L(s) = 1 | − 5·2-s + 12·4-s − 6·5-s − 20·8-s − 11·9-s + 30·10-s − 10·13-s + 34·16-s − 10·17-s + 55·18-s − 72·20-s + 31·25-s + 50·26-s − 10·29-s − 65·32-s + 50·34-s − 132·36-s + 18·37-s + 120·40-s + 10·41-s + 66·45-s + 17·49-s − 155·50-s − 120·52-s + 38·53-s + 50·58-s − 10·61-s + ⋯ |
L(s) = 1 | − 3.53·2-s + 6·4-s − 2.68·5-s − 7.07·8-s − 3.66·9-s + 9.48·10-s − 2.77·13-s + 17/2·16-s − 2.42·17-s + 12.9·18-s − 16.0·20-s + 31/5·25-s + 9.80·26-s − 1.85·29-s − 11.4·32-s + 8.57·34-s − 22·36-s + 2.95·37-s + 18.9·40-s + 1.56·41-s + 9.83·45-s + 17/7·49-s − 21.9·50-s − 16.6·52-s + 5.21·53-s + 6.56·58-s − 1.28·61-s + ⋯ |
Λ(s)=(=((232⋅1116)s/2ΓC(s)16L(s)Λ(2−s)
Λ(s)=(=((232⋅1116)s/2ΓC(s+1/2)16L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.003219240111 |
L(21) |
≈ |
0.003219240111 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+5T+13T2+25T3+35T4+15pT5−pT6−15p2T7−29p2T8−15p3T9−p3T10+15p4T11+35p4T12+25p5T13+13p6T14+5p7T15+p8T16 |
| 11 | 1−35T2+519T4−5365T6+5136pT8−5365p2T10+519p4T12−35p6T14+p8T16 |
good | 3 | 1+11T2+2p3T4+176T6+2p5T8+491pT10+659p2T12+23828T14+78832T16+23828p2T18+659p6T20+491p7T22+2p13T24+176p10T26+2p15T28+11p14T30+p16T32 |
| 5 | (1+3T−2T2−14T3−2pT4+51T5+153T6−252T7−1564T8−252pT9+153p2T10+51p3T11−2p5T12−14p5T13−2p6T14+3p7T15+p8T16)2 |
| 7 | 1−17T2+170T4−160pT6+3590T8−5391T10+51607T12−1265760T14+13240480T16−1265760p2T18+51607p4T20−5391p6T22+3590p8T24−160p11T26+170p12T28−17p14T30+p16T32 |
| 13 | (1+5T+42T2+150T3+620T4+1455T5+387T6−3650T7−65036T8−3650pT9+387p2T10+1455p3T11+620p4T12+150p5T13+42p6T14+5p7T15+p8T16)2 |
| 17 | (1+5T+10T2+486T4+2555T5+10495T6+25600T7+143056T8+25600pT9+10495p2T10+2555p3T11+486p4T12+10p6T14+5p7T15+p8T16)2 |
| 19 | 1+30T2+1233T4+23510T6+411393T8+1849230T10−90963349T12−3587444450T14−90905039420T16−3587444450p2T18−90963349p4T20+1849230p6T22+411393p8T24+23510p10T26+1233p12T28+30p14T30+p16T32 |
| 23 | (1−96T2+4732T4−162208T6+4234310T8−162208p2T10+4732p4T12−96p6T14+p8T16)2 |
| 29 | (1+5T+78T2+550T3+3768T4+26695T5+166131T6+945350T7+5661780T8+945350pT9+166131p2T10+26695p3T11+3768p4T12+550p5T13+78p6T14+5p7T15+p8T16)2 |
| 31 | 1+13T2+46T4−39168T6−244734T8+28347139T10+776025319T12−11750120144T14−1558123543328T16−11750120144p2T18+776025319p4T20+28347139p6T22−244734p8T24−39168p10T26+46p12T28+13p14T30+p16T32 |
| 37 | (1−9T+58T2−288T3+2826T4−8739T5+5135T6+158436T7+832784T8+158436pT9+5135p2T10−8739p3T11+2826p4T12−288p5T13+58p6T14−9p7T15+p8T16)2 |
| 41 | (1−5T+8T2−540T3+2928T4−5515T5+91991T6−523800T7+1936120T8−523800pT9+91991p2T10−5515p3T11+2928p4T12−540p5T13+8p6T14−5p7T15+p8T16)2 |
| 43 | (1+201T2+20307T4+1361163T6+67236960T8+1361163p2T10+20307p4T12+201p6T14+p8T16)2 |
| 47 | 1+59T2+1174T4−129116T6−4850414T8+212153137T10+11841271291T12−458606392528T14−66560830358008T16−458606392528p2T18+11841271291p4T20+212153137p6T22−4850414p8T24−129116p10T26+1174p12T28+59p14T30+p16T32 |
| 53 | (1−19T+56T2+1024T3−7582T4+24781T5−179211T6−1855738T7+36671448T8−1855738pT9−179211p2T10+24781p3T11−7582p4T12+1024p5T13+56p6T14−19p7T15+p8T16)2 |
| 59 | 1+350T2+56233T4+5299950T6+306491273T8+9575397350T10−4883294509T12−17205708063250T14−1208178268282700T16−17205708063250p2T18−4883294509p4T20+9575397350p6T22+306491273p8T24+5299950p10T26+56233p12T28+350p14T30+p16T32 |
| 61 | (1+5T−4T2+340T3+6550T4+21685T5+106569T6+2625650T7+27744944T8+2625650pT9+106569p2T10+21685p3T11+6550p4T12+340p5T13−4p6T14+5p7T15+p8T16)2 |
| 67 | (1−351T2+61547T4−6900053T6+544631520T8−6900053p2T10+61547p4T12−351p6T14+p8T16)2 |
| 71 | 1+285T2+39458T4+3119420T6+118131358T8+404779135T10+205412628291T12+73614429095400T14+7731123817186280T16+73614429095400p2T18+205412628291p4T20+404779135p6T22+118131358p8T24+3119420p10T26+39458p12T28+285p14T30+p16T32 |
| 73 | (1+15T+182T2+960T3+8490T4+51585T5+875047T6+4632960T7+56899184T8+4632960pT9+875047p2T10+51585p3T11+8490p4T12+960p5T13+182p6T14+15p7T15+p8T16)2 |
| 79 | 1−175T2+25018T4−2721680T6+276506938T8−24540773525T10+2169836003371T12−177413374417900T14+14750049423098000T16−177413374417900p2T18+2169836003371p4T20−24540773525p6T22+276506938p8T24−2721680p10T26+25018p12T28−175p14T30+p16T32 |
| 83 | 1−432T2+87375T4−11521130T6+1183958625T8−112754321886T10+11335103772317T12−1139715862795000T14+102156150284526820T16−1139715862795000p2T18+11335103772317p4T20−112754321886p6T22+1183958625p8T24−11521130p10T26+87375p12T28−432p14T30+p16T32 |
| 89 | (1+9T+337T2+2217T3+44260T4+2217pT5+337p2T6+9p3T7+p4T8)4 |
| 97 | (1+17T+87T2+1195T3+20696T4+1195pT5+87p2T6+17p3T7+p4T8)4 |
show more | |
show less | |
L(s)=p∏ j=1∏32(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.48796192545704803665547124242, −5.42921536950679246297502834054, −5.38726880851750830540119245571, −5.02909577387759671992870111748, −4.98840083919941029063903722522, −4.77211385045028668663464353930, −4.65681933478518202795766550077, −4.60794759224348415695938603222, −4.54091099639989253225350124466, −4.21844425640318850237605637302, −4.13958081293968062323330834959, −4.12555725224630642994296772726, −3.88494080891157511628563271071, −3.77428715166864530891938463609, −3.76763754896625893689228736800, −3.29789081753004457615719220340, −3.20137025099284401050165051776, −3.16150572257945797452774858010, −2.76082777466018957972996401558, −2.61795708095079875935400015112, −2.60254900193392084902177184120, −2.58412155340676958706680891206, −2.43970731718250358503347518610, −2.26086986162037297193259723631, −1.30057736695860585162283973664,
1.30057736695860585162283973664, 2.26086986162037297193259723631, 2.43970731718250358503347518610, 2.58412155340676958706680891206, 2.60254900193392084902177184120, 2.61795708095079875935400015112, 2.76082777466018957972996401558, 3.16150572257945797452774858010, 3.20137025099284401050165051776, 3.29789081753004457615719220340, 3.76763754896625893689228736800, 3.77428715166864530891938463609, 3.88494080891157511628563271071, 4.12555725224630642994296772726, 4.13958081293968062323330834959, 4.21844425640318850237605637302, 4.54091099639989253225350124466, 4.60794759224348415695938603222, 4.65681933478518202795766550077, 4.77211385045028668663464353930, 4.98840083919941029063903722522, 5.02909577387759671992870111748, 5.38726880851750830540119245571, 5.42921536950679246297502834054, 5.48796192545704803665547124242
Plot not available for L-functions of degree greater than 10.