Properties

Label 891.2.n.l.784.8
Level $891$
Weight $2$
Character 891.784
Analytic conductor $7.115$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 784.8
Character \(\chi\) \(=\) 891.784
Dual form 891.2.n.l.433.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.120212 + 1.14375i) q^{2} +(0.662593 - 0.140839i) q^{4} +(0.408797 - 3.88945i) q^{5} +(3.06963 + 3.40917i) q^{7} +(0.951502 + 2.92842i) q^{8} +4.49768 q^{10} +(3.04015 + 1.32570i) q^{11} +(-0.533071 - 0.237339i) q^{13} +(-3.53021 + 3.92070i) q^{14} +(-1.99732 + 0.889266i) q^{16} +(-1.01351 - 0.736358i) q^{17} +(-0.681632 - 2.09785i) q^{19} +(-0.276918 - 2.63470i) q^{20} +(-1.15080 + 3.63652i) q^{22} +(-3.65244 - 6.32621i) q^{23} +(-10.0699 - 2.14043i) q^{25} +(0.207373 - 0.638229i) q^{26} +(2.51406 + 1.82657i) q^{28} +(-0.832048 - 0.924083i) q^{29} +(7.92356 + 3.52780i) q^{31} +(1.82193 + 3.15567i) q^{32} +(0.720369 - 1.24772i) q^{34} +(14.5146 - 10.5455i) q^{35} +(-2.36110 + 7.26672i) q^{37} +(2.31746 - 1.03180i) q^{38} +(11.7789 - 2.50369i) q^{40} +(1.10232 - 1.22425i) q^{41} +(-2.89432 + 5.01312i) q^{43} +(2.20109 + 0.450233i) q^{44} +(6.79650 - 4.93795i) q^{46} +(0.516559 + 0.109798i) q^{47} +(-1.46810 + 13.9681i) q^{49} +(1.23758 - 11.7748i) q^{50} +(-0.386636 - 0.0821820i) q^{52} +(1.07638 - 0.782035i) q^{53} +(6.39907 - 11.2826i) q^{55} +(-7.06272 + 12.2330i) q^{56} +(0.956893 - 1.06274i) q^{58} +(0.543590 - 0.115544i) q^{59} +(10.2360 - 4.55734i) q^{61} +(-3.08239 + 9.48662i) q^{62} +(-6.92785 + 5.03338i) q^{64} +(-1.14103 + 1.97633i) q^{65} +(-3.73086 - 6.46203i) q^{67} +(-0.775252 - 0.345164i) q^{68} +(13.8062 + 15.3333i) q^{70} +(-4.14062 - 3.00833i) q^{71} +(0.117434 - 0.361425i) q^{73} +(-8.59511 - 1.82695i) q^{74} +(-0.747102 - 1.29402i) q^{76} +(4.81257 + 14.4338i) q^{77} +(-1.42577 - 13.5653i) q^{79} +(2.64225 + 8.13202i) q^{80} +(1.53274 + 1.11360i) q^{82} +(-0.912026 + 0.406060i) q^{83} +(-3.27834 + 3.64097i) q^{85} +(-6.08166 - 2.70773i) q^{86} +(-0.989516 + 10.1643i) q^{88} -3.33068 q^{89} +(-0.827203 - 2.54587i) q^{91} +(-3.31105 - 3.67730i) q^{92} +(-0.0634841 + 0.604011i) q^{94} +(-8.43812 + 1.79358i) q^{95} +(-1.64513 - 15.6524i) q^{97} -16.1524 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 8 q^{4} + 14 q^{7} + 64 q^{10} + 14 q^{13} + 4 q^{16} - 16 q^{19} - 16 q^{22} + 20 q^{25} - 36 q^{28} + 4 q^{31} - 84 q^{34} - 24 q^{37} + 106 q^{40} - 84 q^{43} - 76 q^{46} + 54 q^{49} - 52 q^{52}+ \cdots + 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.120212 + 1.14375i 0.0850031 + 0.808750i 0.951102 + 0.308877i \(0.0999532\pi\)
−0.866099 + 0.499873i \(0.833380\pi\)
\(3\) 0 0
\(4\) 0.662593 0.140839i 0.331297 0.0704193i
\(5\) 0.408797 3.88945i 0.182820 1.73941i −0.390963 0.920406i \(-0.627858\pi\)
0.573783 0.819008i \(-0.305475\pi\)
\(6\) 0 0
\(7\) 3.06963 + 3.40917i 1.16021 + 1.28854i 0.950481 + 0.310784i \(0.100592\pi\)
0.209729 + 0.977759i \(0.432742\pi\)
\(8\) 0.951502 + 2.92842i 0.336407 + 1.03535i
\(9\) 0 0
\(10\) 4.49768 1.42229
\(11\) 3.04015 + 1.32570i 0.916639 + 0.399715i
\(12\) 0 0
\(13\) −0.533071 0.237339i −0.147847 0.0658259i 0.331479 0.943463i \(-0.392452\pi\)
−0.479327 + 0.877637i \(0.659119\pi\)
\(14\) −3.53021 + 3.92070i −0.943488 + 1.04785i
\(15\) 0 0
\(16\) −1.99732 + 0.889266i −0.499331 + 0.222316i
\(17\) −1.01351 0.736358i −0.245812 0.178593i 0.458057 0.888923i \(-0.348546\pi\)
−0.703869 + 0.710330i \(0.748546\pi\)
\(18\) 0 0
\(19\) −0.681632 2.09785i −0.156377 0.481279i 0.841921 0.539601i \(-0.181425\pi\)
−0.998298 + 0.0583220i \(0.981425\pi\)
\(20\) −0.276918 2.63470i −0.0619207 0.589136i
\(21\) 0 0
\(22\) −1.15080 + 3.63652i −0.245352 + 0.775309i
\(23\) −3.65244 6.32621i −0.761586 1.31911i −0.942033 0.335521i \(-0.891088\pi\)
0.180447 0.983585i \(-0.442246\pi\)
\(24\) 0 0
\(25\) −10.0699 2.14043i −2.01399 0.428087i
\(26\) 0.207373 0.638229i 0.0406692 0.125167i
\(27\) 0 0
\(28\) 2.51406 + 1.82657i 0.475112 + 0.345189i
\(29\) −0.832048 0.924083i −0.154507 0.171598i 0.660922 0.750455i \(-0.270166\pi\)
−0.815429 + 0.578857i \(0.803499\pi\)
\(30\) 0 0
\(31\) 7.92356 + 3.52780i 1.42311 + 0.633611i 0.966643 0.256127i \(-0.0824465\pi\)
0.456471 + 0.889738i \(0.349113\pi\)
\(32\) 1.82193 + 3.15567i 0.322075 + 0.557850i
\(33\) 0 0
\(34\) 0.720369 1.24772i 0.123542 0.213982i
\(35\) 14.5146 10.5455i 2.45342 1.78251i
\(36\) 0 0
\(37\) −2.36110 + 7.26672i −0.388163 + 1.19464i 0.545997 + 0.837787i \(0.316151\pi\)
−0.934160 + 0.356855i \(0.883849\pi\)
\(38\) 2.31746 1.03180i 0.375942 0.167380i
\(39\) 0 0
\(40\) 11.7789 2.50369i 1.86241 0.395868i
\(41\) 1.10232 1.22425i 0.172153 0.191196i −0.650894 0.759169i \(-0.725606\pi\)
0.823047 + 0.567973i \(0.192272\pi\)
\(42\) 0 0
\(43\) −2.89432 + 5.01312i −0.441380 + 0.764493i −0.997792 0.0664134i \(-0.978844\pi\)
0.556412 + 0.830907i \(0.312178\pi\)
\(44\) 2.20109 + 0.450233i 0.331827 + 0.0678752i
\(45\) 0 0
\(46\) 6.79650 4.93795i 1.00209 0.728060i
\(47\) 0.516559 + 0.109798i 0.0753478 + 0.0160157i 0.245431 0.969414i \(-0.421070\pi\)
−0.170083 + 0.985430i \(0.554404\pi\)
\(48\) 0 0
\(49\) −1.46810 + 13.9681i −0.209729 + 1.99544i
\(50\) 1.23758 11.7748i 0.175020 1.66520i
\(51\) 0 0
\(52\) −0.386636 0.0821820i −0.0536167 0.0113966i
\(53\) 1.07638 0.782035i 0.147852 0.107421i −0.511400 0.859343i \(-0.670873\pi\)
0.659252 + 0.751922i \(0.270873\pi\)
\(54\) 0 0
\(55\) 6.39907 11.2826i 0.862850 1.52134i
\(56\) −7.06272 + 12.2330i −0.943796 + 1.63470i
\(57\) 0 0
\(58\) 0.956893 1.06274i 0.125646 0.139544i
\(59\) 0.543590 0.115544i 0.0707693 0.0150425i −0.172391 0.985029i \(-0.555149\pi\)
0.243160 + 0.969986i \(0.421816\pi\)
\(60\) 0 0
\(61\) 10.2360 4.55734i 1.31058 0.583508i 0.371892 0.928276i \(-0.378709\pi\)
0.938688 + 0.344768i \(0.112043\pi\)
\(62\) −3.08239 + 9.48662i −0.391464 + 1.20480i
\(63\) 0 0
\(64\) −6.92785 + 5.03338i −0.865981 + 0.629172i
\(65\) −1.14103 + 1.97633i −0.141528 + 0.245134i
\(66\) 0 0
\(67\) −3.73086 6.46203i −0.455797 0.789463i 0.542937 0.839774i \(-0.317312\pi\)
−0.998734 + 0.0503104i \(0.983979\pi\)
\(68\) −0.775252 0.345164i −0.0940131 0.0418573i
\(69\) 0 0
\(70\) 13.8062 + 15.3333i 1.65016 + 1.83268i
\(71\) −4.14062 3.00833i −0.491401 0.357024i 0.314322 0.949316i \(-0.398223\pi\)
−0.805723 + 0.592293i \(0.798223\pi\)
\(72\) 0 0
\(73\) 0.117434 0.361425i 0.0137446 0.0423015i −0.943949 0.330091i \(-0.892920\pi\)
0.957694 + 0.287790i \(0.0929204\pi\)
\(74\) −8.59511 1.82695i −0.999162 0.212378i
\(75\) 0 0
\(76\) −0.747102 1.29402i −0.0856985 0.148434i
\(77\) 4.81257 + 14.4338i 0.548444 + 1.64488i
\(78\) 0 0
\(79\) −1.42577 13.5653i −0.160411 1.52621i −0.717970 0.696074i \(-0.754928\pi\)
0.557559 0.830138i \(-0.311738\pi\)
\(80\) 2.64225 + 8.13202i 0.295413 + 0.909187i
\(81\) 0 0
\(82\) 1.53274 + 1.11360i 0.169263 + 0.122977i
\(83\) −0.912026 + 0.406060i −0.100108 + 0.0445709i −0.456180 0.889888i \(-0.650783\pi\)
0.356072 + 0.934459i \(0.384116\pi\)
\(84\) 0 0
\(85\) −3.27834 + 3.64097i −0.355586 + 0.394919i
\(86\) −6.08166 2.70773i −0.655803 0.291982i
\(87\) 0 0
\(88\) −0.989516 + 10.1643i −0.105483 + 1.08351i
\(89\) −3.33068 −0.353051 −0.176525 0.984296i \(-0.556486\pi\)
−0.176525 + 0.984296i \(0.556486\pi\)
\(90\) 0 0
\(91\) −0.827203 2.54587i −0.0867145 0.266880i
\(92\) −3.31105 3.67730i −0.345201 0.383385i
\(93\) 0 0
\(94\) −0.0634841 + 0.604011i −0.00654788 + 0.0622989i
\(95\) −8.43812 + 1.79358i −0.865732 + 0.184017i
\(96\) 0 0
\(97\) −1.64513 15.6524i −0.167038 1.58926i −0.681547 0.731775i \(-0.738692\pi\)
0.514509 0.857485i \(-0.327974\pi\)
\(98\) −16.1524 −1.63164
\(99\) 0 0
\(100\) −6.97373 −0.697373
\(101\) 1.59248 + 15.1515i 0.158458 + 1.50763i 0.727949 + 0.685631i \(0.240474\pi\)
−0.569491 + 0.821998i \(0.692860\pi\)
\(102\) 0 0
\(103\) −3.40582 + 0.723929i −0.335585 + 0.0713309i −0.372622 0.927983i \(-0.621541\pi\)
0.0370371 + 0.999314i \(0.488208\pi\)
\(104\) 0.187809 1.78689i 0.0184162 0.175219i
\(105\) 0 0
\(106\) 1.02384 + 1.13709i 0.0994444 + 0.110444i
\(107\) −2.97592 9.15893i −0.287693 0.885428i −0.985579 0.169218i \(-0.945876\pi\)
0.697886 0.716209i \(-0.254124\pi\)
\(108\) 0 0
\(109\) 0.380750 0.0364692 0.0182346 0.999834i \(-0.494195\pi\)
0.0182346 + 0.999834i \(0.494195\pi\)
\(110\) 13.6736 + 5.96260i 1.30373 + 0.568511i
\(111\) 0 0
\(112\) −9.16269 4.07949i −0.865793 0.385476i
\(113\) −8.31549 + 9.23528i −0.782255 + 0.868782i −0.994094 0.108522i \(-0.965388\pi\)
0.211839 + 0.977305i \(0.432055\pi\)
\(114\) 0 0
\(115\) −26.0986 + 11.6198i −2.43370 + 1.08355i
\(116\) −0.681456 0.495107i −0.0632716 0.0459695i
\(117\) 0 0
\(118\) 0.197499 + 0.607838i 0.0181812 + 0.0559561i
\(119\) −0.600730 5.71557i −0.0550688 0.523945i
\(120\) 0 0
\(121\) 7.48501 + 8.06068i 0.680456 + 0.732789i
\(122\) 6.44293 + 11.1595i 0.583315 + 1.01033i
\(123\) 0 0
\(124\) 5.74695 + 1.22155i 0.516091 + 0.109699i
\(125\) −6.39905 + 19.6942i −0.572348 + 1.76151i
\(126\) 0 0
\(127\) 0.354450 + 0.257523i 0.0314523 + 0.0228515i 0.603400 0.797438i \(-0.293812\pi\)
−0.571948 + 0.820290i \(0.693812\pi\)
\(128\) −1.71328 1.90279i −0.151434 0.168184i
\(129\) 0 0
\(130\) −2.39758 1.06747i −0.210282 0.0936236i
\(131\) 4.06152 + 7.03476i 0.354857 + 0.614630i 0.987093 0.160145i \(-0.0511963\pi\)
−0.632237 + 0.774775i \(0.717863\pi\)
\(132\) 0 0
\(133\) 5.05955 8.76340i 0.438719 0.759884i
\(134\) 6.94243 5.04397i 0.599734 0.435732i
\(135\) 0 0
\(136\) 1.19201 3.66863i 0.102214 0.314583i
\(137\) −6.13478 + 2.73138i −0.524129 + 0.233357i −0.651707 0.758471i \(-0.725947\pi\)
0.127577 + 0.991829i \(0.459280\pi\)
\(138\) 0 0
\(139\) 2.92969 0.622724i 0.248493 0.0528188i −0.0819812 0.996634i \(-0.526125\pi\)
0.330474 + 0.943815i \(0.392791\pi\)
\(140\) 8.13208 9.03159i 0.687286 0.763309i
\(141\) 0 0
\(142\) 2.94301 5.09745i 0.246972 0.427768i
\(143\) −1.30598 1.42824i −0.109211 0.119435i
\(144\) 0 0
\(145\) −3.93431 + 2.85845i −0.326727 + 0.237381i
\(146\) 0.427495 + 0.0908668i 0.0353797 + 0.00752019i
\(147\) 0 0
\(148\) −0.541015 + 5.14741i −0.0444712 + 0.423115i
\(149\) −0.0268439 + 0.255402i −0.00219914 + 0.0209234i −0.995566 0.0940610i \(-0.970015\pi\)
0.993367 + 0.114984i \(0.0366818\pi\)
\(150\) 0 0
\(151\) 6.20826 + 1.31961i 0.505221 + 0.107388i 0.453469 0.891272i \(-0.350186\pi\)
0.0517519 + 0.998660i \(0.483520\pi\)
\(152\) 5.49481 3.99221i 0.445688 0.323811i
\(153\) 0 0
\(154\) −15.9301 + 7.23948i −1.28368 + 0.583374i
\(155\) 16.9603 29.3761i 1.36229 2.35955i
\(156\) 0 0
\(157\) −6.08017 + 6.75272i −0.485251 + 0.538926i −0.935196 0.354131i \(-0.884777\pi\)
0.449945 + 0.893056i \(0.351443\pi\)
\(158\) 15.3438 3.26143i 1.22069 0.259465i
\(159\) 0 0
\(160\) 13.0186 5.79627i 1.02921 0.458235i
\(161\) 10.3555 31.8709i 0.816125 2.51178i
\(162\) 0 0
\(163\) −5.00952 + 3.63963i −0.392376 + 0.285078i −0.766428 0.642330i \(-0.777968\pi\)
0.374053 + 0.927408i \(0.377968\pi\)
\(164\) 0.557968 0.966429i 0.0435700 0.0754654i
\(165\) 0 0
\(166\) −0.574066 0.994312i −0.0445562 0.0771736i
\(167\) −12.4623 5.54858i −0.964363 0.429362i −0.136716 0.990610i \(-0.543655\pi\)
−0.827648 + 0.561248i \(0.810321\pi\)
\(168\) 0 0
\(169\) −8.47086 9.40785i −0.651605 0.723680i
\(170\) −4.55844 3.31190i −0.349616 0.254011i
\(171\) 0 0
\(172\) −1.21172 + 3.72929i −0.0923927 + 0.284356i
\(173\) −20.7594 4.41256i −1.57831 0.335480i −0.666312 0.745673i \(-0.732128\pi\)
−0.911999 + 0.410192i \(0.865462\pi\)
\(174\) 0 0
\(175\) −23.6139 40.9005i −1.78504 3.09178i
\(176\) −7.25107 + 0.0556386i −0.546570 + 0.00419392i
\(177\) 0 0
\(178\) −0.400389 3.80944i −0.0300104 0.285530i
\(179\) 4.48218 + 13.7947i 0.335014 + 1.03107i 0.966715 + 0.255855i \(0.0823568\pi\)
−0.631702 + 0.775212i \(0.717643\pi\)
\(180\) 0 0
\(181\) −0.235532 0.171124i −0.0175070 0.0127195i 0.578997 0.815329i \(-0.303444\pi\)
−0.596504 + 0.802610i \(0.703444\pi\)
\(182\) 2.81239 1.25216i 0.208468 0.0928159i
\(183\) 0 0
\(184\) 15.0505 16.7153i 1.10954 1.23227i
\(185\) 27.2983 + 12.1540i 2.00701 + 0.893580i
\(186\) 0 0
\(187\) −2.10503 3.58225i −0.153935 0.261960i
\(188\) 0.357732 0.0260903
\(189\) 0 0
\(190\) −3.06576 9.43545i −0.222414 0.684519i
\(191\) 0.303208 + 0.336747i 0.0219394 + 0.0243661i 0.754015 0.656858i \(-0.228115\pi\)
−0.732075 + 0.681224i \(0.761448\pi\)
\(192\) 0 0
\(193\) 1.83352 17.4448i 0.131980 1.25570i −0.705292 0.708917i \(-0.749184\pi\)
0.837271 0.546787i \(-0.184149\pi\)
\(194\) 17.7046 3.76323i 1.27112 0.270184i
\(195\) 0 0
\(196\) 0.994488 + 9.46192i 0.0710349 + 0.675851i
\(197\) −17.6706 −1.25898 −0.629489 0.777010i \(-0.716736\pi\)
−0.629489 + 0.777010i \(0.716736\pi\)
\(198\) 0 0
\(199\) −13.2207 −0.937192 −0.468596 0.883413i \(-0.655240\pi\)
−0.468596 + 0.883413i \(0.655240\pi\)
\(200\) −3.31349 31.5257i −0.234299 2.22920i
\(201\) 0 0
\(202\) −17.1380 + 3.64279i −1.20583 + 0.256306i
\(203\) 0.596275 5.67318i 0.0418503 0.398179i
\(204\) 0 0
\(205\) −4.31103 4.78788i −0.301095 0.334400i
\(206\) −1.23741 3.80836i −0.0862146 0.265341i
\(207\) 0 0
\(208\) 1.27577 0.0884590
\(209\) 0.708864 7.28141i 0.0490331 0.503666i
\(210\) 0 0
\(211\) 10.2886 + 4.58077i 0.708295 + 0.315353i 0.729078 0.684431i \(-0.239949\pi\)
−0.0207832 + 0.999784i \(0.506616\pi\)
\(212\) 0.603060 0.669766i 0.0414184 0.0459998i
\(213\) 0 0
\(214\) 10.1177 4.50471i 0.691635 0.307936i
\(215\) 18.3151 + 13.3067i 1.24908 + 0.907508i
\(216\) 0 0
\(217\) 12.2955 + 37.8418i 0.834675 + 2.56887i
\(218\) 0.0457709 + 0.435481i 0.00309999 + 0.0294945i
\(219\) 0 0
\(220\) 2.65096 8.37698i 0.178728 0.564776i
\(221\) 0.365507 + 0.633076i 0.0245866 + 0.0425853i
\(222\) 0 0
\(223\) 15.4356 + 3.28093i 1.03364 + 0.219707i 0.693341 0.720609i \(-0.256138\pi\)
0.340301 + 0.940317i \(0.389471\pi\)
\(224\) −5.16557 + 15.8980i −0.345139 + 1.06223i
\(225\) 0 0
\(226\) −11.5624 8.40060i −0.769122 0.558800i
\(227\) 5.34518 + 5.93642i 0.354772 + 0.394014i 0.893942 0.448183i \(-0.147929\pi\)
−0.539170 + 0.842197i \(0.681262\pi\)
\(228\) 0 0
\(229\) −17.9986 8.01351i −1.18938 0.529547i −0.285937 0.958249i \(-0.592305\pi\)
−0.903446 + 0.428701i \(0.858971\pi\)
\(230\) −16.4275 28.4533i −1.08320 1.87615i
\(231\) 0 0
\(232\) 1.91441 3.31586i 0.125687 0.217697i
\(233\) −14.4585 + 10.5047i −0.947207 + 0.688186i −0.950145 0.311810i \(-0.899065\pi\)
0.00293795 + 0.999996i \(0.499065\pi\)
\(234\) 0 0
\(235\) 0.638221 1.96424i 0.0416330 0.128133i
\(236\) 0.343906 0.153117i 0.0223864 0.00996705i
\(237\) 0 0
\(238\) 6.46494 1.37416i 0.419060 0.0890739i
\(239\) −6.70892 + 7.45101i −0.433964 + 0.481966i −0.919970 0.391990i \(-0.871787\pi\)
0.486005 + 0.873956i \(0.338454\pi\)
\(240\) 0 0
\(241\) −8.59826 + 14.8926i −0.553863 + 0.959318i 0.444128 + 0.895963i \(0.353513\pi\)
−0.997991 + 0.0633552i \(0.979820\pi\)
\(242\) −8.31957 + 9.52994i −0.534802 + 0.612608i
\(243\) 0 0
\(244\) 6.14042 4.46128i 0.393100 0.285604i
\(245\) 53.7280 + 11.4202i 3.43255 + 0.729612i
\(246\) 0 0
\(247\) −0.134542 + 1.28008i −0.00856069 + 0.0814495i
\(248\) −2.79160 + 26.5603i −0.177267 + 1.68658i
\(249\) 0 0
\(250\) −23.2944 4.95139i −1.47327 0.313153i
\(251\) −4.20229 + 3.05314i −0.265246 + 0.192713i −0.712457 0.701716i \(-0.752417\pi\)
0.447211 + 0.894429i \(0.352417\pi\)
\(252\) 0 0
\(253\) −2.71727 24.0747i −0.170833 1.51356i
\(254\) −0.251931 + 0.436358i −0.0158076 + 0.0273795i
\(255\) 0 0
\(256\) −9.48957 + 10.5392i −0.593098 + 0.658702i
\(257\) −15.8395 + 3.36679i −0.988041 + 0.210015i −0.673466 0.739218i \(-0.735195\pi\)
−0.314575 + 0.949233i \(0.601862\pi\)
\(258\) 0 0
\(259\) −32.0212 + 14.2567i −1.98970 + 0.885871i
\(260\) −0.477698 + 1.47020i −0.0296256 + 0.0911782i
\(261\) 0 0
\(262\) −7.55773 + 5.49101i −0.466918 + 0.339236i
\(263\) −11.5926 + 20.0789i −0.714828 + 1.23812i 0.248198 + 0.968709i \(0.420161\pi\)
−0.963026 + 0.269408i \(0.913172\pi\)
\(264\) 0 0
\(265\) −2.60166 4.50621i −0.159819 0.276814i
\(266\) 10.6313 + 4.73337i 0.651848 + 0.290222i
\(267\) 0 0
\(268\) −3.38214 3.75625i −0.206597 0.229450i
\(269\) 6.98259 + 5.07315i 0.425736 + 0.309315i 0.779942 0.625852i \(-0.215249\pi\)
−0.354206 + 0.935168i \(0.615249\pi\)
\(270\) 0 0
\(271\) 7.48888 23.0484i 0.454917 1.40009i −0.416315 0.909220i \(-0.636679\pi\)
0.871232 0.490871i \(-0.163321\pi\)
\(272\) 2.67912 + 0.569466i 0.162446 + 0.0345289i
\(273\) 0 0
\(274\) −3.86148 6.68828i −0.233280 0.404054i
\(275\) −27.7766 19.8570i −1.67499 1.19742i
\(276\) 0 0
\(277\) 0.899541 + 8.55856i 0.0540482 + 0.514234i 0.987735 + 0.156142i \(0.0499058\pi\)
−0.933686 + 0.358092i \(0.883428\pi\)
\(278\) 1.06442 + 3.27596i 0.0638398 + 0.196479i
\(279\) 0 0
\(280\) 44.6924 + 32.4709i 2.67088 + 1.94051i
\(281\) 8.05898 3.58809i 0.480758 0.214047i −0.152025 0.988377i \(-0.548579\pi\)
0.632783 + 0.774329i \(0.281913\pi\)
\(282\) 0 0
\(283\) −13.4296 + 14.9151i −0.798308 + 0.886611i −0.995597 0.0937342i \(-0.970120\pi\)
0.197289 + 0.980345i \(0.436786\pi\)
\(284\) −3.16723 1.41014i −0.187941 0.0836766i
\(285\) 0 0
\(286\) 1.47655 1.66540i 0.0873101 0.0984769i
\(287\) 7.55738 0.446098
\(288\) 0 0
\(289\) −4.76831 14.6753i −0.280489 0.863256i
\(290\) −3.74229 4.15623i −0.219755 0.244062i
\(291\) 0 0
\(292\) 0.0269084 0.256017i 0.00157470 0.0149822i
\(293\) 1.66609 0.354138i 0.0973340 0.0206890i −0.158987 0.987281i \(-0.550823\pi\)
0.256321 + 0.966592i \(0.417490\pi\)
\(294\) 0 0
\(295\) −0.227183 2.16150i −0.0132271 0.125847i
\(296\) −23.5266 −1.36746
\(297\) 0 0
\(298\) −0.295342 −0.0171087
\(299\) 0.445556 + 4.23918i 0.0257672 + 0.245158i
\(300\) 0 0
\(301\) −25.9750 + 5.52117i −1.49718 + 0.318235i
\(302\) −0.762983 + 7.25930i −0.0439048 + 0.417726i
\(303\) 0 0
\(304\) 3.22698 + 3.58393i 0.185080 + 0.205552i
\(305\) −13.5411 41.6752i −0.775361 2.38632i
\(306\) 0 0
\(307\) −19.7887 −1.12940 −0.564699 0.825297i \(-0.691008\pi\)
−0.564699 + 0.825297i \(0.691008\pi\)
\(308\) 5.22161 + 8.88594i 0.297529 + 0.506323i
\(309\) 0 0
\(310\) 35.6377 + 15.8669i 2.02408 + 0.901180i
\(311\) 18.2590 20.2787i 1.03537 1.14990i 0.0468395 0.998902i \(-0.485085\pi\)
0.988534 0.150997i \(-0.0482483\pi\)
\(312\) 0 0
\(313\) 8.24759 3.67206i 0.466181 0.207557i −0.160184 0.987087i \(-0.551209\pi\)
0.626365 + 0.779530i \(0.284542\pi\)
\(314\) −8.45430 6.14241i −0.477104 0.346636i
\(315\) 0 0
\(316\) −2.85522 8.78745i −0.160618 0.494333i
\(317\) −2.61888 24.9170i −0.147091 1.39948i −0.780257 0.625459i \(-0.784912\pi\)
0.633166 0.774016i \(-0.281755\pi\)
\(318\) 0 0
\(319\) −1.30449 3.91240i −0.0730374 0.219052i
\(320\) 16.7450 + 29.0031i 0.936072 + 1.62132i
\(321\) 0 0
\(322\) 37.6970 + 8.01274i 2.10077 + 0.446533i
\(323\) −0.853926 + 2.62811i −0.0475137 + 0.146232i
\(324\) 0 0
\(325\) 4.85999 + 3.53099i 0.269584 + 0.195864i
\(326\) −4.76502 5.29209i −0.263910 0.293101i
\(327\) 0 0
\(328\) 4.63398 + 2.06318i 0.255869 + 0.113920i
\(329\) 1.21132 + 2.09807i 0.0667824 + 0.115671i
\(330\) 0 0
\(331\) 4.65092 8.05563i 0.255638 0.442777i −0.709431 0.704775i \(-0.751048\pi\)
0.965069 + 0.261998i \(0.0843813\pi\)
\(332\) −0.547113 + 0.397501i −0.0300268 + 0.0218157i
\(333\) 0 0
\(334\) 4.84804 14.9207i 0.265273 0.816426i
\(335\) −26.6589 + 11.8693i −1.45653 + 0.648490i
\(336\) 0 0
\(337\) 13.8691 2.94798i 0.755500 0.160586i 0.185968 0.982556i \(-0.440458\pi\)
0.569532 + 0.821969i \(0.307125\pi\)
\(338\) 9.74188 10.8194i 0.529888 0.588500i
\(339\) 0 0
\(340\) −1.65942 + 2.87420i −0.0899947 + 0.155875i
\(341\) 19.4120 + 21.2293i 1.05122 + 1.14963i
\(342\) 0 0
\(343\) −26.1466 + 18.9966i −1.41178 + 1.02572i
\(344\) −17.4345 3.70581i −0.940005 0.199804i
\(345\) 0 0
\(346\) 2.55130 24.2740i 0.137159 1.30498i
\(347\) −0.154909 + 1.47386i −0.00831597 + 0.0791212i −0.997893 0.0648851i \(-0.979332\pi\)
0.989577 + 0.144006i \(0.0459986\pi\)
\(348\) 0 0
\(349\) −1.97470 0.419734i −0.105703 0.0224679i 0.154756 0.987953i \(-0.450541\pi\)
−0.260459 + 0.965485i \(0.583874\pi\)
\(350\) 43.9410 31.9250i 2.34875 1.70646i
\(351\) 0 0
\(352\) 1.35544 + 12.0091i 0.0722454 + 0.640085i
\(353\) −2.85887 + 4.95171i −0.152162 + 0.263553i −0.932022 0.362401i \(-0.881957\pi\)
0.779860 + 0.625954i \(0.215290\pi\)
\(354\) 0 0
\(355\) −13.3934 + 14.8749i −0.710850 + 0.789478i
\(356\) −2.20688 + 0.469087i −0.116965 + 0.0248616i
\(357\) 0 0
\(358\) −15.2388 + 6.78477i −0.805398 + 0.358586i
\(359\) 3.39150 10.4380i 0.178996 0.550894i −0.820797 0.571220i \(-0.806470\pi\)
0.999793 + 0.0203256i \(0.00647029\pi\)
\(360\) 0 0
\(361\) 11.4350 8.30800i 0.601841 0.437263i
\(362\) 0.167408 0.289960i 0.00879879 0.0152399i
\(363\) 0 0
\(364\) −0.906656 1.57037i −0.0475217 0.0823099i
\(365\) −1.35774 0.604503i −0.0710671 0.0316411i
\(366\) 0 0
\(367\) −12.0920 13.4295i −0.631197 0.701015i 0.339694 0.940536i \(-0.389676\pi\)
−0.970891 + 0.239521i \(0.923010\pi\)
\(368\) 12.9208 + 9.38750i 0.673542 + 0.489357i
\(369\) 0 0
\(370\) −10.6195 + 32.6834i −0.552080 + 1.69913i
\(371\) 5.97017 + 1.26900i 0.309956 + 0.0658831i
\(372\) 0 0
\(373\) 12.2370 + 21.1952i 0.633610 + 1.09744i 0.986808 + 0.161895i \(0.0517607\pi\)
−0.353198 + 0.935548i \(0.614906\pi\)
\(374\) 3.84413 2.83825i 0.198775 0.146762i
\(375\) 0 0
\(376\) 0.169972 + 1.61718i 0.00876564 + 0.0833995i
\(377\) 0.224220 + 0.690079i 0.0115479 + 0.0355409i
\(378\) 0 0
\(379\) −7.54577 5.48232i −0.387600 0.281608i 0.376871 0.926266i \(-0.377000\pi\)
−0.764471 + 0.644658i \(0.777000\pi\)
\(380\) −5.33843 + 2.37682i −0.273856 + 0.121928i
\(381\) 0 0
\(382\) −0.348703 + 0.387274i −0.0178412 + 0.0198147i
\(383\) 22.7609 + 10.1338i 1.16303 + 0.517814i 0.895206 0.445653i \(-0.147029\pi\)
0.267824 + 0.963468i \(0.413695\pi\)
\(384\) 0 0
\(385\) 58.1068 12.8178i 2.96140 0.653254i
\(386\) 20.1728 1.02677
\(387\) 0 0
\(388\) −3.29451 10.1395i −0.167254 0.514754i
\(389\) 14.9370 + 16.5892i 0.757336 + 0.841107i 0.991366 0.131122i \(-0.0418581\pi\)
−0.234030 + 0.972229i \(0.575191\pi\)
\(390\) 0 0
\(391\) −0.956572 + 9.10117i −0.0483759 + 0.460266i
\(392\) −42.3014 + 8.99143i −2.13654 + 0.454136i
\(393\) 0 0
\(394\) −2.12423 20.2107i −0.107017 1.01820i
\(395\) −53.3442 −2.68404
\(396\) 0 0
\(397\) 39.1450 1.96463 0.982315 0.187234i \(-0.0599524\pi\)
0.982315 + 0.187234i \(0.0599524\pi\)
\(398\) −1.58930 15.1211i −0.0796642 0.757954i
\(399\) 0 0
\(400\) 22.0164 4.67972i 1.10082 0.233986i
\(401\) 3.47348 33.0479i 0.173457 1.65033i −0.468405 0.883514i \(-0.655171\pi\)
0.641862 0.766820i \(-0.278162\pi\)
\(402\) 0 0
\(403\) −3.38654 3.76114i −0.168696 0.187356i
\(404\) 3.18908 + 9.81498i 0.158663 + 0.488314i
\(405\) 0 0
\(406\) 6.56035 0.325585
\(407\) −16.8116 + 18.9618i −0.833322 + 0.939901i
\(408\) 0 0
\(409\) 33.1630 + 14.7651i 1.63981 + 0.730088i 0.999283 0.0378514i \(-0.0120514\pi\)
0.640522 + 0.767940i \(0.278718\pi\)
\(410\) 4.95788 5.50628i 0.244852 0.271936i
\(411\) 0 0
\(412\) −2.15472 + 0.959341i −0.106155 + 0.0472633i
\(413\) 2.06252 + 1.49851i 0.101490 + 0.0737369i
\(414\) 0 0
\(415\) 1.20652 + 3.71328i 0.0592256 + 0.182278i
\(416\) −0.222255 2.11461i −0.0108969 0.103677i
\(417\) 0 0
\(418\) 8.41329 0.0645566i 0.411508 0.00315757i
\(419\) −2.99011 5.17903i −0.146077 0.253012i 0.783697 0.621143i \(-0.213331\pi\)
−0.929774 + 0.368131i \(0.879998\pi\)
\(420\) 0 0
\(421\) 15.4734 + 3.28898i 0.754129 + 0.160295i 0.568907 0.822402i \(-0.307366\pi\)
0.185222 + 0.982697i \(0.440700\pi\)
\(422\) −4.00242 + 12.3182i −0.194835 + 0.599639i
\(423\) 0 0
\(424\) 3.31431 + 2.40798i 0.160957 + 0.116942i
\(425\) 8.62986 + 9.58444i 0.418610 + 0.464913i
\(426\) 0 0
\(427\) 46.9573 + 20.9067i 2.27242 + 1.01175i
\(428\) −3.26175 5.64952i −0.157663 0.273080i
\(429\) 0 0
\(430\) −13.0177 + 22.5474i −0.627771 + 1.08733i
\(431\) 24.8603 18.0620i 1.19748 0.870018i 0.203443 0.979087i \(-0.434787\pi\)
0.994034 + 0.109069i \(0.0347868\pi\)
\(432\) 0 0
\(433\) 4.24900 13.0771i 0.204194 0.628444i −0.795552 0.605886i \(-0.792819\pi\)
0.999746 0.0225582i \(-0.00718112\pi\)
\(434\) −41.8033 + 18.6120i −2.00662 + 0.893405i
\(435\) 0 0
\(436\) 0.252282 0.0536242i 0.0120821 0.00256813i
\(437\) −10.7818 + 11.9744i −0.515763 + 0.572813i
\(438\) 0 0
\(439\) −7.85940 + 13.6129i −0.375109 + 0.649707i −0.990343 0.138637i \(-0.955728\pi\)
0.615235 + 0.788344i \(0.289061\pi\)
\(440\) 39.1288 + 8.00379i 1.86539 + 0.381566i
\(441\) 0 0
\(442\) −0.680139 + 0.494150i −0.0323509 + 0.0235043i
\(443\) −16.0314 3.40758i −0.761674 0.161899i −0.189331 0.981913i \(-0.560632\pi\)
−0.572343 + 0.820014i \(0.693965\pi\)
\(444\) 0 0
\(445\) −1.36157 + 12.9545i −0.0645447 + 0.614102i
\(446\) −1.89700 + 18.0488i −0.0898256 + 0.854634i
\(447\) 0 0
\(448\) −38.4255 8.16760i −1.81544 0.385883i
\(449\) 13.3887 9.72745i 0.631851 0.459067i −0.225190 0.974315i \(-0.572300\pi\)
0.857041 + 0.515248i \(0.172300\pi\)
\(450\) 0 0
\(451\) 4.97421 2.26055i 0.234226 0.106445i
\(452\) −4.20910 + 7.29038i −0.197979 + 0.342910i
\(453\) 0 0
\(454\) −6.14720 + 6.82715i −0.288502 + 0.320414i
\(455\) −10.2402 + 2.17662i −0.480067 + 0.102041i
\(456\) 0 0
\(457\) −4.10327 + 1.82689i −0.191943 + 0.0854584i −0.500457 0.865761i \(-0.666835\pi\)
0.308515 + 0.951220i \(0.400168\pi\)
\(458\) 7.00175 21.5492i 0.327170 1.00693i
\(459\) 0 0
\(460\) −15.6562 + 11.3749i −0.729974 + 0.530357i
\(461\) −4.49882 + 7.79219i −0.209531 + 0.362918i −0.951567 0.307442i \(-0.900527\pi\)
0.742036 + 0.670360i \(0.233860\pi\)
\(462\) 0 0
\(463\) 3.15033 + 5.45653i 0.146408 + 0.253586i 0.929897 0.367819i \(-0.119895\pi\)
−0.783489 + 0.621405i \(0.786562\pi\)
\(464\) 2.48363 + 1.10578i 0.115299 + 0.0513346i
\(465\) 0 0
\(466\) −13.7528 15.2740i −0.637086 0.707555i
\(467\) 7.41774 + 5.38930i 0.343252 + 0.249387i 0.746033 0.665909i \(-0.231956\pi\)
−0.402781 + 0.915297i \(0.631956\pi\)
\(468\) 0 0
\(469\) 10.5778 32.5551i 0.488438 1.50326i
\(470\) 2.32332 + 0.493836i 0.107167 + 0.0227790i
\(471\) 0 0
\(472\) 0.855587 + 1.48192i 0.0393816 + 0.0682109i
\(473\) −15.4451 + 11.4036i −0.710166 + 0.524338i
\(474\) 0 0
\(475\) 2.37370 + 22.5842i 0.108913 + 1.03623i
\(476\) −1.20301 3.70249i −0.0551399 0.169703i
\(477\) 0 0
\(478\) −9.32856 6.77759i −0.426678 0.310000i
\(479\) −19.9327 + 8.87462i −0.910750 + 0.405492i −0.807978 0.589213i \(-0.799438\pi\)
−0.102772 + 0.994705i \(0.532771\pi\)
\(480\) 0 0
\(481\) 2.98331 3.31330i 0.136027 0.151074i
\(482\) −18.0670 8.04394i −0.822929 0.366391i
\(483\) 0 0
\(484\) 6.09477 + 4.28677i 0.277035 + 0.194853i
\(485\) −61.5517 −2.79492
\(486\) 0 0
\(487\) 2.06718 + 6.36212i 0.0936727 + 0.288295i 0.986906 0.161299i \(-0.0515685\pi\)
−0.893233 + 0.449595i \(0.851568\pi\)
\(488\) 23.0854 + 25.6389i 1.04503 + 1.16062i
\(489\) 0 0
\(490\) −6.60306 + 62.8240i −0.298296 + 2.83810i
\(491\) 26.4700 5.62637i 1.19457 0.253914i 0.432638 0.901568i \(-0.357583\pi\)
0.761935 + 0.647653i \(0.224249\pi\)
\(492\) 0 0
\(493\) 0.162833 + 1.54925i 0.00733363 + 0.0697748i
\(494\) −1.48026 −0.0666000
\(495\) 0 0
\(496\) −18.9631 −0.851467
\(497\) −2.45424 23.3505i −0.110088 1.04741i
\(498\) 0 0
\(499\) −27.9112 + 5.93271i −1.24948 + 0.265585i −0.784719 0.619852i \(-0.787193\pi\)
−0.464760 + 0.885437i \(0.653859\pi\)
\(500\) −1.46626 + 13.9505i −0.0655730 + 0.623885i
\(501\) 0 0
\(502\) −3.99718 4.43932i −0.178403 0.198137i
\(503\) 3.95017 + 12.1574i 0.176129 + 0.542071i 0.999683 0.0251675i \(-0.00801191\pi\)
−0.823554 + 0.567238i \(0.808012\pi\)
\(504\) 0 0
\(505\) 59.5819 2.65136
\(506\) 27.2086 6.00194i 1.20957 0.266819i
\(507\) 0 0
\(508\) 0.271125 + 0.120713i 0.0120292 + 0.00535576i
\(509\) −16.4548 + 18.2750i −0.729348 + 0.810023i −0.987755 0.156013i \(-0.950136\pi\)
0.258407 + 0.966036i \(0.416803\pi\)
\(510\) 0 0
\(511\) 1.59263 0.709087i 0.0704540 0.0313681i
\(512\) −17.3379 12.5967i −0.766233 0.556701i
\(513\) 0 0
\(514\) −5.75485 17.7116i −0.253836 0.781226i
\(515\) 1.42339 + 13.5427i 0.0627223 + 0.596763i
\(516\) 0 0
\(517\) 1.42486 + 1.01861i 0.0626651 + 0.0447983i
\(518\) −20.1554 34.9102i −0.885579 1.53387i
\(519\) 0 0
\(520\) −6.87323 1.46095i −0.301411 0.0640669i
\(521\) 4.75950 14.6482i 0.208518 0.641751i −0.791033 0.611774i \(-0.790456\pi\)
0.999551 0.0299778i \(-0.00954365\pi\)
\(522\) 0 0
\(523\) −15.9498 11.5882i −0.697434 0.506716i 0.181661 0.983361i \(-0.441853\pi\)
−0.879096 + 0.476646i \(0.841853\pi\)
\(524\) 3.68190 + 4.08917i 0.160845 + 0.178636i
\(525\) 0 0
\(526\) −24.3587 10.8452i −1.06209 0.472873i
\(527\) −5.43289 9.41004i −0.236660 0.409908i
\(528\) 0 0
\(529\) −15.1806 + 26.2936i −0.660026 + 1.14320i
\(530\) 4.84121 3.51734i 0.210289 0.152784i
\(531\) 0 0
\(532\) 2.11820 6.51915i 0.0918356 0.282641i
\(533\) −0.878177 + 0.390990i −0.0380381 + 0.0169356i
\(534\) 0 0
\(535\) −36.8397 + 7.83053i −1.59272 + 0.338543i
\(536\) 15.3737 17.0742i 0.664041 0.737492i
\(537\) 0 0
\(538\) −4.96300 + 8.59616i −0.213970 + 0.370607i
\(539\) −22.9808 + 40.5188i −0.989854 + 1.74527i
\(540\) 0 0
\(541\) −11.4472 + 8.31687i −0.492153 + 0.357570i −0.806012 0.591899i \(-0.798378\pi\)
0.313858 + 0.949470i \(0.398378\pi\)
\(542\) 27.2618 + 5.79467i 1.17099 + 0.248902i
\(543\) 0 0
\(544\) 0.477163 4.53990i 0.0204582 0.194647i
\(545\) 0.155650 1.48091i 0.00666729 0.0634350i
\(546\) 0 0
\(547\) 16.2162 + 3.44685i 0.693353 + 0.147377i 0.541092 0.840963i \(-0.318011\pi\)
0.152261 + 0.988340i \(0.451344\pi\)
\(548\) −3.68018 + 2.67381i −0.157209 + 0.114219i
\(549\) 0 0
\(550\) 19.3723 34.1564i 0.826037 1.45643i
\(551\) −1.37143 + 2.37539i −0.0584251 + 0.101195i
\(552\) 0 0
\(553\) 41.8697 46.5010i 1.78048 1.97742i
\(554\) −9.68067 + 2.05769i −0.411292 + 0.0874229i
\(555\) 0 0
\(556\) 1.85349 0.825225i 0.0786053 0.0349974i
\(557\) −4.61081 + 14.1906i −0.195366 + 0.601275i 0.804606 + 0.593809i \(0.202377\pi\)
−0.999972 + 0.00746621i \(0.997623\pi\)
\(558\) 0 0
\(559\) 2.73269 1.98541i 0.115580 0.0839741i
\(560\) −19.6127 + 33.9701i −0.828786 + 1.43550i
\(561\) 0 0
\(562\) 5.07265 + 8.78608i 0.213977 + 0.370618i
\(563\) 37.0582 + 16.4994i 1.56182 + 0.695366i 0.991980 0.126392i \(-0.0403398\pi\)
0.569837 + 0.821758i \(0.307006\pi\)
\(564\) 0 0
\(565\) 32.5208 + 36.1180i 1.36816 + 1.51950i
\(566\) −18.6735 13.5671i −0.784905 0.570267i
\(567\) 0 0
\(568\) 4.86987 14.9879i 0.204335 0.628879i
\(569\) −9.82339 2.08803i −0.411818 0.0875346i −0.00265621 0.999996i \(-0.500845\pi\)
−0.409162 + 0.912462i \(0.634179\pi\)
\(570\) 0 0
\(571\) −17.8106 30.8488i −0.745348 1.29098i −0.950032 0.312153i \(-0.898950\pi\)
0.204683 0.978828i \(-0.434384\pi\)
\(572\) −1.06648 0.762410i −0.0445918 0.0318780i
\(573\) 0 0
\(574\) 0.908492 + 8.64372i 0.0379197 + 0.360782i
\(575\) 23.2390 + 71.5224i 0.969135 + 2.98269i
\(576\) 0 0
\(577\) 24.3890 + 17.7197i 1.01533 + 0.737680i 0.965320 0.261069i \(-0.0840750\pi\)
0.0500090 + 0.998749i \(0.484075\pi\)
\(578\) 16.2117 7.21789i 0.674316 0.300225i
\(579\) 0 0
\(580\) −2.20427 + 2.44809i −0.0915273 + 0.101651i
\(581\) −4.18391 1.86280i −0.173578 0.0772818i
\(582\) 0 0
\(583\) 4.30910 0.950542i 0.178465 0.0393674i
\(584\) 1.17014 0.0484209
\(585\) 0 0
\(586\) 0.605329 + 1.86301i 0.0250059 + 0.0769602i
\(587\) 13.7829 + 15.3075i 0.568883 + 0.631808i 0.957099 0.289760i \(-0.0935755\pi\)
−0.388217 + 0.921568i \(0.626909\pi\)
\(588\) 0 0
\(589\) 1.99983 19.0271i 0.0824015 0.783998i
\(590\) 2.44489 0.519678i 0.100655 0.0213948i
\(591\) 0 0
\(592\) −1.74616 16.6136i −0.0717669 0.682817i
\(593\) 43.5253 1.78737 0.893684 0.448697i \(-0.148112\pi\)
0.893684 + 0.448697i \(0.148112\pi\)
\(594\) 0 0
\(595\) −22.4760 −0.921425
\(596\) 0.0181839 + 0.173009i 0.000744843 + 0.00708671i
\(597\) 0 0
\(598\) −4.79498 + 1.01921i −0.196082 + 0.0416784i
\(599\) 2.99598 28.5049i 0.122413 1.16468i −0.744992 0.667074i \(-0.767547\pi\)
0.867404 0.497604i \(-0.165787\pi\)
\(600\) 0 0
\(601\) −12.4932 13.8752i −0.509610 0.565979i 0.432349 0.901706i \(-0.357685\pi\)
−0.941959 + 0.335727i \(0.891018\pi\)
\(602\) −9.43733 29.0451i −0.384637 1.18379i
\(603\) 0 0
\(604\) 4.29940 0.174940
\(605\) 34.4115 25.8174i 1.39902 1.04963i
\(606\) 0 0
\(607\) 28.9007 + 12.8674i 1.17304 + 0.522272i 0.898359 0.439263i \(-0.144760\pi\)
0.274684 + 0.961535i \(0.411427\pi\)
\(608\) 5.37824 5.97314i 0.218116 0.242243i
\(609\) 0 0
\(610\) 46.0380 20.4975i 1.86403 0.829918i
\(611\) −0.249303 0.181130i −0.0100857 0.00732772i
\(612\) 0 0
\(613\) 10.5896 + 32.5913i 0.427709 + 1.31635i 0.900377 + 0.435111i \(0.143291\pi\)
−0.472668 + 0.881241i \(0.656709\pi\)
\(614\) −2.37884 22.6332i −0.0960023 0.913401i
\(615\) 0 0
\(616\) −37.6891 + 27.8270i −1.51854 + 1.12118i
\(617\) −9.68326 16.7719i −0.389833 0.675211i 0.602594 0.798048i \(-0.294134\pi\)
−0.992427 + 0.122837i \(0.960801\pi\)
\(618\) 0 0
\(619\) −36.8623 7.83533i −1.48162 0.314928i −0.605045 0.796191i \(-0.706845\pi\)
−0.876576 + 0.481263i \(0.840178\pi\)
\(620\) 7.10050 21.8531i 0.285163 0.877641i
\(621\) 0 0
\(622\) 25.3886 + 18.4459i 1.01799 + 0.739614i
\(623\) −10.2239 11.3548i −0.409613 0.454922i
\(624\) 0 0
\(625\) 26.9594 + 12.0031i 1.07838 + 0.480124i
\(626\) 5.19137 + 8.99171i 0.207489 + 0.359381i
\(627\) 0 0
\(628\) −3.07764 + 5.33063i −0.122811 + 0.212715i
\(629\) 7.74391 5.62628i 0.308770 0.224334i
\(630\) 0 0
\(631\) −12.6020 + 38.7850i −0.501678 + 1.54401i 0.304606 + 0.952478i \(0.401475\pi\)
−0.806284 + 0.591528i \(0.798525\pi\)
\(632\) 38.3682 17.0826i 1.52621 0.679511i
\(633\) 0 0
\(634\) 28.1838 5.99066i 1.11932 0.237919i
\(635\) 1.14652 1.27334i 0.0454983 0.0505309i
\(636\) 0 0
\(637\) 4.09777 7.09755i 0.162360 0.281215i
\(638\) 4.31797 1.96232i 0.170950 0.0776891i
\(639\) 0 0
\(640\) −8.10118 + 5.88585i −0.320227 + 0.232659i
\(641\) −46.0289 9.78374i −1.81803 0.386435i −0.832241 0.554414i \(-0.812943\pi\)
−0.985791 + 0.167979i \(0.946276\pi\)
\(642\) 0 0
\(643\) 2.00932 19.1174i 0.0792398 0.753916i −0.880693 0.473687i \(-0.842923\pi\)
0.959933 0.280229i \(-0.0904105\pi\)
\(644\) 2.37282 22.5759i 0.0935021 0.889613i
\(645\) 0 0
\(646\) −3.10854 0.660741i −0.122304 0.0259965i
\(647\) 34.9606 25.4004i 1.37444 0.998593i 0.377070 0.926185i \(-0.376932\pi\)
0.997375 0.0724077i \(-0.0230683\pi\)
\(648\) 0 0
\(649\) 1.80577 + 0.369370i 0.0708827 + 0.0144990i
\(650\) −3.45432 + 5.98306i −0.135490 + 0.234675i
\(651\) 0 0
\(652\) −2.80667 + 3.11713i −0.109918 + 0.122076i
\(653\) −21.2859 + 4.52446i −0.832982 + 0.177056i −0.604614 0.796519i \(-0.706672\pi\)
−0.228369 + 0.973575i \(0.573339\pi\)
\(654\) 0 0
\(655\) 29.0217 12.9213i 1.13397 0.504876i
\(656\) −1.11301 + 3.42548i −0.0434556 + 0.133742i
\(657\) 0 0
\(658\) −2.25405 + 1.63766i −0.0878718 + 0.0638426i
\(659\) −7.60422 + 13.1709i −0.296218 + 0.513065i −0.975268 0.221028i \(-0.929059\pi\)
0.679049 + 0.734093i \(0.262392\pi\)
\(660\) 0 0
\(661\) 8.83930 + 15.3101i 0.343809 + 0.595495i 0.985137 0.171772i \(-0.0549494\pi\)
−0.641328 + 0.767267i \(0.721616\pi\)
\(662\) 9.77268 + 4.35108i 0.379826 + 0.169109i
\(663\) 0 0
\(664\) −2.05691 2.28443i −0.0798237 0.0886532i
\(665\) −32.0165 23.2613i −1.24155 0.902036i
\(666\) 0 0
\(667\) −2.80694 + 8.63886i −0.108685 + 0.334498i
\(668\) −9.03890 1.92128i −0.349726 0.0743365i
\(669\) 0 0
\(670\) −16.7802 29.0642i −0.648276 1.12285i
\(671\) 37.1605 0.285139i 1.43457 0.0110077i
\(672\) 0 0
\(673\) −1.49275 14.2025i −0.0575412 0.547468i −0.984879 0.173243i \(-0.944575\pi\)
0.927338 0.374225i \(-0.122091\pi\)
\(674\) 5.03898 + 15.5084i 0.194094 + 0.597360i
\(675\) 0 0
\(676\) −6.93772 5.04055i −0.266835 0.193867i
\(677\) 28.0682 12.4968i 1.07875 0.480290i 0.211099 0.977465i \(-0.432296\pi\)
0.867651 + 0.497175i \(0.165629\pi\)
\(678\) 0 0
\(679\) 48.3117 53.6555i 1.85403 2.05911i
\(680\) −13.7817 6.13599i −0.528502 0.235304i
\(681\) 0 0
\(682\) −21.9474 + 24.7544i −0.840409 + 0.947895i
\(683\) 41.7448 1.59732 0.798660 0.601782i \(-0.205542\pi\)
0.798660 + 0.601782i \(0.205542\pi\)
\(684\) 0 0
\(685\) 8.11567 + 24.9775i 0.310084 + 0.954340i
\(686\) −24.8704 27.6214i −0.949557 1.05459i
\(687\) 0 0
\(688\) 1.32291 12.5866i 0.0504355 0.479861i
\(689\) −0.759394 + 0.161414i −0.0289306 + 0.00614939i
\(690\) 0 0
\(691\) 2.83314 + 26.9555i 0.107778 + 1.02544i 0.906059 + 0.423152i \(0.139076\pi\)
−0.798281 + 0.602285i \(0.794257\pi\)
\(692\) −14.3765 −0.546513
\(693\) 0 0
\(694\) −1.70435 −0.0646961
\(695\) −1.22440 11.6494i −0.0464443 0.441888i
\(696\) 0 0
\(697\) −2.01870 + 0.429087i −0.0764636 + 0.0162528i
\(698\) 0.242686 2.30901i 0.00918581 0.0873971i
\(699\) 0 0
\(700\) −21.4068 23.7746i −0.809100 0.898596i
\(701\) 10.8877 + 33.5089i 0.411223 + 1.26561i 0.915586 + 0.402123i \(0.131728\pi\)
−0.504363 + 0.863492i \(0.668272\pi\)
\(702\) 0 0
\(703\) 16.8539 0.635656
\(704\) −27.7345 + 6.11793i −1.04528 + 0.230578i
\(705\) 0 0
\(706\) −6.00717 2.67456i −0.226083 0.100659i
\(707\) −46.7656 + 51.9384i −1.75880 + 1.95335i
\(708\) 0 0
\(709\) −36.6923 + 16.3365i −1.37801 + 0.613529i −0.956082 0.293101i \(-0.905313\pi\)
−0.421927 + 0.906630i \(0.638646\pi\)
\(710\) −18.6232 13.5305i −0.698915 0.507792i
\(711\) 0 0
\(712\) −3.16915 9.75363i −0.118769 0.365533i
\(713\) −6.62274 63.0112i −0.248024 2.35979i
\(714\) 0 0
\(715\) −6.08895 + 4.49566i −0.227714 + 0.168128i
\(716\) 4.91269 + 8.50903i 0.183596 + 0.317997i
\(717\) 0 0
\(718\) 12.3461 + 2.62424i 0.460751 + 0.0979357i
\(719\) −0.0121049 + 0.0372552i −0.000451438 + 0.00138938i −0.951282 0.308322i \(-0.900233\pi\)
0.950831 + 0.309712i \(0.100233\pi\)
\(720\) 0 0
\(721\) −12.9226 9.38881i −0.481262 0.349658i
\(722\) 10.8769 + 12.0800i 0.404795 + 0.449570i
\(723\) 0 0
\(724\) −0.180163 0.0802136i −0.00669569 0.00298111i
\(725\) 6.40074 + 11.0864i 0.237718 + 0.411739i
\(726\) 0 0
\(727\) 6.61792 11.4626i 0.245445 0.425123i −0.716812 0.697267i \(-0.754399\pi\)
0.962257 + 0.272144i \(0.0877326\pi\)
\(728\) 6.66830 4.84480i 0.247144 0.179560i
\(729\) 0 0
\(730\) 0.528180 1.62557i 0.0195488 0.0601651i
\(731\) 6.62487 2.94958i 0.245030 0.109094i
\(732\) 0 0
\(733\) −32.1144 + 6.82613i −1.18617 + 0.252129i −0.758420 0.651767i \(-0.774028\pi\)
−0.427753 + 0.903895i \(0.640695\pi\)
\(734\) 13.9063 15.4446i 0.513292 0.570069i
\(735\) 0 0
\(736\) 13.3090 23.0518i 0.490575 0.849701i
\(737\) −2.77561 24.5916i −0.102241 0.905842i
\(738\) 0 0
\(739\) −5.17751 + 3.76168i −0.190458 + 0.138376i −0.678928 0.734205i \(-0.737555\pi\)
0.488470 + 0.872581i \(0.337555\pi\)
\(740\) 19.7994 + 4.20850i 0.727842 + 0.154708i
\(741\) 0 0
\(742\) −0.733722 + 6.98090i −0.0269358 + 0.256277i
\(743\) 5.30299 50.4546i 0.194548 1.85100i −0.266765 0.963762i \(-0.585955\pi\)
0.461313 0.887237i \(-0.347379\pi\)
\(744\) 0 0
\(745\) 0.982401 + 0.208816i 0.0359924 + 0.00765042i
\(746\) −22.7708 + 16.5440i −0.833699 + 0.605718i
\(747\) 0 0
\(748\) −1.89930 2.07711i −0.0694451 0.0759465i
\(749\) 22.0894 38.2599i 0.807128 1.39799i
\(750\) 0 0
\(751\) −15.7958 + 17.5430i −0.576397 + 0.640153i −0.958881 0.283809i \(-0.908402\pi\)
0.382484 + 0.923962i \(0.375069\pi\)
\(752\) −1.12937 + 0.240056i −0.0411841 + 0.00875394i
\(753\) 0 0
\(754\) −0.762321 + 0.339407i −0.0277621 + 0.0123605i
\(755\) 7.67046 23.6073i 0.279157 0.859156i
\(756\) 0 0
\(757\) −39.2432 + 28.5118i −1.42632 + 1.03628i −0.435629 + 0.900126i \(0.643474\pi\)
−0.990688 + 0.136154i \(0.956526\pi\)
\(758\) 5.36329 9.28949i 0.194803 0.337409i
\(759\) 0 0
\(760\) −13.2812 23.0038i −0.481761 0.834435i
\(761\) 12.0945 + 5.38484i 0.438427 + 0.195200i 0.614066 0.789254i \(-0.289533\pi\)
−0.175640 + 0.984455i \(0.556199\pi\)
\(762\) 0 0
\(763\) 1.16876 + 1.29804i 0.0423119 + 0.0469922i
\(764\) 0.248331 + 0.180423i 0.00898429 + 0.00652747i
\(765\) 0 0
\(766\) −8.85437 + 27.2509i −0.319921 + 0.984616i
\(767\) −0.317195 0.0674219i −0.0114532 0.00243446i
\(768\) 0 0
\(769\) 11.5333 + 19.9762i 0.415901 + 0.720362i 0.995523 0.0945241i \(-0.0301330\pi\)
−0.579622 + 0.814886i \(0.696800\pi\)
\(770\) 21.6454 + 64.9186i 0.780047 + 2.33950i
\(771\) 0 0
\(772\) −1.24202 11.8170i −0.0447013 0.425305i
\(773\) 2.88942 + 8.89271i 0.103925 + 0.319848i 0.989477 0.144693i \(-0.0462193\pi\)
−0.885552 + 0.464541i \(0.846219\pi\)
\(774\) 0 0
\(775\) −72.2389 52.4846i −2.59490 1.88530i
\(776\) 44.2715 19.7109i 1.58925 0.707581i
\(777\) 0 0
\(778\) −17.1782 + 19.0784i −0.615869 + 0.683992i
\(779\) −3.31967 1.47801i −0.118939 0.0529552i
\(780\) 0 0
\(781\) −8.59993 14.6350i −0.307730 0.523682i
\(782\) −10.5244 −0.376352
\(783\) 0 0
\(784\) −9.48906 29.2043i −0.338895 1.04301i
\(785\) 23.7788 + 26.4090i 0.848701 + 0.942578i
\(786\) 0 0
\(787\) 2.86673 27.2751i 0.102188 0.972253i −0.816520 0.577317i \(-0.804100\pi\)
0.918708 0.394937i \(-0.129233\pi\)
\(788\) −11.7084 + 2.48870i −0.417095 + 0.0886563i
\(789\) 0 0
\(790\) −6.41264 61.0122i −0.228152 2.17072i
\(791\) −57.0101 −2.02704
\(792\) 0 0
\(793\) −6.53813 −0.232176
\(794\) 4.70572 + 44.7719i 0.167000 + 1.58889i
\(795\) 0 0
\(796\) −8.75996 + 1.86199i −0.310489 + 0.0659964i
\(797\) −4.17551 + 39.7274i −0.147904 + 1.40722i 0.628906 + 0.777481i \(0.283503\pi\)
−0.776811 + 0.629734i \(0.783164\pi\)
\(798\) 0 0
\(799\) −0.442687 0.491653i −0.0156611 0.0173934i
\(800\) −11.5922 35.6772i −0.409847 1.26138i
\(801\) 0 0
\(802\) 38.2160 1.34945
\(803\) 0.836159 0.943102i 0.0295074 0.0332813i
\(804\) 0 0
\(805\) −119.727 53.3058i −4.21981 1.87878i
\(806\) 3.89468 4.32548i 0.137184 0.152358i
\(807\) 0 0
\(808\) −42.8547 + 19.0801i −1.50762 + 0.671237i
\(809\) 9.77203 + 7.09979i 0.343566 + 0.249615i 0.746165 0.665761i \(-0.231893\pi\)
−0.402599 + 0.915377i \(0.631893\pi\)
\(810\) 0 0
\(811\) −8.48931 26.1274i −0.298100 0.917458i −0.982162 0.188034i \(-0.939788\pi\)
0.684062 0.729424i \(-0.260212\pi\)
\(812\) −0.403914 3.84299i −0.0141746 0.134862i
\(813\) 0 0
\(814\) −23.7084 16.9488i −0.830980 0.594054i
\(815\) 12.1083 + 20.9721i 0.424134 + 0.734622i
\(816\) 0 0
\(817\) 12.4896 + 2.65475i 0.436956 + 0.0928780i
\(818\) −12.9009 + 39.7050i −0.451071 + 1.38825i
\(819\) 0 0
\(820\) −3.53078 2.56526i −0.123300 0.0895828i
\(821\) −10.4369 11.5914i −0.364251 0.404542i 0.532962 0.846139i \(-0.321079\pi\)
−0.897213 + 0.441597i \(0.854412\pi\)
\(822\) 0 0
\(823\) −3.74282 1.66641i −0.130467 0.0580875i 0.340465 0.940257i \(-0.389416\pi\)
−0.470932 + 0.882170i \(0.656082\pi\)
\(824\) −5.36062 9.28486i −0.186746 0.323453i
\(825\) 0 0
\(826\) −1.46597 + 2.53914i −0.0510078 + 0.0883481i
\(827\) 19.9149 14.4690i 0.692509 0.503137i −0.184975 0.982743i \(-0.559220\pi\)
0.877484 + 0.479606i \(0.159220\pi\)
\(828\) 0 0
\(829\) 9.85566 30.3326i 0.342301 1.05350i −0.620711 0.784039i \(-0.713156\pi\)
0.963013 0.269456i \(-0.0868439\pi\)
\(830\) −4.10200 + 1.82633i −0.142383 + 0.0633928i
\(831\) 0 0
\(832\) 4.88765 1.03890i 0.169449 0.0360175i
\(833\) 11.7734 13.0757i 0.407926 0.453047i
\(834\) 0 0
\(835\) −26.6755 + 46.2033i −0.923143 + 1.59893i
\(836\) −0.555815 4.92445i −0.0192233 0.170316i
\(837\) 0 0
\(838\) 5.56404 4.04251i 0.192207 0.139646i
\(839\) 17.1753 + 3.65072i 0.592956 + 0.126037i 0.494609 0.869115i \(-0.335311\pi\)
0.0983470 + 0.995152i \(0.468644\pi\)
\(840\) 0 0
\(841\) 2.86970 27.3034i 0.0989552 0.941496i
\(842\) −1.90165 + 18.0930i −0.0655353 + 0.623527i
\(843\) 0 0
\(844\) 7.46229 + 1.58616i 0.256862 + 0.0545978i
\(845\) −40.0542 + 29.1011i −1.37791 + 1.00111i
\(846\) 0 0
\(847\) −4.50401 + 50.2609i −0.154759 + 1.72699i
\(848\) −1.45444 + 2.51916i −0.0499457 + 0.0865084i
\(849\) 0 0
\(850\) −9.92474 + 11.0225i −0.340416 + 0.378070i
\(851\) 54.5946 11.6044i 1.87148 0.397795i
\(852\) 0 0
\(853\) 36.1244 16.0836i 1.23688 0.550693i 0.319074 0.947730i \(-0.396628\pi\)
0.917803 + 0.397037i \(0.129961\pi\)
\(854\) −18.2671 + 56.2204i −0.625088 + 1.92382i
\(855\) 0 0
\(856\) 23.9896 17.4295i 0.819949 0.595728i
\(857\) −1.77266 + 3.07034i −0.0605529 + 0.104881i −0.894713 0.446642i \(-0.852620\pi\)
0.834160 + 0.551523i \(0.185953\pi\)
\(858\) 0 0
\(859\) 12.1359 + 21.0200i 0.414071 + 0.717192i 0.995330 0.0965262i \(-0.0307731\pi\)
−0.581259 + 0.813718i \(0.697440\pi\)
\(860\) 14.0095 + 6.23744i 0.477721 + 0.212695i
\(861\) 0 0
\(862\) 23.6469 + 26.2625i 0.805416 + 0.894506i
\(863\) −33.7842 24.5457i −1.15003 0.835544i −0.161543 0.986866i \(-0.551647\pi\)
−0.988485 + 0.151322i \(0.951647\pi\)
\(864\) 0 0
\(865\) −25.6488 + 78.9389i −0.872086 + 2.68400i
\(866\) 15.4676 + 3.28774i 0.525611 + 0.111722i
\(867\) 0 0
\(868\) 13.4765 + 23.3420i 0.457423 + 0.792279i
\(869\) 13.6490 43.1306i 0.463011 1.46310i
\(870\) 0 0
\(871\) 0.455123 + 4.33020i 0.0154212 + 0.146723i
\(872\) 0.362284 + 1.11500i 0.0122685 + 0.0377585i
\(873\) 0 0
\(874\) −14.9918 10.8922i −0.507104 0.368433i
\(875\) −86.7836 + 38.6386i −2.93382 + 1.30622i
\(876\) 0 0
\(877\) 9.70730 10.7810i 0.327792 0.364050i −0.556611 0.830773i \(-0.687899\pi\)
0.884404 + 0.466723i \(0.154565\pi\)
\(878\) −16.5145 7.35271i −0.557336 0.248142i
\(879\) 0 0
\(880\) −2.74781 + 28.2254i −0.0926288 + 0.951478i
\(881\) 24.6860 0.831693 0.415847 0.909435i \(-0.363485\pi\)
0.415847 + 0.909435i \(0.363485\pi\)
\(882\) 0 0
\(883\) −10.6238 32.6968i −0.357520 1.10033i −0.954534 0.298103i \(-0.903646\pi\)
0.597014 0.802231i \(-0.296354\pi\)
\(884\) 0.331344 + 0.367994i 0.0111443 + 0.0123770i
\(885\) 0 0
\(886\) 1.97023 18.7455i 0.0661911 0.629766i
\(887\) −10.4134 + 2.21344i −0.349648 + 0.0743200i −0.379388 0.925238i \(-0.623865\pi\)
0.0297400 + 0.999558i \(0.490532\pi\)
\(888\) 0 0
\(889\) 0.210091 + 1.99888i 0.00704621 + 0.0670402i
\(890\) −14.9803 −0.502141
\(891\) 0 0
\(892\) 10.6896 0.357914
\(893\) −0.121764 1.15850i −0.00407466 0.0387678i
\(894\) 0 0
\(895\) 55.4862 11.7939i 1.85470 0.394228i
\(896\) 1.22780 11.6817i 0.0410178 0.390258i
\(897\) 0 0
\(898\) 12.7352 + 14.1439i 0.424980 + 0.471988i
\(899\) −3.33281 10.2573i −0.111155 0.342101i
\(900\) 0 0
\(901\) −1.66678 −0.0555284
\(902\) 3.18346 + 5.41748i 0.105998 + 0.180382i
\(903\) 0 0
\(904\) −34.9570 15.5639i −1.16265 0.517647i
\(905\) −0.761863 + 0.846134i −0.0253252 + 0.0281264i
\(906\) 0 0
\(907\) 40.1229 17.8638i 1.33226 0.593159i 0.387785 0.921750i \(-0.373240\pi\)
0.944472 + 0.328591i \(0.106574\pi\)
\(908\) 4.37775 + 3.18062i 0.145281 + 0.105553i
\(909\) 0 0
\(910\) −3.72050 11.4505i −0.123333 0.379581i
\(911\) 5.00348 + 47.6050i 0.165773 + 1.57722i 0.688829 + 0.724924i \(0.258125\pi\)
−0.523056 + 0.852298i \(0.675208\pi\)
\(912\) 0 0
\(913\) −3.31101 + 0.0254059i −0.109579 + 0.000840814i
\(914\) −2.58276 4.47348i −0.0854302 0.147969i
\(915\) 0 0
\(916\) −13.0544 2.77479i −0.431329 0.0916818i
\(917\) −11.5153 + 35.4405i −0.380269 + 1.17035i
\(918\) 0 0
\(919\) −21.9642 15.9579i −0.724531 0.526403i 0.163297 0.986577i \(-0.447787\pi\)
−0.887829 + 0.460174i \(0.847787\pi\)
\(920\) −58.8606 65.3713i −1.94058 2.15523i
\(921\) 0 0
\(922\) −9.45309 4.20879i −0.311321 0.138609i
\(923\) 1.49325 + 2.58639i 0.0491509 + 0.0851319i
\(924\) 0 0
\(925\) 39.3301 68.1218i 1.29317 2.23983i
\(926\) −5.86217 + 4.25911i −0.192643 + 0.139963i
\(927\) 0 0
\(928\) 1.40017 4.30929i 0.0459629 0.141459i
\(929\) 32.8058 14.6061i 1.07632 0.479211i 0.209492 0.977810i \(-0.432819\pi\)
0.866832 + 0.498600i \(0.166152\pi\)
\(930\) 0 0
\(931\) 30.3036 6.44123i 0.993161 0.211103i
\(932\) −8.10062 + 8.99665i −0.265345 + 0.294695i
\(933\) 0 0
\(934\) −5.27228 + 9.13186i −0.172514 + 0.298804i
\(935\) −14.7935 + 6.72298i −0.483800 + 0.219865i
\(936\) 0 0
\(937\) 35.7303 25.9596i 1.16726 0.848062i 0.176579 0.984287i \(-0.443497\pi\)
0.990678 + 0.136225i \(0.0434970\pi\)
\(938\) 38.5064 + 8.18478i 1.25728 + 0.267243i
\(939\) 0 0
\(940\) 0.146240 1.39138i 0.00476982 0.0453818i
\(941\) −2.04249 + 19.4330i −0.0665833 + 0.633498i 0.909441 + 0.415834i \(0.136510\pi\)
−0.976024 + 0.217664i \(0.930156\pi\)
\(942\) 0 0
\(943\) −11.7710 2.50201i −0.383317 0.0814765i
\(944\) −0.982976 + 0.714174i −0.0319931 + 0.0232444i
\(945\) 0 0
\(946\) −14.8995 16.2944i −0.484425 0.529777i
\(947\) −15.2771 + 26.4607i −0.496439 + 0.859858i −0.999992 0.00410698i \(-0.998693\pi\)
0.503553 + 0.863965i \(0.332026\pi\)
\(948\) 0 0
\(949\) −0.148381 + 0.164793i −0.00481664 + 0.00534942i
\(950\) −25.5452 + 5.42981i −0.828797 + 0.176166i
\(951\) 0 0
\(952\) 16.1660 7.19757i 0.523943 0.233274i
\(953\) −4.51629 + 13.8997i −0.146297 + 0.450256i −0.997175 0.0751068i \(-0.976070\pi\)
0.850879 + 0.525362i \(0.176070\pi\)
\(954\) 0 0
\(955\) 1.43371 1.04165i 0.0463938 0.0337070i
\(956\) −3.39590 + 5.88186i −0.109831 + 0.190233i
\(957\) 0 0
\(958\) −12.5465 21.7311i −0.405358 0.702101i
\(959\) −28.1432 12.5302i −0.908791 0.404620i
\(960\) 0 0
\(961\) 29.5945 + 32.8680i 0.954660 + 1.06026i
\(962\) 4.14820 + 3.01385i 0.133743 + 0.0971703i
\(963\) 0 0
\(964\) −3.59969 + 11.0787i −0.115938 + 0.356821i
\(965\) −67.1011 14.2628i −2.16006 0.459135i
\(966\) 0 0
\(967\) −4.38762 7.59958i −0.141096 0.244386i 0.786813 0.617191i \(-0.211729\pi\)
−0.927910 + 0.372805i \(0.878396\pi\)
\(968\) −16.4831 + 29.5890i −0.529786 + 0.951028i
\(969\) 0 0
\(970\) −7.39928 70.3995i −0.237577 2.26039i
\(971\) 3.46730 + 10.6713i 0.111271 + 0.342457i 0.991151 0.132739i \(-0.0423771\pi\)
−0.879880 + 0.475196i \(0.842377\pi\)
\(972\) 0 0
\(973\) 11.1160 + 8.07626i 0.356363 + 0.258913i
\(974\) −7.02814 + 3.12913i −0.225196 + 0.100264i
\(975\) 0 0
\(976\) −16.3918 + 18.2050i −0.524690 + 0.582727i
\(977\) 28.7475 + 12.7992i 0.919715 + 0.409483i 0.811305 0.584623i \(-0.198757\pi\)
0.108410 + 0.994106i \(0.465424\pi\)
\(978\) 0 0
\(979\) −10.1258 4.41549i −0.323620 0.141120i
\(980\) 37.2082 1.18857
\(981\) 0 0
\(982\) 9.61715 + 29.5986i 0.306896 + 0.944528i
\(983\) −29.5412 32.8088i −0.942217 1.04644i −0.998845 0.0480425i \(-0.984702\pi\)
0.0566285 0.998395i \(-0.481965\pi\)
\(984\) 0 0
\(985\) −7.22369 + 68.7288i −0.230166 + 2.18988i
\(986\) −1.75238 + 0.372479i −0.0558070 + 0.0118621i
\(987\) 0 0
\(988\) 0.0911381 + 0.867121i 0.00289949 + 0.0275868i
\(989\) 42.2854 1.34460
\(990\) 0 0
\(991\) 10.0638 0.319687 0.159844 0.987142i \(-0.448901\pi\)
0.159844 + 0.987142i \(0.448901\pi\)
\(992\) 3.30359 + 31.4316i 0.104889 + 0.997954i
\(993\) 0 0
\(994\) 26.4120 5.61405i 0.837738 0.178067i
\(995\) −5.40460 + 51.4213i −0.171337 + 1.63017i
\(996\) 0 0
\(997\) 33.1080 + 36.7702i 1.04854 + 1.16452i 0.986045 + 0.166478i \(0.0532394\pi\)
0.0624960 + 0.998045i \(0.480094\pi\)
\(998\) −10.1408 31.2101i −0.321001 0.987940i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.l.784.8 96
3.2 odd 2 inner 891.2.n.l.784.5 96
9.2 odd 6 891.2.f.g.487.5 48
9.4 even 3 inner 891.2.n.l.190.5 96
9.5 odd 6 inner 891.2.n.l.190.8 96
9.7 even 3 891.2.f.g.487.8 yes 48
11.4 even 5 inner 891.2.n.l.136.5 96
33.26 odd 10 inner 891.2.n.l.136.8 96
99.2 even 30 9801.2.a.cq.1.9 24
99.4 even 15 inner 891.2.n.l.433.8 96
99.20 odd 30 9801.2.a.cr.1.16 24
99.59 odd 30 inner 891.2.n.l.433.5 96
99.70 even 15 891.2.f.g.730.8 yes 48
99.79 odd 30 9801.2.a.cq.1.16 24
99.92 odd 30 891.2.f.g.730.5 yes 48
99.97 even 15 9801.2.a.cr.1.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
891.2.f.g.487.5 48 9.2 odd 6
891.2.f.g.487.8 yes 48 9.7 even 3
891.2.f.g.730.5 yes 48 99.92 odd 30
891.2.f.g.730.8 yes 48 99.70 even 15
891.2.n.l.136.5 96 11.4 even 5 inner
891.2.n.l.136.8 96 33.26 odd 10 inner
891.2.n.l.190.5 96 9.4 even 3 inner
891.2.n.l.190.8 96 9.5 odd 6 inner
891.2.n.l.433.5 96 99.59 odd 30 inner
891.2.n.l.433.8 96 99.4 even 15 inner
891.2.n.l.784.5 96 3.2 odd 2 inner
891.2.n.l.784.8 96 1.1 even 1 trivial
9801.2.a.cq.1.9 24 99.2 even 30
9801.2.a.cq.1.16 24 99.79 odd 30
9801.2.a.cr.1.9 24 99.97 even 15
9801.2.a.cr.1.16 24 99.20 odd 30