Properties

Label 961.2.c.c.521.1
Level $961$
Weight $2$
Character 961.521
Analytic conductor $7.674$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(439,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.439");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 521.1
Root \(-0.309017 - 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 961.521
Dual form 961.2.c.c.439.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034 q^{2} +(0.618034 + 1.07047i) q^{3} -1.61803 q^{4} +(-0.500000 + 0.866025i) q^{5} +(-0.381966 - 0.661585i) q^{6} +(2.11803 + 3.66854i) q^{7} +2.23607 q^{8} +(0.736068 - 1.27491i) q^{9} +(0.309017 - 0.535233i) q^{10} +(1.00000 - 1.73205i) q^{11} +(-1.00000 - 1.73205i) q^{12} +(0.618034 - 1.07047i) q^{13} +(-1.30902 - 2.26728i) q^{14} -1.23607 q^{15} +1.85410 q^{16} +(2.61803 + 4.53457i) q^{17} +(-0.454915 + 0.787936i) q^{18} +(-1.11803 - 1.93649i) q^{19} +(0.809017 - 1.40126i) q^{20} +(-2.61803 + 4.53457i) q^{21} +(-0.618034 + 1.07047i) q^{22} +7.70820 q^{23} +(1.38197 + 2.39364i) q^{24} +(2.00000 + 3.46410i) q^{25} +(-0.381966 + 0.661585i) q^{26} +5.52786 q^{27} +(-3.42705 - 5.93583i) q^{28} -7.23607 q^{29} +0.763932 q^{30} -5.61803 q^{32} +2.47214 q^{33} +(-1.61803 - 2.80252i) q^{34} -4.23607 q^{35} +(-1.19098 + 2.06284i) q^{36} +(-1.00000 - 1.73205i) q^{37} +(0.690983 + 1.19682i) q^{38} +1.52786 q^{39} +(-1.11803 + 1.93649i) q^{40} +(-3.50000 + 6.06218i) q^{41} +(1.61803 - 2.80252i) q^{42} +(-1.61803 - 2.80252i) q^{43} +(-1.61803 + 2.80252i) q^{44} +(0.736068 + 1.27491i) q^{45} -4.76393 q^{46} -6.47214 q^{47} +(1.14590 + 1.98475i) q^{48} +(-5.47214 + 9.47802i) q^{49} +(-1.23607 - 2.14093i) q^{50} +(-3.23607 + 5.60503i) q^{51} +(-1.00000 + 1.73205i) q^{52} +(-0.763932 + 1.32317i) q^{53} -3.41641 q^{54} +(1.00000 + 1.73205i) q^{55} +(4.73607 + 8.20311i) q^{56} +(1.38197 - 2.39364i) q^{57} +4.47214 q^{58} +(1.11803 + 1.93649i) q^{59} +2.00000 q^{60} +14.1803 q^{61} +6.23607 q^{63} -0.236068 q^{64} +(0.618034 + 1.07047i) q^{65} -1.52786 q^{66} +(-4.00000 + 6.92820i) q^{67} +(-4.23607 - 7.33708i) q^{68} +(4.76393 + 8.25137i) q^{69} +2.61803 q^{70} +(-6.59017 + 11.4145i) q^{71} +(1.64590 - 2.85078i) q^{72} +(-0.236068 + 0.408882i) q^{73} +(0.618034 + 1.07047i) q^{74} +(-2.47214 + 4.28187i) q^{75} +(1.80902 + 3.13331i) q^{76} +8.47214 q^{77} -0.944272 q^{78} +(0.854102 + 1.47935i) q^{79} +(-0.927051 + 1.60570i) q^{80} +(1.20820 + 2.09267i) q^{81} +(2.16312 - 3.74663i) q^{82} +(1.47214 - 2.54981i) q^{83} +(4.23607 - 7.33708i) q^{84} -5.23607 q^{85} +(1.00000 + 1.73205i) q^{86} +(-4.47214 - 7.74597i) q^{87} +(2.23607 - 3.87298i) q^{88} +1.70820 q^{89} +(-0.454915 - 0.787936i) q^{90} +5.23607 q^{91} -12.4721 q^{92} +4.00000 q^{94} +2.23607 q^{95} +(-3.47214 - 6.01392i) q^{96} +1.94427 q^{97} +(3.38197 - 5.85774i) q^{98} +(-1.47214 - 2.54981i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{3} - 2 q^{4} - 2 q^{5} - 6 q^{6} + 4 q^{7} - 6 q^{9} - q^{10} + 4 q^{11} - 4 q^{12} - 2 q^{13} - 3 q^{14} + 4 q^{15} - 6 q^{16} + 6 q^{17} - 13 q^{18} + q^{20} - 6 q^{21} + 2 q^{22}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 −0.437016 −0.218508 0.975835i \(-0.570119\pi\)
−0.218508 + 0.975835i \(0.570119\pi\)
\(3\) 0.618034 + 1.07047i 0.356822 + 0.618034i 0.987428 0.158069i \(-0.0505269\pi\)
−0.630606 + 0.776103i \(0.717194\pi\)
\(4\) −1.61803 −0.809017
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) −0.381966 0.661585i −0.155937 0.270091i
\(7\) 2.11803 + 3.66854i 0.800542 + 1.38658i 0.919260 + 0.393651i \(0.128788\pi\)
−0.118718 + 0.992928i \(0.537879\pi\)
\(8\) 2.23607 0.790569
\(9\) 0.736068 1.27491i 0.245356 0.424969i
\(10\) 0.309017 0.535233i 0.0977198 0.169256i
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) −1.00000 1.73205i −0.288675 0.500000i
\(13\) 0.618034 1.07047i 0.171412 0.296894i −0.767502 0.641047i \(-0.778500\pi\)
0.938914 + 0.344153i \(0.111834\pi\)
\(14\) −1.30902 2.26728i −0.349850 0.605957i
\(15\) −1.23607 −0.319151
\(16\) 1.85410 0.463525
\(17\) 2.61803 + 4.53457i 0.634967 + 1.09979i 0.986522 + 0.163627i \(0.0523194\pi\)
−0.351556 + 0.936167i \(0.614347\pi\)
\(18\) −0.454915 + 0.787936i −0.107225 + 0.185718i
\(19\) −1.11803 1.93649i −0.256495 0.444262i 0.708806 0.705404i \(-0.249234\pi\)
−0.965300 + 0.261142i \(0.915901\pi\)
\(20\) 0.809017 1.40126i 0.180902 0.313331i
\(21\) −2.61803 + 4.53457i −0.571302 + 0.989524i
\(22\) −0.618034 + 1.07047i −0.131765 + 0.228224i
\(23\) 7.70820 1.60727 0.803636 0.595121i \(-0.202896\pi\)
0.803636 + 0.595121i \(0.202896\pi\)
\(24\) 1.38197 + 2.39364i 0.282093 + 0.488599i
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) −0.381966 + 0.661585i −0.0749097 + 0.129747i
\(27\) 5.52786 1.06384
\(28\) −3.42705 5.93583i −0.647652 1.12177i
\(29\) −7.23607 −1.34370 −0.671852 0.740685i \(-0.734501\pi\)
−0.671852 + 0.740685i \(0.734501\pi\)
\(30\) 0.763932 0.139474
\(31\) 0 0
\(32\) −5.61803 −0.993137
\(33\) 2.47214 0.430344
\(34\) −1.61803 2.80252i −0.277491 0.480628i
\(35\) −4.23607 −0.716026
\(36\) −1.19098 + 2.06284i −0.198497 + 0.343807i
\(37\) −1.00000 1.73205i −0.164399 0.284747i 0.772043 0.635571i \(-0.219235\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) 0.690983 + 1.19682i 0.112092 + 0.194149i
\(39\) 1.52786 0.244654
\(40\) −1.11803 + 1.93649i −0.176777 + 0.306186i
\(41\) −3.50000 + 6.06218i −0.546608 + 0.946753i 0.451896 + 0.892071i \(0.350748\pi\)
−0.998504 + 0.0546823i \(0.982585\pi\)
\(42\) 1.61803 2.80252i 0.249668 0.432438i
\(43\) −1.61803 2.80252i −0.246748 0.427380i 0.715874 0.698230i \(-0.246029\pi\)
−0.962622 + 0.270850i \(0.912695\pi\)
\(44\) −1.61803 + 2.80252i −0.243928 + 0.422495i
\(45\) 0.736068 + 1.27491i 0.109727 + 0.190052i
\(46\) −4.76393 −0.702403
\(47\) −6.47214 −0.944058 −0.472029 0.881583i \(-0.656478\pi\)
−0.472029 + 0.881583i \(0.656478\pi\)
\(48\) 1.14590 + 1.98475i 0.165396 + 0.286475i
\(49\) −5.47214 + 9.47802i −0.781734 + 1.35400i
\(50\) −1.23607 2.14093i −0.174806 0.302774i
\(51\) −3.23607 + 5.60503i −0.453140 + 0.784862i
\(52\) −1.00000 + 1.73205i −0.138675 + 0.240192i
\(53\) −0.763932 + 1.32317i −0.104934 + 0.181751i −0.913711 0.406364i \(-0.866797\pi\)
0.808777 + 0.588115i \(0.200130\pi\)
\(54\) −3.41641 −0.464914
\(55\) 1.00000 + 1.73205i 0.134840 + 0.233550i
\(56\) 4.73607 + 8.20311i 0.632884 + 1.09619i
\(57\) 1.38197 2.39364i 0.183046 0.317045i
\(58\) 4.47214 0.587220
\(59\) 1.11803 + 1.93649i 0.145556 + 0.252110i 0.929580 0.368620i \(-0.120170\pi\)
−0.784024 + 0.620730i \(0.786836\pi\)
\(60\) 2.00000 0.258199
\(61\) 14.1803 1.81561 0.907803 0.419396i \(-0.137758\pi\)
0.907803 + 0.419396i \(0.137758\pi\)
\(62\) 0 0
\(63\) 6.23607 0.785671
\(64\) −0.236068 −0.0295085
\(65\) 0.618034 + 1.07047i 0.0766577 + 0.132775i
\(66\) −1.52786 −0.188067
\(67\) −4.00000 + 6.92820i −0.488678 + 0.846415i −0.999915 0.0130248i \(-0.995854\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(68\) −4.23607 7.33708i −0.513699 0.889752i
\(69\) 4.76393 + 8.25137i 0.573510 + 0.993348i
\(70\) 2.61803 0.312915
\(71\) −6.59017 + 11.4145i −0.782109 + 1.35465i 0.148602 + 0.988897i \(0.452523\pi\)
−0.930711 + 0.365756i \(0.880811\pi\)
\(72\) 1.64590 2.85078i 0.193971 0.335968i
\(73\) −0.236068 + 0.408882i −0.0276297 + 0.0478560i −0.879510 0.475881i \(-0.842129\pi\)
0.851880 + 0.523737i \(0.175463\pi\)
\(74\) 0.618034 + 1.07047i 0.0718450 + 0.124439i
\(75\) −2.47214 + 4.28187i −0.285458 + 0.494427i
\(76\) 1.80902 + 3.13331i 0.207508 + 0.359415i
\(77\) 8.47214 0.965489
\(78\) −0.944272 −0.106918
\(79\) 0.854102 + 1.47935i 0.0960940 + 0.166440i 0.910065 0.414466i \(-0.136032\pi\)
−0.813971 + 0.580906i \(0.802698\pi\)
\(80\) −0.927051 + 1.60570i −0.103647 + 0.179523i
\(81\) 1.20820 + 2.09267i 0.134245 + 0.232519i
\(82\) 2.16312 3.74663i 0.238877 0.413746i
\(83\) 1.47214 2.54981i 0.161588 0.279878i −0.773850 0.633368i \(-0.781672\pi\)
0.935438 + 0.353490i \(0.115005\pi\)
\(84\) 4.23607 7.33708i 0.462193 0.800542i
\(85\) −5.23607 −0.567931
\(86\) 1.00000 + 1.73205i 0.107833 + 0.186772i
\(87\) −4.47214 7.74597i −0.479463 0.830455i
\(88\) 2.23607 3.87298i 0.238366 0.412861i
\(89\) 1.70820 0.181069 0.0905346 0.995893i \(-0.471142\pi\)
0.0905346 + 0.995893i \(0.471142\pi\)
\(90\) −0.454915 0.787936i −0.0479523 0.0830557i
\(91\) 5.23607 0.548889
\(92\) −12.4721 −1.30031
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 2.23607 0.229416
\(96\) −3.47214 6.01392i −0.354373 0.613793i
\(97\) 1.94427 0.197411 0.0987055 0.995117i \(-0.468530\pi\)
0.0987055 + 0.995117i \(0.468530\pi\)
\(98\) 3.38197 5.85774i 0.341630 0.591721i
\(99\) −1.47214 2.54981i −0.147955 0.256266i
\(100\) −3.23607 5.60503i −0.323607 0.560503i
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 2.00000 3.46410i 0.198030 0.342997i
\(103\) −0.881966 + 1.52761i −0.0869027 + 0.150520i −0.906200 0.422848i \(-0.861030\pi\)
0.819298 + 0.573368i \(0.194364\pi\)
\(104\) 1.38197 2.39364i 0.135513 0.234715i
\(105\) −2.61803 4.53457i −0.255494 0.442529i
\(106\) 0.472136 0.817763i 0.0458579 0.0794282i
\(107\) −5.11803 8.86469i −0.494779 0.856982i 0.505203 0.863001i \(-0.331418\pi\)
−0.999982 + 0.00601821i \(0.998084\pi\)
\(108\) −8.94427 −0.860663
\(109\) 3.94427 0.377793 0.188896 0.981997i \(-0.439509\pi\)
0.188896 + 0.981997i \(0.439509\pi\)
\(110\) −0.618034 1.07047i −0.0589272 0.102065i
\(111\) 1.23607 2.14093i 0.117322 0.203208i
\(112\) 3.92705 + 6.80185i 0.371071 + 0.642715i
\(113\) 2.73607 4.73901i 0.257388 0.445808i −0.708154 0.706058i \(-0.750472\pi\)
0.965541 + 0.260250i \(0.0838049\pi\)
\(114\) −0.854102 + 1.47935i −0.0799940 + 0.138554i
\(115\) −3.85410 + 6.67550i −0.359397 + 0.622494i
\(116\) 11.7082 1.08708
\(117\) −0.909830 1.57587i −0.0841138 0.145689i
\(118\) −0.690983 1.19682i −0.0636101 0.110176i
\(119\) −11.0902 + 19.2087i −1.01663 + 1.76086i
\(120\) −2.76393 −0.252311
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) −8.76393 −0.793449
\(123\) −8.65248 −0.780167
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) −3.85410 −0.343351
\(127\) 1.76393 + 3.05522i 0.156524 + 0.271107i 0.933613 0.358284i \(-0.116638\pi\)
−0.777089 + 0.629391i \(0.783305\pi\)
\(128\) 11.3820 1.00603
\(129\) 2.00000 3.46410i 0.176090 0.304997i
\(130\) −0.381966 0.661585i −0.0335006 0.0580248i
\(131\) −6.00000 10.3923i −0.524222 0.907980i −0.999602 0.0281993i \(-0.991023\pi\)
0.475380 0.879781i \(-0.342311\pi\)
\(132\) −4.00000 −0.348155
\(133\) 4.73607 8.20311i 0.410669 0.711300i
\(134\) 2.47214 4.28187i 0.213560 0.369897i
\(135\) −2.76393 + 4.78727i −0.237881 + 0.412023i
\(136\) 5.85410 + 10.1396i 0.501985 + 0.869464i
\(137\) 9.85410 17.0678i 0.841893 1.45820i −0.0463998 0.998923i \(-0.514775\pi\)
0.888293 0.459278i \(-0.151892\pi\)
\(138\) −2.94427 5.09963i −0.250633 0.434109i
\(139\) 13.4164 1.13796 0.568982 0.822350i \(-0.307337\pi\)
0.568982 + 0.822350i \(0.307337\pi\)
\(140\) 6.85410 0.579277
\(141\) −4.00000 6.92820i −0.336861 0.583460i
\(142\) 4.07295 7.05455i 0.341794 0.592005i
\(143\) −1.23607 2.14093i −0.103365 0.179034i
\(144\) 1.36475 2.36381i 0.113729 0.196984i
\(145\) 3.61803 6.26662i 0.300461 0.520414i
\(146\) 0.145898 0.252703i 0.0120746 0.0209138i
\(147\) −13.5279 −1.11576
\(148\) 1.61803 + 2.80252i 0.133002 + 0.230365i
\(149\) −5.00000 8.66025i −0.409616 0.709476i 0.585231 0.810867i \(-0.301004\pi\)
−0.994847 + 0.101391i \(0.967671\pi\)
\(150\) 1.52786 2.64634i 0.124750 0.216073i
\(151\) −8.18034 −0.665707 −0.332853 0.942979i \(-0.608011\pi\)
−0.332853 + 0.942979i \(0.608011\pi\)
\(152\) −2.50000 4.33013i −0.202777 0.351220i
\(153\) 7.70820 0.623171
\(154\) −5.23607 −0.421934
\(155\) 0 0
\(156\) −2.47214 −0.197929
\(157\) −14.8885 −1.18824 −0.594118 0.804378i \(-0.702499\pi\)
−0.594118 + 0.804378i \(0.702499\pi\)
\(158\) −0.527864 0.914287i −0.0419946 0.0727368i
\(159\) −1.88854 −0.149771
\(160\) 2.80902 4.86536i 0.222072 0.384640i
\(161\) 16.3262 + 28.2779i 1.28669 + 2.22861i
\(162\) −0.746711 1.29334i −0.0586672 0.101615i
\(163\) −2.70820 −0.212123 −0.106061 0.994360i \(-0.533824\pi\)
−0.106061 + 0.994360i \(0.533824\pi\)
\(164\) 5.66312 9.80881i 0.442215 0.765939i
\(165\) −1.23607 + 2.14093i −0.0962278 + 0.166671i
\(166\) −0.909830 + 1.57587i −0.0706165 + 0.122311i
\(167\) 1.23607 + 2.14093i 0.0956498 + 0.165670i 0.909880 0.414872i \(-0.136174\pi\)
−0.814230 + 0.580543i \(0.802840\pi\)
\(168\) −5.85410 + 10.1396i −0.451654 + 0.782287i
\(169\) 5.73607 + 9.93516i 0.441236 + 0.764243i
\(170\) 3.23607 0.248195
\(171\) −3.29180 −0.251730
\(172\) 2.61803 + 4.53457i 0.199623 + 0.345758i
\(173\) 7.47214 12.9421i 0.568096 0.983971i −0.428658 0.903467i \(-0.641014\pi\)
0.996754 0.0805044i \(-0.0256531\pi\)
\(174\) 2.76393 + 4.78727i 0.209533 + 0.362922i
\(175\) −8.47214 + 14.6742i −0.640433 + 1.10926i
\(176\) 1.85410 3.21140i 0.139758 0.242068i
\(177\) −1.38197 + 2.39364i −0.103875 + 0.179917i
\(178\) −1.05573 −0.0791302
\(179\) −5.85410 10.1396i −0.437556 0.757869i 0.559944 0.828530i \(-0.310823\pi\)
−0.997500 + 0.0706608i \(0.977489\pi\)
\(180\) −1.19098 2.06284i −0.0887706 0.153755i
\(181\) 9.09017 15.7446i 0.675667 1.17029i −0.300606 0.953748i \(-0.597189\pi\)
0.976273 0.216541i \(-0.0694776\pi\)
\(182\) −3.23607 −0.239873
\(183\) 8.76393 + 15.1796i 0.647848 + 1.12211i
\(184\) 17.2361 1.27066
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 10.4721 0.765798
\(188\) 10.4721 0.763759
\(189\) 11.7082 + 20.2792i 0.851647 + 1.47510i
\(190\) −1.38197 −0.100258
\(191\) −1.59017 + 2.75426i −0.115061 + 0.199291i −0.917804 0.397034i \(-0.870040\pi\)
0.802743 + 0.596325i \(0.203373\pi\)
\(192\) −0.145898 0.252703i −0.0105293 0.0182373i
\(193\) 2.73607 + 4.73901i 0.196946 + 0.341121i 0.947537 0.319646i \(-0.103564\pi\)
−0.750590 + 0.660768i \(0.770231\pi\)
\(194\) −1.20163 −0.0862717
\(195\) −0.763932 + 1.32317i −0.0547063 + 0.0947541i
\(196\) 8.85410 15.3358i 0.632436 1.09541i
\(197\) −7.70820 + 13.3510i −0.549187 + 0.951219i 0.449144 + 0.893460i \(0.351729\pi\)
−0.998331 + 0.0577599i \(0.981604\pi\)
\(198\) 0.909830 + 1.57587i 0.0646588 + 0.111992i
\(199\) −0.527864 + 0.914287i −0.0374193 + 0.0648121i −0.884129 0.467244i \(-0.845247\pi\)
0.846709 + 0.532056i \(0.178580\pi\)
\(200\) 4.47214 + 7.74597i 0.316228 + 0.547723i
\(201\) −9.88854 −0.697484
\(202\) 1.85410 0.130454
\(203\) −15.3262 26.5458i −1.07569 1.86315i
\(204\) 5.23607 9.06914i 0.366598 0.634967i
\(205\) −3.50000 6.06218i −0.244451 0.423401i
\(206\) 0.545085 0.944115i 0.0379779 0.0657796i
\(207\) 5.67376 9.82724i 0.394354 0.683041i
\(208\) 1.14590 1.98475i 0.0794537 0.137618i
\(209\) −4.47214 −0.309344
\(210\) 1.61803 + 2.80252i 0.111655 + 0.193392i
\(211\) −0.409830 0.709846i −0.0282139 0.0488678i 0.851574 0.524235i \(-0.175649\pi\)
−0.879788 + 0.475367i \(0.842315\pi\)
\(212\) 1.23607 2.14093i 0.0848935 0.147040i
\(213\) −16.2918 −1.11630
\(214\) 3.16312 + 5.47868i 0.216226 + 0.374515i
\(215\) 3.23607 0.220698
\(216\) 12.3607 0.841038
\(217\) 0 0
\(218\) −2.43769 −0.165101
\(219\) −0.583592 −0.0394355
\(220\) −1.61803 2.80252i −0.109088 0.188946i
\(221\) 6.47214 0.435363
\(222\) −0.763932 + 1.32317i −0.0512718 + 0.0888053i
\(223\) 2.00000 + 3.46410i 0.133930 + 0.231973i 0.925188 0.379509i \(-0.123907\pi\)
−0.791258 + 0.611482i \(0.790574\pi\)
\(224\) −11.8992 20.6100i −0.795048 1.37706i
\(225\) 5.88854 0.392570
\(226\) −1.69098 + 2.92887i −0.112483 + 0.194825i
\(227\) −1.23607 + 2.14093i −0.0820407 + 0.142099i −0.904126 0.427265i \(-0.859477\pi\)
0.822086 + 0.569364i \(0.192810\pi\)
\(228\) −2.23607 + 3.87298i −0.148087 + 0.256495i
\(229\) 6.70820 + 11.6190i 0.443291 + 0.767802i 0.997931 0.0642881i \(-0.0204776\pi\)
−0.554641 + 0.832090i \(0.687144\pi\)
\(230\) 2.38197 4.12569i 0.157062 0.272040i
\(231\) 5.23607 + 9.06914i 0.344508 + 0.596705i
\(232\) −16.1803 −1.06229
\(233\) 0.0557281 0.00365087 0.00182543 0.999998i \(-0.499419\pi\)
0.00182543 + 0.999998i \(0.499419\pi\)
\(234\) 0.562306 + 0.973942i 0.0367591 + 0.0636686i
\(235\) 3.23607 5.60503i 0.211098 0.365632i
\(236\) −1.80902 3.13331i −0.117757 0.203961i
\(237\) −1.05573 + 1.82857i −0.0685769 + 0.118779i
\(238\) 6.85410 11.8717i 0.444285 0.769525i
\(239\) 0.854102 1.47935i 0.0552473 0.0956911i −0.837079 0.547082i \(-0.815739\pi\)
0.892326 + 0.451391i \(0.149072\pi\)
\(240\) −2.29180 −0.147935
\(241\) −15.1803 26.2931i −0.977852 1.69369i −0.670184 0.742195i \(-0.733785\pi\)
−0.307667 0.951494i \(-0.599548\pi\)
\(242\) −2.16312 3.74663i −0.139051 0.240843i
\(243\) 6.79837 11.7751i 0.436116 0.755375i
\(244\) −22.9443 −1.46886
\(245\) −5.47214 9.47802i −0.349602 0.605528i
\(246\) 5.34752 0.340946
\(247\) −2.76393 −0.175865
\(248\) 0 0
\(249\) 3.63932 0.230633
\(250\) 5.56231 0.351791
\(251\) −12.0902 20.9408i −0.763125 1.32177i −0.941232 0.337760i \(-0.890331\pi\)
0.178108 0.984011i \(-0.443002\pi\)
\(252\) −10.0902 −0.635621
\(253\) 7.70820 13.3510i 0.484611 0.839370i
\(254\) −1.09017 1.88823i −0.0684033 0.118478i
\(255\) −3.23607 5.60503i −0.202650 0.351001i
\(256\) −6.56231 −0.410144
\(257\) 7.97214 13.8081i 0.497288 0.861328i −0.502707 0.864457i \(-0.667663\pi\)
0.999995 + 0.00312852i \(0.000995840\pi\)
\(258\) −1.23607 + 2.14093i −0.0769542 + 0.133289i
\(259\) 4.23607 7.33708i 0.263216 0.455904i
\(260\) −1.00000 1.73205i −0.0620174 0.107417i
\(261\) −5.32624 + 9.22531i −0.329686 + 0.571033i
\(262\) 3.70820 + 6.42280i 0.229094 + 0.396802i
\(263\) 18.7639 1.15703 0.578517 0.815670i \(-0.303632\pi\)
0.578517 + 0.815670i \(0.303632\pi\)
\(264\) 5.52786 0.340217
\(265\) −0.763932 1.32317i −0.0469280 0.0812816i
\(266\) −2.92705 + 5.06980i −0.179469 + 0.310849i
\(267\) 1.05573 + 1.82857i 0.0646095 + 0.111907i
\(268\) 6.47214 11.2101i 0.395349 0.684764i
\(269\) −14.4721 + 25.0665i −0.882382 + 1.52833i −0.0336962 + 0.999432i \(0.510728\pi\)
−0.848686 + 0.528898i \(0.822605\pi\)
\(270\) 1.70820 2.95870i 0.103958 0.180061i
\(271\) −8.18034 −0.496920 −0.248460 0.968642i \(-0.579924\pi\)
−0.248460 + 0.968642i \(0.579924\pi\)
\(272\) 4.85410 + 8.40755i 0.294323 + 0.509783i
\(273\) 3.23607 + 5.60503i 0.195856 + 0.339232i
\(274\) −6.09017 + 10.5485i −0.367921 + 0.637257i
\(275\) 8.00000 0.482418
\(276\) −7.70820 13.3510i −0.463979 0.803636i
\(277\) −18.6525 −1.12072 −0.560359 0.828250i \(-0.689337\pi\)
−0.560359 + 0.828250i \(0.689337\pi\)
\(278\) −8.29180 −0.497309
\(279\) 0 0
\(280\) −9.47214 −0.566068
\(281\) 17.0000 1.01413 0.507067 0.861906i \(-0.330729\pi\)
0.507067 + 0.861906i \(0.330729\pi\)
\(282\) 2.47214 + 4.28187i 0.147214 + 0.254981i
\(283\) 21.8885 1.30114 0.650569 0.759447i \(-0.274530\pi\)
0.650569 + 0.759447i \(0.274530\pi\)
\(284\) 10.6631 18.4691i 0.632740 1.09594i
\(285\) 1.38197 + 2.39364i 0.0818606 + 0.141787i
\(286\) 0.763932 + 1.32317i 0.0451722 + 0.0782406i
\(287\) −29.6525 −1.75033
\(288\) −4.13525 + 7.16247i −0.243672 + 0.422053i
\(289\) −5.20820 + 9.02087i −0.306365 + 0.530640i
\(290\) −2.23607 + 3.87298i −0.131306 + 0.227429i
\(291\) 1.20163 + 2.08128i 0.0704406 + 0.122007i
\(292\) 0.381966 0.661585i 0.0223529 0.0387163i
\(293\) −4.23607 7.33708i −0.247474 0.428637i 0.715350 0.698766i \(-0.246267\pi\)
−0.962824 + 0.270129i \(0.912934\pi\)
\(294\) 8.36068 0.487605
\(295\) −2.23607 −0.130189
\(296\) −2.23607 3.87298i −0.129969 0.225113i
\(297\) 5.52786 9.57454i 0.320759 0.555571i
\(298\) 3.09017 + 5.35233i 0.179009 + 0.310052i
\(299\) 4.76393 8.25137i 0.275505 0.477189i
\(300\) 4.00000 6.92820i 0.230940 0.400000i
\(301\) 6.85410 11.8717i 0.395064 0.684271i
\(302\) 5.05573 0.290924
\(303\) −1.85410 3.21140i −0.106515 0.184490i
\(304\) −2.07295 3.59045i −0.118892 0.205927i
\(305\) −7.09017 + 12.2805i −0.405982 + 0.703181i
\(306\) −4.76393 −0.272336
\(307\) 7.64590 + 13.2431i 0.436374 + 0.755823i 0.997407 0.0719712i \(-0.0229290\pi\)
−0.561032 + 0.827794i \(0.689596\pi\)
\(308\) −13.7082 −0.781097
\(309\) −2.18034 −0.124035
\(310\) 0 0
\(311\) −6.81966 −0.386707 −0.193354 0.981129i \(-0.561936\pi\)
−0.193354 + 0.981129i \(0.561936\pi\)
\(312\) 3.41641 0.193416
\(313\) 10.6180 + 18.3910i 0.600167 + 1.03952i 0.992795 + 0.119822i \(0.0382325\pi\)
−0.392629 + 0.919697i \(0.628434\pi\)
\(314\) 9.20163 0.519278
\(315\) −3.11803 + 5.40059i −0.175681 + 0.304289i
\(316\) −1.38197 2.39364i −0.0777417 0.134653i
\(317\) −10.9721 19.0043i −0.616257 1.06739i −0.990163 0.139921i \(-0.955315\pi\)
0.373906 0.927467i \(-0.378018\pi\)
\(318\) 1.16718 0.0654524
\(319\) −7.23607 + 12.5332i −0.405142 + 0.701727i
\(320\) 0.118034 0.204441i 0.00659830 0.0114286i
\(321\) 6.32624 10.9574i 0.353096 0.611581i
\(322\) −10.0902 17.4767i −0.562303 0.973938i
\(323\) 5.85410 10.1396i 0.325731 0.564183i
\(324\) −1.95492 3.38601i −0.108606 0.188112i
\(325\) 4.94427 0.274259
\(326\) 1.67376 0.0927011
\(327\) 2.43769 + 4.22221i 0.134805 + 0.233489i
\(328\) −7.82624 + 13.5554i −0.432132 + 0.748474i
\(329\) −13.7082 23.7433i −0.755758 1.30901i
\(330\) 0.763932 1.32317i 0.0420531 0.0728381i
\(331\) 1.00000 1.73205i 0.0549650 0.0952021i −0.837234 0.546845i \(-0.815829\pi\)
0.892199 + 0.451643i \(0.149162\pi\)
\(332\) −2.38197 + 4.12569i −0.130727 + 0.226426i
\(333\) −2.94427 −0.161345
\(334\) −0.763932 1.32317i −0.0418005 0.0724006i
\(335\) −4.00000 6.92820i −0.218543 0.378528i
\(336\) −4.85410 + 8.40755i −0.264813 + 0.458670i
\(337\) 19.2361 1.04786 0.523928 0.851763i \(-0.324466\pi\)
0.523928 + 0.851763i \(0.324466\pi\)
\(338\) −3.54508 6.14027i −0.192827 0.333987i
\(339\) 6.76393 0.367366
\(340\) 8.47214 0.459466
\(341\) 0 0
\(342\) 2.03444 0.110010
\(343\) −16.7082 −0.902158
\(344\) −3.61803 6.26662i −0.195071 0.337873i
\(345\) −9.52786 −0.512963
\(346\) −4.61803 + 7.99867i −0.248267 + 0.430011i
\(347\) 0.909830 + 1.57587i 0.0488422 + 0.0845972i 0.889413 0.457105i \(-0.151114\pi\)
−0.840571 + 0.541702i \(0.817780\pi\)
\(348\) 7.23607 + 12.5332i 0.387894 + 0.671852i
\(349\) 27.8885 1.49284 0.746420 0.665475i \(-0.231771\pi\)
0.746420 + 0.665475i \(0.231771\pi\)
\(350\) 5.23607 9.06914i 0.279880 0.484766i
\(351\) 3.41641 5.91739i 0.182354 0.315847i
\(352\) −5.61803 + 9.73072i −0.299442 + 0.518649i
\(353\) −9.70820 16.8151i −0.516716 0.894978i −0.999812 0.0194102i \(-0.993821\pi\)
0.483096 0.875567i \(-0.339512\pi\)
\(354\) 0.854102 1.47935i 0.0453950 0.0786265i
\(355\) −6.59017 11.4145i −0.349770 0.605819i
\(356\) −2.76393 −0.146488
\(357\) −27.4164 −1.45103
\(358\) 3.61803 + 6.26662i 0.191219 + 0.331201i
\(359\) −8.88197 + 15.3840i −0.468772 + 0.811937i −0.999363 0.0356909i \(-0.988637\pi\)
0.530591 + 0.847628i \(0.321970\pi\)
\(360\) 1.64590 + 2.85078i 0.0867464 + 0.150249i
\(361\) 7.00000 12.1244i 0.368421 0.638124i
\(362\) −5.61803 + 9.73072i −0.295277 + 0.511435i
\(363\) −4.32624 + 7.49326i −0.227069 + 0.393294i
\(364\) −8.47214 −0.444061
\(365\) −0.236068 0.408882i −0.0123564 0.0214018i
\(366\) −5.41641 9.38149i −0.283120 0.490379i
\(367\) 9.00000 15.5885i 0.469796 0.813711i −0.529607 0.848243i \(-0.677661\pi\)
0.999404 + 0.0345320i \(0.0109941\pi\)
\(368\) 14.2918 0.745011
\(369\) 5.15248 + 8.92435i 0.268227 + 0.464583i
\(370\) −1.23607 −0.0642601
\(371\) −6.47214 −0.336017
\(372\) 0 0
\(373\) 19.0000 0.983783 0.491891 0.870657i \(-0.336306\pi\)
0.491891 + 0.870657i \(0.336306\pi\)
\(374\) −6.47214 −0.334666
\(375\) −5.56231 9.63420i −0.287236 0.497508i
\(376\) −14.4721 −0.746343
\(377\) −4.47214 + 7.74597i −0.230327 + 0.398938i
\(378\) −7.23607 12.5332i −0.372183 0.644640i
\(379\) 18.9443 + 32.8124i 0.973102 + 1.68546i 0.686062 + 0.727543i \(0.259338\pi\)
0.287040 + 0.957919i \(0.407329\pi\)
\(380\) −3.61803 −0.185601
\(381\) −2.18034 + 3.77646i −0.111702 + 0.193474i
\(382\) 0.982779 1.70222i 0.0502834 0.0870933i
\(383\) 5.94427 10.2958i 0.303738 0.526090i −0.673241 0.739423i \(-0.735099\pi\)
0.976980 + 0.213333i \(0.0684319\pi\)
\(384\) 7.03444 + 12.1840i 0.358975 + 0.621763i
\(385\) −4.23607 + 7.33708i −0.215890 + 0.373932i
\(386\) −1.69098 2.92887i −0.0860688 0.149075i
\(387\) −4.76393 −0.242164
\(388\) −3.14590 −0.159709
\(389\) 8.94427 + 15.4919i 0.453493 + 0.785472i 0.998600 0.0528939i \(-0.0168445\pi\)
−0.545108 + 0.838366i \(0.683511\pi\)
\(390\) 0.472136 0.817763i 0.0239075 0.0414091i
\(391\) 20.1803 + 34.9534i 1.02056 + 1.76767i
\(392\) −12.2361 + 21.1935i −0.618015 + 1.07043i
\(393\) 7.41641 12.8456i 0.374108 0.647975i
\(394\) 4.76393 8.25137i 0.240003 0.415698i
\(395\) −1.70820 −0.0859491
\(396\) 2.38197 + 4.12569i 0.119698 + 0.207324i
\(397\) 3.50000 + 6.06218i 0.175660 + 0.304252i 0.940389 0.340099i \(-0.110461\pi\)
−0.764730 + 0.644351i \(0.777127\pi\)
\(398\) 0.326238 0.565061i 0.0163528 0.0283239i
\(399\) 11.7082 0.586143
\(400\) 3.70820 + 6.42280i 0.185410 + 0.321140i
\(401\) −15.8197 −0.789996 −0.394998 0.918682i \(-0.629255\pi\)
−0.394998 + 0.918682i \(0.629255\pi\)
\(402\) 6.11146 0.304812
\(403\) 0 0
\(404\) 4.85410 0.241501
\(405\) −2.41641 −0.120072
\(406\) 9.47214 + 16.4062i 0.470094 + 0.814227i
\(407\) −4.00000 −0.198273
\(408\) −7.23607 + 12.5332i −0.358239 + 0.620488i
\(409\) −13.0902 22.6728i −0.647267 1.12110i −0.983773 0.179418i \(-0.942578\pi\)
0.336506 0.941681i \(-0.390755\pi\)
\(410\) 2.16312 + 3.74663i 0.106829 + 0.185033i
\(411\) 24.3607 1.20162
\(412\) 1.42705 2.47172i 0.0703058 0.121773i
\(413\) −4.73607 + 8.20311i −0.233047 + 0.403649i
\(414\) −3.50658 + 6.07357i −0.172339 + 0.298500i
\(415\) 1.47214 + 2.54981i 0.0722643 + 0.125165i
\(416\) −3.47214 + 6.01392i −0.170235 + 0.294856i
\(417\) 8.29180 + 14.3618i 0.406051 + 0.703301i
\(418\) 2.76393 0.135188
\(419\) 30.1246 1.47168 0.735842 0.677153i \(-0.236787\pi\)
0.735842 + 0.677153i \(0.236787\pi\)
\(420\) 4.23607 + 7.33708i 0.206699 + 0.358013i
\(421\) 7.68034 13.3027i 0.374317 0.648336i −0.615908 0.787818i \(-0.711211\pi\)
0.990225 + 0.139483i \(0.0445439\pi\)
\(422\) 0.253289 + 0.438709i 0.0123299 + 0.0213560i
\(423\) −4.76393 + 8.25137i −0.231630 + 0.401195i
\(424\) −1.70820 + 2.95870i −0.0829577 + 0.143687i
\(425\) −10.4721 + 18.1383i −0.507973 + 0.879835i
\(426\) 10.0689 0.487839
\(427\) 30.0344 + 52.0212i 1.45347 + 2.51748i
\(428\) 8.28115 + 14.3434i 0.400285 + 0.693313i
\(429\) 1.52786 2.64634i 0.0737660 0.127766i
\(430\) −2.00000 −0.0964486
\(431\) −6.00000 10.3923i −0.289010 0.500580i 0.684564 0.728953i \(-0.259993\pi\)
−0.973574 + 0.228373i \(0.926659\pi\)
\(432\) 10.2492 0.493116
\(433\) 12.1803 0.585350 0.292675 0.956212i \(-0.405455\pi\)
0.292675 + 0.956212i \(0.405455\pi\)
\(434\) 0 0
\(435\) 8.94427 0.428845
\(436\) −6.38197 −0.305641
\(437\) −8.61803 14.9269i −0.412256 0.714049i
\(438\) 0.360680 0.0172339
\(439\) −10.5902 + 18.3427i −0.505441 + 0.875450i 0.494539 + 0.869155i \(0.335337\pi\)
−0.999980 + 0.00629443i \(0.997996\pi\)
\(440\) 2.23607 + 3.87298i 0.106600 + 0.184637i
\(441\) 8.05573 + 13.9529i 0.383606 + 0.664425i
\(442\) −4.00000 −0.190261
\(443\) −8.64590 + 14.9751i −0.410779 + 0.711490i −0.994975 0.100122i \(-0.968077\pi\)
0.584196 + 0.811613i \(0.301410\pi\)
\(444\) −2.00000 + 3.46410i −0.0949158 + 0.164399i
\(445\) −0.854102 + 1.47935i −0.0404883 + 0.0701278i
\(446\) −1.23607 2.14093i −0.0585295 0.101376i
\(447\) 6.18034 10.7047i 0.292320 0.506313i
\(448\) −0.500000 0.866025i −0.0236228 0.0409159i
\(449\) −31.3050 −1.47737 −0.738686 0.674050i \(-0.764553\pi\)
−0.738686 + 0.674050i \(0.764553\pi\)
\(450\) −3.63932 −0.171559
\(451\) 7.00000 + 12.1244i 0.329617 + 0.570914i
\(452\) −4.42705 + 7.66788i −0.208231 + 0.360667i
\(453\) −5.05573 8.75678i −0.237539 0.411429i
\(454\) 0.763932 1.32317i 0.0358531 0.0620994i
\(455\) −2.61803 + 4.53457i −0.122735 + 0.212584i
\(456\) 3.09017 5.35233i 0.144710 0.250646i
\(457\) 20.9443 0.979732 0.489866 0.871798i \(-0.337046\pi\)
0.489866 + 0.871798i \(0.337046\pi\)
\(458\) −4.14590 7.18091i −0.193725 0.335542i
\(459\) 14.4721 + 25.0665i 0.675501 + 1.17000i
\(460\) 6.23607 10.8012i 0.290758 0.503608i
\(461\) 10.3607 0.482545 0.241272 0.970457i \(-0.422435\pi\)
0.241272 + 0.970457i \(0.422435\pi\)
\(462\) −3.23607 5.60503i −0.150556 0.260770i
\(463\) 29.4164 1.36710 0.683548 0.729905i \(-0.260436\pi\)
0.683548 + 0.729905i \(0.260436\pi\)
\(464\) −13.4164 −0.622841
\(465\) 0 0
\(466\) −0.0344419 −0.00159549
\(467\) −8.70820 −0.402968 −0.201484 0.979492i \(-0.564576\pi\)
−0.201484 + 0.979492i \(0.564576\pi\)
\(468\) 1.47214 + 2.54981i 0.0680495 + 0.117865i
\(469\) −33.8885 −1.56483
\(470\) −2.00000 + 3.46410i −0.0922531 + 0.159787i
\(471\) −9.20163 15.9377i −0.423989 0.734370i
\(472\) 2.50000 + 4.33013i 0.115072 + 0.199310i
\(473\) −6.47214 −0.297589
\(474\) 0.652476 1.13012i 0.0299692 0.0519082i
\(475\) 4.47214 7.74597i 0.205196 0.355409i
\(476\) 17.9443 31.0804i 0.822474 1.42457i
\(477\) 1.12461 + 1.94788i 0.0514924 + 0.0891875i
\(478\) −0.527864 + 0.914287i −0.0241439 + 0.0418185i
\(479\) −18.3541 31.7902i −0.838620 1.45253i −0.891048 0.453908i \(-0.850029\pi\)
0.0524281 0.998625i \(-0.483304\pi\)
\(480\) 6.94427 0.316961
\(481\) −2.47214 −0.112720
\(482\) 9.38197 + 16.2500i 0.427337 + 0.740169i
\(483\) −20.1803 + 34.9534i −0.918237 + 1.59043i
\(484\) −5.66312 9.80881i −0.257414 0.445855i
\(485\) −0.972136 + 1.68379i −0.0441424 + 0.0764569i
\(486\) −4.20163 + 7.27743i −0.190590 + 0.330111i
\(487\) −7.38197 + 12.7859i −0.334509 + 0.579386i −0.983390 0.181503i \(-0.941904\pi\)
0.648882 + 0.760889i \(0.275237\pi\)
\(488\) 31.7082 1.43536
\(489\) −1.67376 2.89904i −0.0756901 0.131099i
\(490\) 3.38197 + 5.85774i 0.152782 + 0.264626i
\(491\) −20.1803 + 34.9534i −0.910726 + 1.57742i −0.0976849 + 0.995217i \(0.531144\pi\)
−0.813041 + 0.582206i \(0.802190\pi\)
\(492\) 14.0000 0.631169
\(493\) −18.9443 32.8124i −0.853207 1.47780i
\(494\) 1.70820 0.0768557
\(495\) 2.94427 0.132335
\(496\) 0 0
\(497\) −55.8328 −2.50444
\(498\) −2.24922 −0.100790
\(499\) −16.7082 28.9395i −0.747962 1.29551i −0.948798 0.315883i \(-0.897699\pi\)
0.200836 0.979625i \(-0.435634\pi\)
\(500\) 14.5623 0.651246
\(501\) −1.52786 + 2.64634i −0.0682599 + 0.118230i
\(502\) 7.47214 + 12.9421i 0.333498 + 0.577635i
\(503\) 0.826238 + 1.43109i 0.0368401 + 0.0638090i 0.883858 0.467756i \(-0.154937\pi\)
−0.847017 + 0.531565i \(0.821604\pi\)
\(504\) 13.9443 0.621127
\(505\) 1.50000 2.59808i 0.0667491 0.115613i
\(506\) −4.76393 + 8.25137i −0.211783 + 0.366818i
\(507\) −7.09017 + 12.2805i −0.314886 + 0.545398i
\(508\) −2.85410 4.94345i −0.126630 0.219330i
\(509\) −9.79837 + 16.9713i −0.434305 + 0.752239i −0.997239 0.0742635i \(-0.976339\pi\)
0.562933 + 0.826502i \(0.309673\pi\)
\(510\) 2.00000 + 3.46410i 0.0885615 + 0.153393i
\(511\) −2.00000 −0.0884748
\(512\) −18.7082 −0.826794
\(513\) −6.18034 10.7047i −0.272869 0.472622i
\(514\) −4.92705 + 8.53390i −0.217323 + 0.376414i
\(515\) −0.881966 1.52761i −0.0388641 0.0673145i
\(516\) −3.23607 + 5.60503i −0.142460 + 0.246748i
\(517\) −6.47214 + 11.2101i −0.284644 + 0.493018i
\(518\) −2.61803 + 4.53457i −0.115030 + 0.199237i
\(519\) 18.4721 0.810837
\(520\) 1.38197 + 2.39364i 0.0606032 + 0.104968i
\(521\) −1.00000 1.73205i −0.0438108 0.0758825i 0.843288 0.537461i \(-0.180617\pi\)
−0.887099 + 0.461579i \(0.847283\pi\)
\(522\) 3.29180 5.70156i 0.144078 0.249550i
\(523\) 4.29180 0.187667 0.0938336 0.995588i \(-0.470088\pi\)
0.0938336 + 0.995588i \(0.470088\pi\)
\(524\) 9.70820 + 16.8151i 0.424105 + 0.734571i
\(525\) −20.9443 −0.914083
\(526\) −11.5967 −0.505642
\(527\) 0 0
\(528\) 4.58359 0.199475
\(529\) 36.4164 1.58332
\(530\) 0.472136 + 0.817763i 0.0205083 + 0.0355214i
\(531\) 3.29180 0.142852
\(532\) −7.66312 + 13.2729i −0.332238 + 0.575454i
\(533\) 4.32624 + 7.49326i 0.187390 + 0.324569i
\(534\) −0.652476 1.13012i −0.0282354 0.0489051i
\(535\) 10.2361 0.442544
\(536\) −8.94427 + 15.4919i −0.386334 + 0.669150i
\(537\) 7.23607 12.5332i 0.312259 0.540849i
\(538\) 8.94427 15.4919i 0.385615 0.667905i
\(539\) 10.9443 + 18.9560i 0.471403 + 0.816494i
\(540\) 4.47214 7.74597i 0.192450 0.333333i
\(541\) −9.68034 16.7668i −0.416190 0.720863i 0.579362 0.815070i \(-0.303302\pi\)
−0.995553 + 0.0942074i \(0.969968\pi\)
\(542\) 5.05573 0.217162
\(543\) 22.4721 0.964372
\(544\) −14.7082 25.4754i −0.630609 1.09225i
\(545\) −1.97214 + 3.41584i −0.0844770 + 0.146318i
\(546\) −2.00000 3.46410i −0.0855921 0.148250i
\(547\) −14.0623 + 24.3566i −0.601261 + 1.04141i 0.391370 + 0.920234i \(0.372001\pi\)
−0.992630 + 0.121181i \(0.961332\pi\)
\(548\) −15.9443 + 27.6163i −0.681106 + 1.17971i
\(549\) 10.4377 18.0786i 0.445470 0.771577i
\(550\) −4.94427 −0.210824
\(551\) 8.09017 + 14.0126i 0.344653 + 0.596956i
\(552\) 10.6525 + 18.4506i 0.453399 + 0.785311i
\(553\) −3.61803 + 6.26662i −0.153854 + 0.266484i
\(554\) 11.5279 0.489772
\(555\) 1.23607 + 2.14093i 0.0524682 + 0.0908775i
\(556\) −21.7082 −0.920633
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) −7.85410 −0.331896
\(561\) 6.47214 + 11.2101i 0.273254 + 0.473289i
\(562\) −10.5066 −0.443193
\(563\) 19.7705 34.2435i 0.833228 1.44319i −0.0622377 0.998061i \(-0.519824\pi\)
0.895465 0.445131i \(-0.146843\pi\)
\(564\) 6.47214 + 11.2101i 0.272526 + 0.472029i
\(565\) 2.73607 + 4.73901i 0.115107 + 0.199372i
\(566\) −13.5279 −0.568619
\(567\) −5.11803 + 8.86469i −0.214937 + 0.372282i
\(568\) −14.7361 + 25.5236i −0.618312 + 1.07095i
\(569\) 7.23607 12.5332i 0.303352 0.525421i −0.673541 0.739150i \(-0.735228\pi\)
0.976893 + 0.213729i \(0.0685610\pi\)
\(570\) −0.854102 1.47935i −0.0357744 0.0619631i
\(571\) 2.90983 5.03997i 0.121773 0.210916i −0.798694 0.601737i \(-0.794475\pi\)
0.920467 + 0.390821i \(0.127809\pi\)
\(572\) 2.00000 + 3.46410i 0.0836242 + 0.144841i
\(573\) −3.93112 −0.164225
\(574\) 18.3262 0.764922
\(575\) 15.4164 + 26.7020i 0.642909 + 1.11355i
\(576\) −0.173762 + 0.300965i −0.00724009 + 0.0125402i
\(577\) −12.4164 21.5058i −0.516902 0.895300i −0.999807 0.0196278i \(-0.993752\pi\)
0.482906 0.875672i \(-0.339581\pi\)
\(578\) 3.21885 5.57521i 0.133886 0.231898i
\(579\) −3.38197 + 5.85774i −0.140550 + 0.243439i
\(580\) −5.85410 + 10.1396i −0.243078 + 0.421024i
\(581\) 12.4721 0.517431
\(582\) −0.742646 1.28630i −0.0307837 0.0533189i
\(583\) 1.52786 + 2.64634i 0.0632777 + 0.109600i
\(584\) −0.527864 + 0.914287i −0.0218432 + 0.0378335i
\(585\) 1.81966 0.0752337
\(586\) 2.61803 + 4.53457i 0.108150 + 0.187321i
\(587\) −2.47214 −0.102036 −0.0510180 0.998698i \(-0.516247\pi\)
−0.0510180 + 0.998698i \(0.516247\pi\)
\(588\) 21.8885 0.902668
\(589\) 0 0
\(590\) 1.38197 0.0568946
\(591\) −19.0557 −0.783848
\(592\) −1.85410 3.21140i −0.0762031 0.131988i
\(593\) −15.4721 −0.635364 −0.317682 0.948197i \(-0.602905\pi\)
−0.317682 + 0.948197i \(0.602905\pi\)
\(594\) −3.41641 + 5.91739i −0.140177 + 0.242794i
\(595\) −11.0902 19.2087i −0.454653 0.787481i
\(596\) 8.09017 + 14.0126i 0.331386 + 0.573978i
\(597\) −1.30495 −0.0534081
\(598\) −2.94427 + 5.09963i −0.120400 + 0.208539i
\(599\) −17.2984 + 29.9617i −0.706792 + 1.22420i 0.259248 + 0.965811i \(0.416525\pi\)
−0.966041 + 0.258390i \(0.916808\pi\)
\(600\) −5.52786 + 9.57454i −0.225674 + 0.390879i
\(601\) −18.2705 31.6455i −0.745270 1.29084i −0.950069 0.312041i \(-0.898987\pi\)
0.204799 0.978804i \(-0.434346\pi\)
\(602\) −4.23607 + 7.33708i −0.172649 + 0.299037i
\(603\) 5.88854 + 10.1993i 0.239800 + 0.415346i
\(604\) 13.2361 0.538568
\(605\) −7.00000 −0.284590
\(606\) 1.14590 + 1.98475i 0.0465489 + 0.0806251i
\(607\) −6.76393 + 11.7155i −0.274540 + 0.475516i −0.970019 0.243030i \(-0.921859\pi\)
0.695479 + 0.718546i \(0.255192\pi\)
\(608\) 6.28115 + 10.8793i 0.254734 + 0.441213i
\(609\) 18.9443 32.8124i 0.767661 1.32963i
\(610\) 4.38197 7.58979i 0.177421 0.307302i
\(611\) −4.00000 + 6.92820i −0.161823 + 0.280285i
\(612\) −12.4721 −0.504156
\(613\) −4.05573 7.02473i −0.163809 0.283726i 0.772422 0.635109i \(-0.219045\pi\)
−0.936232 + 0.351383i \(0.885712\pi\)
\(614\) −4.72542 8.18468i −0.190703 0.330307i
\(615\) 4.32624 7.49326i 0.174451 0.302158i
\(616\) 18.9443 0.763286
\(617\) −11.7639 20.3757i −0.473598 0.820296i 0.525945 0.850519i \(-0.323712\pi\)
−0.999543 + 0.0302226i \(0.990378\pi\)
\(618\) 1.34752 0.0542054
\(619\) 16.1803 0.650343 0.325171 0.945655i \(-0.394578\pi\)
0.325171 + 0.945655i \(0.394578\pi\)
\(620\) 0 0
\(621\) 42.6099 1.70988
\(622\) 4.21478 0.168997
\(623\) 3.61803 + 6.26662i 0.144953 + 0.251067i
\(624\) 2.83282 0.113403
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) −6.56231 11.3662i −0.262282 0.454287i
\(627\) −2.76393 4.78727i −0.110381 0.191185i
\(628\) 24.0902 0.961302
\(629\) 5.23607 9.06914i 0.208776 0.361610i
\(630\) 1.92705 3.33775i 0.0767755 0.132979i
\(631\) −5.18034 + 8.97261i −0.206226 + 0.357194i −0.950523 0.310655i \(-0.899452\pi\)
0.744297 + 0.667849i \(0.232785\pi\)
\(632\) 1.90983 + 3.30792i 0.0759690 + 0.131582i
\(633\) 0.506578 0.877419i 0.0201347 0.0348743i
\(634\) 6.78115 + 11.7453i 0.269314 + 0.466466i
\(635\) −3.52786 −0.139999
\(636\) 3.05573 0.121168
\(637\) 6.76393 + 11.7155i 0.267997 + 0.464184i
\(638\) 4.47214 7.74597i 0.177054 0.306666i
\(639\) 9.70163 + 16.8037i 0.383790 + 0.664744i
\(640\) −5.69098 + 9.85707i −0.224956 + 0.389635i
\(641\) 6.00000 10.3923i 0.236986 0.410471i −0.722862 0.690992i \(-0.757174\pi\)
0.959848 + 0.280521i \(0.0905072\pi\)
\(642\) −3.90983 + 6.77202i −0.154309 + 0.267270i
\(643\) −28.4721 −1.12283 −0.561416 0.827534i \(-0.689743\pi\)
−0.561416 + 0.827534i \(0.689743\pi\)
\(644\) −26.4164 45.7546i −1.04095 1.80298i
\(645\) 2.00000 + 3.46410i 0.0787499 + 0.136399i
\(646\) −3.61803 + 6.26662i −0.142350 + 0.246557i
\(647\) −16.9443 −0.666148 −0.333074 0.942901i \(-0.608086\pi\)
−0.333074 + 0.942901i \(0.608086\pi\)
\(648\) 2.70163 + 4.67935i 0.106130 + 0.183822i
\(649\) 4.47214 0.175547
\(650\) −3.05573 −0.119856
\(651\) 0 0
\(652\) 4.38197 0.171611
\(653\) 15.3050 0.598929 0.299465 0.954107i \(-0.403192\pi\)
0.299465 + 0.954107i \(0.403192\pi\)
\(654\) −1.50658 2.60947i −0.0589119 0.102038i
\(655\) 12.0000 0.468879
\(656\) −6.48936 + 11.2399i −0.253367 + 0.438844i
\(657\) 0.347524 + 0.601929i 0.0135582 + 0.0234835i
\(658\) 8.47214 + 14.6742i 0.330278 + 0.572059i
\(659\) −5.65248 −0.220189 −0.110095 0.993921i \(-0.535115\pi\)
−0.110095 + 0.993921i \(0.535115\pi\)
\(660\) 2.00000 3.46410i 0.0778499 0.134840i
\(661\) 22.6803 39.2835i 0.882163 1.52795i 0.0332318 0.999448i \(-0.489420\pi\)
0.848931 0.528503i \(-0.177247\pi\)
\(662\) −0.618034 + 1.07047i −0.0240206 + 0.0416049i
\(663\) 4.00000 + 6.92820i 0.155347 + 0.269069i
\(664\) 3.29180 5.70156i 0.127746 0.221263i
\(665\) 4.73607 + 8.20311i 0.183657 + 0.318103i
\(666\) 1.81966 0.0705104
\(667\) −55.7771 −2.15970
\(668\) −2.00000 3.46410i −0.0773823 0.134030i
\(669\) −2.47214 + 4.28187i −0.0955783 + 0.165546i
\(670\) 2.47214 + 4.28187i 0.0955069 + 0.165423i
\(671\) 14.1803 24.5611i 0.547426 0.948170i
\(672\) 14.7082 25.4754i 0.567381 0.982733i
\(673\) 23.5066 40.7146i 0.906112 1.56943i 0.0866944 0.996235i \(-0.472370\pi\)
0.819418 0.573197i \(-0.194297\pi\)
\(674\) −11.8885 −0.457930
\(675\) 11.0557 + 19.1491i 0.425535 + 0.737049i
\(676\) −9.28115 16.0754i −0.356967 0.618286i
\(677\) 21.3607 36.9978i 0.820958 1.42194i −0.0840123 0.996465i \(-0.526774\pi\)
0.904970 0.425476i \(-0.139893\pi\)
\(678\) −4.18034 −0.160545
\(679\) 4.11803 + 7.13264i 0.158036 + 0.273726i
\(680\) −11.7082 −0.448989
\(681\) −3.05573 −0.117096
\(682\) 0 0
\(683\) −17.1803 −0.657387 −0.328694 0.944437i \(-0.606608\pi\)
−0.328694 + 0.944437i \(0.606608\pi\)
\(684\) 5.32624 0.203654
\(685\) 9.85410 + 17.0678i 0.376506 + 0.652127i
\(686\) 10.3262 0.394258
\(687\) −8.29180 + 14.3618i −0.316352 + 0.547937i
\(688\) −3.00000 5.19615i −0.114374 0.198101i
\(689\) 0.944272 + 1.63553i 0.0359739 + 0.0623086i
\(690\) 5.88854 0.224173
\(691\) 9.59017 16.6107i 0.364827 0.631899i −0.623921 0.781487i \(-0.714461\pi\)
0.988748 + 0.149588i \(0.0477947\pi\)
\(692\) −12.0902 + 20.9408i −0.459599 + 0.796049i
\(693\) 6.23607 10.8012i 0.236889 0.410303i
\(694\) −0.562306 0.973942i −0.0213448 0.0369703i
\(695\) −6.70820 + 11.6190i −0.254457 + 0.440732i
\(696\) −10.0000 17.3205i −0.379049 0.656532i
\(697\) −36.6525 −1.38831
\(698\) −17.2361 −0.652395
\(699\) 0.0344419 + 0.0596550i 0.00130271 + 0.00225636i
\(700\) 13.7082 23.7433i 0.518121 0.897413i
\(701\) −3.50000 6.06218i −0.132193 0.228965i 0.792329 0.610095i \(-0.208869\pi\)
−0.924522 + 0.381129i \(0.875535\pi\)
\(702\) −2.11146 + 3.65715i −0.0796918 + 0.138030i
\(703\) −2.23607 + 3.87298i −0.0843349 + 0.146072i
\(704\) −0.236068 + 0.408882i −0.00889715 + 0.0154103i
\(705\) 8.00000 0.301297
\(706\) 6.00000 + 10.3923i 0.225813 + 0.391120i
\(707\) −6.35410 11.0056i −0.238971 0.413909i
\(708\) 2.23607 3.87298i 0.0840366 0.145556i
\(709\) −34.4721 −1.29463 −0.647314 0.762223i \(-0.724108\pi\)
−0.647314 + 0.762223i \(0.724108\pi\)
\(710\) 4.07295 + 7.05455i 0.152855 + 0.264753i
\(711\) 2.51471 0.0943089
\(712\) 3.81966 0.143148
\(713\) 0 0
\(714\) 16.9443 0.634123
\(715\) 2.47214 0.0924526
\(716\) 9.47214 + 16.4062i 0.353990 + 0.613129i
\(717\) 2.11146 0.0788538
\(718\) 5.48936 9.50785i 0.204861 0.354830i
\(719\) −18.0902 31.3331i −0.674649 1.16853i −0.976571 0.215194i \(-0.930961\pi\)
0.301922 0.953333i \(-0.402372\pi\)
\(720\) 1.36475 + 2.36381i 0.0508610 + 0.0880939i
\(721\) −7.47214 −0.278277
\(722\) −4.32624 + 7.49326i −0.161006 + 0.278870i
\(723\) 18.7639 32.5001i 0.697838 1.20869i
\(724\) −14.7082 + 25.4754i −0.546626 + 0.946784i
\(725\) −14.4721 25.0665i −0.537482 0.930946i
\(726\) 2.67376 4.63109i 0.0992326 0.171876i
\(727\) 19.8820 + 34.4366i 0.737381 + 1.27718i 0.953671 + 0.300853i \(0.0972712\pi\)
−0.216289 + 0.976329i \(0.569395\pi\)
\(728\) 11.7082 0.433935
\(729\) 24.0557 0.890953
\(730\) 0.145898 + 0.252703i 0.00539993 + 0.00935295i
\(731\) 8.47214 14.6742i 0.313353 0.542744i
\(732\) −14.1803 24.5611i −0.524120 0.907803i
\(733\) 2.73607 4.73901i 0.101059 0.175039i −0.811062 0.584960i \(-0.801110\pi\)
0.912121 + 0.409921i \(0.134444\pi\)
\(734\) −5.56231 + 9.63420i −0.205308 + 0.355605i
\(735\) 6.76393 11.7155i 0.249491 0.432132i
\(736\) −43.3050 −1.59624
\(737\) 8.00000 + 13.8564i 0.294684 + 0.510407i
\(738\) −3.18441 5.51555i −0.117220 0.203030i
\(739\) −8.09017 + 14.0126i −0.297602 + 0.515461i −0.975587 0.219614i \(-0.929520\pi\)
0.677985 + 0.735076i \(0.262853\pi\)
\(740\) −3.23607 −0.118960
\(741\) −1.70820 2.95870i −0.0627524 0.108690i
\(742\) 4.00000 0.146845
\(743\) −27.8197 −1.02060 −0.510302 0.859995i \(-0.670466\pi\)
−0.510302 + 0.859995i \(0.670466\pi\)
\(744\) 0 0
\(745\) 10.0000 0.366372
\(746\) −11.7426 −0.429929
\(747\) −2.16718 3.75367i −0.0792931 0.137340i
\(748\) −16.9443 −0.619544
\(749\) 21.6803 37.5515i 0.792182 1.37210i
\(750\) 3.43769 + 5.95426i 0.125527 + 0.217419i
\(751\) −22.7705 39.4397i −0.830908 1.43917i −0.897319 0.441382i \(-0.854488\pi\)
0.0664116 0.997792i \(-0.478845\pi\)
\(752\) −12.0000 −0.437595
\(753\) 14.9443 25.8842i 0.544600 0.943274i
\(754\) 2.76393 4.78727i 0.100656 0.174342i
\(755\) 4.09017 7.08438i 0.148857 0.257827i
\(756\) −18.9443 32.8124i −0.688997 1.19338i
\(757\) −11.3262 + 19.6176i −0.411659 + 0.713015i −0.995071 0.0991617i \(-0.968384\pi\)
0.583412 + 0.812176i \(0.301717\pi\)
\(758\) −11.7082 20.2792i −0.425261 0.736574i
\(759\) 19.0557 0.691679
\(760\) 5.00000 0.181369
\(761\) 1.00000 + 1.73205i 0.0362500 + 0.0627868i 0.883581 0.468278i \(-0.155125\pi\)
−0.847331 + 0.531065i \(0.821792\pi\)
\(762\) 1.34752 2.33398i 0.0488156 0.0845512i
\(763\) 8.35410 + 14.4697i 0.302439 + 0.523839i
\(764\) 2.57295 4.45648i 0.0930860 0.161230i
\(765\) −3.85410 + 6.67550i −0.139345 + 0.241353i
\(766\) −3.67376 + 6.36314i −0.132738 + 0.229910i
\(767\) 2.76393 0.0997998
\(768\) −4.05573 7.02473i −0.146348 0.253483i
\(769\) 1.31966 + 2.28572i 0.0475882 + 0.0824251i 0.888838 0.458221i \(-0.151513\pi\)
−0.841250 + 0.540646i \(0.818180\pi\)
\(770\) 2.61803 4.53457i 0.0943474 0.163414i
\(771\) 19.7082 0.709774
\(772\) −4.42705 7.66788i −0.159333 0.275973i
\(773\) −29.1246 −1.04754 −0.523770 0.851860i \(-0.675475\pi\)
−0.523770 + 0.851860i \(0.675475\pi\)
\(774\) 2.94427 0.105830
\(775\) 0 0
\(776\) 4.34752 0.156067
\(777\) 10.4721 0.375686
\(778\) −5.52786 9.57454i −0.198184 0.343264i
\(779\) 15.6525 0.560808
\(780\) 1.23607 2.14093i 0.0442583 0.0766577i
\(781\) 13.1803 + 22.8290i 0.471630 + 0.816887i
\(782\) −12.4721 21.6024i −0.446003 0.772499i
\(783\) −40.0000 −1.42948
\(784\) −10.1459 + 17.5732i −0.362354 + 0.627615i
\(785\) 7.44427 12.8939i 0.265697 0.460201i
\(786\) −4.58359 + 7.93901i −0.163491 + 0.283175i
\(787\) 19.3262 + 33.4740i 0.688906 + 1.19322i 0.972192 + 0.234185i \(0.0752421\pi\)
−0.283286 + 0.959035i \(0.591425\pi\)
\(788\) 12.4721 21.6024i 0.444301 0.769553i
\(789\) 11.5967 + 20.0862i 0.412855 + 0.715086i
\(790\) 1.05573 0.0375611
\(791\) 23.1803 0.824198
\(792\) −3.29180 5.70156i −0.116969 0.202596i
\(793\) 8.76393 15.1796i 0.311216 0.539043i
\(794\) −2.16312 3.74663i −0.0767662 0.132963i
\(795\) 0.944272 1.63553i 0.0334899 0.0580062i
\(796\) 0.854102 1.47935i 0.0302728 0.0524341i
\(797\) −14.2918 + 24.7541i −0.506241 + 0.876836i 0.493733 + 0.869614i \(0.335632\pi\)
−0.999974 + 0.00722199i \(0.997701\pi\)
\(798\) −7.23607 −0.256154
\(799\) −16.9443 29.3483i −0.599445 1.03827i
\(800\) −11.2361 19.4614i −0.397255 0.688066i
\(801\) 1.25735 2.17780i 0.0444264 0.0769488i
\(802\) 9.77709 0.345241
\(803\) 0.472136 + 0.817763i 0.0166613 + 0.0288582i
\(804\) 16.0000 0.564276
\(805\) −32.6525 −1.15085
\(806\) 0 0
\(807\) −35.7771 −1.25941
\(808\) −6.70820 −0.235994
\(809\) −1.70820 2.95870i −0.0600573 0.104022i 0.834434 0.551109i \(-0.185795\pi\)
−0.894491 + 0.447086i \(0.852462\pi\)
\(810\) 1.49342 0.0524735
\(811\) 14.0000 24.2487i 0.491606 0.851487i −0.508347 0.861152i \(-0.669743\pi\)
0.999953 + 0.00966502i \(0.00307652\pi\)
\(812\) 24.7984 + 42.9520i 0.870252 + 1.50732i
\(813\) −5.05573 8.75678i −0.177312 0.307114i
\(814\) 2.47214 0.0866483
\(815\) 1.35410 2.34537i 0.0474321 0.0821548i
\(816\) −6.00000 + 10.3923i −0.210042 + 0.363803i
\(817\) −3.61803 + 6.26662i −0.126579 + 0.219241i
\(818\) 8.09017 + 14.0126i 0.282866 + 0.489939i
\(819\) 3.85410 6.67550i 0.134673 0.233261i
\(820\) 5.66312 + 9.80881i 0.197765 + 0.342538i
\(821\) 36.5410 1.27529 0.637645 0.770330i \(-0.279909\pi\)
0.637645 + 0.770330i \(0.279909\pi\)
\(822\) −15.0557 −0.525129
\(823\) −13.8541 23.9960i −0.482924 0.836448i 0.516884 0.856055i \(-0.327092\pi\)
−0.999808 + 0.0196071i \(0.993758\pi\)
\(824\) −1.97214 + 3.41584i −0.0687026 + 0.118996i
\(825\) 4.94427 + 8.56373i 0.172137 + 0.298151i
\(826\) 2.92705 5.06980i 0.101845 0.176401i
\(827\) 24.3262 42.1343i 0.845906 1.46515i −0.0389257 0.999242i \(-0.512394\pi\)
0.884832 0.465910i \(-0.154273\pi\)
\(828\) −9.18034 + 15.9008i −0.319039 + 0.552592i
\(829\) 36.8328 1.27926 0.639628 0.768684i \(-0.279088\pi\)
0.639628 + 0.768684i \(0.279088\pi\)
\(830\) −0.909830 1.57587i −0.0315807 0.0546993i
\(831\) −11.5279 19.9668i −0.399897 0.692642i
\(832\) −0.145898 + 0.252703i −0.00505810 + 0.00876089i
\(833\) −57.3050 −1.98550
\(834\) −5.12461 8.87609i −0.177451 0.307354i
\(835\) −2.47214 −0.0855518
\(836\) 7.23607 0.250265
\(837\) 0 0
\(838\) −18.6180 −0.643149
\(839\) 11.0557 0.381686 0.190843 0.981621i \(-0.438878\pi\)
0.190843 + 0.981621i \(0.438878\pi\)
\(840\) −5.85410 10.1396i −0.201986 0.349850i
\(841\) 23.3607 0.805541
\(842\) −4.74671 + 8.22154i −0.163582 + 0.283333i
\(843\) 10.5066 + 18.1979i 0.361866 + 0.626770i
\(844\) 0.663119 + 1.14856i 0.0228255 + 0.0395349i
\(845\) −11.4721 −0.394653
\(846\) 2.94427 5.09963i 0.101226 0.175329i
\(847\) −14.8262 + 25.6798i −0.509436 + 0.882368i
\(848\) −1.41641 + 2.45329i −0.0486396 + 0.0842463i
\(849\) 13.5279 + 23.4309i 0.464275 + 0.804148i
\(850\) 6.47214 11.2101i 0.221992 0.384502i
\(851\) −7.70820 13.3510i −0.264234 0.457666i
\(852\) 26.3607 0.903102
\(853\) 37.4164 1.28111 0.640557 0.767911i \(-0.278704\pi\)
0.640557 + 0.767911i \(0.278704\pi\)
\(854\) −18.5623 32.1509i −0.635189 1.10018i
\(855\) 1.64590 2.85078i 0.0562885 0.0974946i
\(856\) −11.4443 19.8221i −0.391157 0.677504i
\(857\) −25.8328 + 44.7437i −0.882432 + 1.52842i −0.0338034 + 0.999429i \(0.510762\pi\)
−0.848629 + 0.528989i \(0.822571\pi\)
\(858\) −0.944272 + 1.63553i −0.0322369 + 0.0558360i
\(859\) 18.9443 32.8124i 0.646370 1.11955i −0.337613 0.941285i \(-0.609620\pi\)
0.983983 0.178261i \(-0.0570472\pi\)
\(860\) −5.23607 −0.178548
\(861\) −18.3262 31.7420i −0.624557 1.08176i
\(862\) 3.70820 + 6.42280i 0.126302 + 0.218761i
\(863\) −16.0902 + 27.8690i −0.547716 + 0.948672i 0.450715 + 0.892668i \(0.351169\pi\)
−0.998431 + 0.0560035i \(0.982164\pi\)
\(864\) −31.0557 −1.05654
\(865\) 7.47214 + 12.9421i 0.254060 + 0.440045i
\(866\) −7.52786 −0.255807
\(867\) −12.8754 −0.437271
\(868\) 0 0
\(869\) 3.41641 0.115894
\(870\) −5.52786 −0.187412
\(871\) 4.94427 + 8.56373i 0.167530 + 0.290171i
\(872\) 8.81966 0.298671
\(873\) 1.43112 2.47877i 0.0484359 0.0838935i
\(874\) 5.32624 + 9.22531i 0.180163 + 0.312051i
\(875\) −19.0623 33.0169i −0.644424 1.11617i
\(876\) 0.944272 0.0319040
\(877\) 17.9721 31.1287i 0.606876 1.05114i −0.384876 0.922968i \(-0.625756\pi\)
0.991752 0.128172i \(-0.0409108\pi\)
\(878\) 6.54508 11.3364i 0.220886 0.382586i
\(879\) 5.23607 9.06914i 0.176608 0.305894i
\(880\) 1.85410 + 3.21140i 0.0625018 + 0.108256i
\(881\) 12.1803 21.0970i 0.410366 0.710775i −0.584564 0.811348i \(-0.698734\pi\)
0.994930 + 0.100573i \(0.0320676\pi\)
\(882\) −4.97871 8.62339i −0.167642 0.290364i
\(883\) −39.7771 −1.33861 −0.669303 0.742990i \(-0.733407\pi\)
−0.669303 + 0.742990i \(0.733407\pi\)
\(884\) −10.4721 −0.352216
\(885\) −1.38197 2.39364i −0.0464543 0.0804612i
\(886\) 5.34346 9.25514i 0.179517 0.310933i
\(887\) 15.5344 + 26.9064i 0.521596 + 0.903430i 0.999684 + 0.0251185i \(0.00799631\pi\)
−0.478089 + 0.878311i \(0.658670\pi\)
\(888\) 2.76393 4.78727i 0.0927515 0.160650i
\(889\) −7.47214 + 12.9421i −0.250607 + 0.434065i
\(890\) 0.527864 0.914287i 0.0176940 0.0306470i
\(891\) 4.83282 0.161905
\(892\) −3.23607 5.60503i −0.108352 0.187670i
\(893\) 7.23607 + 12.5332i 0.242146 + 0.419409i
\(894\) −3.81966 + 6.61585i −0.127749 + 0.221267i
\(895\) 11.7082 0.391362
\(896\) 24.1074 + 41.7552i 0.805371 + 1.39494i
\(897\) 11.7771 0.393226
\(898\) 19.3475 0.645635
\(899\) 0 0
\(900\) −9.52786 −0.317595
\(901\) −8.00000 −0.266519
\(902\) −4.32624 7.49326i −0.144048 0.249498i
\(903\) 16.9443 0.563870
\(904\) 6.11803 10.5967i 0.203483 0.352443i
\(905\) 9.09017 + 15.7446i 0.302167 + 0.523369i
\(906\) 3.12461 + 5.41199i 0.103808 + 0.179801i
\(907\) −19.7639 −0.656251 −0.328125 0.944634i \(-0.606417\pi\)
−0.328125 + 0.944634i \(0.606417\pi\)
\(908\) 2.00000 3.46410i 0.0663723 0.114960i
\(909\) −2.20820 + 3.82472i −0.0732415 + 0.126858i
\(910\) 1.61803 2.80252i 0.0536373 0.0929025i
\(911\) −2.09017 3.62028i −0.0692504 0.119945i 0.829321 0.558772i \(-0.188727\pi\)
−0.898572 + 0.438827i \(0.855394\pi\)
\(912\) 2.56231 4.43804i 0.0848464 0.146958i
\(913\) −2.94427 5.09963i −0.0974412 0.168773i
\(914\) −12.9443 −0.428158
\(915\) −17.5279 −0.579453
\(916\) −10.8541 18.7999i −0.358630 0.621165i
\(917\) 25.4164 44.0225i 0.839324 1.45375i
\(918\) −8.94427 15.4919i −0.295205 0.511310i
\(919\) 2.76393 4.78727i 0.0911737 0.157917i −0.816832 0.576876i \(-0.804271\pi\)
0.908005 + 0.418959i \(0.137605\pi\)
\(920\) −8.61803 + 14.9269i −0.284128 + 0.492124i
\(921\) −9.45085 + 16.3694i −0.311416 + 0.539388i
\(922\) −6.40325 −0.210880
\(923\) 8.14590 + 14.1091i 0.268125 + 0.464407i
\(924\) −8.47214 14.6742i −0.278713 0.482745i
\(925\) 4.00000 6.92820i 0.131519 0.227798i
\(926\) −18.1803 −0.597443
\(927\) 1.29837 + 2.24885i 0.0426442 + 0.0738619i
\(928\) 40.6525 1.33448
\(929\) 20.0000 0.656179 0.328089 0.944647i \(-0.393595\pi\)
0.328089 + 0.944647i \(0.393595\pi\)
\(930\) 0 0
\(931\) 24.4721 0.802042
\(932\) −0.0901699 −0.00295361
\(933\) −4.21478 7.30022i −0.137986 0.238998i
\(934\) 5.38197 0.176103
\(935\) −5.23607 + 9.06914i −0.171238 + 0.296592i
\(936\) −2.03444 3.52376i −0.0664978 0.115178i
\(937\) −13.4721 23.3344i −0.440115 0.762302i 0.557582 0.830122i \(-0.311729\pi\)
−0.997698 + 0.0678194i \(0.978396\pi\)
\(938\) 20.9443 0.683855
\(939\) −13.1246 + 22.7325i −0.428306 + 0.741847i
\(940\) −5.23607 + 9.06914i −0.170782 + 0.295803i
\(941\) −19.0000 + 32.9090i −0.619382 + 1.07280i 0.370216 + 0.928946i \(0.379284\pi\)
−0.989599 + 0.143856i \(0.954050\pi\)
\(942\) 5.68692 + 9.85003i 0.185290 + 0.320931i
\(943\) −26.9787 + 46.7285i −0.878548 + 1.52169i
\(944\) 2.07295 + 3.59045i 0.0674687 + 0.116859i
\(945\) −23.4164 −0.761736
\(946\) 4.00000 0.130051
\(947\) −15.4721 26.7985i −0.502777 0.870835i −0.999995 0.00320942i \(-0.998978\pi\)
0.497218 0.867626i \(-0.334355\pi\)
\(948\) 1.70820 2.95870i 0.0554799 0.0960940i
\(949\) 0.291796 + 0.505406i 0.00947210 + 0.0164062i
\(950\) −2.76393 + 4.78727i −0.0896738 + 0.155320i
\(951\) 13.5623 23.4906i 0.439788 0.761735i
\(952\) −24.7984 + 42.9520i −0.803720 + 1.39208i
\(953\) −32.2918 −1.04603 −0.523017 0.852322i \(-0.675194\pi\)
−0.523017 + 0.852322i \(0.675194\pi\)
\(954\) −0.695048 1.20386i −0.0225030 0.0389764i
\(955\) −1.59017 2.75426i −0.0514567 0.0891256i
\(956\) −1.38197 + 2.39364i −0.0446960 + 0.0774157i
\(957\) −17.8885 −0.578254
\(958\) 11.3435 + 19.6474i 0.366491 + 0.634780i
\(959\) 83.4853 2.69588
\(960\) 0.291796 0.00941768
\(961\) 0 0
\(962\) 1.52786 0.0492603
\(963\) −15.0689 −0.485588
\(964\) 24.5623 + 42.5432i 0.791099 + 1.37022i
\(965\) −5.47214 −0.176154
\(966\) 12.4721 21.6024i 0.401284 0.695045i
\(967\) 7.81966 + 13.5440i 0.251463 + 0.435547i 0.963929 0.266160i \(-0.0857549\pi\)
−0.712466 + 0.701707i \(0.752422\pi\)
\(968\) 7.82624 + 13.5554i 0.251545 + 0.435688i
\(969\) 14.4721 0.464912
\(970\) 0.600813 1.04064i 0.0192909 0.0334129i
\(971\) 14.0000 24.2487i 0.449281 0.778178i −0.549058 0.835784i \(-0.685013\pi\)
0.998339 + 0.0576061i \(0.0183467\pi\)
\(972\) −11.0000 + 19.0526i −0.352825 + 0.611111i
\(973\) 28.4164 + 49.2187i 0.910988 + 1.57788i
\(974\) 4.56231 7.90215i 0.146186 0.253201i
\(975\) 3.05573 + 5.29268i 0.0978616 + 0.169501i
\(976\) 26.2918 0.841580
\(977\) 33.2492 1.06374 0.531868 0.846827i \(-0.321490\pi\)
0.531868 + 0.846827i \(0.321490\pi\)
\(978\) 1.03444 + 1.79171i 0.0330778 + 0.0572924i
\(979\) 1.70820 2.95870i 0.0545944 0.0945603i
\(980\) 8.85410 + 15.3358i 0.282834 + 0.489883i
\(981\) 2.90325 5.02858i 0.0926937 0.160550i
\(982\) 12.4721 21.6024i 0.398002 0.689359i
\(983\) 24.2361 41.9781i 0.773011 1.33889i −0.162895 0.986643i \(-0.552083\pi\)
0.935906 0.352250i \(-0.114583\pi\)
\(984\) −19.3475 −0.616777
\(985\) −7.70820 13.3510i −0.245604 0.425398i
\(986\) 11.7082 + 20.2792i 0.372865 + 0.645821i
\(987\) 16.9443 29.3483i 0.539342 0.934168i
\(988\) 4.47214 0.142278
\(989\) −12.4721 21.6024i −0.396591 0.686916i
\(990\) −1.81966 −0.0578326
\(991\) −50.5410 −1.60549 −0.802744 0.596324i \(-0.796628\pi\)
−0.802744 + 0.596324i \(0.796628\pi\)
\(992\) 0 0
\(993\) 2.47214 0.0784509
\(994\) 34.5066 1.09448
\(995\) −0.527864 0.914287i −0.0167344 0.0289849i
\(996\) −5.88854 −0.186586
\(997\) −7.68034 + 13.3027i −0.243239 + 0.421302i −0.961635 0.274332i \(-0.911543\pi\)
0.718396 + 0.695634i \(0.244877\pi\)
\(998\) 10.3262 + 17.8856i 0.326871 + 0.566158i
\(999\) −5.52786 9.57454i −0.174894 0.302925i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.c.521.1 4
31.2 even 5 961.2.g.d.844.1 8
31.3 odd 30 961.2.d.c.628.1 4
31.4 even 5 961.2.g.e.338.1 8
31.5 even 3 inner 961.2.c.c.439.1 4
31.6 odd 6 31.2.a.a.1.1 2
31.7 even 15 961.2.d.g.388.1 4
31.8 even 5 961.2.g.e.732.1 8
31.9 even 15 961.2.g.e.816.1 8
31.10 even 15 961.2.g.d.547.1 8
31.11 odd 30 961.2.g.h.235.1 8
31.12 odd 30 961.2.d.c.531.1 4
31.13 odd 30 961.2.g.a.846.1 8
31.14 even 15 961.2.d.g.374.1 4
31.15 odd 10 961.2.g.a.448.1 8
31.16 even 5 961.2.g.d.448.1 8
31.17 odd 30 961.2.d.d.374.1 4
31.18 even 15 961.2.g.d.846.1 8
31.19 even 15 961.2.d.a.531.1 4
31.20 even 15 961.2.g.e.235.1 8
31.21 odd 30 961.2.g.a.547.1 8
31.22 odd 30 961.2.g.h.816.1 8
31.23 odd 10 961.2.g.h.732.1 8
31.24 odd 30 961.2.d.d.388.1 4
31.25 even 3 961.2.a.f.1.1 2
31.26 odd 6 961.2.c.e.439.1 4
31.27 odd 10 961.2.g.h.338.1 8
31.28 even 15 961.2.d.a.628.1 4
31.29 odd 10 961.2.g.a.844.1 8
31.30 odd 2 961.2.c.e.521.1 4
93.56 odd 6 8649.2.a.c.1.2 2
93.68 even 6 279.2.a.a.1.2 2
124.99 even 6 496.2.a.i.1.1 2
155.37 even 12 775.2.b.d.249.2 4
155.68 even 12 775.2.b.d.249.3 4
155.99 odd 6 775.2.a.d.1.2 2
217.6 even 6 1519.2.a.a.1.1 2
248.37 odd 6 1984.2.a.r.1.1 2
248.99 even 6 1984.2.a.n.1.2 2
341.285 even 6 3751.2.a.b.1.2 2
372.347 odd 6 4464.2.a.bf.1.2 2
403.285 odd 6 5239.2.a.f.1.2 2
465.254 even 6 6975.2.a.y.1.1 2
527.254 odd 6 8959.2.a.b.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.a.a.1.1 2 31.6 odd 6
279.2.a.a.1.2 2 93.68 even 6
496.2.a.i.1.1 2 124.99 even 6
775.2.a.d.1.2 2 155.99 odd 6
775.2.b.d.249.2 4 155.37 even 12
775.2.b.d.249.3 4 155.68 even 12
961.2.a.f.1.1 2 31.25 even 3
961.2.c.c.439.1 4 31.5 even 3 inner
961.2.c.c.521.1 4 1.1 even 1 trivial
961.2.c.e.439.1 4 31.26 odd 6
961.2.c.e.521.1 4 31.30 odd 2
961.2.d.a.531.1 4 31.19 even 15
961.2.d.a.628.1 4 31.28 even 15
961.2.d.c.531.1 4 31.12 odd 30
961.2.d.c.628.1 4 31.3 odd 30
961.2.d.d.374.1 4 31.17 odd 30
961.2.d.d.388.1 4 31.24 odd 30
961.2.d.g.374.1 4 31.14 even 15
961.2.d.g.388.1 4 31.7 even 15
961.2.g.a.448.1 8 31.15 odd 10
961.2.g.a.547.1 8 31.21 odd 30
961.2.g.a.844.1 8 31.29 odd 10
961.2.g.a.846.1 8 31.13 odd 30
961.2.g.d.448.1 8 31.16 even 5
961.2.g.d.547.1 8 31.10 even 15
961.2.g.d.844.1 8 31.2 even 5
961.2.g.d.846.1 8 31.18 even 15
961.2.g.e.235.1 8 31.20 even 15
961.2.g.e.338.1 8 31.4 even 5
961.2.g.e.732.1 8 31.8 even 5
961.2.g.e.816.1 8 31.9 even 15
961.2.g.h.235.1 8 31.11 odd 30
961.2.g.h.338.1 8 31.27 odd 10
961.2.g.h.732.1 8 31.23 odd 10
961.2.g.h.816.1 8 31.22 odd 30
1519.2.a.a.1.1 2 217.6 even 6
1984.2.a.n.1.2 2 248.99 even 6
1984.2.a.r.1.1 2 248.37 odd 6
3751.2.a.b.1.2 2 341.285 even 6
4464.2.a.bf.1.2 2 372.347 odd 6
5239.2.a.f.1.2 2 403.285 odd 6
6975.2.a.y.1.1 2 465.254 even 6
8649.2.a.c.1.2 2 93.56 odd 6
8959.2.a.b.1.1 2 527.254 odd 6