Properties

Label 912.6.a.s.1.1
Level $912$
Weight $6$
Character 912.1
Self dual yes
Analytic conductor $146.270$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,6,Mod(1,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 912.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.270043669\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4327x^{2} + 78705x - 258666 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 228)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.29948\) of defining polynomial
Character \(\chi\) \(=\) 912.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} -31.7936 q^{5} +136.490 q^{7} +81.0000 q^{9} +691.738 q^{11} -261.653 q^{13} -286.142 q^{15} +1408.97 q^{17} +361.000 q^{19} +1228.41 q^{21} +2844.99 q^{23} -2114.17 q^{25} +729.000 q^{27} +1469.54 q^{29} -863.414 q^{31} +6225.64 q^{33} -4339.50 q^{35} +3162.80 q^{37} -2354.87 q^{39} +7469.23 q^{41} -10854.2 q^{43} -2575.28 q^{45} +12364.1 q^{47} +1822.47 q^{49} +12680.8 q^{51} +19022.9 q^{53} -21992.8 q^{55} +3249.00 q^{57} -17232.8 q^{59} +9423.41 q^{61} +11055.7 q^{63} +8318.88 q^{65} -35827.5 q^{67} +25604.9 q^{69} -78965.5 q^{71} -21729.2 q^{73} -19027.5 q^{75} +94415.2 q^{77} +43428.1 q^{79} +6561.00 q^{81} -18576.8 q^{83} -44796.3 q^{85} +13225.9 q^{87} -27875.0 q^{89} -35712.9 q^{91} -7770.72 q^{93} -11477.5 q^{95} +19004.2 q^{97} +56030.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 36 q^{3} + 117 q^{5} + 33 q^{7} + 324 q^{9} + 129 q^{11} + 638 q^{13} + 1053 q^{15} + 285 q^{17} + 1444 q^{19} + 297 q^{21} + 2340 q^{23} + 3629 q^{25} + 2916 q^{27} + 438 q^{29} - 160 q^{31} + 1161 q^{33}+ \cdots + 10449 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) −31.7936 −0.568741 −0.284371 0.958714i \(-0.591785\pi\)
−0.284371 + 0.958714i \(0.591785\pi\)
\(6\) 0 0
\(7\) 136.490 1.05282 0.526411 0.850230i \(-0.323537\pi\)
0.526411 + 0.850230i \(0.323537\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 691.738 1.72369 0.861846 0.507169i \(-0.169308\pi\)
0.861846 + 0.507169i \(0.169308\pi\)
\(12\) 0 0
\(13\) −261.653 −0.429405 −0.214702 0.976680i \(-0.568878\pi\)
−0.214702 + 0.976680i \(0.568878\pi\)
\(14\) 0 0
\(15\) −286.142 −0.328363
\(16\) 0 0
\(17\) 1408.97 1.18244 0.591222 0.806509i \(-0.298646\pi\)
0.591222 + 0.806509i \(0.298646\pi\)
\(18\) 0 0
\(19\) 361.000 0.229416
\(20\) 0 0
\(21\) 1228.41 0.607847
\(22\) 0 0
\(23\) 2844.99 1.12140 0.560700 0.828019i \(-0.310532\pi\)
0.560700 + 0.828019i \(0.310532\pi\)
\(24\) 0 0
\(25\) −2114.17 −0.676533
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 1469.54 0.324479 0.162240 0.986751i \(-0.448128\pi\)
0.162240 + 0.986751i \(0.448128\pi\)
\(30\) 0 0
\(31\) −863.414 −0.161367 −0.0806835 0.996740i \(-0.525710\pi\)
−0.0806835 + 0.996740i \(0.525710\pi\)
\(32\) 0 0
\(33\) 6225.64 0.995175
\(34\) 0 0
\(35\) −4339.50 −0.598784
\(36\) 0 0
\(37\) 3162.80 0.379811 0.189905 0.981802i \(-0.439182\pi\)
0.189905 + 0.981802i \(0.439182\pi\)
\(38\) 0 0
\(39\) −2354.87 −0.247917
\(40\) 0 0
\(41\) 7469.23 0.693931 0.346966 0.937878i \(-0.387212\pi\)
0.346966 + 0.937878i \(0.387212\pi\)
\(42\) 0 0
\(43\) −10854.2 −0.895212 −0.447606 0.894231i \(-0.647723\pi\)
−0.447606 + 0.894231i \(0.647723\pi\)
\(44\) 0 0
\(45\) −2575.28 −0.189580
\(46\) 0 0
\(47\) 12364.1 0.816431 0.408216 0.912886i \(-0.366151\pi\)
0.408216 + 0.912886i \(0.366151\pi\)
\(48\) 0 0
\(49\) 1822.47 0.108435
\(50\) 0 0
\(51\) 12680.8 0.682684
\(52\) 0 0
\(53\) 19022.9 0.930225 0.465112 0.885252i \(-0.346014\pi\)
0.465112 + 0.885252i \(0.346014\pi\)
\(54\) 0 0
\(55\) −21992.8 −0.980335
\(56\) 0 0
\(57\) 3249.00 0.132453
\(58\) 0 0
\(59\) −17232.8 −0.644504 −0.322252 0.946654i \(-0.604440\pi\)
−0.322252 + 0.946654i \(0.604440\pi\)
\(60\) 0 0
\(61\) 9423.41 0.324252 0.162126 0.986770i \(-0.448165\pi\)
0.162126 + 0.986770i \(0.448165\pi\)
\(62\) 0 0
\(63\) 11055.7 0.350941
\(64\) 0 0
\(65\) 8318.88 0.244220
\(66\) 0 0
\(67\) −35827.5 −0.975056 −0.487528 0.873107i \(-0.662101\pi\)
−0.487528 + 0.873107i \(0.662101\pi\)
\(68\) 0 0
\(69\) 25604.9 0.647441
\(70\) 0 0
\(71\) −78965.5 −1.85905 −0.929526 0.368757i \(-0.879783\pi\)
−0.929526 + 0.368757i \(0.879783\pi\)
\(72\) 0 0
\(73\) −21729.2 −0.477240 −0.238620 0.971113i \(-0.576695\pi\)
−0.238620 + 0.971113i \(0.576695\pi\)
\(74\) 0 0
\(75\) −19027.5 −0.390597
\(76\) 0 0
\(77\) 94415.2 1.81474
\(78\) 0 0
\(79\) 43428.1 0.782893 0.391447 0.920201i \(-0.371975\pi\)
0.391447 + 0.920201i \(0.371975\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −18576.8 −0.295990 −0.147995 0.988988i \(-0.547282\pi\)
−0.147995 + 0.988988i \(0.547282\pi\)
\(84\) 0 0
\(85\) −44796.3 −0.672504
\(86\) 0 0
\(87\) 13225.9 0.187338
\(88\) 0 0
\(89\) −27875.0 −0.373027 −0.186513 0.982452i \(-0.559719\pi\)
−0.186513 + 0.982452i \(0.559719\pi\)
\(90\) 0 0
\(91\) −35712.9 −0.452087
\(92\) 0 0
\(93\) −7770.72 −0.0931653
\(94\) 0 0
\(95\) −11477.5 −0.130478
\(96\) 0 0
\(97\) 19004.2 0.205078 0.102539 0.994729i \(-0.467303\pi\)
0.102539 + 0.994729i \(0.467303\pi\)
\(98\) 0 0
\(99\) 56030.8 0.574564
\(100\) 0 0
\(101\) −37006.5 −0.360973 −0.180486 0.983577i \(-0.557767\pi\)
−0.180486 + 0.983577i \(0.557767\pi\)
\(102\) 0 0
\(103\) 132725. 1.23270 0.616351 0.787471i \(-0.288610\pi\)
0.616351 + 0.787471i \(0.288610\pi\)
\(104\) 0 0
\(105\) −39055.5 −0.345708
\(106\) 0 0
\(107\) −127034. −1.07266 −0.536329 0.844009i \(-0.680189\pi\)
−0.536329 + 0.844009i \(0.680189\pi\)
\(108\) 0 0
\(109\) 183607. 1.48021 0.740104 0.672492i \(-0.234776\pi\)
0.740104 + 0.672492i \(0.234776\pi\)
\(110\) 0 0
\(111\) 28465.2 0.219284
\(112\) 0 0
\(113\) −38263.8 −0.281898 −0.140949 0.990017i \(-0.545015\pi\)
−0.140949 + 0.990017i \(0.545015\pi\)
\(114\) 0 0
\(115\) −90452.4 −0.637787
\(116\) 0 0
\(117\) −21193.9 −0.143135
\(118\) 0 0
\(119\) 192310. 1.24490
\(120\) 0 0
\(121\) 317450. 1.97112
\(122\) 0 0
\(123\) 67223.1 0.400641
\(124\) 0 0
\(125\) 166572. 0.953514
\(126\) 0 0
\(127\) 171357. 0.942742 0.471371 0.881935i \(-0.343759\pi\)
0.471371 + 0.881935i \(0.343759\pi\)
\(128\) 0 0
\(129\) −97687.7 −0.516851
\(130\) 0 0
\(131\) 92853.5 0.472737 0.236369 0.971663i \(-0.424043\pi\)
0.236369 + 0.971663i \(0.424043\pi\)
\(132\) 0 0
\(133\) 49272.8 0.241534
\(134\) 0 0
\(135\) −23177.5 −0.109454
\(136\) 0 0
\(137\) −97281.4 −0.442821 −0.221410 0.975181i \(-0.571066\pi\)
−0.221410 + 0.975181i \(0.571066\pi\)
\(138\) 0 0
\(139\) 323196. 1.41883 0.709413 0.704793i \(-0.248960\pi\)
0.709413 + 0.704793i \(0.248960\pi\)
\(140\) 0 0
\(141\) 111277. 0.471367
\(142\) 0 0
\(143\) −180995. −0.740162
\(144\) 0 0
\(145\) −46722.0 −0.184545
\(146\) 0 0
\(147\) 16402.3 0.0626052
\(148\) 0 0
\(149\) −66353.4 −0.244848 −0.122424 0.992478i \(-0.539067\pi\)
−0.122424 + 0.992478i \(0.539067\pi\)
\(150\) 0 0
\(151\) 372223. 1.32850 0.664249 0.747512i \(-0.268752\pi\)
0.664249 + 0.747512i \(0.268752\pi\)
\(152\) 0 0
\(153\) 114127. 0.394148
\(154\) 0 0
\(155\) 27451.0 0.0917760
\(156\) 0 0
\(157\) −493158. −1.59675 −0.798376 0.602160i \(-0.794307\pi\)
−0.798376 + 0.602160i \(0.794307\pi\)
\(158\) 0 0
\(159\) 171206. 0.537065
\(160\) 0 0
\(161\) 388312. 1.18064
\(162\) 0 0
\(163\) 211574. 0.623724 0.311862 0.950127i \(-0.399047\pi\)
0.311862 + 0.950127i \(0.399047\pi\)
\(164\) 0 0
\(165\) −197936. −0.565997
\(166\) 0 0
\(167\) 138869. 0.385312 0.192656 0.981266i \(-0.438290\pi\)
0.192656 + 0.981266i \(0.438290\pi\)
\(168\) 0 0
\(169\) −302831. −0.815612
\(170\) 0 0
\(171\) 29241.0 0.0764719
\(172\) 0 0
\(173\) 159542. 0.405284 0.202642 0.979253i \(-0.435047\pi\)
0.202642 + 0.979253i \(0.435047\pi\)
\(174\) 0 0
\(175\) −288562. −0.712270
\(176\) 0 0
\(177\) −155095. −0.372104
\(178\) 0 0
\(179\) −820067. −1.91301 −0.956504 0.291719i \(-0.905773\pi\)
−0.956504 + 0.291719i \(0.905773\pi\)
\(180\) 0 0
\(181\) 144944. 0.328854 0.164427 0.986389i \(-0.447422\pi\)
0.164427 + 0.986389i \(0.447422\pi\)
\(182\) 0 0
\(183\) 84810.7 0.187207
\(184\) 0 0
\(185\) −100557. −0.216014
\(186\) 0 0
\(187\) 974640. 2.03817
\(188\) 0 0
\(189\) 99501.1 0.202616
\(190\) 0 0
\(191\) −602801. −1.19561 −0.597806 0.801641i \(-0.703961\pi\)
−0.597806 + 0.801641i \(0.703961\pi\)
\(192\) 0 0
\(193\) 625582. 1.20890 0.604451 0.796643i \(-0.293393\pi\)
0.604451 + 0.796643i \(0.293393\pi\)
\(194\) 0 0
\(195\) 74869.9 0.141001
\(196\) 0 0
\(197\) −27843.8 −0.0511167 −0.0255584 0.999673i \(-0.508136\pi\)
−0.0255584 + 0.999673i \(0.508136\pi\)
\(198\) 0 0
\(199\) 715911. 1.28152 0.640761 0.767740i \(-0.278619\pi\)
0.640761 + 0.767740i \(0.278619\pi\)
\(200\) 0 0
\(201\) −322447. −0.562949
\(202\) 0 0
\(203\) 200578. 0.341619
\(204\) 0 0
\(205\) −237474. −0.394667
\(206\) 0 0
\(207\) 230444. 0.373800
\(208\) 0 0
\(209\) 249717. 0.395442
\(210\) 0 0
\(211\) 1.19468e6 1.84734 0.923668 0.383193i \(-0.125176\pi\)
0.923668 + 0.383193i \(0.125176\pi\)
\(212\) 0 0
\(213\) −710689. −1.07332
\(214\) 0 0
\(215\) 345094. 0.509144
\(216\) 0 0
\(217\) −117847. −0.169891
\(218\) 0 0
\(219\) −195563. −0.275535
\(220\) 0 0
\(221\) −368661. −0.507747
\(222\) 0 0
\(223\) −437325. −0.588901 −0.294450 0.955667i \(-0.595137\pi\)
−0.294450 + 0.955667i \(0.595137\pi\)
\(224\) 0 0
\(225\) −171248. −0.225511
\(226\) 0 0
\(227\) −370776. −0.477582 −0.238791 0.971071i \(-0.576751\pi\)
−0.238791 + 0.971071i \(0.576751\pi\)
\(228\) 0 0
\(229\) −1.27852e6 −1.61108 −0.805540 0.592541i \(-0.798125\pi\)
−0.805540 + 0.592541i \(0.798125\pi\)
\(230\) 0 0
\(231\) 849737. 1.04774
\(232\) 0 0
\(233\) 1.00010e6 1.20685 0.603423 0.797421i \(-0.293803\pi\)
0.603423 + 0.797421i \(0.293803\pi\)
\(234\) 0 0
\(235\) −393101. −0.464338
\(236\) 0 0
\(237\) 390853. 0.452004
\(238\) 0 0
\(239\) 145864. 0.165179 0.0825893 0.996584i \(-0.473681\pi\)
0.0825893 + 0.996584i \(0.473681\pi\)
\(240\) 0 0
\(241\) 1.41435e6 1.56861 0.784304 0.620376i \(-0.213020\pi\)
0.784304 + 0.620376i \(0.213020\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) −57943.0 −0.0616717
\(246\) 0 0
\(247\) −94456.6 −0.0985122
\(248\) 0 0
\(249\) −167192. −0.170890
\(250\) 0 0
\(251\) −216775. −0.217183 −0.108591 0.994086i \(-0.534634\pi\)
−0.108591 + 0.994086i \(0.534634\pi\)
\(252\) 0 0
\(253\) 1.96799e6 1.93295
\(254\) 0 0
\(255\) −403167. −0.388271
\(256\) 0 0
\(257\) 853978. 0.806518 0.403259 0.915086i \(-0.367877\pi\)
0.403259 + 0.915086i \(0.367877\pi\)
\(258\) 0 0
\(259\) 431690. 0.399874
\(260\) 0 0
\(261\) 119033. 0.108160
\(262\) 0 0
\(263\) 467645. 0.416896 0.208448 0.978033i \(-0.433159\pi\)
0.208448 + 0.978033i \(0.433159\pi\)
\(264\) 0 0
\(265\) −604808. −0.529057
\(266\) 0 0
\(267\) −250875. −0.215367
\(268\) 0 0
\(269\) 449741. 0.378950 0.189475 0.981886i \(-0.439321\pi\)
0.189475 + 0.981886i \(0.439321\pi\)
\(270\) 0 0
\(271\) −1.01480e6 −0.839376 −0.419688 0.907668i \(-0.637861\pi\)
−0.419688 + 0.907668i \(0.637861\pi\)
\(272\) 0 0
\(273\) −321416. −0.261012
\(274\) 0 0
\(275\) −1.46245e6 −1.16614
\(276\) 0 0
\(277\) −202928. −0.158906 −0.0794532 0.996839i \(-0.525317\pi\)
−0.0794532 + 0.996839i \(0.525317\pi\)
\(278\) 0 0
\(279\) −69936.5 −0.0537890
\(280\) 0 0
\(281\) 589539. 0.445397 0.222698 0.974887i \(-0.428514\pi\)
0.222698 + 0.974887i \(0.428514\pi\)
\(282\) 0 0
\(283\) −2.55801e6 −1.89861 −0.949307 0.314350i \(-0.898213\pi\)
−0.949307 + 0.314350i \(0.898213\pi\)
\(284\) 0 0
\(285\) −103297. −0.0753316
\(286\) 0 0
\(287\) 1.01947e6 0.730586
\(288\) 0 0
\(289\) 565348. 0.398172
\(290\) 0 0
\(291\) 171037. 0.118402
\(292\) 0 0
\(293\) 2.71564e6 1.84801 0.924004 0.382382i \(-0.124896\pi\)
0.924004 + 0.382382i \(0.124896\pi\)
\(294\) 0 0
\(295\) 547892. 0.366556
\(296\) 0 0
\(297\) 504277. 0.331725
\(298\) 0 0
\(299\) −744398. −0.481535
\(300\) 0 0
\(301\) −1.48149e6 −0.942500
\(302\) 0 0
\(303\) −333058. −0.208408
\(304\) 0 0
\(305\) −299604. −0.184416
\(306\) 0 0
\(307\) −851449. −0.515600 −0.257800 0.966198i \(-0.582998\pi\)
−0.257800 + 0.966198i \(0.582998\pi\)
\(308\) 0 0
\(309\) 1.19452e6 0.711701
\(310\) 0 0
\(311\) 533143. 0.312567 0.156283 0.987712i \(-0.450049\pi\)
0.156283 + 0.987712i \(0.450049\pi\)
\(312\) 0 0
\(313\) −109835. −0.0633694 −0.0316847 0.999498i \(-0.510087\pi\)
−0.0316847 + 0.999498i \(0.510087\pi\)
\(314\) 0 0
\(315\) −351500. −0.199595
\(316\) 0 0
\(317\) 2.77656e6 1.55188 0.775942 0.630805i \(-0.217275\pi\)
0.775942 + 0.630805i \(0.217275\pi\)
\(318\) 0 0
\(319\) 1.01654e6 0.559303
\(320\) 0 0
\(321\) −1.14331e6 −0.619300
\(322\) 0 0
\(323\) 508639. 0.271271
\(324\) 0 0
\(325\) 553177. 0.290507
\(326\) 0 0
\(327\) 1.65246e6 0.854598
\(328\) 0 0
\(329\) 1.68758e6 0.859557
\(330\) 0 0
\(331\) 2.79226e6 1.40083 0.700415 0.713736i \(-0.252998\pi\)
0.700415 + 0.713736i \(0.252998\pi\)
\(332\) 0 0
\(333\) 256187. 0.126604
\(334\) 0 0
\(335\) 1.13909e6 0.554554
\(336\) 0 0
\(337\) −1.65336e6 −0.793037 −0.396519 0.918027i \(-0.629782\pi\)
−0.396519 + 0.918027i \(0.629782\pi\)
\(338\) 0 0
\(339\) −344374. −0.162754
\(340\) 0 0
\(341\) −597256. −0.278147
\(342\) 0 0
\(343\) −2.04524e6 −0.938659
\(344\) 0 0
\(345\) −814072. −0.368226
\(346\) 0 0
\(347\) −3.49138e6 −1.55659 −0.778293 0.627901i \(-0.783914\pi\)
−0.778293 + 0.627901i \(0.783914\pi\)
\(348\) 0 0
\(349\) 2.19114e6 0.962958 0.481479 0.876458i \(-0.340100\pi\)
0.481479 + 0.876458i \(0.340100\pi\)
\(350\) 0 0
\(351\) −190745. −0.0826389
\(352\) 0 0
\(353\) −1.93036e6 −0.824521 −0.412261 0.911066i \(-0.635261\pi\)
−0.412261 + 0.911066i \(0.635261\pi\)
\(354\) 0 0
\(355\) 2.51060e6 1.05732
\(356\) 0 0
\(357\) 1.73079e6 0.718745
\(358\) 0 0
\(359\) 1.97492e6 0.808750 0.404375 0.914593i \(-0.367489\pi\)
0.404375 + 0.914593i \(0.367489\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) 0 0
\(363\) 2.85705e6 1.13803
\(364\) 0 0
\(365\) 690850. 0.271426
\(366\) 0 0
\(367\) −4.82988e6 −1.87185 −0.935925 0.352198i \(-0.885434\pi\)
−0.935925 + 0.352198i \(0.885434\pi\)
\(368\) 0 0
\(369\) 605008. 0.231310
\(370\) 0 0
\(371\) 2.59644e6 0.979361
\(372\) 0 0
\(373\) 3.03190e6 1.12835 0.564173 0.825657i \(-0.309195\pi\)
0.564173 + 0.825657i \(0.309195\pi\)
\(374\) 0 0
\(375\) 1.49915e6 0.550511
\(376\) 0 0
\(377\) −384510. −0.139333
\(378\) 0 0
\(379\) 5.24333e6 1.87503 0.937517 0.347940i \(-0.113119\pi\)
0.937517 + 0.347940i \(0.113119\pi\)
\(380\) 0 0
\(381\) 1.54221e6 0.544292
\(382\) 0 0
\(383\) 4.63538e6 1.61469 0.807343 0.590082i \(-0.200905\pi\)
0.807343 + 0.590082i \(0.200905\pi\)
\(384\) 0 0
\(385\) −3.00180e6 −1.03212
\(386\) 0 0
\(387\) −879189. −0.298404
\(388\) 0 0
\(389\) 2.19168e6 0.734350 0.367175 0.930152i \(-0.380325\pi\)
0.367175 + 0.930152i \(0.380325\pi\)
\(390\) 0 0
\(391\) 4.00851e6 1.32599
\(392\) 0 0
\(393\) 835681. 0.272935
\(394\) 0 0
\(395\) −1.38073e6 −0.445264
\(396\) 0 0
\(397\) 5.22159e6 1.66275 0.831375 0.555712i \(-0.187554\pi\)
0.831375 + 0.555712i \(0.187554\pi\)
\(398\) 0 0
\(399\) 443455. 0.139450
\(400\) 0 0
\(401\) 2.26293e6 0.702764 0.351382 0.936232i \(-0.385712\pi\)
0.351382 + 0.936232i \(0.385712\pi\)
\(402\) 0 0
\(403\) 225914. 0.0692917
\(404\) 0 0
\(405\) −208598. −0.0631935
\(406\) 0 0
\(407\) 2.18783e6 0.654678
\(408\) 0 0
\(409\) 3.33165e6 0.984807 0.492403 0.870367i \(-0.336118\pi\)
0.492403 + 0.870367i \(0.336118\pi\)
\(410\) 0 0
\(411\) −875532. −0.255663
\(412\) 0 0
\(413\) −2.35210e6 −0.678548
\(414\) 0 0
\(415\) 590624. 0.168341
\(416\) 0 0
\(417\) 2.90876e6 0.819159
\(418\) 0 0
\(419\) −3.58378e6 −0.997256 −0.498628 0.866816i \(-0.666163\pi\)
−0.498628 + 0.866816i \(0.666163\pi\)
\(420\) 0 0
\(421\) −1.61256e6 −0.443416 −0.221708 0.975113i \(-0.571163\pi\)
−0.221708 + 0.975113i \(0.571163\pi\)
\(422\) 0 0
\(423\) 1.00150e6 0.272144
\(424\) 0 0
\(425\) −2.97880e6 −0.799962
\(426\) 0 0
\(427\) 1.28620e6 0.341380
\(428\) 0 0
\(429\) −1.62896e6 −0.427332
\(430\) 0 0
\(431\) 981411. 0.254482 0.127241 0.991872i \(-0.459388\pi\)
0.127241 + 0.991872i \(0.459388\pi\)
\(432\) 0 0
\(433\) −255387. −0.0654606 −0.0327303 0.999464i \(-0.510420\pi\)
−0.0327303 + 0.999464i \(0.510420\pi\)
\(434\) 0 0
\(435\) −420498. −0.106547
\(436\) 0 0
\(437\) 1.02704e6 0.257267
\(438\) 0 0
\(439\) −2.60776e6 −0.645813 −0.322907 0.946431i \(-0.604660\pi\)
−0.322907 + 0.946431i \(0.604660\pi\)
\(440\) 0 0
\(441\) 147620. 0.0361451
\(442\) 0 0
\(443\) 4.41189e6 1.06811 0.534055 0.845450i \(-0.320668\pi\)
0.534055 + 0.845450i \(0.320668\pi\)
\(444\) 0 0
\(445\) 886247. 0.212156
\(446\) 0 0
\(447\) −597180. −0.141363
\(448\) 0 0
\(449\) −8.12094e6 −1.90104 −0.950518 0.310669i \(-0.899447\pi\)
−0.950518 + 0.310669i \(0.899447\pi\)
\(450\) 0 0
\(451\) 5.16675e6 1.19612
\(452\) 0 0
\(453\) 3.35001e6 0.767008
\(454\) 0 0
\(455\) 1.13544e6 0.257120
\(456\) 0 0
\(457\) −5.29918e6 −1.18691 −0.593455 0.804867i \(-0.702237\pi\)
−0.593455 + 0.804867i \(0.702237\pi\)
\(458\) 0 0
\(459\) 1.02714e6 0.227561
\(460\) 0 0
\(461\) −7.84132e6 −1.71845 −0.859225 0.511598i \(-0.829054\pi\)
−0.859225 + 0.511598i \(0.829054\pi\)
\(462\) 0 0
\(463\) 936253. 0.202974 0.101487 0.994837i \(-0.467640\pi\)
0.101487 + 0.994837i \(0.467640\pi\)
\(464\) 0 0
\(465\) 247059. 0.0529869
\(466\) 0 0
\(467\) 1.72974e6 0.367018 0.183509 0.983018i \(-0.441254\pi\)
0.183509 + 0.983018i \(0.441254\pi\)
\(468\) 0 0
\(469\) −4.89009e6 −1.02656
\(470\) 0 0
\(471\) −4.43843e6 −0.921885
\(472\) 0 0
\(473\) −7.50825e6 −1.54307
\(474\) 0 0
\(475\) −763214. −0.155207
\(476\) 0 0
\(477\) 1.54086e6 0.310075
\(478\) 0 0
\(479\) −6.69000e6 −1.33225 −0.666127 0.745838i \(-0.732049\pi\)
−0.666127 + 0.745838i \(0.732049\pi\)
\(480\) 0 0
\(481\) −827555. −0.163093
\(482\) 0 0
\(483\) 3.49481e6 0.681640
\(484\) 0 0
\(485\) −604210. −0.116636
\(486\) 0 0
\(487\) −4.18881e6 −0.800328 −0.400164 0.916444i \(-0.631047\pi\)
−0.400164 + 0.916444i \(0.631047\pi\)
\(488\) 0 0
\(489\) 1.90416e6 0.360107
\(490\) 0 0
\(491\) −5.51402e6 −1.03220 −0.516101 0.856528i \(-0.672617\pi\)
−0.516101 + 0.856528i \(0.672617\pi\)
\(492\) 0 0
\(493\) 2.07055e6 0.383679
\(494\) 0 0
\(495\) −1.78142e6 −0.326778
\(496\) 0 0
\(497\) −1.07780e7 −1.95725
\(498\) 0 0
\(499\) −4.44154e6 −0.798513 −0.399257 0.916839i \(-0.630732\pi\)
−0.399257 + 0.916839i \(0.630732\pi\)
\(500\) 0 0
\(501\) 1.24982e6 0.222460
\(502\) 0 0
\(503\) 7.53545e6 1.32797 0.663987 0.747744i \(-0.268863\pi\)
0.663987 + 0.747744i \(0.268863\pi\)
\(504\) 0 0
\(505\) 1.17657e6 0.205300
\(506\) 0 0
\(507\) −2.72548e6 −0.470894
\(508\) 0 0
\(509\) −1.80688e6 −0.309125 −0.154563 0.987983i \(-0.549397\pi\)
−0.154563 + 0.987983i \(0.549397\pi\)
\(510\) 0 0
\(511\) −2.96582e6 −0.502449
\(512\) 0 0
\(513\) 263169. 0.0441511
\(514\) 0 0
\(515\) −4.21979e6 −0.701089
\(516\) 0 0
\(517\) 8.55275e6 1.40728
\(518\) 0 0
\(519\) 1.43588e6 0.233991
\(520\) 0 0
\(521\) 1.62195e6 0.261784 0.130892 0.991397i \(-0.458216\pi\)
0.130892 + 0.991397i \(0.458216\pi\)
\(522\) 0 0
\(523\) −8.02004e6 −1.28210 −0.641051 0.767499i \(-0.721501\pi\)
−0.641051 + 0.767499i \(0.721501\pi\)
\(524\) 0 0
\(525\) −2.59706e6 −0.411229
\(526\) 0 0
\(527\) −1.21653e6 −0.190807
\(528\) 0 0
\(529\) 1.65761e6 0.257539
\(530\) 0 0
\(531\) −1.39586e6 −0.214835
\(532\) 0 0
\(533\) −1.95434e6 −0.297977
\(534\) 0 0
\(535\) 4.03888e6 0.610065
\(536\) 0 0
\(537\) −7.38060e6 −1.10448
\(538\) 0 0
\(539\) 1.26067e6 0.186909
\(540\) 0 0
\(541\) −91817.8 −0.0134876 −0.00674378 0.999977i \(-0.502147\pi\)
−0.00674378 + 0.999977i \(0.502147\pi\)
\(542\) 0 0
\(543\) 1.30450e6 0.189864
\(544\) 0 0
\(545\) −5.83752e6 −0.841855
\(546\) 0 0
\(547\) 1.56765e6 0.224018 0.112009 0.993707i \(-0.464272\pi\)
0.112009 + 0.993707i \(0.464272\pi\)
\(548\) 0 0
\(549\) 763296. 0.108084
\(550\) 0 0
\(551\) 530505. 0.0744407
\(552\) 0 0
\(553\) 5.92749e6 0.824248
\(554\) 0 0
\(555\) −905011. −0.124716
\(556\) 0 0
\(557\) −6.11842e6 −0.835605 −0.417803 0.908538i \(-0.637200\pi\)
−0.417803 + 0.908538i \(0.637200\pi\)
\(558\) 0 0
\(559\) 2.84003e6 0.384408
\(560\) 0 0
\(561\) 8.77176e6 1.17674
\(562\) 0 0
\(563\) 6.06877e6 0.806918 0.403459 0.914998i \(-0.367808\pi\)
0.403459 + 0.914998i \(0.367808\pi\)
\(564\) 0 0
\(565\) 1.21654e6 0.160327
\(566\) 0 0
\(567\) 895510. 0.116980
\(568\) 0 0
\(569\) −1.02217e7 −1.32355 −0.661776 0.749701i \(-0.730197\pi\)
−0.661776 + 0.749701i \(0.730197\pi\)
\(570\) 0 0
\(571\) −3.55216e6 −0.455934 −0.227967 0.973669i \(-0.573208\pi\)
−0.227967 + 0.973669i \(0.573208\pi\)
\(572\) 0 0
\(573\) −5.42521e6 −0.690287
\(574\) 0 0
\(575\) −6.01478e6 −0.758665
\(576\) 0 0
\(577\) 4.96727e6 0.621125 0.310562 0.950553i \(-0.399483\pi\)
0.310562 + 0.950553i \(0.399483\pi\)
\(578\) 0 0
\(579\) 5.63024e6 0.697959
\(580\) 0 0
\(581\) −2.53555e6 −0.311625
\(582\) 0 0
\(583\) 1.31589e7 1.60342
\(584\) 0 0
\(585\) 673829. 0.0814067
\(586\) 0 0
\(587\) −1.47975e7 −1.77253 −0.886267 0.463175i \(-0.846710\pi\)
−0.886267 + 0.463175i \(0.846710\pi\)
\(588\) 0 0
\(589\) −311692. −0.0370201
\(590\) 0 0
\(591\) −250594. −0.0295123
\(592\) 0 0
\(593\) 1.09127e7 1.27437 0.637187 0.770709i \(-0.280098\pi\)
0.637187 + 0.770709i \(0.280098\pi\)
\(594\) 0 0
\(595\) −6.11424e6 −0.708028
\(596\) 0 0
\(597\) 6.44320e6 0.739887
\(598\) 0 0
\(599\) 357302. 0.0406881 0.0203441 0.999793i \(-0.493524\pi\)
0.0203441 + 0.999793i \(0.493524\pi\)
\(600\) 0 0
\(601\) 1.92888e6 0.217830 0.108915 0.994051i \(-0.465262\pi\)
0.108915 + 0.994051i \(0.465262\pi\)
\(602\) 0 0
\(603\) −2.90203e6 −0.325019
\(604\) 0 0
\(605\) −1.00929e7 −1.12106
\(606\) 0 0
\(607\) −4.04780e6 −0.445911 −0.222955 0.974829i \(-0.571570\pi\)
−0.222955 + 0.974829i \(0.571570\pi\)
\(608\) 0 0
\(609\) 1.80520e6 0.197234
\(610\) 0 0
\(611\) −3.23511e6 −0.350579
\(612\) 0 0
\(613\) −2.94813e6 −0.316881 −0.158440 0.987369i \(-0.550647\pi\)
−0.158440 + 0.987369i \(0.550647\pi\)
\(614\) 0 0
\(615\) −2.13726e6 −0.227861
\(616\) 0 0
\(617\) 1.37469e7 1.45376 0.726878 0.686767i \(-0.240971\pi\)
0.726878 + 0.686767i \(0.240971\pi\)
\(618\) 0 0
\(619\) −2.35692e6 −0.247239 −0.123620 0.992330i \(-0.539450\pi\)
−0.123620 + 0.992330i \(0.539450\pi\)
\(620\) 0 0
\(621\) 2.07400e6 0.215814
\(622\) 0 0
\(623\) −3.80466e6 −0.392731
\(624\) 0 0
\(625\) 1.31085e6 0.134231
\(626\) 0 0
\(627\) 2.24746e6 0.228309
\(628\) 0 0
\(629\) 4.45630e6 0.449105
\(630\) 0 0
\(631\) 9.99454e6 0.999285 0.499643 0.866232i \(-0.333465\pi\)
0.499643 + 0.866232i \(0.333465\pi\)
\(632\) 0 0
\(633\) 1.07521e7 1.06656
\(634\) 0 0
\(635\) −5.44806e6 −0.536176
\(636\) 0 0
\(637\) −476855. −0.0465626
\(638\) 0 0
\(639\) −6.39620e6 −0.619684
\(640\) 0 0
\(641\) 2.18866e6 0.210394 0.105197 0.994451i \(-0.466453\pi\)
0.105197 + 0.994451i \(0.466453\pi\)
\(642\) 0 0
\(643\) −1.42232e7 −1.35666 −0.678329 0.734758i \(-0.737296\pi\)
−0.678329 + 0.734758i \(0.737296\pi\)
\(644\) 0 0
\(645\) 3.10584e6 0.293955
\(646\) 0 0
\(647\) −1.32117e7 −1.24079 −0.620397 0.784288i \(-0.713028\pi\)
−0.620397 + 0.784288i \(0.713028\pi\)
\(648\) 0 0
\(649\) −1.19206e7 −1.11093
\(650\) 0 0
\(651\) −1.06062e6 −0.0980865
\(652\) 0 0
\(653\) −9.55832e6 −0.877200 −0.438600 0.898682i \(-0.644525\pi\)
−0.438600 + 0.898682i \(0.644525\pi\)
\(654\) 0 0
\(655\) −2.95215e6 −0.268865
\(656\) 0 0
\(657\) −1.76007e6 −0.159080
\(658\) 0 0
\(659\) −1.85335e7 −1.66244 −0.831218 0.555946i \(-0.812356\pi\)
−0.831218 + 0.555946i \(0.812356\pi\)
\(660\) 0 0
\(661\) −5.06510e6 −0.450905 −0.225452 0.974254i \(-0.572386\pi\)
−0.225452 + 0.974254i \(0.572386\pi\)
\(662\) 0 0
\(663\) −3.31795e6 −0.293148
\(664\) 0 0
\(665\) −1.56656e6 −0.137370
\(666\) 0 0
\(667\) 4.18083e6 0.363871
\(668\) 0 0
\(669\) −3.93593e6 −0.340002
\(670\) 0 0
\(671\) 6.51853e6 0.558912
\(672\) 0 0
\(673\) 7.33110e6 0.623923 0.311962 0.950095i \(-0.399014\pi\)
0.311962 + 0.950095i \(0.399014\pi\)
\(674\) 0 0
\(675\) −1.54123e6 −0.130199
\(676\) 0 0
\(677\) −7.34608e6 −0.616004 −0.308002 0.951386i \(-0.599660\pi\)
−0.308002 + 0.951386i \(0.599660\pi\)
\(678\) 0 0
\(679\) 2.59387e6 0.215911
\(680\) 0 0
\(681\) −3.33699e6 −0.275732
\(682\) 0 0
\(683\) 1.54260e7 1.26532 0.632662 0.774428i \(-0.281962\pi\)
0.632662 + 0.774428i \(0.281962\pi\)
\(684\) 0 0
\(685\) 3.09292e6 0.251851
\(686\) 0 0
\(687\) −1.15066e7 −0.930158
\(688\) 0 0
\(689\) −4.97740e6 −0.399443
\(690\) 0 0
\(691\) −2.01025e7 −1.60161 −0.800803 0.598928i \(-0.795594\pi\)
−0.800803 + 0.598928i \(0.795594\pi\)
\(692\) 0 0
\(693\) 7.64763e6 0.604914
\(694\) 0 0
\(695\) −1.02756e7 −0.806945
\(696\) 0 0
\(697\) 1.05239e7 0.820534
\(698\) 0 0
\(699\) 9.00086e6 0.696773
\(700\) 0 0
\(701\) 1.39186e7 1.06980 0.534898 0.844917i \(-0.320350\pi\)
0.534898 + 0.844917i \(0.320350\pi\)
\(702\) 0 0
\(703\) 1.14177e6 0.0871346
\(704\) 0 0
\(705\) −3.53791e6 −0.268086
\(706\) 0 0
\(707\) −5.05101e6 −0.380040
\(708\) 0 0
\(709\) −2.21375e7 −1.65391 −0.826957 0.562266i \(-0.809930\pi\)
−0.826957 + 0.562266i \(0.809930\pi\)
\(710\) 0 0
\(711\) 3.51767e6 0.260964
\(712\) 0 0
\(713\) −2.45640e6 −0.180957
\(714\) 0 0
\(715\) 5.75448e6 0.420960
\(716\) 0 0
\(717\) 1.31278e6 0.0953659
\(718\) 0 0
\(719\) 2.94192e6 0.212231 0.106116 0.994354i \(-0.466159\pi\)
0.106116 + 0.994354i \(0.466159\pi\)
\(720\) 0 0
\(721\) 1.81156e7 1.29782
\(722\) 0 0
\(723\) 1.27292e7 0.905637
\(724\) 0 0
\(725\) −3.10686e6 −0.219521
\(726\) 0 0
\(727\) −1.79898e7 −1.26238 −0.631189 0.775629i \(-0.717433\pi\)
−0.631189 + 0.775629i \(0.717433\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −1.52933e7 −1.05854
\(732\) 0 0
\(733\) 6.63171e6 0.455896 0.227948 0.973673i \(-0.426798\pi\)
0.227948 + 0.973673i \(0.426798\pi\)
\(734\) 0 0
\(735\) −521487. −0.0356061
\(736\) 0 0
\(737\) −2.47832e7 −1.68070
\(738\) 0 0
\(739\) −1.98503e7 −1.33708 −0.668539 0.743677i \(-0.733080\pi\)
−0.668539 + 0.743677i \(0.733080\pi\)
\(740\) 0 0
\(741\) −850109. −0.0568760
\(742\) 0 0
\(743\) 1.73059e7 1.15007 0.575033 0.818130i \(-0.304989\pi\)
0.575033 + 0.818130i \(0.304989\pi\)
\(744\) 0 0
\(745\) 2.10961e6 0.139255
\(746\) 0 0
\(747\) −1.50472e6 −0.0986632
\(748\) 0 0
\(749\) −1.73389e7 −1.12932
\(750\) 0 0
\(751\) −3.05367e6 −0.197571 −0.0987854 0.995109i \(-0.531496\pi\)
−0.0987854 + 0.995109i \(0.531496\pi\)
\(752\) 0 0
\(753\) −1.95098e6 −0.125390
\(754\) 0 0
\(755\) −1.18343e7 −0.755571
\(756\) 0 0
\(757\) −1.58229e7 −1.00357 −0.501783 0.864994i \(-0.667322\pi\)
−0.501783 + 0.864994i \(0.667322\pi\)
\(758\) 0 0
\(759\) 1.77119e7 1.11599
\(760\) 0 0
\(761\) −8.84728e6 −0.553794 −0.276897 0.960900i \(-0.589306\pi\)
−0.276897 + 0.960900i \(0.589306\pi\)
\(762\) 0 0
\(763\) 2.50605e7 1.55840
\(764\) 0 0
\(765\) −3.62850e6 −0.224168
\(766\) 0 0
\(767\) 4.50900e6 0.276753
\(768\) 0 0
\(769\) 2.54971e7 1.55480 0.777400 0.629007i \(-0.216538\pi\)
0.777400 + 0.629007i \(0.216538\pi\)
\(770\) 0 0
\(771\) 7.68580e6 0.465643
\(772\) 0 0
\(773\) 762315. 0.0458866 0.0229433 0.999737i \(-0.492696\pi\)
0.0229433 + 0.999737i \(0.492696\pi\)
\(774\) 0 0
\(775\) 1.82540e6 0.109170
\(776\) 0 0
\(777\) 3.88521e6 0.230867
\(778\) 0 0
\(779\) 2.69639e6 0.159199
\(780\) 0 0
\(781\) −5.46234e7 −3.20443
\(782\) 0 0
\(783\) 1.07130e6 0.0624461
\(784\) 0 0
\(785\) 1.56793e7 0.908138
\(786\) 0 0
\(787\) −5.26619e6 −0.303082 −0.151541 0.988451i \(-0.548423\pi\)
−0.151541 + 0.988451i \(0.548423\pi\)
\(788\) 0 0
\(789\) 4.20881e6 0.240695
\(790\) 0 0
\(791\) −5.22261e6 −0.296788
\(792\) 0 0
\(793\) −2.46566e6 −0.139235
\(794\) 0 0
\(795\) −5.44327e6 −0.305451
\(796\) 0 0
\(797\) −7.81454e6 −0.435770 −0.217885 0.975974i \(-0.569916\pi\)
−0.217885 + 0.975974i \(0.569916\pi\)
\(798\) 0 0
\(799\) 1.74207e7 0.965384
\(800\) 0 0
\(801\) −2.25788e6 −0.124342
\(802\) 0 0
\(803\) −1.50309e7 −0.822616
\(804\) 0 0
\(805\) −1.23458e7 −0.671476
\(806\) 0 0
\(807\) 4.04767e6 0.218787
\(808\) 0 0
\(809\) 8.53525e6 0.458506 0.229253 0.973367i \(-0.426372\pi\)
0.229253 + 0.973367i \(0.426372\pi\)
\(810\) 0 0
\(811\) 522103. 0.0278743 0.0139371 0.999903i \(-0.495564\pi\)
0.0139371 + 0.999903i \(0.495564\pi\)
\(812\) 0 0
\(813\) −9.13319e6 −0.484614
\(814\) 0 0
\(815\) −6.72669e6 −0.354738
\(816\) 0 0
\(817\) −3.91836e6 −0.205376
\(818\) 0 0
\(819\) −2.89275e6 −0.150696
\(820\) 0 0
\(821\) −1.52943e7 −0.791902 −0.395951 0.918272i \(-0.629585\pi\)
−0.395951 + 0.918272i \(0.629585\pi\)
\(822\) 0 0
\(823\) 2.75392e7 1.41727 0.708635 0.705575i \(-0.249311\pi\)
0.708635 + 0.705575i \(0.249311\pi\)
\(824\) 0 0
\(825\) −1.31620e7 −0.673269
\(826\) 0 0
\(827\) −3.19965e7 −1.62682 −0.813409 0.581693i \(-0.802391\pi\)
−0.813409 + 0.581693i \(0.802391\pi\)
\(828\) 0 0
\(829\) −6.88245e6 −0.347822 −0.173911 0.984761i \(-0.555640\pi\)
−0.173911 + 0.984761i \(0.555640\pi\)
\(830\) 0 0
\(831\) −1.82635e6 −0.0917447
\(832\) 0 0
\(833\) 2.56782e6 0.128219
\(834\) 0 0
\(835\) −4.41513e6 −0.219143
\(836\) 0 0
\(837\) −629428. −0.0310551
\(838\) 0 0
\(839\) −1.74797e7 −0.857292 −0.428646 0.903472i \(-0.641009\pi\)
−0.428646 + 0.903472i \(0.641009\pi\)
\(840\) 0 0
\(841\) −1.83516e7 −0.894713
\(842\) 0 0
\(843\) 5.30585e6 0.257150
\(844\) 0 0
\(845\) 9.62809e6 0.463872
\(846\) 0 0
\(847\) 4.33288e7 2.07524
\(848\) 0 0
\(849\) −2.30221e7 −1.09617
\(850\) 0 0
\(851\) 8.99813e6 0.425920
\(852\) 0 0
\(853\) 1.12972e7 0.531615 0.265808 0.964026i \(-0.414361\pi\)
0.265808 + 0.964026i \(0.414361\pi\)
\(854\) 0 0
\(855\) −929677. −0.0434927
\(856\) 0 0
\(857\) −5.02156e6 −0.233553 −0.116777 0.993158i \(-0.537256\pi\)
−0.116777 + 0.993158i \(0.537256\pi\)
\(858\) 0 0
\(859\) 1.53818e7 0.711254 0.355627 0.934628i \(-0.384267\pi\)
0.355627 + 0.934628i \(0.384267\pi\)
\(860\) 0 0
\(861\) 9.17527e6 0.421804
\(862\) 0 0
\(863\) −2.34908e7 −1.07367 −0.536834 0.843688i \(-0.680380\pi\)
−0.536834 + 0.843688i \(0.680380\pi\)
\(864\) 0 0
\(865\) −5.07241e6 −0.230502
\(866\) 0 0
\(867\) 5.08813e6 0.229885
\(868\) 0 0
\(869\) 3.00408e7 1.34947
\(870\) 0 0
\(871\) 9.37436e6 0.418693
\(872\) 0 0
\(873\) 1.53934e6 0.0683593
\(874\) 0 0
\(875\) 2.27354e7 1.00388
\(876\) 0 0
\(877\) 1.64937e7 0.724132 0.362066 0.932152i \(-0.382071\pi\)
0.362066 + 0.932152i \(0.382071\pi\)
\(878\) 0 0
\(879\) 2.44408e7 1.06695
\(880\) 0 0
\(881\) −8.58613e6 −0.372699 −0.186349 0.982484i \(-0.559666\pi\)
−0.186349 + 0.982484i \(0.559666\pi\)
\(882\) 0 0
\(883\) −3.36967e7 −1.45441 −0.727203 0.686423i \(-0.759180\pi\)
−0.727203 + 0.686423i \(0.759180\pi\)
\(884\) 0 0
\(885\) 4.93103e6 0.211631
\(886\) 0 0
\(887\) 2.88644e6 0.123184 0.0615918 0.998101i \(-0.480382\pi\)
0.0615918 + 0.998101i \(0.480382\pi\)
\(888\) 0 0
\(889\) 2.33885e7 0.992540
\(890\) 0 0
\(891\) 4.53849e6 0.191521
\(892\) 0 0
\(893\) 4.46346e6 0.187302
\(894\) 0 0
\(895\) 2.60729e7 1.08801
\(896\) 0 0
\(897\) −6.69959e6 −0.278014
\(898\) 0 0
\(899\) −1.26882e6 −0.0523603
\(900\) 0 0
\(901\) 2.68028e7 1.09994
\(902\) 0 0
\(903\) −1.33334e7 −0.544153
\(904\) 0 0
\(905\) −4.60829e6 −0.187033
\(906\) 0 0
\(907\) −1.33506e6 −0.0538869 −0.0269434 0.999637i \(-0.508577\pi\)
−0.0269434 + 0.999637i \(0.508577\pi\)
\(908\) 0 0
\(909\) −2.99753e6 −0.120324
\(910\) 0 0
\(911\) 3.15965e7 1.26137 0.630685 0.776039i \(-0.282774\pi\)
0.630685 + 0.776039i \(0.282774\pi\)
\(912\) 0 0
\(913\) −1.28503e7 −0.510195
\(914\) 0 0
\(915\) −2.69644e6 −0.106472
\(916\) 0 0
\(917\) 1.26736e7 0.497709
\(918\) 0 0
\(919\) −3.64069e6 −0.142198 −0.0710992 0.997469i \(-0.522651\pi\)
−0.0710992 + 0.997469i \(0.522651\pi\)
\(920\) 0 0
\(921\) −7.66304e6 −0.297682
\(922\) 0 0
\(923\) 2.06615e7 0.798285
\(924\) 0 0
\(925\) −6.68669e6 −0.256955
\(926\) 0 0
\(927\) 1.07507e7 0.410901
\(928\) 0 0
\(929\) 1.50483e7 0.572068 0.286034 0.958219i \(-0.407663\pi\)
0.286034 + 0.958219i \(0.407663\pi\)
\(930\) 0 0
\(931\) 657913. 0.0248768
\(932\) 0 0
\(933\) 4.79829e6 0.180461
\(934\) 0 0
\(935\) −3.09873e7 −1.15919
\(936\) 0 0
\(937\) −1.49448e7 −0.556084 −0.278042 0.960569i \(-0.589685\pi\)
−0.278042 + 0.960569i \(0.589685\pi\)
\(938\) 0 0
\(939\) −988515. −0.0365864
\(940\) 0 0
\(941\) 187690. 0.00690984 0.00345492 0.999994i \(-0.498900\pi\)
0.00345492 + 0.999994i \(0.498900\pi\)
\(942\) 0 0
\(943\) 2.12499e7 0.778175
\(944\) 0 0
\(945\) −3.16350e6 −0.115236
\(946\) 0 0
\(947\) −5.36291e7 −1.94324 −0.971618 0.236557i \(-0.923981\pi\)
−0.971618 + 0.236557i \(0.923981\pi\)
\(948\) 0 0
\(949\) 5.68551e6 0.204929
\(950\) 0 0
\(951\) 2.49890e7 0.895980
\(952\) 0 0
\(953\) −3.59848e7 −1.28347 −0.641737 0.766925i \(-0.721786\pi\)
−0.641737 + 0.766925i \(0.721786\pi\)
\(954\) 0 0
\(955\) 1.91652e7 0.679994
\(956\) 0 0
\(957\) 9.14885e6 0.322914
\(958\) 0 0
\(959\) −1.32779e7 −0.466212
\(960\) 0 0
\(961\) −2.78837e7 −0.973961
\(962\) 0 0
\(963\) −1.02898e7 −0.357553
\(964\) 0 0
\(965\) −1.98895e7 −0.687552
\(966\) 0 0
\(967\) 1.31181e7 0.451132 0.225566 0.974228i \(-0.427577\pi\)
0.225566 + 0.974228i \(0.427577\pi\)
\(968\) 0 0
\(969\) 4.57775e6 0.156618
\(970\) 0 0
\(971\) −2.04465e7 −0.695940 −0.347970 0.937506i \(-0.613129\pi\)
−0.347970 + 0.937506i \(0.613129\pi\)
\(972\) 0 0
\(973\) 4.41130e7 1.49377
\(974\) 0 0
\(975\) 4.97860e6 0.167724
\(976\) 0 0
\(977\) 3.26765e7 1.09521 0.547607 0.836736i \(-0.315539\pi\)
0.547607 + 0.836736i \(0.315539\pi\)
\(978\) 0 0
\(979\) −1.92822e7 −0.642984
\(980\) 0 0
\(981\) 1.48722e7 0.493403
\(982\) 0 0
\(983\) −3.07073e7 −1.01358 −0.506789 0.862070i \(-0.669168\pi\)
−0.506789 + 0.862070i \(0.669168\pi\)
\(984\) 0 0
\(985\) 885255. 0.0290722
\(986\) 0 0
\(987\) 1.51882e7 0.496266
\(988\) 0 0
\(989\) −3.08800e7 −1.00389
\(990\) 0 0
\(991\) 2.86036e7 0.925203 0.462601 0.886566i \(-0.346916\pi\)
0.462601 + 0.886566i \(0.346916\pi\)
\(992\) 0 0
\(993\) 2.51303e7 0.808770
\(994\) 0 0
\(995\) −2.27614e7 −0.728855
\(996\) 0 0
\(997\) 3.62989e7 1.15653 0.578263 0.815850i \(-0.303731\pi\)
0.578263 + 0.815850i \(0.303731\pi\)
\(998\) 0 0
\(999\) 2.30568e6 0.0730947
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.6.a.s.1.1 4
4.3 odd 2 228.6.a.c.1.1 4
12.11 even 2 684.6.a.c.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.6.a.c.1.1 4 4.3 odd 2
684.6.a.c.1.4 4 12.11 even 2
912.6.a.s.1.1 4 1.1 even 1 trivial