.921693i \(0.626807\pi\)
\(30\) 0 0
\(31\) 8.57593 1.82287i 1.54028 0.327397i 0.641962 0.766737i \(-0.278121\pi\)
0.898321 + 0.439339i \(0.144787\pi\)
\(32\) 2.88407 + 4.99535i 0.509836 + 0.883061i
\(33\) 0 0
\(34\) −1.58343 + 2.74259i −0.271557 + 0.470350i
\(35\) 1.29045 3.97161i 0.218127 0.671325i
\(36\) 0 0
\(37\) 4.16960 + 3.02939i 0.685478 + 0.498029i 0.875170 0.483815i \(-0.160749\pi\)
−0.189693 + 0.981844i \(0.560749\pi\)
\(38\) −2.32634 0.494480i −0.377383 0.0802152i
\(39\) 0 0
\(40\) −0.687303 + 6.53925i −0.108672 + 1.03395i
\(41\) −6.41924 2.85803i −1.00252 0.446350i −0.161218 0.986919i \(-0.551542\pi\)
−0.841299 + 0.540569i \(0.818209\pi\)
\(42\) 0 0
\(43\) −1.45808 + 2.52546i −0.222355 + 0.385129i −0.955522 0.294918i \(-0.904708\pi\)
0.733168 + 0.680048i \(0.238041\pi\)
\(44\) −3.50487 + 3.76786i −0.528379 + 0.568027i
\(45\) 0 0
\(46\) 0.433531 1.33427i 0.0639207 0.196728i
\(47\) 0.227425 + 2.16380i 0.0331733 + 0.315623i 0.998508 + 0.0546074i \(0.0173907\pi\)
−0.965335 + 0.261016i \(0.915943\pi\)
\(48\) 0 0
\(49\) −3.15725 + 3.50648i −0.451036 + 0.500926i
\(50\) −1.18448 + 1.31550i −0.167511 + 0.186039i
\(51\) 0 0
\(52\) 0.240857 + 2.29160i 0.0334009 + 0.317788i
\(53\) 4.13417 12.7237i 0.567872 1.74773i −0.0913880 0.995815i \(-0.529130\pi\)
0.659260 0.751915i \(-0.270870\pi\)
\(54\) 0 0
\(55\) −8.99874 + 1.76076i −1.21339 + 0.237421i
\(56\) −1.79621 + 3.11112i −0.240028 + 0.415741i
\(57\) 0 0
\(58\) 4.80504 + 2.13934i 0.630932 + 0.280909i
\(59\) −0.702544 + 6.68426i −0.0914634 + 0.870216i 0.848558 + 0.529102i \(0.177471\pi\)
−0.940022 + 0.341115i \(0.889196\pi\)
\(60\) 0 0
\(61\) 10.1381 + 2.15492i 1.29805 + 0.275909i 0.804575 0.593851i \(-0.202393\pi\)
0.493475 + 0.869760i \(0.335726\pi\)
\(62\) −4.74990 3.45100i −0.603238 0.438278i
\(63\) 0 0
\(64\) 0.260092 0.800479i 0.0325114 0.100060i
\(65\) −2.05290 + 3.55573i −0.254631 + 0.441035i
\(66\) 0 0
\(67\) −6.01970 10.4264i −0.735423 1.27379i −0.954538 0.298091i \(-0.903650\pi\)
0.219115 0.975699i \(-0.429683\pi\)
\(68\) −7.17720 + 1.52556i −0.870363 + 0.185001i
\(69\) 0 0
\(70\) −2.55470 + 1.13743i −0.305345 + 0.135948i
\(71\) −3.34410 10.2921i −0.396872 1.22145i −0.927494 0.373838i \(-0.878042\pi\)
0.530622 0.847608i \(-0.321958\pi\)
\(72\) 0 0
\(73\) 3.63900 + 2.64389i 0.425913 + 0.309444i 0.780013 0.625764i \(-0.215213\pi\)
−0.354099 + 0.935208i \(0.615213\pi\)
\(74\) −0.360762 3.43242i −0.0419377 0.399011i
\(75\) 0 0
\(76\) −2.75524 4.77222i −0.316048 0.547411i
\(77\) −4.88271 1.12089i −0.556436 0.127737i
\(78\) 0 0
\(79\) −10.3224 11.4642i −1.16136 1.28983i −0.949940 0.312432i \(-0.898856\pi\)
−0.211425 0.977394i \(-0.567810\pi\)
\(80\) −3.37845 + 2.45459i −0.377723 + 0.274432i
\(81\) 0 0
\(82\) 1.45407 + 4.47517i 0.160575 + 0.494200i
\(83\) 3.27510 + 0.696143i 0.359488 + 0.0764116i 0.384115 0.923285i \(-0.374506\pi\)
−0.0246270 + 0.999697i \(0.507840\pi\)
\(84\) 0 0
\(85\) −11.9441 5.31787i −1.29552 0.576804i
\(86\) 1.91014 0.406012i 0.205975 0.0437814i
\(87\) 0 0
\(88\) 7.88694 + 0.127887i 0.840751 + 0.0136328i
\(89\) 10.6583 1.12978 0.564888 0.825167i \(-0.308919\pi\)
0.564888 + 0.825167i \(0.308919\pi\)
\(90\) 0 0
\(91\) −1.81480 + 1.31853i −0.190243 + 0.138219i
\(92\) 2.96954 1.32212i 0.309596 0.137841i
\(93\) 0 0
\(94\) 0.974908 1.08275i 0.100554 0.111677i
\(95\) 1.02636 9.76513i 0.105302 1.00188i
\(96\) 0 0
\(97\) 1.48572 + 1.65006i 0.150852 + 0.167538i 0.813835 0.581097i \(-0.197376\pi\)
−0.662982 + 0.748635i \(0.730710\pi\)
\(98\) 3.15971 0.319179
\(99\) 0 0
\(100\) −4.10144 −0.410144
\(101\) 0.325123 + 0.361085i 0.0323509 + 0.0359293i 0.759103 0.650970i \(-0.225638\pi\)
−0.726752 + 0.686900i \(0.758971\pi\)
\(102\) 0 0
\(103\) 0.668220 6.35769i 0.0658417 0.626441i −0.910989 0.412430i \(-0.864680\pi\)
0.976831 0.214012i \(-0.0686531\pi\)
\(104\) 2.36339 2.62481i 0.231749 0.257384i
\(105\) 0 0
\(106\) −8.18438 + 3.64392i −0.794937 + 0.353929i
\(107\) −9.78725 + 7.11085i −0.946169 + 0.687432i −0.949898 0.312561i \(-0.898813\pi\)
0.00372856 + 0.999993i \(0.498813\pi\)
\(108\) 0 0
\(109\) −4.73854 −0.453870 −0.226935 0.973910i \(-0.572871\pi\)
−0.226935 + 0.973910i \(0.572871\pi\)
\(110\) 4.90844 + 3.68925i 0.468002 + 0.351756i
\(111\) 0 0
\(112\) −2.23171 + 0.474364i −0.210877 + 0.0448232i
\(113\) 16.7903 + 7.47551i 1.57950 + 0.703237i 0.994196 0.107581i \(-0.0343104\pi\)
0.585299 + 0.810817i \(0.300977\pi\)
\(114\) 0 0
\(115\) 5.66548 + 1.20424i 0.528309 + 0.112296i
\(116\) 3.76591 + 11.5903i 0.349656 + 1.07613i
\(117\) 0 0
\(118\) 3.64121 2.64550i 0.335201 0.243538i
\(119\) −4.77978 5.30848i −0.438162 0.486628i
\(120\) 0 0
\(121\) 3.05822 + 10.5663i 0.278020 + 0.960575i
\(122\) −3.47034 6.01080i −0.314190 0.544192i
\(123\) 0 0
\(124\) −1.42194 13.5289i −0.127694 1.21493i
\(125\) 5.27088 + 3.82952i 0.471442 + 0.342523i
\(126\) 0 0
\(127\) −6.90430 21.2493i −0.612658 1.88557i −0.431501 0.902112i \(-0.642016\pi\)
−0.181156 0.983454i \(-0.557984\pi\)
\(128\) 10.0240 4.46297i 0.886005 0.394475i
\(129\) 0 0
\(130\) 2.68938 0.571646i 0.235874 0.0501367i
\(131\) −1.98522 3.43851i −0.173450 0.300424i 0.766174 0.642633i \(-0.222158\pi\)
−0.939624 + 0.342209i \(0.888825\pi\)
\(132\) 0 0
\(133\) 2.68229 4.64587i 0.232584 0.402848i
\(134\) −2.49136 + 7.66762i −0.215221 + 0.662381i
\(135\) 0 0
\(136\) 9.09929 + 6.61102i 0.780258 + 0.566890i
\(137\) 5.86012 + 1.24561i 0.500664 + 0.106419i 0.451320 0.892362i \(-0.350953\pi\)
0.0493445 + 0.998782i \(0.484287\pi\)
\(138\) 0 0
\(139\) −1.79667 + 17.0942i −0.152392 + 1.44991i 0.604623 + 0.796512i \(0.293324\pi\)
−0.757014 + 0.653398i \(0.773343\pi\)
\(140\) −5.91917 2.63538i −0.500261 0.222731i
\(141\) 0 0
\(142\) −3.62340 + 6.27592i −0.304069 + 0.526664i
\(143\) 4.46660 + 2.07607i 0.373516 + 0.173610i
\(144\) 0 0
\(145\) −6.71032 + 20.6522i −0.557262 + 1.71508i
\(146\) −0.314854 2.99564i −0.0260575 0.247921i
\(147\) 0 0
\(148\) 5.35079 5.94265i 0.439832 0.488483i
\(149\) 8.61520 9.56815i 0.705784 0.783853i −0.278501 0.960436i \(-0.589838\pi\)
0.984286 + 0.176583i \(0.0565043\pi\)
\(150\) 0 0
\(151\) 0.878973 + 8.36287i 0.0715298 + 0.680560i 0.970261 + 0.242061i \(0.0778233\pi\)
−0.898731 + 0.438500i \(0.855510\pi\)
\(152\) −2.61019 + 8.03333i −0.211714 + 0.651589i
\(153\) 0 0
\(154\) 1.63006 + 2.93213i 0.131354 + 0.236278i
\(155\) 12.1197 20.9919i 0.973476 1.68611i
\(156\) 0 0
\(157\) 10.7910 + 4.80445i 0.861214 + 0.383437i 0.789325 0.613976i \(-0.210431\pi\)
0.0718888 + 0.997413i \(0.477097\pi\)
\(158\) −1.07983 + 10.2739i −0.0859067 + 0.817347i
\(159\) 0 0
\(160\) 15.5985 + 3.31557i 1.23317 + 0.262119i
\(161\) 2.56013 + 1.86005i 0.201767 + 0.146592i
\(162\) 0 0
\(163\) 1.42569 4.38781i 0.111668 0.343680i −0.879569 0.475771i \(-0.842169\pi\)
0.991238 + 0.132091i \(0.0421691\pi\)
\(164\) −5.45122 + 9.44179i −0.425669 + 0.737280i
\(165\) 0 0
\(166\) −1.12109 1.94178i −0.0870132 0.150711i
\(167\) 9.63126 2.04719i 0.745289 0.158416i 0.180412 0.983591i \(-0.442257\pi\)
0.564877 + 0.825175i \(0.308924\pi\)
\(168\) 0 0
\(169\) −9.86126 + 4.39051i −0.758558 + 0.337732i
\(170\) 2.70556 + 8.32684i 0.207507 + 0.638640i
\(171\) 0 0
\(172\) 3.66048 + 2.65949i 0.279109 + 0.202785i
\(173\) 1.53520 + 14.6065i 0.116719 + 1.11051i 0.883445 + 0.468535i \(0.155218\pi\)
−0.766726 + 0.641975i \(0.778115\pi\)
\(174\) 0 0
\(175\) −1.99643 3.45791i −0.150916 0.261393i
\(176\) 3.29135 + 3.77680i 0.248095 + 0.284687i
\(177\) 0 0
\(178\) −4.77582 5.30409i −0.357963 0.397558i
\(179\) −9.16182 + 6.65645i −0.684787 + 0.497527i −0.874942 0.484227i \(-0.839101\pi\)
0.190156 + 0.981754i \(0.439101\pi\)
\(180\) 0 0
\(181\) −1.94459 5.98485i −0.144541 0.444850i 0.852411 0.522872i \(-0.175140\pi\)
−0.996952 + 0.0780221i \(0.975140\pi\)
\(182\) 1.46935 + 0.312320i 0.108915 + 0.0231507i
\(183\) 0 0
\(184\) −4.55185 2.02661i −0.335567 0.149404i
\(185\) 13.9375 2.96251i 1.02471 0.217808i
\(186\) 0 0
\(187\) −5.08806 + 14.8365i −0.372076 + 1.08495i
\(188\) 3.37577 0.246204
\(189\) 0 0
\(190\) −5.31950 + 3.86484i −0.385917 + 0.280385i
\(191\) 3.35252 1.49264i 0.242580 0.108004i −0.281846 0.959460i \(-0.590947\pi\)
0.524426 + 0.851456i \(0.324280\pi\)
\(192\) 0 0
\(193\) 0.940575 1.04461i 0.0677041 0.0751930i −0.708341 0.705870i \(-0.750556\pi\)
0.776045 + 0.630677i \(0.217223\pi\)
\(194\) 0.155421 1.47874i 0.0111586 0.106167i
\(195\) 0 0
\(196\) 4.89868 + 5.44053i 0.349906 + 0.388609i
\(197\) 3.38982 0.241514 0.120757 0.992682i \(-0.461468\pi\)
0.120757 + 0.992682i \(0.461468\pi\)
\(198\) 0 0
\(199\) 7.38470 0.523487 0.261744 0.965137i \(-0.415703\pi\)
0.261744 + 0.965137i \(0.415703\pi\)
\(200\) 4.20675 + 4.67207i 0.297462 + 0.330365i
\(201\) 0 0
\(202\) 0.0340111 0.323594i 0.00239301 0.0227680i
\(203\) −7.93861 + 8.81672i −0.557181 + 0.618812i
\(204\) 0 0
\(205\) −17.7471 + 7.90153i −1.23951 + 0.551866i
\(206\) −3.46332 + 2.51625i −0.241301 + 0.175315i
\(207\) 0 0
\(208\) 2.24322 0.155539
\(209\) −11.7777 0.190975i −0.814678 0.0132100i
\(210\) 0 0
\(211\) 1.90178 0.404237i 0.130924 0.0278288i −0.141983 0.989869i \(-0.545348\pi\)
0.272908 + 0.962040i \(0.412015\pi\)
\(212\) −18.9630 8.44286i −1.30238 0.579858i
\(213\) 0 0
\(214\) 7.92423 + 1.68435i 0.541689 + 0.115140i
\(215\) 2.49136 + 7.66762i 0.169909 + 0.522927i
\(216\) 0 0
\(217\) 10.7140 7.78417i 0.727313 0.528424i
\(218\) 2.12327 + 2.35813i 0.143806 + 0.159713i
\(219\) 0 0
\(220\) 1.25753 + 14.1712i 0.0847824 + 0.955423i
\(221\) 3.51160 + 6.08227i 0.236216 + 0.409138i
\(222\) 0 0
\(223\) −1.77476 16.8857i −0.118847 1.13075i −0.877607 0.479381i \(-0.840861\pi\)
0.758760 0.651370i \(-0.225806\pi\)
\(224\) 7.04870 + 5.12118i 0.470961 + 0.342173i
\(225\) 0 0
\(226\) −3.80329 11.7053i −0.252991 0.778626i
\(227\) 14.8946 6.63150i 0.988590 0.440148i 0.152239 0.988344i \(-0.451352\pi\)
0.836350 + 0.548195i \(0.184685\pi\)
\(228\) 0 0
\(229\) 19.8772 4.22503i 1.31352 0.279198i 0.502686 0.864469i \(-0.332345\pi\)
0.810838 + 0.585271i \(0.199012\pi\)
\(230\) −1.93933 3.35902i −0.127876 0.221487i
\(231\) 0 0
\(232\) 9.34021 16.1777i 0.613215 1.06212i
\(233\) 0.139989 0.430843i 0.00917101 0.0282255i −0.946366 0.323096i \(-0.895276\pi\)
0.955537 + 0.294870i \(0.0952764\pi\)
\(234\) 0 0
\(235\) 4.86637 + 3.53562i 0.317447 + 0.230639i
\(236\) 10.2003 + 2.16814i 0.663984 + 0.141134i
\(237\) 0 0
\(238\) −0.500013 + 4.75730i −0.0324110 + 0.308370i
\(239\) 17.3973 + 7.74579i 1.12534 + 0.501033i 0.883101 0.469183i \(-0.155452\pi\)
0.242239 + 0.970217i \(0.422118\pi\)
\(240\) 0 0
\(241\) 8.93559 15.4769i 0.575592 0.996955i −0.420385 0.907346i \(-0.638105\pi\)
0.995977 0.0896090i \(-0.0285617\pi\)
\(242\) 3.88798 6.25653i 0.249929 0.402185i
\(243\) 0 0
\(244\) 4.96941 15.2943i 0.318134 0.979114i
\(245\) 1.36357 + 12.9735i 0.0871151 + 0.828845i
\(246\) 0 0
\(247\) −3.52927 + 3.91966i −0.224562 + 0.249402i
\(248\) −13.9527 + 15.4960i −0.885995 + 0.983998i
\(249\) 0 0
\(250\) −0.456047 4.33900i −0.0288430 0.274422i
\(251\) 3.85401 11.8614i 0.243263 0.748687i −0.752654 0.658416i \(-0.771227\pi\)
0.995917 0.0902709i \(-0.0287733\pi\)
\(252\) 0 0
\(253\) 0.838246 6.89765i 0.0527001 0.433652i
\(254\) −7.48095 + 12.9574i −0.469397 + 0.813019i
\(255\) 0 0
\(256\) −8.25041 3.67332i −0.515651 0.229583i
\(257\) 2.51918 23.9684i 0.157142 1.49511i −0.577353 0.816495i \(-0.695914\pi\)
0.734495 0.678614i \(-0.237419\pi\)
\(258\) 0 0
\(259\) 7.61478 + 1.61857i 0.473160 + 0.100573i
\(260\) 5.15379 + 3.74444i 0.319624 + 0.232221i
\(261\) 0 0
\(262\) −0.821621 + 2.52869i −0.0507599 + 0.156223i
\(263\) 9.07714 15.7221i 0.559720 0.969464i −0.437799 0.899073i \(-0.644242\pi\)
0.997519 0.0703912i \(-0.0224247\pi\)
\(264\) 0 0
\(265\) −18.4935 32.0317i −1.13605 1.96769i
\(266\) −3.51391 + 0.746904i −0.215451 + 0.0457956i
\(267\) 0 0
\(268\) −17.0649 + 7.59780i −1.04241 + 0.464110i
\(269\) 4.12310 + 12.6896i 0.251390 + 0.773698i 0.994520 + 0.104551i \(0.0333405\pi\)
−0.743130 + 0.669147i \(0.766660\pi\)
\(270\) 0 0
\(271\) 5.26488 + 3.82516i 0.319819 + 0.232362i 0.736098 0.676875i \(-0.236666\pi\)
−0.416279 + 0.909237i \(0.636666\pi\)
\(272\) 0.746675 + 7.10414i 0.0452738 + 0.430752i
\(273\) 0 0
\(274\) −2.00596 3.47442i −0.121184 0.209898i
\(275\) −4.50614 + 7.52058i −0.271731 + 0.453508i
\(276\) 0 0
\(277\) −9.07255 10.0761i −0.545117 0.605413i 0.406141 0.913810i \(-0.366874\pi\)
−0.951258 + 0.308397i \(0.900208\pi\)
\(278\) 9.31197 6.76554i 0.558495 0.405770i
\(279\) 0 0
\(280\) 3.06911 + 9.44574i 0.183414 + 0.564491i
\(281\) 29.9118 + 6.35794i 1.78439 + 0.379283i 0.977418 0.211313i \(-0.0677739\pi\)
0.806968 + 0.590596i \(0.201107\pi\)
\(282\) 0 0
\(283\) −0.686047 0.305448i −0.0407812 0.0181570i 0.386245 0.922396i \(-0.373772\pi\)
−0.427026 + 0.904239i \(0.640439\pi\)
\(284\) −16.4237 + 3.49097i −0.974569 + 0.207151i
\(285\) 0 0
\(286\) −0.968263 3.15306i −0.0572546 0.186444i
\(287\) −10.6138 −0.626512
\(288\) 0 0
\(289\) −4.34004 + 3.15323i −0.255297 + 0.185484i
\(290\) 13.2844 5.91458i 0.780085 0.347316i
\(291\) 0 0
\(292\) 4.66988 5.18643i 0.273284 0.303513i
\(293\) −1.59034 + 15.1310i −0.0929084 + 0.883964i 0.844459 + 0.535621i \(0.179922\pi\)
−0.937367 + 0.348343i \(0.886744\pi\)
\(294\) 0 0
\(295\) 12.4335 + 13.8088i 0.723907 + 0.803980i
\(296\) −12.2576 −0.712460
\(297\) 0 0
\(298\) −8.62192 −0.499454
\(299\) −2.08187 2.31215i −0.120398 0.133715i
\(300\) 0 0
\(301\) −0.460428 + 4.38068i −0.0265386 + 0.252498i
\(302\) 3.76792 4.18470i 0.216819 0.240802i
\(303\) 0 0
\(304\) −4.90079 + 2.18197i −0.281080 + 0.125145i
\(305\) 23.1821 16.8428i 1.32741 0.964417i
\(306\) 0 0
\(307\) 2.79291 0.159400 0.0797000 0.996819i \(-0.474604\pi\)
0.0797000 + 0.996819i \(0.474604\pi\)
\(308\) −2.52149 + 7.35255i −0.143675 + 0.418950i
\(309\) 0 0
\(310\) −15.8772 + 3.37481i −0.901766 + 0.191676i
\(311\) −21.2421 9.45760i −1.20453 0.536291i −0.296434 0.955053i \(-0.595798\pi\)
−0.908096 + 0.418762i \(0.862464\pi\)
\(312\) 0 0
\(313\) 13.6182 + 2.89465i 0.769748 + 0.163615i 0.576015 0.817439i \(-0.304607\pi\)
0.193733 + 0.981054i \(0.437940\pi\)
\(314\) −2.44435 7.52292i −0.137942 0.424543i
\(315\) 0 0
\(316\) −19.3642 + 14.0689i −1.08932 + 0.791437i
\(317\) 4.35049 + 4.83171i 0.244348 + 0.271376i 0.852826 0.522195i \(-0.174887\pi\)
−0.608479 + 0.793570i \(0.708220\pi\)
\(318\) 0 0
\(319\) 25.3899 + 5.82858i 1.42156 + 0.326338i
\(320\) −1.16348 2.01520i −0.0650403 0.112653i
\(321\) 0 0
\(322\) −0.221508 2.10751i −0.0123442 0.117447i
\(323\) −13.5881 9.87231i −0.756061 0.549310i
\(324\) 0 0
\(325\) 1.21312 + 3.73360i 0.0672918 + 0.207103i
\(326\) −2.82242 + 1.25662i −0.156319 + 0.0695978i
\(327\) 0 0
\(328\) 16.3466 3.47458i 0.902590 0.191851i
\(329\) 1.64320 + 2.84610i 0.0905924 + 0.156911i
\(330\) 0 0
\(331\) 6.50427 11.2657i 0.357507 0.619220i −0.630037 0.776565i \(-0.716960\pi\)
0.987544 + 0.157345i \(0.0502935\pi\)
\(332\) 1.60536 4.94079i 0.0881055 0.271161i
\(333\) 0 0
\(334\) −5.33441 3.87567i −0.291886 0.212067i
\(335\) −32.5576 6.92034i −1.77881 0.378099i
\(336\) 0 0
\(337\) −3.04908 + 29.0100i −0.166094 + 1.58028i 0.520903 + 0.853616i \(0.325595\pi\)
−0.686997 + 0.726661i \(0.741071\pi\)
\(338\) 6.60362 + 2.94012i 0.359189 + 0.159921i
\(339\) 0 0
\(340\) −10.1430 + 17.5681i −0.550079 + 0.952765i
\(341\) −26.3694 12.2565i −1.42798 0.663725i
\(342\) 0 0
\(343\) −5.46976 + 16.8342i −0.295339 + 0.908961i
\(344\) −0.724960 6.89754i −0.0390872 0.371890i
\(345\) 0 0
\(346\) 6.58100 7.30894i 0.353797 0.392931i
\(347\) 15.4911 17.2046i 0.831604 0.923590i −0.166443 0.986051i \(-0.553228\pi\)
0.998047 + 0.0624611i \(0.0198949\pi\)
\(348\) 0 0
\(349\) 0.887486 + 8.44386i 0.0475060 + 0.451990i 0.992257 + 0.124201i \(0.0396368\pi\)
−0.944751 + 0.327789i \(0.893697\pi\)
\(350\) −0.826257 + 2.54296i −0.0441653 + 0.135927i
\(351\) 0 0
\(352\) 2.30791 18.9910i 0.123012 1.01222i
\(353\) 0.687569 1.19090i 0.0365956 0.0633854i −0.847148 0.531358i \(-0.821682\pi\)
0.883743 + 0.467972i \(0.155015\pi\)
\(354\) 0 0
\(355\) −27.3320 12.1690i −1.45063 0.645863i
\(356\) 1.72859 16.4464i 0.0916152 0.871660i
\(357\) 0 0
\(358\) 7.41785 + 1.57671i 0.392046 + 0.0833319i
\(359\) 16.8945 + 12.2746i 0.891658 + 0.647827i 0.936310 0.351175i \(-0.114218\pi\)
−0.0446518 + 0.999003i \(0.514218\pi\)
\(360\) 0 0
\(361\) −1.97350 + 6.07381i −0.103868 + 0.319674i
\(362\) −2.10701 + 3.64945i −0.110742 + 0.191811i
\(363\) 0 0
\(364\) 1.74025 + 3.01420i 0.0912138 + 0.157987i
\(365\) 12.1639 2.58552i 0.636688 0.135332i
\(366\) 0 0
\(367\) 11.3730 5.06358i 0.593666 0.264317i −0.0878343 0.996135i \(-0.527995\pi\)
0.681500 + 0.731818i \(0.261328\pi\)
\(368\) −0.977884 3.00962i −0.0509757 0.156887i
\(369\) 0 0
\(370\) −7.71948 5.60853i −0.401316 0.291574i
\(371\) −2.11231 20.0973i −0.109666 1.04340i
\(372\) 0 0
\(373\) 14.2488 + 24.6796i 0.737774 + 1.27786i 0.953496 + 0.301407i \(0.0974563\pi\)
−0.215722 + 0.976455i \(0.569210\pi\)
\(374\) 9.66326 4.11596i 0.499675 0.212831i
\(375\) 0 0
\(376\) −3.46245 3.84544i −0.178562 0.198313i
\(377\) 9.43690 6.85631i 0.486025 0.353118i
\(378\) 0 0
\(379\) −1.33092 4.09616i −0.0683649 0.210405i 0.911038 0.412323i \(-0.135283\pi\)
−0.979402 + 0.201918i \(0.935283\pi\)
\(380\) −14.9018 3.16747i −0.764445 0.162488i
\(381\) 0 0
\(382\) −2.24503 0.999550i −0.114866 0.0511414i
\(383\) −17.5964 + 3.74024i −0.899136 + 0.191117i −0.634219 0.773154i \(-0.718678\pi\)
−0.264918 + 0.964271i \(0.585345\pi\)
\(384\) 0 0
\(385\) −11.3356 + 7.95822i −0.577715 + 0.405589i
\(386\) −0.941309 −0.0479114
\(387\) 0 0
\(388\) 2.78711 2.02496i 0.141494 0.102802i
\(389\) −32.7940 + 14.6008i −1.66272 + 0.740291i −0.999964 0.00854185i \(-0.997281\pi\)
−0.662758 + 0.748833i \(0.730614\pi\)
\(390\) 0 0
\(391\) 6.62949 7.36279i 0.335267 0.372352i
\(392\) 1.17301 11.1604i 0.0592460 0.563688i
\(393\) 0 0
\(394\) −1.51893 1.68694i −0.0765224 0.0849867i
\(395\) −42.6496 −2.14594
\(396\) 0 0
\(397\) 19.8332 0.995398 0.497699 0.867350i \(-0.334178\pi\)
0.497699 + 0.867350i \(0.334178\pi\)
\(398\) −3.30897 3.67499i −0.165864 0.184210i
\(399\) 0 0
\(400\) −0.417367 + 3.97098i −0.0208683 + 0.198549i
\(401\) −9.22764 + 10.2483i −0.460807 + 0.511778i −0.928103 0.372323i \(-0.878561\pi\)
0.467297 + 0.884101i \(0.345228\pi\)
\(402\) 0 0
\(403\) −11.8949 + 5.29596i −0.592529 + 0.263811i
\(404\) 0.609908 0.443124i 0.0303440 0.0220462i
\(405\) 0 0
\(406\) 7.94480 0.394294
\(407\) −5.01794 16.3405i −0.248730 0.809967i
\(408\) 0 0
\(409\) −36.1043 + 7.67421i −1.78524 + 0.379465i −0.977644 0.210266i \(-0.932567\pi\)
−0.807599 + 0.589731i \(0.799234\pi\)
\(410\) 11.8844 + 5.29128i 0.586929 + 0.261318i
\(411\) 0 0
\(412\) −9.70195 2.06221i −0.477981 0.101598i
\(413\) 3.13717 + 9.65521i 0.154370 + 0.475102i
\(414\) 0 0
\(415\) 7.48895 5.44104i 0.367618 0.267090i
\(416\) −5.73193 6.36595i −0.281031 0.312116i
\(417\) 0 0
\(418\) 5.18236 + 5.94671i 0.253477 + 0.290863i
\(419\) −1.16856 2.02400i −0.0570879 0.0988791i 0.836069 0.548624i \(-0.184848\pi\)
−0.893157 + 0.449745i \(0.851515\pi\)
\(420\) 0 0
\(421\) 1.60297 + 15.2513i 0.0781242 + 0.743302i 0.961531 + 0.274696i \(0.0885771\pi\)
−0.883407 + 0.468606i \(0.844756\pi\)
\(422\) −1.05333 0.765289i −0.0512753 0.0372537i
\(423\) 0 0
\(424\) 9.83236 + 30.2609i 0.477502 + 1.46960i
\(425\) −11.4203 + 5.08464i −0.553966 + 0.246641i
\(426\) 0 0
\(427\) 15.3134 3.25497i 0.741070 0.157519i
\(428\) 9.38519 + 16.2556i 0.453650 + 0.785745i
\(429\) 0 0
\(430\) 2.69944 4.67557i 0.130179 0.225476i
\(431\) 2.41444 7.43087i 0.116299 0.357932i −0.875917 0.482463i \(-0.839742\pi\)
0.992216 + 0.124530i \(0.0397424\pi\)
\(432\) 0 0
\(433\) −20.3571 14.7903i −0.978301 0.710777i −0.0209724 0.999780i \(-0.506676\pi\)
−0.957328 + 0.289003i \(0.906676\pi\)
\(434\) −8.67456 1.84383i −0.416392 0.0885069i
\(435\) 0 0
\(436\) −0.768510 + 7.31188i −0.0368049 + 0.350176i
\(437\) 6.79733 + 3.02637i 0.325160 + 0.144771i
\(438\) 0 0
\(439\) −0.492942 + 0.853801i −0.0235268 + 0.0407497i −0.877549 0.479487i \(-0.840823\pi\)
0.854022 + 0.520236i \(0.174156\pi\)
\(440\) 14.8530 15.9676i 0.708090 0.761224i
\(441\) 0 0
\(442\) 1.45334 4.47292i 0.0691283 0.212755i
\(443\) 1.12634 + 10.7164i 0.0535139 + 0.509150i 0.988144 + 0.153529i \(0.0490639\pi\)
−0.934630 + 0.355621i \(0.884269\pi\)
\(444\) 0 0
\(445\) 19.7171 21.8980i 0.934679 1.03807i
\(446\) −7.60792 + 8.44945i −0.360245 + 0.400093i
\(447\) 0 0
\(448\) −0.132891 1.26437i −0.00627850 0.0597359i
\(449\) −7.13830 + 21.9694i −0.336877 + 1.03680i 0.628913 + 0.777476i \(0.283500\pi\)
−0.965790 + 0.259326i \(0.916500\pi\)
\(450\) 0 0
\(451\) 11.3238 + 20.3690i 0.533216 + 0.959140i
\(452\) 14.2583 24.6961i 0.670654 1.16161i
\(453\) 0 0
\(454\) −9.97421 4.44081i −0.468113 0.208417i
\(455\) −0.648261 + 6.16779i −0.0303909 + 0.289150i
\(456\) 0 0
\(457\) −26.7704 5.69023i −1.25227 0.266178i −0.466401 0.884573i \(-0.654450\pi\)
−0.785867 + 0.618395i \(0.787783\pi\)
\(458\) −11.0093 7.99870i −0.514429 0.373755i
\(459\) 0 0
\(460\) 2.77706 8.54690i 0.129481 0.398501i
\(461\) −9.76471 + 16.9130i −0.454788 + 0.787715i −0.998676 0.0514422i \(-0.983618\pi\)
0.543888 + 0.839158i \(0.316952\pi\)
\(462\) 0 0
\(463\) −7.29658 12.6380i −0.339101 0.587340i 0.645163 0.764045i \(-0.276789\pi\)
−0.984264 + 0.176705i \(0.943456\pi\)
\(464\) 11.6048 2.46668i 0.538740 0.114513i
\(465\) 0 0
\(466\) −0.277136 + 0.123389i −0.0128381 + 0.00571587i
\(467\) −1.87684 5.77631i −0.0868496 0.267296i 0.898194 0.439598i \(-0.144879\pi\)
−0.985044 + 0.172303i \(0.944879\pi\)
\(468\) 0 0
\(469\) −14.7122 10.6891i −0.679348 0.493575i
\(470\) −0.421048 4.00600i −0.0194215 0.184783i
\(471\) 0 0
\(472\) −7.99242 13.8433i −0.367881 0.637189i
\(473\) 8.89823 3.79010i 0.409141 0.174269i
\(474\) 0 0
\(475\) −6.28199 6.97686i −0.288238 0.320120i
\(476\) −8.96654 + 6.51457i −0.410980 + 0.298595i
\(477\) 0 0
\(478\) −3.94080 12.1285i −0.180248 0.554746i
\(479\) −39.7307 8.44502i −1.81534 0.385863i −0.830181 0.557495i \(-0.811763\pi\)
−0.985161 + 0.171632i \(0.945096\pi\)
\(480\) 0 0
\(481\) −6.99232 3.11318i −0.318823 0.141949i
\(482\) −11.7060 + 2.48818i −0.533192 + 0.113334i
\(483\) 0 0
\(484\) 16.8005 3.00536i 0.763660 0.136607i
\(485\) 6.13862 0.278740
\(486\) 0 0
\(487\) −11.9767 + 8.70158i −0.542716 + 0.394306i −0.825093 0.564998i \(-0.808877\pi\)
0.282377 + 0.959304i \(0.408877\pi\)
\(488\) −22.5191 + 10.0262i −1.01939 + 0.453863i
\(489\) 0 0
\(490\) 5.84524 6.49180i 0.264061 0.293269i
\(491\) −4.12695 + 39.2653i −0.186247 + 1.77202i 0.358608 + 0.933488i \(0.383251\pi\)
−0.544855 + 0.838530i \(0.683415\pi\)
\(492\) 0 0
\(493\) 24.8547 + 27.6039i 1.11940 + 1.24322i
\(494\) 3.53203 0.158913
\(495\) 0 0
\(496\) −13.2432 −0.594638
\(497\) −10.9377 12.1475i −0.490621 0.544890i
\(498\) 0 0
\(499\) 0.332064 3.15938i 0.0148652 0.141433i −0.984572 0.174981i \(-0.944014\pi\)
0.999437 + 0.0335472i \(0.0106804\pi\)
\(500\) 6.76405 7.51223i 0.302497 0.335957i
\(501\) 0 0
\(502\) −7.62976 + 3.39699i −0.340533 + 0.151615i
\(503\) 14.8735 10.8062i 0.663174 0.481824i −0.204559 0.978854i \(-0.565576\pi\)
0.867733 + 0.497030i \(0.165576\pi\)
\(504\) 0 0
\(505\) 1.34332 0.0597771
\(506\) −3.80821 + 2.67358i −0.169296 + 0.118855i
\(507\) 0 0
\(508\) −33.9088 + 7.20753i −1.50446 + 0.319782i
\(509\) 14.3026 + 6.36791i 0.633950 + 0.282253i 0.698443 0.715665i \(-0.253876\pi\)
−0.0644931 + 0.997918i \(0.520543\pi\)
\(510\) 0 0
\(511\) 6.64578 + 1.41260i 0.293992 + 0.0624899i
\(512\) −4.91260 15.1194i −0.217108 0.668190i
\(513\) 0 0
\(514\) −13.0567 + 9.48623i −0.575905 + 0.418419i
\(515\) −11.8260 13.1342i −0.521118 0.578760i
\(516\) 0 0
\(517\) 3.70887 6.18996i 0.163116 0.272234i
\(518\) −2.60659 4.51475i −0.114527 0.198367i
\(519\) 0 0
\(520\) −1.02071 9.71141i −0.0447611 0.425874i
\(521\) −14.6674 10.6565i −0.642592 0.466870i 0.218148 0.975916i \(-0.429999\pi\)
−0.860740 + 0.509045i \(0.829999\pi\)
\(522\) 0 0
\(523\) 5.24113 + 16.1305i 0.229178 + 0.705339i 0.997840 + 0.0656837i \(0.0209228\pi\)
−0.768662 + 0.639655i \(0.779077\pi\)
\(524\) −5.62781 + 2.50566i −0.245852 + 0.109460i
\(525\) 0 0
\(526\) −11.8914 + 2.52759i −0.518490 + 0.110208i
\(527\) −20.7313 35.9077i −0.903071 1.56417i
\(528\) 0 0
\(529\) 9.30544 16.1175i 0.404584 0.700761i
\(530\) −7.65389 + 23.5562i −0.332464 + 1.02322i
\(531\) 0 0
\(532\) −6.73386 4.89243i −0.291950 0.212114i
\(533\) 10.2073 + 2.16964i 0.442129 + 0.0939775i
\(534\) 0 0
\(535\) −3.49608 + 33.2630i −0.151149 + 1.43808i
\(536\) 26.1580 + 11.6463i 1.12985 + 0.503043i
\(537\) 0 0
\(538\) 4.46746 7.73787i 0.192606 0.333603i
\(539\) 15.3580 3.00506i 0.661518 0.129437i
\(540\) 0 0
\(541\) −2.07721 + 6.39299i −0.0893062 + 0.274856i −0.985728 0.168346i \(-0.946158\pi\)
0.896422 + 0.443202i \(0.146158\pi\)
\(542\) −0.455528 4.33406i −0.0195666 0.186164i
\(543\) 0 0
\(544\) 18.2527 20.2716i 0.782577 0.869140i
\(545\) −8.76596 + 9.73559i −0.375493 + 0.417027i
\(546\) 0 0
\(547\) −4.78907 45.5650i −0.204766 1.94822i −0.302846 0.953040i \(-0.597937\pi\)
0.0980800 0.995179i \(-0.468730\pi\)
\(548\) 2.87247 8.84054i 0.122706 0.377649i
\(549\) 0 0
\(550\) 5.76175 1.12738i 0.245682 0.0480719i
\(551\) −13.9478 + 24.1584i −0.594198 + 1.02918i
\(552\) 0 0
\(553\) −21.2872 9.47766i −0.905223 0.403031i
\(554\) −0.949080 + 9.02989i −0.0403225 + 0.383643i
\(555\) 0 0
\(556\) 26.0861 + 5.54477i 1.10630 + 0.235150i
\(557\) −9.67054 7.02606i −0.409754 0.297704i 0.363748 0.931497i \(-0.381497\pi\)
−0.773502 + 0.633794i \(0.781497\pi\)
\(558\) 0 0
\(559\) 1.33828 4.11881i 0.0566033 0.174207i
\(560\) −3.15389 + 5.46270i −0.133276 + 0.230841i
\(561\) 0 0
\(562\) −10.2390 17.7345i −0.431906 0.748083i
\(563\) −33.6515 + 7.15285i −1.41824 + 0.301457i −0.852328 0.523008i \(-0.824810\pi\)
−0.565914 + 0.824464i \(0.691476\pi\)
\(564\) 0 0
\(565\) 46.4196 20.6673i 1.95289 0.869482i
\(566\) 0.155402 + 0.478277i 0.00653202 + 0.0201035i
\(567\) 0 0
\(568\) 20.8221 + 15.1281i 0.873675 + 0.634762i
\(569\) 1.20274 + 11.4433i 0.0504215 + 0.479729i 0.990373 + 0.138422i \(0.0442029\pi\)
−0.939952 + 0.341307i \(0.889130\pi\)
\(570\) 0 0
\(571\) 18.2755 + 31.6542i 0.764807 + 1.32469i 0.940348 + 0.340213i \(0.110499\pi\)
−0.175541 + 0.984472i \(0.556167\pi\)
\(572\) 3.92792 6.55556i 0.164235 0.274102i
\(573\) 0 0
\(574\) 4.75588 + 5.28194i 0.198507 + 0.220464i
\(575\) 4.48036 3.25517i 0.186844 0.135750i
\(576\) 0 0
\(577\) −6.88976 21.2045i −0.286824 0.882754i −0.985846 0.167654i \(-0.946381\pi\)
0.699022 0.715101i \(-0.253619\pi\)
\(578\) 3.51391 + 0.746904i 0.146159 + 0.0310671i
\(579\) 0 0
\(580\) 30.7795 + 13.7039i 1.27805 + 0.569024i
\(581\) 4.94698 1.05151i 0.205235 0.0436242i
\(582\) 0 0
\(583\) −36.3153 + 25.4954i −1.50403 + 1.05591i
\(584\) −10.6978 −0.442678
\(585\) 0 0
\(586\) 8.24255 5.98856i 0.340497 0.247385i
\(587\) 21.4946 9.56999i 0.887175 0.394996i 0.0880187 0.996119i \(-0.471946\pi\)
0.799157 + 0.601123i \(0.205280\pi\)
\(588\) 0 0
\(589\) 20.8357 23.1404i 0.858519 0.953482i
\(590\) 1.30067 12.3750i 0.0535477 0.509473i
\(591\) 0 0
\(592\) −5.20912 5.78531i −0.214093 0.237775i
\(593\) 26.7811 1.09977 0.549884 0.835241i \(-0.314672\pi\)
0.549884 + 0.835241i \(0.314672\pi\)
\(594\) 0 0
\(595\) −19.7488 −0.809622
\(596\) −13.3670 14.8456i −0.547535 0.608100i
\(597\) 0 0
\(598\) −0.217785 + 2.07208i −0.00890588 + 0.0847338i
\(599\) −7.09422 + 7.87893i −0.289862 + 0.321924i −0.870435 0.492284i \(-0.836162\pi\)
0.580573 + 0.814209i \(0.302829\pi\)
\(600\) 0 0
\(601\) −35.7548 + 15.9190i −1.45847 + 0.649352i −0.974224 0.225582i \(-0.927572\pi\)
−0.484243 + 0.874933i \(0.660905\pi\)
\(602\) 2.38635 1.73378i 0.0972603 0.0706638i
\(603\) 0 0
\(604\) 13.0470 0.530875
\(605\) 27.3666 + 13.2637i 1.11261 + 0.539245i
\(606\) 0 0
\(607\) −8.40273 + 1.78605i −0.341056 + 0.0724937i −0.375256 0.926921i \(-0.622445\pi\)
0.0341997 + 0.999415i \(0.489112\pi\)
\(608\) 18.7148 + 8.33236i 0.758985 + 0.337922i
\(609\) 0 0
\(610\) −18.7694 3.98956i −0.759950 0.161532i
\(611\) −0.998482 3.07301i −0.0403943 0.124321i
\(612\) 0 0
\(613\) 8.05694 5.85371i 0.325417 0.236429i −0.413067 0.910701i \(-0.635542\pi\)
0.738483 + 0.674272i \(0.235542\pi\)
\(614\) −1.25146 1.38989i −0.0505049 0.0560914i
\(615\) 0 0
\(616\) 10.9617 4.66903i 0.441661 0.188121i
\(617\) −3.64515 6.31358i −0.146748 0.254175i 0.783276 0.621674i \(-0.213547\pi\)
−0.930024 + 0.367499i \(0.880214\pi\)
\(618\) 0 0
\(619\) 3.44301 + 32.7581i 0.138386 + 1.31666i 0.814631 + 0.579980i \(0.196940\pi\)
−0.676244 + 0.736677i \(0.736394\pi\)
\(620\) −30.4263 22.1060i −1.22195 0.887797i
\(621\) 0 0
\(622\) 4.81171 + 14.8089i 0.192932 + 0.593784i
\(623\) 14.7073 6.54813i 0.589237 0.262345i
\(624\) 0 0
\(625\) 30.5470 6.49296i 1.22188 0.259719i
\(626\) −4.66161 8.07415i −0.186315 0.322708i
\(627\) 0 0
\(628\) 9.16370 15.8720i 0.365671 0.633361i
\(629\) 7.53181 23.1805i 0.300313 0.924268i
\(630\) 0 0
\(631\) 6.31372 + 4.58719i 0.251345 + 0.182613i 0.706323 0.707890i \(-0.250353\pi\)
−0.454978 + 0.890503i \(0.650353\pi\)
\(632\) 35.8877 + 7.62816i 1.42753 + 0.303432i
\(633\) 0 0
\(634\) 0.455105 4.33003i 0.0180745 0.171968i
\(635\) −56.4302 25.1243i −2.23936 0.997029i
\(636\) 0 0
\(637\) 3.50367 6.06853i 0.138820 0.240444i
\(638\) −8.47626 15.2470i −0.335578 0.603633i
\(639\) 0 0
\(640\) 9.37426 28.8510i 0.370550 1.14044i
\(641\) 1.25810 + 11.9700i 0.0496920 + 0.472788i 0.990864 + 0.134861i \(0.0430589\pi\)
−0.941172 + 0.337927i \(0.890274\pi\)
\(642\) 0 0
\(643\) −22.6305 + 25.1337i −0.892459 + 0.991177i −0.999995 0.00302455i \(-0.999037\pi\)
0.107536 + 0.994201i \(0.465704\pi\)
\(644\) 3.28538 3.64879i 0.129462 0.143782i
\(645\) 0 0
\(646\) 1.17567 + 11.1857i 0.0462560 + 0.440097i
\(647\) −5.98134 + 18.4087i −0.235151 + 0.723719i 0.761951 + 0.647635i \(0.224242\pi\)
−0.997101 + 0.0760844i \(0.975758\pi\)
\(648\) 0 0
\(649\) 15.1824 16.3217i 0.595961 0.640681i
\(650\) 1.31444 2.27668i 0.0515566 0.0892986i
\(651\) 0 0
\(652\) −6.53946 2.91155i −0.256105 0.114025i
\(653\) 0.277176 2.63715i 0.0108467 0.103200i −0.987759 0.155988i \(-0.950144\pi\)
0.998606 + 0.0527878i \(0.0168107\pi\)
\(654\) 0 0
\(655\) −10.7371 2.28224i −0.419534 0.0891747i
\(656\) 8.58673 + 6.23863i 0.335256 + 0.243577i
\(657\) 0 0
\(658\) 0.680067 2.09303i 0.0265118 0.0815948i
\(659\) 1.34963 2.33764i 0.0525743 0.0910614i −0.838541 0.544839i \(-0.816591\pi\)
0.891115 + 0.453778i \(0.149924\pi\)
\(660\) 0 0
\(661\) 6.28133 + 10.8796i 0.244315 + 0.423167i 0.961939 0.273265i \(-0.0881035\pi\)
−0.717624 + 0.696431i \(0.754770\pi\)
\(662\) −8.52084 + 1.81116i −0.331172 + 0.0703928i
\(663\) 0 0
\(664\) −7.27477 + 3.23894i −0.282316 + 0.125695i
\(665\) −4.58313 14.1054i −0.177726 0.546985i
\(666\) 0 0
\(667\) −13.3126 9.67218i −0.515466 0.374508i
\(668\) −1.59692 15.1937i −0.0617867 0.587861i
\(669\) 0 0
\(670\) 11.1447 + 19.3032i 0.430557 + 0.745747i
\(671\) −22.5845 25.9155i −0.871864 1.00046i
\(672\) 0 0
\(673\) −15.1664 16.8440i −0.584621 0.649287i 0.376174 0.926549i \(-0.377240\pi\)
−0.960794 + 0.277262i \(0.910573\pi\)
\(674\) 15.8031 11.4816i 0.608711 0.442254i
\(675\) 0 0
\(676\) 5.17553 + 15.9286i 0.199059 + 0.612640i
\(677\) 28.8786 + 6.13834i 1.10990 + 0.235915i 0.726159 0.687527i \(-0.241304\pi\)
0.383736 + 0.923443i \(0.374637\pi\)
\(678\) 0 0
\(679\) 3.06389 + 1.36413i 0.117581 + 0.0523506i
\(680\) 30.4157 6.46506i 1.16639 0.247924i
\(681\) 0 0
\(682\) 5.71631 + 18.6146i 0.218889 + 0.712791i
\(683\) −16.5916 −0.634859 −0.317430 0.948282i \(-0.602820\pi\)
−0.317430 + 0.948282i \(0.602820\pi\)
\(684\) 0 0
\(685\) 13.4000 9.73565i 0.511987 0.371980i
\(686\) 10.8284 4.82113i 0.413432 0.184072i
\(687\) 0 0
\(688\) 2.94739 3.27341i 0.112368 0.124798i
\(689\) −2.07680 + 19.7595i −0.0791199 + 0.752775i
\(690\) 0 0
\(691\) 15.7421 + 17.4833i 0.598857 + 0.665098i 0.964015 0.265848i \(-0.0856519\pi\)
−0.365158 + 0.930945i \(0.618985\pi\)
\(692\) 22.7877 0.866260
\(693\) 0 0
\(694\) −15.5032 −0.588492
\(695\) 31.7972 + 35.3144i 1.20614 + 1.33955i
\(696\) 0 0
\(697\) −3.47351 + 33.0483i −0.131569 + 1.25179i
\(698\) 3.80441 4.22523i 0.143999 0.159927i
\(699\) 0 0
\(700\) −5.65957 + 2.51980i −0.213912 + 0.0952396i
\(701\) −18.3698 + 13.3465i −0.693819 + 0.504089i −0.877913 0.478820i \(-0.841065\pi\)
0.184095 + 0.982909i \(0.441065\pi\)
\(702\) 0 0
\(703\) 18.3044 0.690365
\(704\) −2.28469 + 1.60398i −0.0861075 + 0.0604523i
\(705\) 0 0
\(706\) −0.900741 + 0.191458i −0.0338998 + 0.00720563i
\(707\) 0.670476 + 0.298515i 0.0252158 + 0.0112268i
\(708\) 0 0
\(709\) 11.2512 + 2.39151i 0.422546 + 0.0898149i 0.414277 0.910151i \(-0.364035\pi\)
0.00826904 + 0.999966i \(0.497368\pi\)
\(710\) 6.19118 + 19.0545i 0.232351 + 0.715102i
\(711\) 0 0
\(712\) −20.5076 + 14.8996i −0.768555 + 0.558388i
\(713\) 12.2907 + 13.6502i 0.460290 + 0.511204i
\(714\) 0 0
\(715\) 12.5283 5.33629i 0.468532 0.199566i
\(716\) 8.78545 + 15.2169i 0.328328 + 0.568680i
\(717\) 0 0
\(718\) −1.46175 13.9076i −0.0545519 0.519027i
\(719\) 37.1445 + 26.9870i 1.38526 + 1.00645i 0.996367 + 0.0851620i \(0.0271408\pi\)
0.388888 + 0.921285i \(0.372859\pi\)
\(720\) 0 0
\(721\) −2.98390 9.18349i −0.111126 0.342011i
\(722\) 3.90692 1.73947i 0.145401 0.0647365i
\(723\) 0 0
\(724\) −9.55039 + 2.03000i −0.354937 + 0.0754443i
\(725\) 10.3813 + 17.9810i 0.385554 + 0.667798i
\(726\) 0 0
\(727\) 0.417822 0.723690i 0.0154962 0.0268402i −0.858173 0.513360i \(-0.828401\pi\)
0.873670 + 0.486520i \(0.161734\pi\)
\(728\) 1.64863 5.07396i 0.0611023 0.188053i
\(729\) 0 0
\(730\) −6.73715 4.89483i −0.249353 0.181166i
\(731\) 13.4895 + 2.86728i 0.498926 + 0.106050i
\(732\) 0 0
\(733\) 3.34101 31.7876i 0.123403 1.17410i −0.741072 0.671426i \(-0.765682\pi\)
0.864475 0.502676i \(-0.167651\pi\)
\(734\) −7.61596 3.39084i −0.281110 0.125158i
\(735\) 0 0
\(736\) −6.04218 + 10.4654i −0.222718 + 0.385758i
\(737\) −4.81712 + 39.6385i −0.177441 + 1.46010i
\(738\) 0 0
\(739\) 2.00537 6.17190i 0.0737687 0.227037i −0.907373 0.420326i \(-0.861916\pi\)
0.981142 + 0.193289i \(0.0619156\pi\)
\(740\) −2.31092 21.9870i −0.0849512 0.808256i
\(741\) 0 0
\(742\) −9.05489 + 10.0565i −0.332415 + 0.369185i
\(743\) 7.45493 8.27954i 0.273495 0.303747i −0.590713 0.806882i \(-0.701153\pi\)
0.864208 + 0.503135i \(0.167820\pi\)
\(744\) 0 0
\(745\) −3.72077 35.4008i −0.136318 1.29698i
\(746\) 5.89712 18.1495i 0.215909 0.664499i
\(747\) 0 0
\(748\) 22.0685 + 10.2574i 0.806905 + 0.375049i
\(749\) −9.13670 + 15.8252i −0.333848 + 0.578242i
\(750\) 0 0
\(751\) −32.6141 14.5207i −1.19010 0.529869i −0.286435 0.958100i \(-0.592470\pi\)
−0.903669 + 0.428231i \(0.859137\pi\)
\(752\) 0.343522 3.26839i 0.0125269 0.119186i
\(753\) 0 0
\(754\) −7.64057 1.62405i −0.278253 0.0591445i
\(755\) 18.8080 + 13.6648i 0.684493 + 0.497313i
\(756\) 0 0
\(757\) −1.57431 + 4.84524i −0.0572194 + 0.176103i −0.975581 0.219638i \(-0.929512\pi\)
0.918362 + 0.395741i \(0.129512\pi\)
\(758\) −1.44208 + 2.49776i −0.0523788 + 0.0907227i
\(759\) 0 0
\(760\) 11.6762 + 20.2238i 0.423542 + 0.733596i
\(761\) 12.2197 2.59739i 0.442966 0.0941552i 0.0189711 0.999820i \(-0.493961\pi\)
0.423994 + 0.905665i \(0.360628\pi\)
\(762\) 0 0
\(763\) −6.53870 + 2.91122i −0.236717 + 0.105393i
\(764\) −1.75952 5.41525i −0.0636572 0.195917i
\(765\) 0 0
\(766\) 9.74603 + 7.08091i 0.352138 + 0.255844i
\(767\) −1.04335 9.92677i −0.0376730 0.358435i
\(768\) 0 0
\(769\) −2.74929 4.76192i −0.0991421 0.171719i 0.812188 0.583396i \(-0.198277\pi\)
−0.911330 + 0.411677i \(0.864943\pi\)
\(770\) 9.03971 + 2.07518i 0.325768 + 0.0747843i
\(771\) 0 0
\(772\) −1.45936 1.62079i −0.0525236 0.0583334i
\(773\) −39.4097 + 28.6328i −1.41747 + 1.02985i −0.425284 + 0.905060i \(0.639826\pi\)
−0.992183 + 0.124790i \(0.960174\pi\)
\(774\) 0 0
\(775\) −7.16186 22.0419i −0.257262 0.791770i
\(776\) −5.16536 1.09793i −0.185426 0.0394134i
\(777\) 0 0
\(778\) 21.9606 + 9.77749i 0.787325 + 0.350540i
\(779\) −24.4106 + 5.18863i −0.874599 + 0.185902i
\(780\) 0 0
\(781\) −11.6431 + 33.9507i −0.416623 + 1.21485i
\(782\) −6.63466 −0.237255
\(783\) 0 0
\(784\) 5.76597 4.18922i 0.205927 0.149615i
\(785\) 29.8335 13.2827i 1.06480 0.474082i
\(786\) 0 0
\(787\) 13.6091 15.1145i 0.485114 0.538773i −0.450043 0.893007i \(-0.648591\pi\)
0.935157 + 0.354233i \(0.115258\pi\)
\(788\) 0.549770 5.23071i 0.0195847 0.186336i
\(789\) 0 0
\(790\) 19.1107 + 21.2245i 0.679927 + 0.755135i
\(791\) 27.7616 0.987088
\(792\) 0 0
\(793\) −15.3924 −0.546601
\(794\) −8.88695 9.86995i −0.315386 0.350272i
\(795\) 0 0
\(796\) 1.19767 11.3951i 0.0424503 0.403888i
\(797\) 11.5649 12.8441i 0.409650 0.454963i −0.502647 0.864492i \(-0.667640\pi\)
0.912297 + 0.409529i \(0.134307\pi\)
\(798\) 0 0
\(799\) 9.39969 4.18501i 0.332537 0.148055i
\(800\) 12.3356 8.96232i 0.436128 0.316866i
\(801\) 0 0
\(802\) 9.23484 0.326094
\(803\) −4.37939 14.2611i −0.154545 0.503263i
\(804\) 0 0
\(805\) 8.55763 1.81898i 0.301617 0.0641106i
\(806\) 7.96547 + 3.54646i 0.280572 + 0.124919i
\(807\) 0 0
\(808\) −1.13034 0.240262i −0.0397653 0.00845238i
\(809\) 3.94755 + 12.1493i 0.138789 + 0.427147i 0.996160 0.0875508i \(-0.0279040\pi\)
−0.857371 + 0.514698i \(0.827904\pi\)
\(810\) 0 0
\(811\) −14.3899 + 10.4549i −0.505298 + 0.367121i −0.811037 0.584995i \(-0.801097\pi\)
0.305739 + 0.952115i \(0.401097\pi\)
\(812\) 12.3173 + 13.6797i 0.432252 + 0.480064i
\(813\) 0 0
\(814\) −5.88335 + 9.81909i −0.206211 + 0.344159i
\(815\) −6.37757 11.0463i −0.223397 0.386934i
\(816\) 0 0
\(817\) 1.08259 + 10.3002i 0.0378751 + 0.360357i
\(818\) 19.9969 + 14.5286i 0.699174 + 0.507980i
\(819\) 0 0
\(820\) 9.31430 + 28.6665i 0.325269 + 1.00108i
\(821\) −27.7585 + 12.3589i −0.968780 + 0.431329i −0.829243 0.558888i \(-0.811228\pi\)
−0.139537 + 0.990217i \(0.544561\pi\)
\(822\) 0 0
\(823\) −25.0774 + 5.33037i −0.874143 + 0.185805i −0.623073 0.782164i \(-0.714116\pi\)
−0.251071 + 0.967969i \(0.580783\pi\)
\(824\) 7.60194 + 13.1669i 0.264826 + 0.458692i
\(825\) 0 0
\(826\) 3.39919 5.88756i 0.118273 0.204855i
\(827\) −3.14133 + 9.66803i −0.109235 + 0.336190i −0.990701 0.136057i \(-0.956557\pi\)
0.881466 + 0.472247i \(0.156557\pi\)
\(828\) 0 0
\(829\) −2.17360 1.57922i −0.0754924 0.0548484i 0.549399 0.835560i \(-0.314857\pi\)
−0.624891 + 0.780712i \(0.714857\pi\)
\(830\) −6.06342 1.28882i −0.210464 0.0447356i
\(831\) 0 0
\(832\) −0.130657 + 1.24312i −0.00452972 + 0.0430974i
\(833\) 20.3849 + 9.07594i 0.706295 + 0.314463i
\(834\) 0 0
\(835\) 13.6111 23.5751i 0.471031 0.815850i
\(836\) −2.20482 + 18.1427i −0.0762553 + 0.627479i
\(837\) 0 0
\(838\) −0.483630 + 1.48846i −0.0167067 + 0.0514180i
\(839\) −1.36910 13.0262i −0.0472667 0.449713i −0.992402 0.123035i \(-0.960737\pi\)
0.945136 0.326678i \(-0.105929\pi\)
\(840\) 0 0
\(841\) 21.8757 24.2954i 0.754335 0.837774i
\(842\) 6.87152 7.63159i 0.236808 0.263002i
\(843\) 0 0
\(844\) −0.315327 3.00014i −0.0108540 0.103269i
\(845\) −9.22207 + 28.3826i −0.317249 + 0.976391i
\(846\) 0 0
\(847\) 10.7117 + 12.7016i 0.368057 + 0.436431i
\(848\) −10.1040 + 17.5006i −0.346972 + 0.600973i
\(849\) 0 0
\(850\) 7.64763 + 3.40494i 0.262312 + 0.116789i
\(851\) −1.12865 + 10.7384i −0.0386897 + 0.368108i
\(852\) 0 0
\(853\) −1.57801 0.335417i −0.0540301 0.0114844i 0.180817 0.983517i \(-0.442126\pi\)
−0.234847 + 0.972032i \(0.575459\pi\)
\(854\) −8.48156 6.16221i −0.290233 0.210867i
\(855\) 0 0
\(856\) 8.89109 27.3639i 0.303891 0.935281i
\(857\) 20.7735 35.9807i 0.709608 1.22908i −0.255395 0.966837i \(-0.582205\pi\)
0.965003 0.262240i \(-0.0844612\pi\)
\(858\) 0 0
\(859\) −19.0349 32.9695i −0.649463 1.12490i −0.983251 0.182255i \(-0.941660\pi\)
0.333788 0.942648i \(-0.391673\pi\)
\(860\) 12.2357 2.60078i 0.417234 0.0886858i
\(861\) 0 0
\(862\) −4.77984 + 2.12812i −0.162802 + 0.0724841i
\(863\) 13.1442 + 40.4536i 0.447433 + 1.37706i 0.879793 + 0.475357i \(0.157681\pi\)
−0.432360 + 0.901701i \(0.642319\pi\)
\(864\) 0 0
\(865\) 32.8498 + 23.8668i 1.11693 + 0.811495i
\(866\) 1.76134 + 16.7580i 0.0598527 + 0.569461i
\(867\) 0 0
\(868\) −10.2739 17.7948i −0.348717 0.603996i
\(869\) 4.52245 + 50.9641i 0.153414 + 1.72884i
\(870\) 0 0
\(871\) 11.9638 + 13.2872i 0.405379 + 0.450219i
\(872\) 9.11742 6.62419i 0.308755 0.224323i
\(873\) 0 0
\(874\) −1.53971 4.73875i −0.0520816 0.160291i
\(875\) 9.62601 + 2.04607i 0.325419 + 0.0691699i
\(876\) 0 0
\(877\) −7.22380 3.21624i −0.243930 0.108605i 0.281130 0.959670i \(-0.409291\pi\)
−0.525061 + 0.851065i \(0.675957\pi\)
\(878\) 0.645773 0.137263i 0.0217938 0.00463241i
\(879\) 0 0
\(880\) 13.8484 + 0.224552i 0.466830 + 0.00756963i
\(881\) 41.5877 1.40113 0.700563 0.713591i \(-0.252932\pi\)
0.700563 + 0.713591i \(0.252932\pi\)
\(882\) 0 0
\(883\) −9.71314 + 7.05701i −0.326873 + 0.237487i −0.739103 0.673593i \(-0.764750\pi\)
0.412229 + 0.911080i \(0.364750\pi\)
\(884\) 9.95486 4.43219i 0.334818 0.149071i
\(885\) 0 0
\(886\) 4.82830 5.36237i 0.162210 0.180152i
\(887\) 4.98779 47.4557i 0.167474 1.59341i −0.511527 0.859267i \(-0.670920\pi\)
0.679000 0.734138i \(-0.262413\pi\)
\(888\) 0 0
\(889\) −22.5821 25.0800i −0.757380 0.841156i
\(890\) −19.7325 −0.661434
\(891\) 0 0
\(892\) −26.3436 −0.882050
\(893\) 5.17052 + 5.74244i 0.173025 + 0.192163i
\(894\) 0 0
\(895\) −3.27267 + 31.1374i −0.109393 + 1.04081i
\(896\) 11.0902 12.3169i 0.370497 0.411478i
\(897\) 0 0
\(898\) 14.1316 6.29181i 0.471579 0.209960i
\(899\) −55.7124 + 40.4774i −1.85811 + 1.35000i
\(900\) 0 0
\(901\) −63.2683 −2.10777
\(902\) 5.06261 14.7623i 0.168567 0.491532i
\(903\) 0 0
\(904\) −42.7564 + 9.08816i −1.42206 + 0.302268i
\(905\) −15.8935 7.07626i −0.528319 0.235223i
\(906\) 0 0
\(907\) 2.19782 + 0.467161i 0.0729774 + 0.0155118i 0.244256 0.969711i \(-0.421456\pi\)
−0.171278 + 0.985223i \(0.554790\pi\)
\(908\) −7.81720 24.0589i −0.259423 0.798422i
\(909\) 0 0
\(910\) 3.35987 2.44109i 0.111379 0.0809213i
\(911\) 8.56488 + 9.51226i 0.283767 + 0.315155i 0.868130 0.496337i \(-0.165322\pi\)
−0.584363 + 0.811493i \(0.698655\pi\)
\(912\) 0 0
\(913\) −7.29588 8.37196i −0.241458 0.277071i
\(914\) 9.16370 + 15.8720i 0.303108 + 0.524999i
\(915\) 0 0
\(916\) −3.29576 31.3571i −0.108895 1.03607i
\(917\) −4.85192 3.52513i −0.160224 0.116410i
\(918\) 0 0
\(919\) 3.53256 + 10.8721i 0.116528 + 0.358637i 0.992263 0.124156i \(-0.0396223\pi\)
−0.875734 + 0.482793i \(0.839622\pi\)
\(920\) −12.5844 + 5.60293i −0.414895 + 0.184723i
\(921\) 0 0
\(922\) 12.7921 2.71905i 0.421287 0.0895472i
\(923\) 8.03567 + 13.9182i 0.264497 + 0.458123i
\(924\) 0 0
\(925\) 6.81198 11.7987i 0.223976 0.387939i
\(926\) −3.01982 + 9.29405i −0.0992375 + 0.305422i
\(927\) 0 0
\(928\) −36.6530 26.6300i −1.20319 0.874172i
\(929\) 9.03552 + 1.92056i 0.296446 + 0.0630115i 0.353734 0.935346i \(-0.384912\pi\)
−0.0572878 + 0.998358i \(0.518245\pi\)
\(930\) 0 0
\(931\) −1.75167 + 16.6660i −0.0574087 + 0.546207i
\(932\) −0.642115 0.285888i −0.0210332 0.00936457i
\(933\) 0 0
\(934\) −2.03359 + 3.52228i −0.0665411 + 0.115253i
\(935\) 21.0699 + 37.9002i 0.689058 + 1.23947i
\(936\) 0 0
\(937\) −10.4711 + 32.2266i −0.342075 + 1.05280i 0.621056 + 0.783766i \(0.286704\pi\)
−0.963131 + 0.269032i \(0.913296\pi\)
\(938\) 1.27293 + 12.1111i 0.0415627 + 0.395443i
\(939\) 0 0
\(940\) 6.24494 6.93570i 0.203687 0.226218i
\(941\) −7.07680 + 7.85958i −0.230697 + 0.256215i −0.847368 0.531006i \(-0.821814\pi\)
0.616671 + 0.787221i \(0.288481\pi\)
\(942\) 0 0
\(943\) −1.53878 14.6405i −0.0501096 0.476761i
\(944\) 3.13717 9.65521i 0.102106 0.314250i
\(945\) 0 0
\(946\) −5.87331 2.72991i −0.190958 0.0887570i
\(947\) −1.82612 + 3.16292i −0.0593408 + 0.102781i −0.894170 0.447728i \(-0.852233\pi\)
0.834829 + 0.550510i \(0.185567\pi\)
\(948\) 0 0
\(949\) −6.10253 2.71702i −0.198096 0.0881982i
\(950\) −0.657159 + 6.25245i −0.0213211 + 0.202856i
\(951\) 0 0
\(952\) 16.6177 + 3.53220i 0.538583 + 0.114479i
\(953\) −11.6292 8.44909i −0.376706 0.273693i 0.383280 0.923632i \(-0.374794\pi\)
−0.759986 + 0.649939i \(0.774794\pi\)
\(954\) 0 0
\(955\) 3.13522 9.64922i 0.101453 0.312241i
\(956\) 14.7738 25.5890i 0.477819 0.827607i
\(957\) 0 0
\(958\) 13.6001 + 23.5560i 0.439399 + 0.761061i
\(959\) 8.85163 1.88147i 0.285834 0.0607559i
\(960\) 0 0
\(961\) 41.9039 18.6568i 1.35174 0.601832i
\(962\) 1.58388 + 4.87469i 0.0510665 + 0.157166i
\(963\) 0 0
\(964\) −22.4327 16.2983i −0.722508 0.524933i
\(965\) −0.406220 3.86492i −0.0130767 0.124416i
\(966\) 0 0
\(967\) −17.6955 30.6496i −0.569050 0.985623i −0.996660 0.0816600i \(-0.973978\pi\)
0.427610 0.903963i \(-0.359356\pi\)
\(968\) −20.6554 16.0554i −0.663889 0.516041i
\(969\) 0 0
\(970\) −2.75062 3.05488i −0.0883172 0.0980862i
\(971\) 0.118477 0.0860787i 0.00380211 0.00276240i −0.585883 0.810396i \(-0.699252\pi\)
0.589685 + 0.807634i \(0.299252\pi\)
\(972\) 0 0
\(973\) 8.02293 + 24.6920i 0.257203 + 0.791591i
\(974\) 9.69691 + 2.06114i 0.310709 + 0.0660432i
\(975\) 0 0
\(976\) −14.3021 6.36769i −0.457798 0.203825i
\(977\) 39.1373 8.31889i 1.25211 0.266145i 0.466310 0.884622i \(-0.345583\pi\)
0.785803 + 0.618477i \(0.212250\pi\)
\(978\) 0 0
\(979\) −28.2578 21.2389i −0.903122 0.678798i
\(980\) 20.2401 0.646545
\(981\) 0 0
\(982\) 21.3896 15.5404i 0.682568 0.495915i
\(983\) −13.9510 + 6.21137i −0.444967 + 0.198112i −0.616974 0.786984i \(-0.711641\pi\)
0.172007 + 0.985096i \(0.444975\pi\)
\(984\) 0 0
\(985\) 6.27092 6.96456i 0.199808 0.221909i
\(986\) 2.60005 24.7378i 0.0828025 0.787813i
\(987\) 0 0
\(988\) 5.47590 + 6.08160i 0.174212 + 0.193482i
\(989\) −6.10940 −0.194268
\(990\) 0 0
\(991\) 21.5067 0.683184 0.341592 0.939848i \(-0.389034\pi\)
0.341592 + 0.939848i \(0.389034\pi\)
\(992\) 33.8394 + 37.5825i 1.07440 + 1.19325i
\(993\) 0 0
\(994\) −1.14419 + 10.8862i −0.0362915 + 0.345290i
\(995\) 13.6612 15.1723i 0.433088 0.480993i
\(996\) 0 0
\(997\) −20.1502 + 8.97143i −0.638162 + 0.284128i −0.700201 0.713946i \(-0.746906\pi\)
0.0620390 + 0.998074i \(0.480240\pi\)
\(998\) −1.72106 + 1.25042i −0.0544791 + 0.0395814i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.g.460.2 32
3.2 odd 2 inner 891.2.n.g.460.3 32
9.2 odd 6 297.2.f.c.163.3 yes 16
9.4 even 3 inner 891.2.n.g.757.3 32
9.5 odd 6 inner 891.2.n.g.757.2 32
9.7 even 3 297.2.f.c.163.2 yes 16
11.5 even 5 inner 891.2.n.g.379.3 32
33.5 odd 10 inner 891.2.n.g.379.2 32
99.5 odd 30 inner 891.2.n.g.676.3 32
99.7 odd 30 3267.2.a.bh.1.5 8
99.16 even 15 297.2.f.c.82.2 16
99.29 even 30 3267.2.a.bh.1.4 8
99.38 odd 30 297.2.f.c.82.3 yes 16
99.49 even 15 inner 891.2.n.g.676.2 32
99.70 even 15 3267.2.a.bg.1.4 8
99.92 odd 30 3267.2.a.bg.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.f.c.82.2 16 99.16 even 15
297.2.f.c.82.3 yes 16 99.38 odd 30
297.2.f.c.163.2 yes 16 9.7 even 3
297.2.f.c.163.3 yes 16 9.2 odd 6
891.2.n.g.379.2 32 33.5 odd 10 inner
891.2.n.g.379.3 32 11.5 even 5 inner
891.2.n.g.460.2 32 1.1 even 1 trivial
891.2.n.g.460.3 32 3.2 odd 2 inner
891.2.n.g.676.2 32 99.49 even 15 inner
891.2.n.g.676.3 32 99.5 odd 30 inner
891.2.n.g.757.2 32 9.5 odd 6 inner
891.2.n.g.757.3 32 9.4 even 3 inner
3267.2.a.bg.1.4 8 99.70 even 15
3267.2.a.bg.1.5 8 99.92 odd 30
3267.2.a.bh.1.4 8 99.29 even 30
3267.2.a.bh.1.5 8 99.7 odd 30