Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [105,2,Mod(2,105)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(105, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([6, 3, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("105.2");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.x (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.838429221223\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −0.631395 | − | 2.35640i | 0.102851 | − | 1.72899i | −3.42191 | + | 1.97564i | −1.90893 | + | 1.16447i | −4.13914 | + | 0.849321i | 1.82148 | − | 1.91891i | 3.36596 | + | 3.36596i | −2.97884 | − | 0.355658i | 3.94925 | + | 3.76295i |
2.2 | −0.582118 | − | 2.17249i | 1.60750 | + | 0.644934i | −2.64881 | + | 1.52929i | 2.21039 | + | 0.337883i | 0.465359 | − | 3.86771i | −1.15099 | − | 2.38227i | 1.68355 | + | 1.68355i | 2.16812 | + | 2.07346i | −0.552660 | − | 4.99875i |
2.3 | −0.391246 | − | 1.46015i | −0.879005 | − | 1.49243i | −0.246919 | + | 0.142558i | 1.82416 | − | 1.29322i | −1.83527 | + | 1.86739i | −1.17707 | + | 2.36949i | −1.83305 | − | 1.83305i | −1.45470 | + | 2.62371i | −2.60200 | − | 2.15759i |
2.4 | −0.340162 | − | 1.26950i | −0.664627 | + | 1.59946i | 0.236127 | − | 0.136328i | 1.25032 | + | 1.85383i | 2.25660 | + | 0.299670i | 2.32676 | + | 1.25943i | −2.11207 | − | 2.11207i | −2.11654 | − | 2.12609i | 1.92813 | − | 2.21789i |
2.5 | −0.243110 | − | 0.907300i | −1.70312 | + | 0.315275i | 0.967960 | − | 0.558852i | −1.66520 | − | 1.49235i | 0.700094 | + | 1.46859i | 0.0144144 | − | 2.64571i | −2.07075 | − | 2.07075i | 2.80120 | − | 1.07390i | −0.949181 | + | 1.87364i |
2.6 | −0.0799329 | − | 0.298314i | 1.29105 | − | 1.15464i | 1.64945 | − | 0.952310i | −0.596180 | + | 2.15513i | −0.447643 | − | 0.292843i | −2.46856 | + | 0.951942i | −0.852694 | − | 0.852694i | 0.333606 | − | 2.98139i | 0.690558 | + | 0.00558322i |
2.7 | 0.0799329 | + | 0.298314i | 0.540759 | + | 1.64547i | 1.64945 | − | 0.952310i | 0.596180 | − | 2.15513i | −0.447643 | + | 0.292843i | −2.46856 | + | 0.951942i | 0.852694 | + | 0.852694i | −2.41516 | + | 1.77961i | 0.690558 | + | 0.00558322i |
2.8 | 0.243110 | + | 0.907300i | −1.31730 | − | 1.12459i | 0.967960 | − | 0.558852i | 1.66520 | + | 1.49235i | 0.700094 | − | 1.46859i | 0.0144144 | − | 2.64571i | 2.07075 | + | 2.07075i | 0.470578 | + | 2.96286i | −0.949181 | + | 1.87364i |
2.9 | 0.340162 | + | 1.26950i | 0.224146 | − | 1.71749i | 0.236127 | − | 0.136328i | −1.25032 | − | 1.85383i | 2.25660 | − | 0.299670i | 2.32676 | + | 1.25943i | 2.11207 | + | 2.11207i | −2.89952 | − | 0.769934i | 1.92813 | − | 2.21789i |
2.10 | 0.391246 | + | 1.46015i | −1.50746 | + | 0.852980i | −0.246919 | + | 0.142558i | −1.82416 | + | 1.29322i | −1.83527 | − | 1.86739i | −1.17707 | + | 2.36949i | 1.83305 | + | 1.83305i | 1.54485 | − | 2.57166i | −2.60200 | − | 2.15759i |
2.11 | 0.582118 | + | 2.17249i | 1.71460 | + | 0.245221i | −2.64881 | + | 1.52929i | −2.21039 | − | 0.337883i | 0.465359 | + | 3.86771i | −1.15099 | − | 2.38227i | −1.68355 | − | 1.68355i | 2.87973 | + | 0.840915i | −0.552660 | − | 4.99875i |
2.12 | 0.631395 | + | 2.35640i | −0.775426 | + | 1.54878i | −3.42191 | + | 1.97564i | 1.90893 | − | 1.16447i | −4.13914 | − | 0.849321i | 1.82148 | − | 1.91891i | −3.36596 | − | 3.36596i | −1.79743 | − | 2.40193i | 3.94925 | + | 3.76295i |
23.1 | −2.35640 | + | 0.631395i | 1.72899 | + | 0.102851i | 3.42191 | − | 1.97564i | 0.0540016 | − | 2.23542i | −4.13914 | + | 0.849321i | −1.91891 | − | 1.82148i | −3.36596 | + | 3.36596i | 2.97884 | + | 0.355658i | 1.28418 | + | 5.30163i |
23.2 | −2.17249 | + | 0.582118i | −0.644934 | + | 1.60750i | 2.64881 | − | 1.52929i | 1.39781 | + | 1.74531i | 0.465359 | − | 3.86771i | −2.38227 | + | 1.15099i | −1.68355 | + | 1.68355i | −2.16812 | − | 2.07346i | −4.05271 | − | 2.97799i |
23.3 | −1.46015 | + | 0.391246i | 1.49243 | − | 0.879005i | 0.246919 | − | 0.142558i | −0.207883 | + | 2.22638i | −1.83527 | + | 1.86739i | 2.36949 | + | 1.17707i | 1.83305 | − | 1.83305i | 1.45470 | − | 2.62371i | −0.567525 | − | 3.33219i |
23.4 | −1.26950 | + | 0.340162i | −1.59946 | − | 0.664627i | −0.236127 | + | 0.136328i | 2.23063 | + | 0.155895i | 2.25660 | + | 0.299670i | 1.25943 | − | 2.32676i | 2.11207 | − | 2.11207i | 2.11654 | + | 2.12609i | −2.88481 | + | 0.560865i |
23.5 | −0.907300 | + | 0.243110i | −0.315275 | − | 1.70312i | −0.967960 | + | 0.558852i | −2.12501 | − | 0.695932i | 0.700094 | + | 1.46859i | −2.64571 | − | 0.0144144i | 2.07075 | − | 2.07075i | −2.80120 | + | 1.07390i | 2.09721 | + | 0.114806i |
23.6 | −0.298314 | + | 0.0799329i | 1.15464 | + | 1.29105i | −1.64945 | + | 0.952310i | 1.56830 | − | 1.59387i | −0.447643 | − | 0.292843i | 0.951942 | + | 2.46856i | 0.852694 | − | 0.852694i | −0.333606 | + | 2.98139i | −0.340444 | + | 0.600832i |
23.7 | 0.298314 | − | 0.0799329i | −1.64547 | + | 0.540759i | −1.64945 | + | 0.952310i | −1.56830 | + | 1.59387i | −0.447643 | + | 0.292843i | 0.951942 | + | 2.46856i | −0.852694 | + | 0.852694i | 2.41516 | − | 1.77961i | −0.340444 | + | 0.600832i |
23.8 | 0.907300 | − | 0.243110i | 1.12459 | − | 1.31730i | −0.967960 | + | 0.558852i | 2.12501 | + | 0.695932i | 0.700094 | − | 1.46859i | −2.64571 | − | 0.0144144i | −2.07075 | + | 2.07075i | −0.470578 | − | 2.96286i | 2.09721 | + | 0.114806i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
7.c | even | 3 | 1 | inner |
15.e | even | 4 | 1 | inner |
21.h | odd | 6 | 1 | inner |
35.l | odd | 12 | 1 | inner |
105.x | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.2.x.a | ✓ | 48 |
3.b | odd | 2 | 1 | inner | 105.2.x.a | ✓ | 48 |
5.b | even | 2 | 1 | 525.2.bf.f | 48 | ||
5.c | odd | 4 | 1 | inner | 105.2.x.a | ✓ | 48 |
5.c | odd | 4 | 1 | 525.2.bf.f | 48 | ||
7.b | odd | 2 | 1 | 735.2.y.i | 48 | ||
7.c | even | 3 | 1 | inner | 105.2.x.a | ✓ | 48 |
7.c | even | 3 | 1 | 735.2.j.g | 24 | ||
7.d | odd | 6 | 1 | 735.2.j.e | 24 | ||
7.d | odd | 6 | 1 | 735.2.y.i | 48 | ||
15.d | odd | 2 | 1 | 525.2.bf.f | 48 | ||
15.e | even | 4 | 1 | inner | 105.2.x.a | ✓ | 48 |
15.e | even | 4 | 1 | 525.2.bf.f | 48 | ||
21.c | even | 2 | 1 | 735.2.y.i | 48 | ||
21.g | even | 6 | 1 | 735.2.j.e | 24 | ||
21.g | even | 6 | 1 | 735.2.y.i | 48 | ||
21.h | odd | 6 | 1 | inner | 105.2.x.a | ✓ | 48 |
21.h | odd | 6 | 1 | 735.2.j.g | 24 | ||
35.f | even | 4 | 1 | 735.2.y.i | 48 | ||
35.j | even | 6 | 1 | 525.2.bf.f | 48 | ||
35.k | even | 12 | 1 | 735.2.j.e | 24 | ||
35.k | even | 12 | 1 | 735.2.y.i | 48 | ||
35.l | odd | 12 | 1 | inner | 105.2.x.a | ✓ | 48 |
35.l | odd | 12 | 1 | 525.2.bf.f | 48 | ||
35.l | odd | 12 | 1 | 735.2.j.g | 24 | ||
105.k | odd | 4 | 1 | 735.2.y.i | 48 | ||
105.o | odd | 6 | 1 | 525.2.bf.f | 48 | ||
105.w | odd | 12 | 1 | 735.2.j.e | 24 | ||
105.w | odd | 12 | 1 | 735.2.y.i | 48 | ||
105.x | even | 12 | 1 | inner | 105.2.x.a | ✓ | 48 |
105.x | even | 12 | 1 | 525.2.bf.f | 48 | ||
105.x | even | 12 | 1 | 735.2.j.g | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.2.x.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
105.2.x.a | ✓ | 48 | 3.b | odd | 2 | 1 | inner |
105.2.x.a | ✓ | 48 | 5.c | odd | 4 | 1 | inner |
105.2.x.a | ✓ | 48 | 7.c | even | 3 | 1 | inner |
105.2.x.a | ✓ | 48 | 15.e | even | 4 | 1 | inner |
105.2.x.a | ✓ | 48 | 21.h | odd | 6 | 1 | inner |
105.2.x.a | ✓ | 48 | 35.l | odd | 12 | 1 | inner |
105.2.x.a | ✓ | 48 | 105.x | even | 12 | 1 | inner |
525.2.bf.f | 48 | 5.b | even | 2 | 1 | ||
525.2.bf.f | 48 | 5.c | odd | 4 | 1 | ||
525.2.bf.f | 48 | 15.d | odd | 2 | 1 | ||
525.2.bf.f | 48 | 15.e | even | 4 | 1 | ||
525.2.bf.f | 48 | 35.j | even | 6 | 1 | ||
525.2.bf.f | 48 | 35.l | odd | 12 | 1 | ||
525.2.bf.f | 48 | 105.o | odd | 6 | 1 | ||
525.2.bf.f | 48 | 105.x | even | 12 | 1 | ||
735.2.j.e | 24 | 7.d | odd | 6 | 1 | ||
735.2.j.e | 24 | 21.g | even | 6 | 1 | ||
735.2.j.e | 24 | 35.k | even | 12 | 1 | ||
735.2.j.e | 24 | 105.w | odd | 12 | 1 | ||
735.2.j.g | 24 | 7.c | even | 3 | 1 | ||
735.2.j.g | 24 | 21.h | odd | 6 | 1 | ||
735.2.j.g | 24 | 35.l | odd | 12 | 1 | ||
735.2.j.g | 24 | 105.x | even | 12 | 1 | ||
735.2.y.i | 48 | 7.b | odd | 2 | 1 | ||
735.2.y.i | 48 | 7.d | odd | 6 | 1 | ||
735.2.y.i | 48 | 21.c | even | 2 | 1 | ||
735.2.y.i | 48 | 21.g | even | 6 | 1 | ||
735.2.y.i | 48 | 35.f | even | 4 | 1 | ||
735.2.y.i | 48 | 35.k | even | 12 | 1 | ||
735.2.y.i | 48 | 105.k | odd | 4 | 1 | ||
735.2.y.i | 48 | 105.w | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(105, [\chi])\).