Properties

Label 891.2.n.l.190.5
Level $891$
Weight $2$
Character 891.190
Analytic conductor $7.115$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 190.5
Character \(\chi\) \(=\) 891.190
Dual form 891.2.n.l.136.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.05062 - 0.467766i) q^{2} +(-0.453266 - 0.503403i) q^{4} +(-3.57276 + 1.59069i) q^{5} +(-4.48724 + 0.953792i) q^{7} +(0.951502 + 2.92842i) q^{8} +4.49768 q^{10} +(-2.66817 + 1.96999i) q^{11} +(0.0609944 + 0.580323i) q^{13} +(5.16053 + 1.09690i) q^{14} +(0.228535 - 2.17437i) q^{16} +(-1.01351 - 0.736358i) q^{17} +(-0.681632 - 2.09785i) q^{19} +(2.42017 + 1.07753i) q^{20} +(3.72472 - 0.821635i) q^{22} +(-3.65244 + 6.32621i) q^{23} +(6.88865 - 7.65062i) q^{25} +(0.207373 - 0.638229i) q^{26} +(2.51406 + 1.82657i) q^{28} +(1.21630 - 0.258533i) q^{29} +(-0.906619 - 8.62591i) q^{31} +(1.82193 - 3.15567i) q^{32} +(0.720369 + 1.24772i) q^{34} +(14.5146 - 10.5455i) q^{35} +(-2.36110 + 7.26672i) q^{37} +(-0.265166 + 2.52288i) q^{38} +(-8.05772 - 8.94900i) q^{40} +(-1.61139 - 0.342512i) q^{41} +(-2.89432 - 5.01312i) q^{43} +(2.20109 + 0.450233i) q^{44} +(6.79650 - 4.93795i) q^{46} +(-0.353367 + 0.392454i) q^{47} +(12.8308 - 5.71263i) q^{49} +(-10.8160 + 4.81561i) q^{50} +(0.264490 - 0.293745i) q^{52} +(1.07638 - 0.782035i) q^{53} +(6.39907 - 11.2826i) q^{55} +(-7.06272 - 12.2330i) q^{56} +(-1.39880 - 0.297325i) q^{58} +(-0.371858 - 0.412991i) q^{59} +(-1.17120 + 11.1433i) q^{61} +(-3.08239 + 9.48662i) q^{62} +(-6.92785 + 5.03338i) q^{64} +(-1.14103 - 1.97633i) q^{65} +(-3.73086 + 6.46203i) q^{67} +(0.0887048 + 0.843970i) q^{68} +(-20.1822 + 4.28985i) q^{70} +(-4.14062 - 3.00833i) q^{71} +(0.117434 - 0.361425i) q^{73} +(5.87974 - 6.53011i) q^{74} +(-0.747102 + 1.29402i) q^{76} +(10.0937 - 11.3847i) q^{77} +(12.4607 + 5.54788i) q^{79} +(2.64225 + 8.13202i) q^{80} +(1.53274 + 1.11360i) q^{82} +(0.104355 - 0.992868i) q^{83} +(4.79235 + 1.01864i) q^{85} +(0.695868 + 6.62074i) q^{86} +(-8.30774 - 5.93907i) q^{88} -3.33068 q^{89} +(-0.827203 - 2.54587i) q^{91} +(4.84016 - 1.02881i) q^{92} +(0.554831 - 0.247027i) q^{94} +(5.77234 + 6.41083i) q^{95} +(14.3779 + 6.40147i) q^{97} -16.1524 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 8 q^{4} + 14 q^{7} + 64 q^{10} + 14 q^{13} + 4 q^{16} - 16 q^{19} - 16 q^{22} + 20 q^{25} - 36 q^{28} + 4 q^{31} - 84 q^{34} - 24 q^{37} + 106 q^{40} - 84 q^{43} - 76 q^{46} + 54 q^{49} - 52 q^{52}+ \cdots + 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.05062 0.467766i −0.742900 0.330760i 0.000146925 1.00000i \(-0.499953\pi\)
−0.743047 + 0.669240i \(0.766620\pi\)
\(3\) 0 0
\(4\) −0.453266 0.503403i −0.226633 0.251702i
\(5\) −3.57276 + 1.59069i −1.59779 + 0.711380i −0.996173 0.0874067i \(-0.972142\pi\)
−0.601614 + 0.798787i \(0.705475\pi\)
\(6\) 0 0
\(7\) −4.48724 + 0.953792i −1.69602 + 0.360499i −0.951629 0.307249i \(-0.900592\pi\)
−0.744387 + 0.667748i \(0.767258\pi\)
\(8\) 0.951502 + 2.92842i 0.336407 + 1.03535i
\(9\) 0 0
\(10\) 4.49768 1.42229
\(11\) −2.66817 + 1.96999i −0.804483 + 0.593975i
\(12\) 0 0
\(13\) 0.0609944 + 0.580323i 0.0169168 + 0.160953i 0.999719 0.0237094i \(-0.00754764\pi\)
−0.982802 + 0.184662i \(0.940881\pi\)
\(14\) 5.16053 + 1.09690i 1.37921 + 0.293160i
\(15\) 0 0
\(16\) 0.228535 2.17437i 0.0571338 0.543592i
\(17\) −1.01351 0.736358i −0.245812 0.178593i 0.458057 0.888923i \(-0.348546\pi\)
−0.703869 + 0.710330i \(0.748546\pi\)
\(18\) 0 0
\(19\) −0.681632 2.09785i −0.156377 0.481279i 0.841921 0.539601i \(-0.181425\pi\)
−0.998298 + 0.0583220i \(0.981425\pi\)
\(20\) 2.42017 + 1.07753i 0.541167 + 0.240943i
\(21\) 0 0
\(22\) 3.72472 0.821635i 0.794114 0.175173i
\(23\) −3.65244 + 6.32621i −0.761586 + 1.31911i 0.180447 + 0.983585i \(0.442246\pi\)
−0.942033 + 0.335521i \(0.891088\pi\)
\(24\) 0 0
\(25\) 6.88865 7.65062i 1.37773 1.53012i
\(26\) 0.207373 0.638229i 0.0406692 0.125167i
\(27\) 0 0
\(28\) 2.51406 + 1.82657i 0.475112 + 0.345189i
\(29\) 1.21630 0.258533i 0.225862 0.0480084i −0.0935904 0.995611i \(-0.529834\pi\)
0.319452 + 0.947602i \(0.396501\pi\)
\(30\) 0 0
\(31\) −0.906619 8.62591i −0.162834 1.54926i −0.705134 0.709074i \(-0.749113\pi\)
0.542300 0.840185i \(-0.317553\pi\)
\(32\) 1.82193 3.15567i 0.322075 0.557850i
\(33\) 0 0
\(34\) 0.720369 + 1.24772i 0.123542 + 0.213982i
\(35\) 14.5146 10.5455i 2.45342 1.78251i
\(36\) 0 0
\(37\) −2.36110 + 7.26672i −0.388163 + 1.19464i 0.545997 + 0.837787i \(0.316151\pi\)
−0.934160 + 0.356855i \(0.883849\pi\)
\(38\) −0.265166 + 2.52288i −0.0430155 + 0.409265i
\(39\) 0 0
\(40\) −8.05772 8.94900i −1.27404 1.41496i
\(41\) −1.61139 0.342512i −0.251657 0.0534914i 0.0803557 0.996766i \(-0.474394\pi\)
−0.332013 + 0.943275i \(0.607728\pi\)
\(42\) 0 0
\(43\) −2.89432 5.01312i −0.441380 0.764493i 0.556412 0.830907i \(-0.312178\pi\)
−0.997792 + 0.0664134i \(0.978844\pi\)
\(44\) 2.20109 + 0.450233i 0.331827 + 0.0678752i
\(45\) 0 0
\(46\) 6.79650 4.93795i 1.00209 0.728060i
\(47\) −0.353367 + 0.392454i −0.0515439 + 0.0572453i −0.768365 0.640011i \(-0.778930\pi\)
0.716821 + 0.697257i \(0.245596\pi\)
\(48\) 0 0
\(49\) 12.8308 5.71263i 1.83297 0.816089i
\(50\) −10.8160 + 4.81561i −1.52962 + 0.681030i
\(51\) 0 0
\(52\) 0.264490 0.293745i 0.0366781 0.0407352i
\(53\) 1.07638 0.782035i 0.147852 0.107421i −0.511400 0.859343i \(-0.670873\pi\)
0.659252 + 0.751922i \(0.270873\pi\)
\(54\) 0 0
\(55\) 6.39907 11.2826i 0.862850 1.52134i
\(56\) −7.06272 12.2330i −0.943796 1.63470i
\(57\) 0 0
\(58\) −1.39880 0.297325i −0.183672 0.0390407i
\(59\) −0.371858 0.412991i −0.0484119 0.0537668i 0.718452 0.695576i \(-0.244851\pi\)
−0.766864 + 0.641809i \(0.778184\pi\)
\(60\) 0 0
\(61\) −1.17120 + 11.1433i −0.149957 + 1.42675i 0.617965 + 0.786206i \(0.287957\pi\)
−0.767922 + 0.640543i \(0.778709\pi\)
\(62\) −3.08239 + 9.48662i −0.391464 + 1.20480i
\(63\) 0 0
\(64\) −6.92785 + 5.03338i −0.865981 + 0.629172i
\(65\) −1.14103 1.97633i −0.141528 0.245134i
\(66\) 0 0
\(67\) −3.73086 + 6.46203i −0.455797 + 0.789463i −0.998734 0.0503104i \(-0.983979\pi\)
0.542937 + 0.839774i \(0.317312\pi\)
\(68\) 0.0887048 + 0.843970i 0.0107570 + 0.102346i
\(69\) 0 0
\(70\) −20.1822 + 4.28985i −2.41223 + 0.512735i
\(71\) −4.14062 3.00833i −0.491401 0.357024i 0.314322 0.949316i \(-0.398223\pi\)
−0.805723 + 0.592293i \(0.798223\pi\)
\(72\) 0 0
\(73\) 0.117434 0.361425i 0.0137446 0.0423015i −0.943949 0.330091i \(-0.892920\pi\)
0.957694 + 0.287790i \(0.0929204\pi\)
\(74\) 5.87974 6.53011i 0.683506 0.759110i
\(75\) 0 0
\(76\) −0.747102 + 1.29402i −0.0856985 + 0.148434i
\(77\) 10.0937 11.3847i 1.15029 1.29741i
\(78\) 0 0
\(79\) 12.4607 + 5.54788i 1.40194 + 0.624186i 0.961803 0.273743i \(-0.0882618\pi\)
0.440141 + 0.897929i \(0.354928\pi\)
\(80\) 2.64225 + 8.13202i 0.295413 + 0.909187i
\(81\) 0 0
\(82\) 1.53274 + 1.11360i 0.169263 + 0.122977i
\(83\) 0.104355 0.992868i 0.0114544 0.108981i −0.987301 0.158862i \(-0.949217\pi\)
0.998755 + 0.0498807i \(0.0158841\pi\)
\(84\) 0 0
\(85\) 4.79235 + 1.01864i 0.519803 + 0.110488i
\(86\) 0.695868 + 6.62074i 0.0750374 + 0.713933i
\(87\) 0 0
\(88\) −8.30774 5.93907i −0.885609 0.633107i
\(89\) −3.33068 −0.353051 −0.176525 0.984296i \(-0.556486\pi\)
−0.176525 + 0.984296i \(0.556486\pi\)
\(90\) 0 0
\(91\) −0.827203 2.54587i −0.0867145 0.266880i
\(92\) 4.84016 1.02881i 0.504621 0.107261i
\(93\) 0 0
\(94\) 0.554831 0.247027i 0.0572264 0.0254788i
\(95\) 5.77234 + 6.41083i 0.592230 + 0.657738i
\(96\) 0 0
\(97\) 14.3779 + 6.40147i 1.45986 + 0.649971i 0.974509 0.224349i \(-0.0720256\pi\)
0.485350 + 0.874320i \(0.338692\pi\)
\(98\) −16.1524 −1.63164
\(99\) 0 0
\(100\) −6.97373 −0.697373
\(101\) −13.9178 6.19661i −1.38487 0.616586i −0.427125 0.904192i \(-0.640474\pi\)
−0.957749 + 0.287607i \(0.907140\pi\)
\(102\) 0 0
\(103\) 2.32985 + 2.58756i 0.229567 + 0.254960i 0.846913 0.531732i \(-0.178459\pi\)
−0.617346 + 0.786692i \(0.711792\pi\)
\(104\) −1.64139 + 0.730796i −0.160952 + 0.0716604i
\(105\) 0 0
\(106\) −1.49667 + 0.318128i −0.145370 + 0.0308993i
\(107\) −2.97592 9.15893i −0.287693 0.885428i −0.985579 0.169218i \(-0.945876\pi\)
0.697886 0.716209i \(-0.254124\pi\)
\(108\) 0 0
\(109\) 0.380750 0.0364692 0.0182346 0.999834i \(-0.494195\pi\)
0.0182346 + 0.999834i \(0.494195\pi\)
\(110\) −12.0006 + 8.86040i −1.14421 + 0.844806i
\(111\) 0 0
\(112\) 1.04840 + 9.97487i 0.0990646 + 0.942537i
\(113\) 12.1557 + 2.58378i 1.14352 + 0.243062i 0.740451 0.672110i \(-0.234612\pi\)
0.403064 + 0.915172i \(0.367945\pi\)
\(114\) 0 0
\(115\) 2.98621 28.4119i 0.278466 2.64943i
\(116\) −0.681456 0.495107i −0.0632716 0.0459695i
\(117\) 0 0
\(118\) 0.197499 + 0.607838i 0.0181812 + 0.0559561i
\(119\) 5.25019 + 2.33754i 0.481284 + 0.214282i
\(120\) 0 0
\(121\) 3.23825 10.5126i 0.294386 0.955687i
\(122\) 6.44293 11.1595i 0.583315 1.01033i
\(123\) 0 0
\(124\) −3.93137 + 4.36623i −0.353047 + 0.392099i
\(125\) −6.39905 + 19.6942i −0.572348 + 1.76151i
\(126\) 0 0
\(127\) 0.354450 + 0.257523i 0.0314523 + 0.0228515i 0.603400 0.797438i \(-0.293812\pi\)
−0.571948 + 0.820290i \(0.693812\pi\)
\(128\) 2.50450 0.532348i 0.221369 0.0470534i
\(129\) 0 0
\(130\) 0.274333 + 2.61011i 0.0240606 + 0.228921i
\(131\) 4.06152 7.03476i 0.354857 0.614630i −0.632237 0.774775i \(-0.717863\pi\)
0.987093 + 0.160145i \(0.0511963\pi\)
\(132\) 0 0
\(133\) 5.05955 + 8.76340i 0.438719 + 0.759884i
\(134\) 6.94243 5.04397i 0.599734 0.435732i
\(135\) 0 0
\(136\) 1.19201 3.66863i 0.102214 0.314583i
\(137\) 0.701945 6.67856i 0.0599712 0.570588i −0.922737 0.385429i \(-0.874053\pi\)
0.982709 0.185159i \(-0.0592800\pi\)
\(138\) 0 0
\(139\) −2.00414 2.22582i −0.169989 0.188792i 0.652131 0.758106i \(-0.273875\pi\)
−0.822120 + 0.569315i \(0.807209\pi\)
\(140\) −11.8876 2.52679i −1.00469 0.213553i
\(141\) 0 0
\(142\) 2.94301 + 5.09745i 0.246972 + 0.427768i
\(143\) −1.30598 1.42824i −0.109211 0.119435i
\(144\) 0 0
\(145\) −3.93431 + 2.85845i −0.326727 + 0.237381i
\(146\) −0.292440 + 0.324788i −0.0242025 + 0.0268796i
\(147\) 0 0
\(148\) 4.72830 2.10517i 0.388664 0.173044i
\(149\) 0.234607 0.104454i 0.0192198 0.00855719i −0.397104 0.917774i \(-0.629985\pi\)
0.416324 + 0.909216i \(0.363318\pi\)
\(150\) 0 0
\(151\) −4.24694 + 4.71671i −0.345611 + 0.383840i −0.890741 0.454512i \(-0.849814\pi\)
0.545129 + 0.838352i \(0.316480\pi\)
\(152\) 5.49481 3.99221i 0.445688 0.323811i
\(153\) 0 0
\(154\) −15.9301 + 7.23948i −1.28368 + 0.583374i
\(155\) 16.9603 + 29.3761i 1.36229 + 2.35955i
\(156\) 0 0
\(157\) 8.88811 + 1.88923i 0.709349 + 0.150777i 0.548437 0.836192i \(-0.315223\pi\)
0.160912 + 0.986969i \(0.448557\pi\)
\(158\) −10.4964 11.6574i −0.835048 0.927414i
\(159\) 0 0
\(160\) −1.48960 + 14.1726i −0.117763 + 1.12044i
\(161\) 10.3555 31.8709i 0.816125 2.51178i
\(162\) 0 0
\(163\) −5.00952 + 3.63963i −0.392376 + 0.285078i −0.766428 0.642330i \(-0.777968\pi\)
0.374053 + 0.927408i \(0.377968\pi\)
\(164\) 0.557968 + 0.966429i 0.0435700 + 0.0754654i
\(165\) 0 0
\(166\) −0.574066 + 0.994312i −0.0445562 + 0.0771736i
\(167\) 1.42595 + 13.5670i 0.110343 + 1.04984i 0.899879 + 0.436140i \(0.143655\pi\)
−0.789536 + 0.613704i \(0.789679\pi\)
\(168\) 0 0
\(169\) 12.3829 2.63206i 0.952528 0.202466i
\(170\) −4.55844 3.31190i −0.349616 0.254011i
\(171\) 0 0
\(172\) −1.21172 + 3.72929i −0.0923927 + 0.284356i
\(173\) 14.2011 15.7719i 1.07969 1.19912i 0.100763 0.994910i \(-0.467872\pi\)
0.978928 0.204207i \(-0.0654616\pi\)
\(174\) 0 0
\(175\) −23.6139 + 40.9005i −1.78504 + 3.09178i
\(176\) 3.67372 + 6.25179i 0.276917 + 0.471246i
\(177\) 0 0
\(178\) 3.49927 + 1.55798i 0.262281 + 0.116775i
\(179\) 4.48218 + 13.7947i 0.335014 + 1.03107i 0.966715 + 0.255855i \(0.0823568\pi\)
−0.631702 + 0.775212i \(0.717643\pi\)
\(180\) 0 0
\(181\) −0.235532 0.171124i −0.0175070 0.0127195i 0.578997 0.815329i \(-0.303444\pi\)
−0.596504 + 0.802610i \(0.703444\pi\)
\(182\) −0.321795 + 3.06168i −0.0238530 + 0.226946i
\(183\) 0 0
\(184\) −22.0011 4.67648i −1.62194 0.344755i
\(185\) −3.12349 29.7180i −0.229644 2.18491i
\(186\) 0 0
\(187\) 4.15483 0.0318807i 0.303832 0.00233135i
\(188\) 0.357732 0.0260903
\(189\) 0 0
\(190\) −3.06576 9.43545i −0.222414 0.684519i
\(191\) −0.443235 + 0.0942126i −0.0320714 + 0.00681698i −0.223919 0.974608i \(-0.571885\pi\)
0.191848 + 0.981425i \(0.438552\pi\)
\(192\) 0 0
\(193\) −16.0244 + 7.13453i −1.15346 + 0.513554i −0.892168 0.451705i \(-0.850816\pi\)
−0.261295 + 0.965259i \(0.584149\pi\)
\(194\) −12.1113 13.4510i −0.869544 0.965726i
\(195\) 0 0
\(196\) −8.69151 3.86971i −0.620822 0.276408i
\(197\) −17.6706 −1.25898 −0.629489 0.777010i \(-0.716736\pi\)
−0.629489 + 0.777010i \(0.716736\pi\)
\(198\) 0 0
\(199\) −13.2207 −0.937192 −0.468596 0.883413i \(-0.655240\pi\)
−0.468596 + 0.883413i \(0.655240\pi\)
\(200\) 28.9588 + 12.8933i 2.04770 + 0.911693i
\(201\) 0 0
\(202\) 11.7238 + 13.0205i 0.824880 + 0.916122i
\(203\) −5.21126 + 2.32020i −0.365759 + 0.162846i
\(204\) 0 0
\(205\) 6.30195 1.33952i 0.440147 0.0935561i
\(206\) −1.23741 3.80836i −0.0862146 0.265341i
\(207\) 0 0
\(208\) 1.27577 0.0884590
\(209\) 5.95146 + 4.25460i 0.411671 + 0.294297i
\(210\) 0 0
\(211\) −1.17723 11.2005i −0.0810435 0.771078i −0.957273 0.289184i \(-0.906616\pi\)
0.876230 0.481893i \(-0.160051\pi\)
\(212\) −0.881565 0.187382i −0.0605461 0.0128695i
\(213\) 0 0
\(214\) −1.15768 + 11.0146i −0.0791373 + 0.752941i
\(215\) 18.3151 + 13.3067i 1.24908 + 0.907508i
\(216\) 0 0
\(217\) 12.2955 + 37.8418i 0.834675 + 2.56887i
\(218\) −0.400023 0.178102i −0.0270930 0.0120626i
\(219\) 0 0
\(220\) −8.58016 + 1.89269i −0.578474 + 0.127605i
\(221\) 0.365507 0.633076i 0.0245866 0.0425853i
\(222\) 0 0
\(223\) −10.5592 + 11.7271i −0.707093 + 0.785306i −0.984488 0.175449i \(-0.943862\pi\)
0.277395 + 0.960756i \(0.410529\pi\)
\(224\) −5.16557 + 15.8980i −0.345139 + 1.06223i
\(225\) 0 0
\(226\) −11.5624 8.40060i −0.769122 0.558800i
\(227\) −7.81368 + 1.66085i −0.518612 + 0.110234i −0.459779 0.888033i \(-0.652071\pi\)
−0.0588332 + 0.998268i \(0.518738\pi\)
\(228\) 0 0
\(229\) 2.05942 + 19.5940i 0.136090 + 1.29481i 0.822989 + 0.568057i \(0.192305\pi\)
−0.686899 + 0.726753i \(0.741029\pi\)
\(230\) −16.4275 + 28.4533i −1.08320 + 1.87615i
\(231\) 0 0
\(232\) 1.91441 + 3.31586i 0.125687 + 0.217697i
\(233\) −14.4585 + 10.5047i −0.947207 + 0.688186i −0.950145 0.311810i \(-0.899065\pi\)
0.00293795 + 0.999996i \(0.499065\pi\)
\(234\) 0 0
\(235\) 0.638221 1.96424i 0.0416330 0.128133i
\(236\) −0.0393499 + 0.374389i −0.00256146 + 0.0243707i
\(237\) 0 0
\(238\) −4.42253 4.91172i −0.286670 0.318379i
\(239\) 9.80723 + 2.08459i 0.634377 + 0.134841i 0.513865 0.857871i \(-0.328213\pi\)
0.120512 + 0.992712i \(0.461546\pi\)
\(240\) 0 0
\(241\) −8.59826 14.8926i −0.553863 0.959318i −0.997991 0.0633552i \(-0.979820\pi\)
0.444128 0.895963i \(-0.353513\pi\)
\(242\) −8.31957 + 9.52994i −0.534802 + 0.612608i
\(243\) 0 0
\(244\) 6.14042 4.46128i 0.393100 0.285604i
\(245\) −36.7542 + 40.8197i −2.34814 + 2.60787i
\(246\) 0 0
\(247\) 1.17585 0.523523i 0.0748177 0.0333110i
\(248\) 24.3977 10.8625i 1.54925 0.689772i
\(249\) 0 0
\(250\) 15.9352 17.6979i 1.00783 1.11931i
\(251\) −4.20229 + 3.05314i −0.265246 + 0.192713i −0.712457 0.701716i \(-0.752417\pi\)
0.447211 + 0.894429i \(0.352417\pi\)
\(252\) 0 0
\(253\) −2.71727 24.0747i −0.170833 1.51356i
\(254\) −0.251931 0.436358i −0.0158076 0.0273795i
\(255\) 0 0
\(256\) 13.8720 + 2.94859i 0.867002 + 0.184287i
\(257\) 10.8355 + 12.0340i 0.675898 + 0.750661i 0.979347 0.202187i \(-0.0648048\pi\)
−0.303449 + 0.952848i \(0.598138\pi\)
\(258\) 0 0
\(259\) 3.66388 34.8595i 0.227663 2.16606i
\(260\) −0.477698 + 1.47020i −0.0296256 + 0.0911782i
\(261\) 0 0
\(262\) −7.55773 + 5.49101i −0.466918 + 0.339236i
\(263\) −11.5926 20.0789i −0.714828 1.23812i −0.963026 0.269408i \(-0.913172\pi\)
0.248198 0.968709i \(-0.420161\pi\)
\(264\) 0 0
\(265\) −2.60166 + 4.50621i −0.159819 + 0.276814i
\(266\) −1.21644 11.5737i −0.0745849 0.709628i
\(267\) 0 0
\(268\) 4.94408 1.05090i 0.302008 0.0641937i
\(269\) 6.98259 + 5.07315i 0.425736 + 0.309315i 0.779942 0.625852i \(-0.215249\pi\)
−0.354206 + 0.935168i \(0.615249\pi\)
\(270\) 0 0
\(271\) 7.48888 23.0484i 0.454917 1.40009i −0.416315 0.909220i \(-0.636679\pi\)
0.871232 0.490871i \(-0.163321\pi\)
\(272\) −1.83273 + 2.03546i −0.111126 + 0.123418i
\(273\) 0 0
\(274\) −3.86148 + 6.68828i −0.233280 + 0.404054i
\(275\) −3.30840 + 33.9837i −0.199504 + 2.04930i
\(276\) 0 0
\(277\) −7.86170 3.50025i −0.472364 0.210310i 0.156727 0.987642i \(-0.449906\pi\)
−0.629090 + 0.777332i \(0.716572\pi\)
\(278\) 1.06442 + 3.27596i 0.0638398 + 0.196479i
\(279\) 0 0
\(280\) 44.6924 + 32.4709i 2.67088 + 1.94051i
\(281\) −0.922113 + 8.77332i −0.0550087 + 0.523372i 0.931972 + 0.362531i \(0.118087\pi\)
−0.986980 + 0.160841i \(0.948579\pi\)
\(282\) 0 0
\(283\) 19.6317 + 4.17284i 1.16698 + 0.248050i 0.750360 0.661030i \(-0.229880\pi\)
0.416622 + 0.909080i \(0.363214\pi\)
\(284\) 0.362397 + 3.44798i 0.0215043 + 0.204600i
\(285\) 0 0
\(286\) 0.704000 + 2.11143i 0.0416284 + 0.124851i
\(287\) 7.55738 0.446098
\(288\) 0 0
\(289\) −4.76831 14.6753i −0.280489 0.863256i
\(290\) 5.47054 1.16280i 0.321241 0.0682820i
\(291\) 0 0
\(292\) −0.235171 + 0.104705i −0.0137623 + 0.00612739i
\(293\) −1.13974 1.26581i −0.0665842 0.0739492i 0.708932 0.705276i \(-0.249177\pi\)
−0.775517 + 0.631327i \(0.782510\pi\)
\(294\) 0 0
\(295\) 1.98550 + 0.884003i 0.115600 + 0.0514686i
\(296\) −23.5266 −1.36746
\(297\) 0 0
\(298\) −0.295342 −0.0171087
\(299\) −3.89402 1.73373i −0.225197 0.100264i
\(300\) 0 0
\(301\) 17.7690 + 19.7345i 1.02419 + 1.13748i
\(302\) 6.66823 2.96889i 0.383714 0.170840i
\(303\) 0 0
\(304\) −4.71727 + 1.00269i −0.270554 + 0.0575080i
\(305\) −13.5411 41.6752i −0.775361 2.38632i
\(306\) 0 0
\(307\) −19.7887 −1.12940 −0.564699 0.825297i \(-0.691008\pi\)
−0.564699 + 0.825297i \(0.691008\pi\)
\(308\) −10.3063 + 0.0790816i −0.587253 + 0.00450609i
\(309\) 0 0
\(310\) −4.07768 38.7966i −0.231597 2.20350i
\(311\) −26.6914 5.67343i −1.51353 0.321710i −0.625034 0.780597i \(-0.714915\pi\)
−0.888495 + 0.458887i \(0.848248\pi\)
\(312\) 0 0
\(313\) −0.943695 + 8.97866i −0.0533408 + 0.507504i 0.934934 + 0.354821i \(0.115458\pi\)
−0.988275 + 0.152683i \(0.951209\pi\)
\(314\) −8.45430 6.14241i −0.477104 0.346636i
\(315\) 0 0
\(316\) −2.85522 8.78745i −0.160618 0.494333i
\(317\) 22.8882 + 10.1905i 1.28553 + 0.572353i 0.931792 0.362992i \(-0.118245\pi\)
0.353735 + 0.935346i \(0.384912\pi\)
\(318\) 0 0
\(319\) −2.73599 + 3.08592i −0.153186 + 0.172778i
\(320\) 16.7450 29.0031i 0.936072 1.62132i
\(321\) 0 0
\(322\) −25.7877 + 28.6402i −1.43709 + 1.59606i
\(323\) −0.853926 + 2.62811i −0.0475137 + 0.146232i
\(324\) 0 0
\(325\) 4.85999 + 3.53099i 0.269584 + 0.195864i
\(326\) 6.96559 1.48058i 0.385788 0.0820018i
\(327\) 0 0
\(328\) −0.530223 5.04474i −0.0292767 0.278549i
\(329\) 1.21132 2.09807i 0.0667824 0.115671i
\(330\) 0 0
\(331\) 4.65092 + 8.05563i 0.255638 + 0.442777i 0.965069 0.261998i \(-0.0843813\pi\)
−0.709431 + 0.704775i \(0.751048\pi\)
\(332\) −0.547113 + 0.397501i −0.0300268 + 0.0218157i
\(333\) 0 0
\(334\) 4.84804 14.9207i 0.265273 0.816426i
\(335\) 3.05033 29.0219i 0.166657 1.58564i
\(336\) 0 0
\(337\) −9.48759 10.5370i −0.516822 0.573989i 0.427080 0.904214i \(-0.359542\pi\)
−0.943902 + 0.330225i \(0.892875\pi\)
\(338\) −14.2409 3.02699i −0.774600 0.164646i
\(339\) 0 0
\(340\) −1.65942 2.87420i −0.0899947 0.155875i
\(341\) 19.4120 + 21.2293i 1.05122 + 1.14963i
\(342\) 0 0
\(343\) −26.1466 + 18.9966i −1.41178 + 1.02572i
\(344\) 11.9266 13.2458i 0.643038 0.714166i
\(345\) 0 0
\(346\) −22.2975 + 9.92749i −1.19872 + 0.533705i
\(347\) 1.35386 0.602777i 0.0726789 0.0323587i −0.370075 0.929002i \(-0.620668\pi\)
0.442754 + 0.896643i \(0.354001\pi\)
\(348\) 0 0
\(349\) 1.35085 1.50027i 0.0723092 0.0803076i −0.705905 0.708307i \(-0.749459\pi\)
0.778214 + 0.627999i \(0.216126\pi\)
\(350\) 43.9410 31.9250i 2.34875 1.70646i
\(351\) 0 0
\(352\) 1.35544 + 12.0091i 0.0722454 + 0.640085i
\(353\) −2.85887 4.95171i −0.152162 0.263553i 0.779860 0.625954i \(-0.215290\pi\)
−0.932022 + 0.362401i \(0.881957\pi\)
\(354\) 0 0
\(355\) 19.5788 + 4.16160i 1.03913 + 0.220875i
\(356\) 1.50968 + 1.67667i 0.0800130 + 0.0888635i
\(357\) 0 0
\(358\) 1.74364 16.5896i 0.0921541 0.876788i
\(359\) 3.39150 10.4380i 0.178996 0.550894i −0.820797 0.571220i \(-0.806470\pi\)
0.999793 + 0.0203256i \(0.00647029\pi\)
\(360\) 0 0
\(361\) 11.4350 8.30800i 0.601841 0.437263i
\(362\) 0.167408 + 0.289960i 0.00879879 + 0.0152399i
\(363\) 0 0
\(364\) −0.906656 + 1.57037i −0.0475217 + 0.0823099i
\(365\) 0.155353 + 1.47808i 0.00813155 + 0.0773665i
\(366\) 0 0
\(367\) 17.6763 3.75721i 0.922695 0.196125i 0.278015 0.960577i \(-0.410324\pi\)
0.644681 + 0.764452i \(0.276990\pi\)
\(368\) 12.9208 + 9.38750i 0.673542 + 0.489357i
\(369\) 0 0
\(370\) −10.6195 + 32.6834i −0.552080 + 1.69913i
\(371\) −4.08407 + 4.53582i −0.212034 + 0.235488i
\(372\) 0 0
\(373\) 12.2370 21.1952i 0.633610 1.09744i −0.353198 0.935548i \(-0.614906\pi\)
0.986808 0.161895i \(-0.0517607\pi\)
\(374\) −4.38006 1.90999i −0.226487 0.0987634i
\(375\) 0 0
\(376\) −1.48550 0.661388i −0.0766089 0.0341085i
\(377\) 0.224220 + 0.690079i 0.0115479 + 0.0355409i
\(378\) 0 0
\(379\) −7.54577 5.48232i −0.387600 0.281608i 0.376871 0.926266i \(-0.377000\pi\)
−0.764471 + 0.644658i \(0.777000\pi\)
\(380\) 0.610827 5.81163i 0.0313348 0.298130i
\(381\) 0 0
\(382\) 0.509741 + 0.108349i 0.0260806 + 0.00554361i
\(383\) −2.60432 24.7785i −0.133075 1.26612i −0.833550 0.552444i \(-0.813695\pi\)
0.700475 0.713677i \(-0.252971\pi\)
\(384\) 0 0
\(385\) −17.9529 + 56.7309i −0.914965 + 2.89127i
\(386\) 20.1728 1.02677
\(387\) 0 0
\(388\) −3.29451 10.1395i −0.167254 0.514754i
\(389\) −21.8352 + 4.64121i −1.10709 + 0.235319i −0.724960 0.688791i \(-0.758142\pi\)
−0.382128 + 0.924110i \(0.624809\pi\)
\(390\) 0 0
\(391\) 8.36013 3.72217i 0.422790 0.188238i
\(392\) 28.9375 + 32.1383i 1.46156 + 1.62323i
\(393\) 0 0
\(394\) 18.5651 + 8.26569i 0.935294 + 0.416420i
\(395\) −53.3442 −2.68404
\(396\) 0 0
\(397\) 39.1450 1.96463 0.982315 0.187234i \(-0.0599524\pi\)
0.982315 + 0.187234i \(0.0599524\pi\)
\(398\) 13.8899 + 6.18420i 0.696240 + 0.309986i
\(399\) 0 0
\(400\) −15.0609 16.7269i −0.753047 0.836344i
\(401\) −30.3571 + 13.5158i −1.51596 + 0.674949i −0.985017 0.172458i \(-0.944829\pi\)
−0.530943 + 0.847407i \(0.678162\pi\)
\(402\) 0 0
\(403\) 4.95051 1.05226i 0.246603 0.0524170i
\(404\) 3.18908 + 9.81498i 0.158663 + 0.488314i
\(405\) 0 0
\(406\) 6.56035 0.325585
\(407\) −8.01558 24.0402i −0.397318 1.19163i
\(408\) 0 0
\(409\) −3.79453 36.1026i −0.187628 1.78516i −0.532422 0.846479i \(-0.678718\pi\)
0.344794 0.938678i \(-0.387949\pi\)
\(410\) −7.24752 1.54051i −0.357930 0.0760803i
\(411\) 0 0
\(412\) 0.246544 2.34571i 0.0121463 0.115565i
\(413\) 2.06252 + 1.49851i 0.101490 + 0.0737369i
\(414\) 0 0
\(415\) 1.20652 + 3.71328i 0.0592256 + 0.182278i
\(416\) 1.94244 + 0.864829i 0.0952358 + 0.0424017i
\(417\) 0 0
\(418\) −4.26255 7.25385i −0.208488 0.354797i
\(419\) −2.99011 + 5.17903i −0.146077 + 0.253012i −0.929774 0.368131i \(-0.879998\pi\)
0.783697 + 0.621143i \(0.213331\pi\)
\(420\) 0 0
\(421\) −10.5851 + 11.7559i −0.515884 + 0.572947i −0.943651 0.330942i \(-0.892634\pi\)
0.427767 + 0.903889i \(0.359300\pi\)
\(422\) −4.00242 + 12.3182i −0.194835 + 0.599639i
\(423\) 0 0
\(424\) 3.31431 + 2.40798i 0.160957 + 0.116942i
\(425\) −12.6153 + 2.68146i −0.611932 + 0.130070i
\(426\) 0 0
\(427\) −5.37288 51.1196i −0.260012 2.47385i
\(428\) −3.26175 + 5.64952i −0.157663 + 0.273080i
\(429\) 0 0
\(430\) −13.0177 22.5474i −0.627771 1.08733i
\(431\) 24.8603 18.0620i 1.19748 0.870018i 0.203443 0.979087i \(-0.434787\pi\)
0.994034 + 0.109069i \(0.0347868\pi\)
\(432\) 0 0
\(433\) 4.24900 13.0771i 0.204194 0.628444i −0.795552 0.605886i \(-0.792819\pi\)
0.999746 0.0225582i \(-0.00718112\pi\)
\(434\) 4.78316 45.5087i 0.229599 2.18449i
\(435\) 0 0
\(436\) −0.172581 0.191671i −0.00826513 0.00917936i
\(437\) 15.7610 + 3.35011i 0.753952 + 0.160258i
\(438\) 0 0
\(439\) −7.85940 13.6129i −0.375109 0.649707i 0.615235 0.788344i \(-0.289061\pi\)
−0.990343 + 0.138637i \(0.955728\pi\)
\(440\) 39.1288 + 8.00379i 1.86539 + 0.381566i
\(441\) 0 0
\(442\) −0.680139 + 0.494150i −0.0323509 + 0.0235043i
\(443\) 10.9667 12.1798i 0.521046 0.578680i −0.423982 0.905671i \(-0.639368\pi\)
0.945028 + 0.326991i \(0.106035\pi\)
\(444\) 0 0
\(445\) 11.8997 5.29809i 0.564100 0.251154i
\(446\) 16.5792 7.38153i 0.785047 0.349526i
\(447\) 0 0
\(448\) 26.2861 29.1937i 1.24190 1.37927i
\(449\) 13.3887 9.72745i 0.631851 0.459067i −0.225190 0.974315i \(-0.572300\pi\)
0.857041 + 0.515248i \(0.172300\pi\)
\(450\) 0 0
\(451\) 4.97421 2.26055i 0.234226 0.106445i
\(452\) −4.20910 7.29038i −0.197979 0.342910i
\(453\) 0 0
\(454\) 8.98609 + 1.91005i 0.421738 + 0.0896432i
\(455\) 7.00510 + 7.77995i 0.328404 + 0.364730i
\(456\) 0 0
\(457\) 0.469498 4.46698i 0.0219622 0.208956i −0.978038 0.208428i \(-0.933165\pi\)
1.00000 0.000528143i \(-0.000168113\pi\)
\(458\) 7.00175 21.5492i 0.327170 1.00693i
\(459\) 0 0
\(460\) −15.6562 + 11.3749i −0.729974 + 0.530357i
\(461\) −4.49882 7.79219i −0.209531 0.362918i 0.742036 0.670360i \(-0.233860\pi\)
−0.951567 + 0.307442i \(0.900527\pi\)
\(462\) 0 0
\(463\) 3.15033 5.45653i 0.146408 0.253586i −0.783489 0.621405i \(-0.786562\pi\)
0.929897 + 0.367819i \(0.119895\pi\)
\(464\) −0.284178 2.70377i −0.0131926 0.125520i
\(465\) 0 0
\(466\) 20.1041 4.27326i 0.931304 0.197955i
\(467\) 7.41774 + 5.38930i 0.343252 + 0.249387i 0.746033 0.665909i \(-0.231956\pi\)
−0.402781 + 0.915297i \(0.631956\pi\)
\(468\) 0 0
\(469\) 10.5778 32.5551i 0.488438 1.50326i
\(470\) −1.58933 + 1.76513i −0.0733104 + 0.0814195i
\(471\) 0 0
\(472\) 0.855587 1.48192i 0.0393816 0.0682109i
\(473\) 17.5984 + 7.67404i 0.809173 + 0.352853i
\(474\) 0 0
\(475\) −20.7453 9.23642i −0.951862 0.423796i
\(476\) −1.20301 3.70249i −0.0551399 0.169703i
\(477\) 0 0
\(478\) −9.32856 6.77759i −0.426678 0.310000i
\(479\) 2.28072 21.6996i 0.104209 0.991478i −0.810054 0.586356i \(-0.800562\pi\)
0.914262 0.405123i \(-0.132771\pi\)
\(480\) 0 0
\(481\) −4.36106 0.926972i −0.198847 0.0422663i
\(482\) 2.06724 + 19.6684i 0.0941600 + 0.895873i
\(483\) 0 0
\(484\) −6.75984 + 3.13484i −0.307265 + 0.142493i
\(485\) −61.5517 −2.79492
\(486\) 0 0
\(487\) 2.06718 + 6.36212i 0.0936727 + 0.288295i 0.986906 0.161299i \(-0.0515685\pi\)
−0.893233 + 0.449595i \(0.851568\pi\)
\(488\) −33.7466 + 7.17306i −1.52764 + 0.324709i
\(489\) 0 0
\(490\) 57.7087 25.6936i 2.60701 1.16072i
\(491\) −18.1076 20.1105i −0.817183 0.907574i 0.179916 0.983682i \(-0.442417\pi\)
−0.997100 + 0.0761080i \(0.975751\pi\)
\(492\) 0 0
\(493\) −1.42311 0.633609i −0.0640936 0.0285363i
\(494\) −1.48026 −0.0666000
\(495\) 0 0
\(496\) −18.9631 −0.851467
\(497\) 21.4493 + 9.54982i 0.962131 + 0.428368i
\(498\) 0 0
\(499\) 19.0935 + 21.2055i 0.854742 + 0.949287i 0.999191 0.0402249i \(-0.0128074\pi\)
−0.144448 + 0.989512i \(0.546141\pi\)
\(500\) 12.8146 5.70543i 0.573087 0.255155i
\(501\) 0 0
\(502\) 5.84316 1.24200i 0.260793 0.0554332i
\(503\) 3.95017 + 12.1574i 0.176129 + 0.542071i 0.999683 0.0251675i \(-0.00801191\pi\)
−0.823554 + 0.567238i \(0.808012\pi\)
\(504\) 0 0
\(505\) 59.5819 2.65136
\(506\) −8.40648 + 26.5643i −0.373714 + 1.18093i
\(507\) 0 0
\(508\) −0.0310223 0.295158i −0.00137639 0.0130955i
\(509\) 24.0540 + 5.11284i 1.06617 + 0.226622i 0.707408 0.706805i \(-0.249864\pi\)
0.358766 + 0.933427i \(0.383197\pi\)
\(510\) 0 0
\(511\) −0.182230 + 1.73381i −0.00806139 + 0.0766990i
\(512\) −17.3379 12.5967i −0.766233 0.556701i
\(513\) 0 0
\(514\) −5.75485 17.7116i −0.253836 0.781226i
\(515\) −12.4400 5.53865i −0.548173 0.244062i
\(516\) 0 0
\(517\) 0.169711 1.74326i 0.00746389 0.0766687i
\(518\) −20.1554 + 34.9102i −0.885579 + 1.53387i
\(519\) 0 0
\(520\) 4.70183 5.22191i 0.206189 0.228996i
\(521\) 4.75950 14.6482i 0.208518 0.641751i −0.791033 0.611774i \(-0.790456\pi\)
0.999551 0.0299778i \(-0.00954365\pi\)
\(522\) 0 0
\(523\) −15.9498 11.5882i −0.697434 0.506716i 0.181661 0.983361i \(-0.441853\pi\)
−0.879096 + 0.476646i \(0.841853\pi\)
\(524\) −5.38227 + 1.14404i −0.235126 + 0.0499775i
\(525\) 0 0
\(526\) 2.78714 + 26.5179i 0.121525 + 1.15623i
\(527\) −5.43289 + 9.41004i −0.236660 + 0.409908i
\(528\) 0 0
\(529\) −15.1806 26.2936i −0.660026 1.14320i
\(530\) 4.84121 3.51734i 0.210289 0.152784i
\(531\) 0 0
\(532\) 2.11820 6.51915i 0.0918356 0.282641i
\(533\) 0.100482 0.956018i 0.00435234 0.0414097i
\(534\) 0 0
\(535\) 25.2013 + 27.9889i 1.08955 + 1.21007i
\(536\) −22.4735 4.77689i −0.970707 0.206330i
\(537\) 0 0
\(538\) −4.96300 8.59616i −0.213970 0.370607i
\(539\) −22.9808 + 40.5188i −0.989854 + 1.74527i
\(540\) 0 0
\(541\) −11.4472 + 8.31687i −0.492153 + 0.357570i −0.806012 0.591899i \(-0.798378\pi\)
0.313858 + 0.949470i \(0.398378\pi\)
\(542\) −18.6492 + 20.7120i −0.801052 + 0.889659i
\(543\) 0 0
\(544\) −4.17025 + 1.85671i −0.178798 + 0.0796060i
\(545\) −1.36033 + 0.605657i −0.0582700 + 0.0259435i
\(546\) 0 0
\(547\) −11.0931 + 12.3202i −0.474309 + 0.526773i −0.932058 0.362308i \(-0.881989\pi\)
0.457750 + 0.889081i \(0.348656\pi\)
\(548\) −3.68018 + 2.67381i −0.157209 + 0.114219i
\(549\) 0 0
\(550\) 19.3723 34.1564i 0.826037 1.45643i
\(551\) −1.37143 2.37539i −0.0584251 0.101195i
\(552\) 0 0
\(553\) −61.2059 13.0097i −2.60274 0.553229i
\(554\) 6.62235 + 7.35486i 0.281357 + 0.312478i
\(555\) 0 0
\(556\) −0.212077 + 2.01778i −0.00899407 + 0.0855729i
\(557\) −4.61081 + 14.1906i −0.195366 + 0.601275i 0.804606 + 0.593809i \(0.202377\pi\)
−0.999972 + 0.00746621i \(0.997623\pi\)
\(558\) 0 0
\(559\) 2.73269 1.98541i 0.115580 0.0839741i
\(560\) −19.6127 33.9701i −0.828786 1.43550i
\(561\) 0 0
\(562\) 5.07265 8.78608i 0.213977 0.370618i
\(563\) −4.24022 40.3430i −0.178704 1.70026i −0.605449 0.795884i \(-0.707006\pi\)
0.426745 0.904372i \(-0.359660\pi\)
\(564\) 0 0
\(565\) −47.5395 + 10.1048i −2.00000 + 0.425114i
\(566\) −18.6735 13.5671i −0.784905 0.570267i
\(567\) 0 0
\(568\) 4.86987 14.9879i 0.204335 0.628879i
\(569\) 6.71998 7.46329i 0.281716 0.312878i −0.585634 0.810575i \(-0.699155\pi\)
0.867350 + 0.497698i \(0.165821\pi\)
\(570\) 0 0
\(571\) −17.8106 + 30.8488i −0.745348 + 1.29098i 0.204683 + 0.978828i \(0.434384\pi\)
−0.950032 + 0.312153i \(0.898950\pi\)
\(572\) −0.127026 + 1.30481i −0.00531123 + 0.0545566i
\(573\) 0 0
\(574\) −7.93993 3.53508i −0.331406 0.147552i
\(575\) 23.2390 + 71.5224i 0.969135 + 2.98269i
\(576\) 0 0
\(577\) 24.3890 + 17.7197i 1.01533 + 0.737680i 0.965320 0.261069i \(-0.0840750\pi\)
0.0500090 + 0.998749i \(0.484075\pi\)
\(578\) −1.85495 + 17.6486i −0.0771556 + 0.734087i
\(579\) 0 0
\(580\) 3.22224 + 0.684909i 0.133796 + 0.0284393i
\(581\) 0.478725 + 4.55477i 0.0198609 + 0.188964i
\(582\) 0 0
\(583\) −1.33136 + 4.20706i −0.0551391 + 0.174239i
\(584\) 1.17014 0.0484209
\(585\) 0 0
\(586\) 0.605329 + 1.86301i 0.0250059 + 0.0769602i
\(587\) −20.1482 + 4.28262i −0.831603 + 0.176763i −0.603993 0.796990i \(-0.706425\pi\)
−0.227610 + 0.973752i \(0.573091\pi\)
\(588\) 0 0
\(589\) −17.4779 + 7.78164i −0.720162 + 0.320637i
\(590\) −1.67250 1.85750i −0.0688558 0.0764721i
\(591\) 0 0
\(592\) 15.2609 + 6.79460i 0.627220 + 0.279256i
\(593\) 43.5253 1.78737 0.893684 0.448697i \(-0.148112\pi\)
0.893684 + 0.448697i \(0.148112\pi\)
\(594\) 0 0
\(595\) −22.4760 −0.921425
\(596\) −0.158922 0.0707565i −0.00650969 0.00289830i
\(597\) 0 0
\(598\) 3.28015 + 3.64298i 0.134135 + 0.148972i
\(599\) −26.1839 + 11.6578i −1.06985 + 0.476327i −0.864640 0.502392i \(-0.832453\pi\)
−0.205207 + 0.978719i \(0.565787\pi\)
\(600\) 0 0
\(601\) 18.2629 3.88189i 0.744957 0.158346i 0.180232 0.983624i \(-0.442315\pi\)
0.564726 + 0.825279i \(0.308982\pi\)
\(602\) −9.43733 29.0451i −0.384637 1.18379i
\(603\) 0 0
\(604\) 4.29940 0.174940
\(605\) 5.15278 + 42.7099i 0.209490 + 1.73640i
\(606\) 0 0
\(607\) −3.30683 31.4624i −0.134220 1.27702i −0.829592 0.558370i \(-0.811427\pi\)
0.695372 0.718650i \(-0.255240\pi\)
\(608\) −7.86201 1.67112i −0.318847 0.0677729i
\(609\) 0 0
\(610\) −5.26770 + 50.1188i −0.213283 + 2.02925i
\(611\) −0.249303 0.181130i −0.0100857 0.00732772i
\(612\) 0 0
\(613\) 10.5896 + 32.5913i 0.427709 + 1.31635i 0.900377 + 0.435111i \(0.143291\pi\)
−0.472668 + 0.881241i \(0.656709\pi\)
\(614\) 20.7903 + 9.25645i 0.839029 + 0.373560i
\(615\) 0 0
\(616\) 42.9435 + 18.7262i 1.73024 + 0.754499i
\(617\) −9.68326 + 16.7719i −0.389833 + 0.675211i −0.992427 0.122837i \(-0.960801\pi\)
0.602594 + 0.798048i \(0.294134\pi\)
\(618\) 0 0
\(619\) 25.2167 28.0060i 1.01355 1.12566i 0.0215023 0.999769i \(-0.493155\pi\)
0.992044 0.125889i \(-0.0401782\pi\)
\(620\) 7.10050 21.8531i 0.285163 0.877641i
\(621\) 0 0
\(622\) 25.3886 + 18.4459i 1.01799 + 0.739614i
\(623\) 14.9455 3.17677i 0.598780 0.127275i
\(624\) 0 0
\(625\) −3.08471 29.3491i −0.123389 1.17396i
\(626\) 5.19137 8.99171i 0.207489 0.359381i
\(627\) 0 0
\(628\) −3.07764 5.33063i −0.122811 0.212715i
\(629\) 7.74391 5.62628i 0.308770 0.224334i
\(630\) 0 0
\(631\) −12.6020 + 38.7850i −0.501678 + 1.54401i 0.304606 + 0.952478i \(0.401475\pi\)
−0.806284 + 0.591528i \(0.798525\pi\)
\(632\) −4.39012 + 41.7692i −0.174629 + 1.66149i
\(633\) 0 0
\(634\) −19.2800 21.4126i −0.765706 0.850402i
\(635\) −1.67600 0.356246i −0.0665102 0.0141372i
\(636\) 0 0
\(637\) 4.09777 + 7.09755i 0.162360 + 0.281215i
\(638\) 4.31797 1.96232i 0.170950 0.0776891i
\(639\) 0 0
\(640\) −8.10118 + 5.88585i −0.320227 + 0.232659i
\(641\) 31.4874 34.9703i 1.24368 1.38124i 0.347421 0.937709i \(-0.387057\pi\)
0.896257 0.443535i \(-0.146276\pi\)
\(642\) 0 0
\(643\) −17.5608 + 7.81858i −0.692531 + 0.308335i −0.722652 0.691212i \(-0.757077\pi\)
0.0301216 + 0.999546i \(0.490411\pi\)
\(644\) −20.7377 + 9.23301i −0.817179 + 0.363831i
\(645\) 0 0
\(646\) 2.12649 2.36171i 0.0836657 0.0929201i
\(647\) 34.9606 25.4004i 1.37444 0.998593i 0.377070 0.926185i \(-0.376932\pi\)
0.997375 0.0724077i \(-0.0230683\pi\)
\(648\) 0 0
\(649\) 1.80577 + 0.369370i 0.0708827 + 0.0144990i
\(650\) −3.45432 5.98306i −0.135490 0.234675i
\(651\) 0 0
\(652\) 4.10285 + 0.872087i 0.160680 + 0.0341536i
\(653\) 14.5613 + 16.1719i 0.569826 + 0.632856i 0.957325 0.289014i \(-0.0933275\pi\)
−0.387499 + 0.921870i \(0.626661\pi\)
\(654\) 0 0
\(655\) −3.32068 + 31.5941i −0.129750 + 1.23449i
\(656\) −1.11301 + 3.42548i −0.0434556 + 0.133742i
\(657\) 0 0
\(658\) −2.25405 + 1.63766i −0.0878718 + 0.0638426i
\(659\) −7.60422 13.1709i −0.296218 0.513065i 0.679049 0.734093i \(-0.262392\pi\)
−0.975268 + 0.221028i \(0.929059\pi\)
\(660\) 0 0
\(661\) 8.83930 15.3101i 0.343809 0.595495i −0.641328 0.767267i \(-0.721616\pi\)
0.985137 + 0.171772i \(0.0549494\pi\)
\(662\) −1.11820 10.6389i −0.0434600 0.413494i
\(663\) 0 0
\(664\) 3.00683 0.639122i 0.116688 0.0248027i
\(665\) −32.0165 23.2613i −1.24155 0.902036i
\(666\) 0 0
\(667\) −2.80694 + 8.63886i −0.108685 + 0.334498i
\(668\) 6.18333 6.86728i 0.239240 0.265703i
\(669\) 0 0
\(670\) −16.7802 + 29.0642i −0.648276 + 1.12285i
\(671\) −18.8272 32.0394i −0.726816 1.23687i
\(672\) 0 0
\(673\) 13.0461 + 5.80851i 0.502892 + 0.223902i 0.642472 0.766309i \(-0.277909\pi\)
−0.139581 + 0.990211i \(0.544575\pi\)
\(674\) 5.03898 + 15.5084i 0.194094 + 0.597360i
\(675\) 0 0
\(676\) −6.93772 5.04055i −0.266835 0.193867i
\(677\) −3.21158 + 30.5562i −0.123431 + 1.17437i 0.740960 + 0.671549i \(0.234371\pi\)
−0.864391 + 0.502820i \(0.832296\pi\)
\(678\) 0 0
\(679\) −70.6229 15.0114i −2.71026 0.576083i
\(680\) 1.57691 + 15.0033i 0.0604716 + 0.575349i
\(681\) 0 0
\(682\) −10.4643 31.3842i −0.400697 1.20176i
\(683\) 41.7448 1.59732 0.798660 0.601782i \(-0.205542\pi\)
0.798660 + 0.601782i \(0.205542\pi\)
\(684\) 0 0
\(685\) 8.11567 + 24.9775i 0.310084 + 0.954340i
\(686\) 36.3560 7.72771i 1.38808 0.295045i
\(687\) 0 0
\(688\) −11.5618 + 5.14765i −0.440790 + 0.196252i
\(689\) 0.519486 + 0.576947i 0.0197908 + 0.0219799i
\(690\) 0 0
\(691\) −24.7608 11.0242i −0.941944 0.419380i −0.122454 0.992474i \(-0.539076\pi\)
−0.819490 + 0.573094i \(0.805743\pi\)
\(692\) −14.3765 −0.546513
\(693\) 0 0
\(694\) −1.70435 −0.0646961
\(695\) 10.7009 + 4.76435i 0.405908 + 0.180722i
\(696\) 0 0
\(697\) 1.38095 + 1.53370i 0.0523072 + 0.0580930i
\(698\) −2.12100 + 0.944330i −0.0802811 + 0.0357434i
\(699\) 0 0
\(700\) 31.2928 6.65149i 1.18276 0.251403i
\(701\) 10.8877 + 33.5089i 0.411223 + 1.26561i 0.915586 + 0.402123i \(0.131728\pi\)
−0.504363 + 0.863492i \(0.668272\pi\)
\(702\) 0 0
\(703\) 16.8539 0.635656
\(704\) 8.56895 27.0777i 0.322954 1.02053i
\(705\) 0 0
\(706\) 0.687344 + 6.53964i 0.0258685 + 0.246123i
\(707\) 68.3628 + 14.5310i 2.57105 + 0.546493i
\(708\) 0 0
\(709\) 4.19836 39.9447i 0.157673 1.50015i −0.574201 0.818714i \(-0.694687\pi\)
0.731874 0.681440i \(-0.238646\pi\)
\(710\) −18.6232 13.5305i −0.698915 0.507792i
\(711\) 0 0
\(712\) −3.16915 9.75363i −0.118769 0.365533i
\(713\) 57.8806 + 25.7701i 2.16765 + 0.965099i
\(714\) 0 0
\(715\) 6.93783 + 3.02535i 0.259460 + 0.113142i
\(716\) 4.91269 8.50903i 0.183596 0.317997i
\(717\) 0 0
\(718\) −8.44569 + 9.37989i −0.315190 + 0.350054i
\(719\) −0.0121049 + 0.0372552i −0.000451438 + 0.00138938i −0.951282 0.308322i \(-0.900233\pi\)
0.950831 + 0.309712i \(0.100233\pi\)
\(720\) 0 0
\(721\) −12.9226 9.38881i −0.481262 0.349658i
\(722\) −15.9000 + 3.37965i −0.591737 + 0.125778i
\(723\) 0 0
\(724\) 0.0206143 + 0.196132i 0.000766126 + 0.00728920i
\(725\) 6.40074 11.0864i 0.237718 0.411739i
\(726\) 0 0
\(727\) 6.61792 + 11.4626i 0.245445 + 0.425123i 0.962257 0.272144i \(-0.0877326\pi\)
−0.716812 + 0.697267i \(0.754399\pi\)
\(728\) 6.66830 4.84480i 0.247144 0.179560i
\(729\) 0 0
\(730\) 0.528180 1.62557i 0.0195488 0.0601651i
\(731\) −0.758022 + 7.21210i −0.0280365 + 0.266749i
\(732\) 0 0
\(733\) 21.9688 + 24.3988i 0.811436 + 0.901191i 0.996673 0.0815025i \(-0.0259719\pi\)
−0.185237 + 0.982694i \(0.559305\pi\)
\(734\) −20.3285 4.32097i −0.750340 0.159490i
\(735\) 0 0
\(736\) 13.3090 + 23.0518i 0.490575 + 0.849701i
\(737\) −2.77561 24.5916i −0.102241 0.905842i
\(738\) 0 0
\(739\) −5.17751 + 3.76168i −0.190458 + 0.138376i −0.678928 0.734205i \(-0.737555\pi\)
0.488470 + 0.872581i \(0.337555\pi\)
\(740\) −13.5444 + 15.0426i −0.497902 + 0.552976i
\(741\) 0 0
\(742\) 6.41250 2.85503i 0.235410 0.104811i
\(743\) −46.3464 + 20.6348i −1.70029 + 0.757016i −0.701259 + 0.712906i \(0.747379\pi\)
−0.999027 + 0.0441099i \(0.985955\pi\)
\(744\) 0 0
\(745\) −0.672040 + 0.746376i −0.0246216 + 0.0273451i
\(746\) −22.7708 + 16.5440i −0.833699 + 0.605718i
\(747\) 0 0
\(748\) −1.89930 2.07711i −0.0694451 0.0759465i
\(749\) 22.0894 + 38.2599i 0.807128 + 1.39799i
\(750\) 0 0
\(751\) 23.0906 + 4.90806i 0.842588 + 0.179098i 0.608933 0.793222i \(-0.291598\pi\)
0.233655 + 0.972320i \(0.424931\pi\)
\(752\) 0.772582 + 0.858039i 0.0281732 + 0.0312895i
\(753\) 0 0
\(754\) 0.0872253 0.829893i 0.00317656 0.0302229i
\(755\) 7.67046 23.6073i 0.279157 0.859156i
\(756\) 0 0
\(757\) −39.2432 + 28.5118i −1.42632 + 1.03628i −0.435629 + 0.900126i \(0.643474\pi\)
−0.990688 + 0.136154i \(0.956526\pi\)
\(758\) 5.36329 + 9.28949i 0.194803 + 0.337409i
\(759\) 0 0
\(760\) −13.2812 + 23.0038i −0.481761 + 0.834435i
\(761\) −1.38386 13.1666i −0.0501651 0.477289i −0.990548 0.137170i \(-0.956199\pi\)
0.940382 0.340119i \(-0.110467\pi\)
\(762\) 0 0
\(763\) −1.70851 + 0.363156i −0.0618524 + 0.0131471i
\(764\) 0.248331 + 0.180423i 0.00898429 + 0.00652747i
\(765\) 0 0
\(766\) −8.85437 + 27.2509i −0.319921 + 0.984616i
\(767\) 0.216987 0.240988i 0.00783493 0.00870157i
\(768\) 0 0
\(769\) 11.5333 19.9762i 0.415901 0.720362i −0.579622 0.814886i \(-0.696800\pi\)
0.995523 + 0.0945241i \(0.0301330\pi\)
\(770\) 45.3984 51.2048i 1.63605 1.84529i
\(771\) 0 0
\(772\) 10.8549 + 4.83290i 0.390675 + 0.173940i
\(773\) 2.88942 + 8.89271i 0.103925 + 0.319848i 0.989477 0.144693i \(-0.0462193\pi\)
−0.885552 + 0.464541i \(0.846219\pi\)
\(774\) 0 0
\(775\) −72.2389 52.4846i −2.59490 1.88530i
\(776\) −5.06557 + 48.1957i −0.181843 + 1.73012i
\(777\) 0 0
\(778\) 25.1115 + 5.33760i 0.900289 + 0.191362i
\(779\) 0.379838 + 3.61392i 0.0136091 + 0.129482i
\(780\) 0 0
\(781\) 16.9743 0.130246i 0.607387 0.00466058i
\(782\) −10.5244 −0.376352
\(783\) 0 0
\(784\) −9.48906 29.2043i −0.338895 1.04301i
\(785\) −34.7603 + 7.38852i −1.24065 + 0.263708i
\(786\) 0 0
\(787\) −25.0543 + 11.1549i −0.893090 + 0.397629i −0.801379 0.598156i \(-0.795900\pi\)
−0.0917107 + 0.995786i \(0.529233\pi\)
\(788\) 8.00948 + 8.89543i 0.285326 + 0.316887i
\(789\) 0 0
\(790\) 56.0445 + 24.9526i 1.99397 + 0.887774i
\(791\) −57.0101 −2.02704
\(792\) 0 0
\(793\) −6.53813 −0.232176
\(794\) −41.1265 18.3107i −1.45952 0.649822i
\(795\) 0 0
\(796\) 5.99251 + 6.65535i 0.212399 + 0.235893i
\(797\) 36.4927 16.2476i 1.29264 0.575519i 0.358865 0.933389i \(-0.383164\pi\)
0.933771 + 0.357871i \(0.116497\pi\)
\(798\) 0 0
\(799\) 0.647128 0.137551i 0.0228937 0.00486621i
\(800\) −11.5922 35.6772i −0.409847 1.26138i
\(801\) 0 0
\(802\) 38.2160 1.34945
\(803\) 0.398671 + 1.19569i 0.0140688 + 0.0421948i
\(804\) 0 0
\(805\) 13.6992 + 130.339i 0.482834 + 4.59386i
\(806\) −5.69331 1.21015i −0.200538 0.0426257i
\(807\) 0 0
\(808\) 4.90346 46.6533i 0.172503 1.64126i
\(809\) 9.77203 + 7.09979i 0.343566 + 0.249615i 0.746165 0.665761i \(-0.231893\pi\)
−0.402599 + 0.915377i \(0.631893\pi\)
\(810\) 0 0
\(811\) −8.48931 26.1274i −0.298100 0.917458i −0.982162 0.188034i \(-0.939788\pi\)
0.684062 0.729424i \(-0.260212\pi\)
\(812\) 3.53008 + 1.57169i 0.123882 + 0.0551557i
\(813\) 0 0
\(814\) −2.82386 + 29.0065i −0.0989761 + 1.01668i
\(815\) 12.1083 20.9721i 0.424134 0.734622i
\(816\) 0 0
\(817\) −8.54389 + 9.48895i −0.298913 + 0.331976i
\(818\) −12.9009 + 39.7050i −0.451071 + 1.38825i
\(819\) 0 0
\(820\) −3.53078 2.56526i −0.123300 0.0895828i
\(821\) 15.2569 3.24295i 0.532469 0.113180i 0.0661724 0.997808i \(-0.478921\pi\)
0.466297 + 0.884628i \(0.345588\pi\)
\(822\) 0 0
\(823\) 0.428256 + 4.07459i 0.0149281 + 0.142031i 0.999447 0.0332460i \(-0.0105845\pi\)
−0.984519 + 0.175277i \(0.943918\pi\)
\(824\) −5.36062 + 9.28486i −0.186746 + 0.323453i
\(825\) 0 0
\(826\) −1.46597 2.53914i −0.0510078 0.0883481i
\(827\) 19.9149 14.4690i 0.692509 0.503137i −0.184975 0.982743i \(-0.559220\pi\)
0.877484 + 0.479606i \(0.159220\pi\)
\(828\) 0 0
\(829\) 9.85566 30.3326i 0.342301 1.05350i −0.620711 0.784039i \(-0.713156\pi\)
0.963013 0.269456i \(-0.0868439\pi\)
\(830\) 0.469354 4.46560i 0.0162915 0.155003i
\(831\) 0 0
\(832\) −3.34354 3.71338i −0.115916 0.128738i
\(833\) −17.2106 3.65823i −0.596313 0.126750i
\(834\) 0 0
\(835\) −26.6755 46.2033i −0.923143 1.59893i
\(836\) −0.555815 4.92445i −0.0192233 0.170316i
\(837\) 0 0
\(838\) 5.56404 4.04251i 0.192207 0.139646i
\(839\) −11.7493 + 13.0489i −0.405629 + 0.450497i −0.911001 0.412405i \(-0.864689\pi\)
0.505371 + 0.862902i \(0.331356\pi\)
\(840\) 0 0
\(841\) −25.0803 + 11.1665i −0.864837 + 0.385050i
\(842\) 16.6199 7.39964i 0.572758 0.255008i
\(843\) 0 0
\(844\) −5.10480 + 5.66945i −0.175714 + 0.195151i
\(845\) −40.0542 + 29.1011i −1.37791 + 1.00111i
\(846\) 0 0
\(847\) −4.50401 + 50.2609i −0.154759 + 1.72699i
\(848\) −1.45444 2.51916i −0.0499457 0.0865084i
\(849\) 0 0
\(850\) 14.5082 + 3.08381i 0.497626 + 0.105774i
\(851\) −37.3470 41.4781i −1.28024 1.42185i
\(852\) 0 0
\(853\) −4.13338 + 39.3265i −0.141524 + 1.34651i 0.661221 + 0.750191i \(0.270039\pi\)
−0.802745 + 0.596322i \(0.796628\pi\)
\(854\) −18.2671 + 56.2204i −0.625088 + 1.92382i
\(855\) 0 0
\(856\) 23.9896 17.4295i 0.819949 0.595728i
\(857\) −1.77266 3.07034i −0.0605529 0.104881i 0.834160 0.551523i \(-0.185953\pi\)
−0.894713 + 0.446642i \(0.852620\pi\)
\(858\) 0 0
\(859\) 12.1359 21.0200i 0.414071 0.717192i −0.581259 0.813718i \(-0.697440\pi\)
0.995330 + 0.0965262i \(0.0307731\pi\)
\(860\) −1.60298 15.2513i −0.0546611 0.520066i
\(861\) 0 0
\(862\) −34.5675 + 7.34754i −1.17737 + 0.250258i
\(863\) −33.7842 24.5457i −1.15003 0.835544i −0.161543 0.986866i \(-0.551647\pi\)
−0.988485 + 0.151322i \(0.951647\pi\)
\(864\) 0 0
\(865\) −25.6488 + 78.9389i −0.872086 + 2.68400i
\(866\) −10.5811 + 11.7515i −0.359560 + 0.399332i
\(867\) 0 0
\(868\) 13.4765 23.3420i 0.457423 0.792279i
\(869\) −44.1767 + 9.74491i −1.49859 + 0.330573i
\(870\) 0 0
\(871\) −3.97763 1.77095i −0.134777 0.0600065i
\(872\) 0.362284 + 1.11500i 0.0122685 + 0.0377585i
\(873\) 0 0
\(874\) −14.9918 10.8922i −0.507104 0.368433i
\(875\) 9.92984 94.4761i 0.335690 3.19387i
\(876\) 0 0
\(877\) −14.1903 3.01624i −0.479173 0.101851i −0.0380079 0.999277i \(-0.512101\pi\)
−0.441165 + 0.897426i \(0.645435\pi\)
\(878\) 1.88960 + 17.9783i 0.0637708 + 0.606738i
\(879\) 0 0
\(880\) −23.0700 16.4924i −0.777689 0.555958i
\(881\) 24.6860 0.831693 0.415847 0.909435i \(-0.363485\pi\)
0.415847 + 0.909435i \(0.363485\pi\)
\(882\) 0 0
\(883\) −10.6238 32.6968i −0.357520 1.10033i −0.954534 0.298103i \(-0.903646\pi\)
0.597014 0.802231i \(-0.296354\pi\)
\(884\) −0.484364 + 0.102955i −0.0162909 + 0.00346275i
\(885\) 0 0
\(886\) −17.2192 + 7.66646i −0.578489 + 0.257560i
\(887\) 7.12360 + 7.91156i 0.239187 + 0.265644i 0.850772 0.525534i \(-0.176135\pi\)
−0.611585 + 0.791178i \(0.709468\pi\)
\(888\) 0 0
\(889\) −1.83612 0.817495i −0.0615816 0.0274179i
\(890\) −14.9803 −0.502141
\(891\) 0 0
\(892\) 10.6896 0.357914
\(893\) 1.06417 + 0.473801i 0.0356113 + 0.0158552i
\(894\) 0 0
\(895\) −37.9569 42.1555i −1.26876 1.40910i
\(896\) −10.7305 + 4.77755i −0.358482 + 0.159607i
\(897\) 0 0
\(898\) −18.6166 + 3.95707i −0.621243 + 0.132049i
\(899\) −3.33281 10.2573i −0.111155 0.342101i
\(900\) 0 0
\(901\) −1.66678 −0.0555284
\(902\) −6.28341 + 0.0482136i −0.209215 + 0.00160534i
\(903\) 0 0
\(904\) 3.99981 + 38.0556i 0.133032 + 1.26571i
\(905\) 1.11370 + 0.236725i 0.0370208 + 0.00786901i
\(906\) 0 0
\(907\) −4.59088 + 43.6793i −0.152438 + 1.45035i 0.604366 + 0.796707i \(0.293426\pi\)
−0.756804 + 0.653642i \(0.773240\pi\)
\(908\) 4.37775 + 3.18062i 0.145281 + 0.105553i
\(909\) 0 0
\(910\) −3.72050 11.4505i −0.123333 0.379581i
\(911\) −43.7288 19.4693i −1.44880 0.645048i −0.476584 0.879129i \(-0.658125\pi\)
−0.972217 + 0.234081i \(0.924792\pi\)
\(912\) 0 0
\(913\) 1.67751 + 2.85472i 0.0555174 + 0.0944774i
\(914\) −2.58276 + 4.47348i −0.0854302 + 0.147969i
\(915\) 0 0
\(916\) 8.93023 9.91803i 0.295063 0.327701i
\(917\) −11.5153 + 35.4405i −0.380269 + 1.17035i
\(918\) 0 0
\(919\) −21.9642 15.9579i −0.724531 0.526403i 0.163297 0.986577i \(-0.447787\pi\)
−0.887829 + 0.460174i \(0.847787\pi\)
\(920\) 86.0435 18.2891i 2.83677 0.602974i
\(921\) 0 0
\(922\) 1.08163 + 10.2910i 0.0356216 + 0.338916i
\(923\) 1.49325 2.58639i 0.0491509 0.0851319i
\(924\) 0 0
\(925\) 39.3301 + 68.1218i 1.29317 + 2.23983i
\(926\) −5.86217 + 4.25911i −0.192643 + 0.139963i
\(927\) 0 0
\(928\) 1.40017 4.30929i 0.0459629 0.141459i
\(929\) −3.75366 + 35.7137i −0.123154 + 1.17173i 0.742062 + 0.670331i \(0.233848\pi\)
−0.865216 + 0.501399i \(0.832819\pi\)
\(930\) 0 0
\(931\) −20.7301 23.0231i −0.679401 0.754551i
\(932\) 11.8416 + 2.51702i 0.387886 + 0.0824477i
\(933\) 0 0
\(934\) −5.27228 9.13186i −0.172514 0.298804i
\(935\) −14.7935 + 6.72298i −0.483800 + 0.219865i
\(936\) 0 0
\(937\) 35.7303 25.9596i 1.16726 0.848062i 0.176579 0.984287i \(-0.443497\pi\)
0.990678 + 0.136225i \(0.0434970\pi\)
\(938\) −26.3414 + 29.2551i −0.860078 + 0.955213i
\(939\) 0 0
\(940\) −1.27809 + 0.569043i −0.0416867 + 0.0185601i
\(941\) 17.8507 7.94765i 0.581917 0.259086i −0.0945975 0.995516i \(-0.530156\pi\)
0.676514 + 0.736430i \(0.263490\pi\)
\(942\) 0 0
\(943\) 8.05231 8.94299i 0.262219 0.291224i
\(944\) −0.982976 + 0.714174i −0.0319931 + 0.0232444i
\(945\) 0 0
\(946\) −14.8995 16.2944i −0.484425 0.529777i
\(947\) −15.2771 26.4607i −0.496439 0.859858i 0.503553 0.863965i \(-0.332026\pi\)
−0.999992 + 0.00410698i \(0.998693\pi\)
\(948\) 0 0
\(949\) 0.216906 + 0.0461047i 0.00704106 + 0.00149662i
\(950\) 17.4750 + 19.4079i 0.566963 + 0.629676i
\(951\) 0 0
\(952\) −1.84972 + 17.5989i −0.0599499 + 0.570385i
\(953\) −4.51629 + 13.8997i −0.146297 + 0.450256i −0.997175 0.0751068i \(-0.976070\pi\)
0.850879 + 0.525362i \(0.176070\pi\)
\(954\) 0 0
\(955\) 1.43371 1.04165i 0.0463938 0.0337070i
\(956\) −3.39590 5.88186i −0.109831 0.190233i
\(957\) 0 0
\(958\) −12.5465 + 21.7311i −0.405358 + 0.702101i
\(959\) 3.22016 + 30.6378i 0.103985 + 0.989347i
\(960\) 0 0
\(961\) −43.2617 + 9.19557i −1.39554 + 0.296631i
\(962\) 4.14820 + 3.01385i 0.133743 + 0.0971703i
\(963\) 0 0
\(964\) −3.59969 + 11.0787i −0.115938 + 0.356821i
\(965\) 45.9025 50.9799i 1.47765 1.64110i
\(966\) 0 0
\(967\) −4.38762 + 7.59958i −0.141096 + 0.244386i −0.927910 0.372805i \(-0.878396\pi\)
0.786813 + 0.617191i \(0.211729\pi\)
\(968\) 33.8664 0.519756i 1.08851 0.0167056i
\(969\) 0 0
\(970\) 64.6674 + 28.7918i 2.07634 + 0.924448i
\(971\) 3.46730 + 10.6713i 0.111271 + 0.342457i 0.991151 0.132739i \(-0.0423771\pi\)
−0.879880 + 0.475196i \(0.842377\pi\)
\(972\) 0 0
\(973\) 11.1160 + 8.07626i 0.356363 + 0.258913i
\(974\) 0.804164 7.65111i 0.0257671 0.245157i
\(975\) 0 0
\(976\) 23.9619 + 5.09326i 0.767001 + 0.163031i
\(977\) −3.28931 31.2957i −0.105234 1.00124i −0.911951 0.410300i \(-0.865424\pi\)
0.806716 0.590939i \(-0.201243\pi\)
\(978\) 0 0
\(979\) 8.88681 6.56141i 0.284024 0.209704i
\(980\) 37.2082 1.18857
\(981\) 0 0
\(982\) 9.61715 + 29.5986i 0.306896 + 0.944528i
\(983\) 43.1838 9.17901i 1.37735 0.292765i 0.541029 0.841004i \(-0.318035\pi\)
0.836321 + 0.548239i \(0.184702\pi\)
\(984\) 0 0
\(985\) 63.1328 28.1085i 2.01158 0.895612i
\(986\) 1.19876 + 1.33136i 0.0381764 + 0.0423992i
\(987\) 0 0
\(988\) −0.796518 0.354632i −0.0253406 0.0112824i
\(989\) 42.2854 1.34460
\(990\) 0 0
\(991\) 10.0638 0.319687 0.159844 0.987142i \(-0.448901\pi\)
0.159844 + 0.987142i \(0.448901\pi\)
\(992\) −28.8724 12.8548i −0.916698 0.408140i
\(993\) 0 0
\(994\) −18.0679 20.0664i −0.573079 0.636469i
\(995\) 47.2345 21.0301i 1.49743 0.666700i
\(996\) 0 0
\(997\) −48.3979 + 10.2873i −1.53278 + 0.325802i −0.895581 0.444899i \(-0.853239\pi\)
−0.637197 + 0.770701i \(0.719906\pi\)
\(998\) −10.1408 31.2101i −0.321001 0.987940i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.l.190.5 96
3.2 odd 2 inner 891.2.n.l.190.8 96
9.2 odd 6 inner 891.2.n.l.784.5 96
9.4 even 3 891.2.f.g.487.8 yes 48
9.5 odd 6 891.2.f.g.487.5 48
9.7 even 3 inner 891.2.n.l.784.8 96
11.4 even 5 inner 891.2.n.l.433.8 96
33.26 odd 10 inner 891.2.n.l.433.5 96
99.4 even 15 891.2.f.g.730.8 yes 48
99.13 odd 30 9801.2.a.cq.1.16 24
99.31 even 15 9801.2.a.cr.1.9 24
99.59 odd 30 891.2.f.g.730.5 yes 48
99.68 even 30 9801.2.a.cq.1.9 24
99.70 even 15 inner 891.2.n.l.136.5 96
99.86 odd 30 9801.2.a.cr.1.16 24
99.92 odd 30 inner 891.2.n.l.136.8 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.f.g.487.5 48 9.5 odd 6
891.2.f.g.487.8 yes 48 9.4 even 3
891.2.f.g.730.5 yes 48 99.59 odd 30
891.2.f.g.730.8 yes 48 99.4 even 15
891.2.n.l.136.5 96 99.70 even 15 inner
891.2.n.l.136.8 96 99.92 odd 30 inner
891.2.n.l.190.5 96 1.1 even 1 trivial
891.2.n.l.190.8 96 3.2 odd 2 inner
891.2.n.l.433.5 96 33.26 odd 10 inner
891.2.n.l.433.8 96 11.4 even 5 inner
891.2.n.l.784.5 96 9.2 odd 6 inner
891.2.n.l.784.8 96 9.7 even 3 inner
9801.2.a.cq.1.9 24 99.68 even 30
9801.2.a.cq.1.16 24 99.13 odd 30
9801.2.a.cr.1.9 24 99.31 even 15
9801.2.a.cr.1.16 24 99.86 odd 30