Properties

Label 126.2.t.a.59.2
Level $126$
Weight $2$
Character 126.59
Analytic conductor $1.006$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(47,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 59.2
Root \(1.71298 + 0.256290i\) of defining polynomial
Character \(\chi\) \(=\) 126.59
Dual form 126.2.t.a.47.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.128499 - 1.72728i) q^{3} +(0.500000 + 0.866025i) q^{4} -3.61932 q^{5} +(-0.752355 + 1.56012i) q^{6} +(0.266972 - 2.63225i) q^{7} -1.00000i q^{8} +(-2.96698 + 0.443907i) q^{9} +(3.13442 + 1.80966i) q^{10} +2.00379i q^{11} +(1.43162 - 0.974922i) q^{12} +(-2.95206 - 1.70437i) q^{13} +(-1.54733 + 2.14611i) q^{14} +(0.465079 + 6.25156i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.08709 - 5.34700i) q^{17} +(2.79143 + 1.09905i) q^{18} +(0.877353 - 0.506540i) q^{19} +(-1.80966 - 3.13442i) q^{20} +(-4.58093 - 0.122894i) q^{21} +(1.00190 - 1.73534i) q^{22} -3.02799i q^{23} +(-1.72728 + 0.128499i) q^{24} +8.09945 q^{25} +(1.70437 + 2.95206i) q^{26} +(1.14800 + 5.06775i) q^{27} +(2.41308 - 1.08492i) q^{28} +(5.04560 - 2.91308i) q^{29} +(2.72301 - 5.64655i) q^{30} +(0.787812 - 0.454844i) q^{31} +(0.866025 - 0.500000i) q^{32} +(3.46111 - 0.257486i) q^{33} +(-5.34700 + 3.08709i) q^{34} +(-0.966257 + 9.52693i) q^{35} +(-1.86792 - 2.34752i) q^{36} +(3.66825 + 6.35359i) q^{37} -1.01308 q^{38} +(-2.56459 + 5.31804i) q^{39} +3.61932i q^{40} +(2.85045 - 4.93712i) q^{41} +(3.90575 + 2.39689i) q^{42} +(-2.39949 - 4.15605i) q^{43} +(-1.73534 + 1.00190i) q^{44} +(10.7384 - 1.60664i) q^{45} +(-1.51400 + 2.62232i) q^{46} +(-1.11511 + 1.93143i) q^{47} +(1.56012 + 0.752355i) q^{48} +(-6.85745 - 1.40547i) q^{49} +(-7.01433 - 4.04972i) q^{50} +(-9.63244 - 4.64518i) q^{51} -3.40874i q^{52} +(-7.58088 - 4.37683i) q^{53} +(1.53967 - 4.96280i) q^{54} -7.25237i q^{55} +(-2.63225 - 0.266972i) q^{56} +(-0.987674 - 1.45034i) q^{57} -5.82616 q^{58} +(4.49313 + 7.78233i) q^{59} +(-5.18147 + 3.52855i) q^{60} +(-12.7410 - 7.35603i) q^{61} -0.909687 q^{62} +(0.376373 + 7.92833i) q^{63} -1.00000 q^{64} +(10.6844 + 6.16866i) q^{65} +(-3.12615 - 1.50757i) q^{66} +(4.15821 + 7.20222i) q^{67} +6.17418 q^{68} +(-5.23019 + 0.389094i) q^{69} +(5.60027 - 7.76744i) q^{70} +0.466287i q^{71} +(0.443907 + 2.96698i) q^{72} +(-3.65022 - 2.10746i) q^{73} -7.33650i q^{74} +(-1.04077 - 13.9900i) q^{75} +(0.877353 + 0.506540i) q^{76} +(5.27448 + 0.534957i) q^{77} +(4.88001 - 3.32326i) q^{78} +(-1.91267 + 3.31284i) q^{79} +(1.80966 - 3.13442i) q^{80} +(8.60589 - 2.63412i) q^{81} +(-4.93712 + 2.85045i) q^{82} +(4.00481 + 6.93654i) q^{83} +(-2.18403 - 4.02865i) q^{84} +(-11.1732 + 19.3525i) q^{85} +4.79899i q^{86} +(-5.68005 - 8.34083i) q^{87} +2.00379 q^{88} +(2.39324 + 4.14521i) q^{89} +(-10.1031 - 3.97782i) q^{90} +(-5.27445 + 7.31553i) q^{91} +(2.62232 - 1.51400i) q^{92} +(-0.886874 - 1.30232i) q^{93} +(1.93143 - 1.11511i) q^{94} +(-3.17542 + 1.83333i) q^{95} +(-0.974922 - 1.43162i) q^{96} +(10.1835 - 5.87944i) q^{97} +(5.23599 + 4.64590i) q^{98} +(-0.889499 - 5.94521i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 2 q^{7} - 6 q^{9} - 6 q^{13} - 6 q^{14} - 18 q^{15} - 8 q^{16} + 18 q^{17} + 12 q^{18} - 18 q^{21} - 6 q^{24} + 16 q^{25} - 12 q^{26} - 36 q^{27} - 2 q^{28} + 6 q^{29} - 18 q^{30} + 6 q^{31}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −0.128499 1.72728i −0.0741890 0.997244i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −3.61932 −1.61861 −0.809304 0.587391i \(-0.800155\pi\)
−0.809304 + 0.587391i \(0.800155\pi\)
\(6\) −0.752355 + 1.56012i −0.307148 + 0.636915i
\(7\) 0.266972 2.63225i 0.100906 0.994896i
\(8\) 1.00000i 0.353553i
\(9\) −2.96698 + 0.443907i −0.988992 + 0.147969i
\(10\) 3.13442 + 1.80966i 0.991190 + 0.572264i
\(11\) 2.00379i 0.604167i 0.953281 + 0.302083i \(0.0976821\pi\)
−0.953281 + 0.302083i \(0.902318\pi\)
\(12\) 1.43162 0.974922i 0.413272 0.281436i
\(13\) −2.95206 1.70437i −0.818754 0.472708i 0.0312328 0.999512i \(-0.490057\pi\)
−0.849987 + 0.526804i \(0.823390\pi\)
\(14\) −1.54733 + 2.14611i −0.413541 + 0.573571i
\(15\) 0.465079 + 6.25156i 0.120083 + 1.61415i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.08709 5.34700i 0.748730 1.29684i −0.199702 0.979857i \(-0.563998\pi\)
0.948432 0.316981i \(-0.102669\pi\)
\(18\) 2.79143 + 1.09905i 0.657946 + 0.259049i
\(19\) 0.877353 0.506540i 0.201279 0.116208i −0.395973 0.918262i \(-0.629593\pi\)
0.597252 + 0.802054i \(0.296259\pi\)
\(20\) −1.80966 3.13442i −0.404652 0.700877i
\(21\) −4.58093 0.122894i −0.999640 0.0268176i
\(22\) 1.00190 1.73534i 0.213605 0.369975i
\(23\) 3.02799i 0.631380i −0.948862 0.315690i \(-0.897764\pi\)
0.948862 0.315690i \(-0.102236\pi\)
\(24\) −1.72728 + 0.128499i −0.352579 + 0.0262298i
\(25\) 8.09945 1.61989
\(26\) 1.70437 + 2.95206i 0.334255 + 0.578946i
\(27\) 1.14800 + 5.06775i 0.220934 + 0.975289i
\(28\) 2.41308 1.08492i 0.456029 0.205030i
\(29\) 5.04560 2.91308i 0.936945 0.540945i 0.0479434 0.998850i \(-0.484733\pi\)
0.889001 + 0.457905i \(0.151400\pi\)
\(30\) 2.72301 5.64655i 0.497152 1.03091i
\(31\) 0.787812 0.454844i 0.141495 0.0816923i −0.427581 0.903977i \(-0.640634\pi\)
0.569076 + 0.822285i \(0.307301\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 3.46111 0.257486i 0.602502 0.0448225i
\(34\) −5.34700 + 3.08709i −0.917003 + 0.529432i
\(35\) −0.966257 + 9.52693i −0.163327 + 1.61035i
\(36\) −1.86792 2.34752i −0.311320 0.391254i
\(37\) 3.66825 + 6.35359i 0.603056 + 1.04452i 0.992355 + 0.123413i \(0.0393839\pi\)
−0.389299 + 0.921111i \(0.627283\pi\)
\(38\) −1.01308 −0.164343
\(39\) −2.56459 + 5.31804i −0.410663 + 0.851567i
\(40\) 3.61932i 0.572264i
\(41\) 2.85045 4.93712i 0.445165 0.771048i −0.552899 0.833248i \(-0.686478\pi\)
0.998064 + 0.0622002i \(0.0198117\pi\)
\(42\) 3.90575 + 2.39689i 0.602671 + 0.369849i
\(43\) −2.39949 4.15605i −0.365919 0.633791i 0.623004 0.782219i \(-0.285912\pi\)
−0.988923 + 0.148428i \(0.952579\pi\)
\(44\) −1.73534 + 1.00190i −0.261612 + 0.151042i
\(45\) 10.7384 1.60664i 1.60079 0.239504i
\(46\) −1.51400 + 2.62232i −0.223227 + 0.386640i
\(47\) −1.11511 + 1.93143i −0.162655 + 0.281727i −0.935820 0.352478i \(-0.885339\pi\)
0.773165 + 0.634205i \(0.218673\pi\)
\(48\) 1.56012 + 0.752355i 0.225183 + 0.108593i
\(49\) −6.85745 1.40547i −0.979636 0.200782i
\(50\) −7.01433 4.04972i −0.991975 0.572717i
\(51\) −9.63244 4.64518i −1.34881 0.650455i
\(52\) 3.40874i 0.472708i
\(53\) −7.58088 4.37683i −1.04131 0.601203i −0.121109 0.992639i \(-0.538645\pi\)
−0.920205 + 0.391436i \(0.871978\pi\)
\(54\) 1.53967 4.96280i 0.209523 0.675352i
\(55\) 7.25237i 0.977909i
\(56\) −2.63225 0.266972i −0.351749 0.0356757i
\(57\) −0.987674 1.45034i −0.130821 0.192103i
\(58\) −5.82616 −0.765012
\(59\) 4.49313 + 7.78233i 0.584956 + 1.01317i 0.994881 + 0.101054i \(0.0322216\pi\)
−0.409925 + 0.912119i \(0.634445\pi\)
\(60\) −5.18147 + 3.52855i −0.668925 + 0.455534i
\(61\) −12.7410 7.35603i −1.63132 0.941843i −0.983686 0.179892i \(-0.942425\pi\)
−0.647634 0.761952i \(-0.724241\pi\)
\(62\) −0.909687 −0.115530
\(63\) 0.376373 + 7.92833i 0.0474185 + 0.998875i
\(64\) −1.00000 −0.125000
\(65\) 10.6844 + 6.16866i 1.32524 + 0.765128i
\(66\) −3.12615 1.50757i −0.384803 0.185569i
\(67\) 4.15821 + 7.20222i 0.508006 + 0.879892i 0.999957 + 0.00926908i \(0.00295048\pi\)
−0.491951 + 0.870623i \(0.663716\pi\)
\(68\) 6.17418 0.748730
\(69\) −5.23019 + 0.389094i −0.629640 + 0.0468415i
\(70\) 5.60027 7.76744i 0.669360 0.928386i
\(71\) 0.466287i 0.0553381i 0.999617 + 0.0276691i \(0.00880846\pi\)
−0.999617 + 0.0276691i \(0.991192\pi\)
\(72\) 0.443907 + 2.96698i 0.0523149 + 0.349661i
\(73\) −3.65022 2.10746i −0.427226 0.246659i 0.270938 0.962597i \(-0.412666\pi\)
−0.698164 + 0.715938i \(0.746000\pi\)
\(74\) 7.33650i 0.852850i
\(75\) −1.04077 13.9900i −0.120178 1.61543i
\(76\) 0.877353 + 0.506540i 0.100639 + 0.0581041i
\(77\) 5.27448 + 0.534957i 0.601083 + 0.0609641i
\(78\) 4.88001 3.32326i 0.552553 0.376285i
\(79\) −1.91267 + 3.31284i −0.215192 + 0.372723i −0.953332 0.301924i \(-0.902371\pi\)
0.738140 + 0.674648i \(0.235704\pi\)
\(80\) 1.80966 3.13442i 0.202326 0.350439i
\(81\) 8.60589 2.63412i 0.956210 0.292680i
\(82\) −4.93712 + 2.85045i −0.545213 + 0.314779i
\(83\) 4.00481 + 6.93654i 0.439585 + 0.761384i 0.997657 0.0684084i \(-0.0217921\pi\)
−0.558072 + 0.829792i \(0.688459\pi\)
\(84\) −2.18403 4.02865i −0.238298 0.439561i
\(85\) −11.1732 + 19.3525i −1.21190 + 2.09907i
\(86\) 4.79899i 0.517488i
\(87\) −5.68005 8.34083i −0.608965 0.894230i
\(88\) 2.00379 0.213605
\(89\) 2.39324 + 4.14521i 0.253683 + 0.439391i 0.964537 0.263948i \(-0.0850248\pi\)
−0.710854 + 0.703339i \(0.751691\pi\)
\(90\) −10.1031 3.97782i −1.06496 0.419299i
\(91\) −5.27445 + 7.31553i −0.552912 + 0.766876i
\(92\) 2.62232 1.51400i 0.273396 0.157845i
\(93\) −0.886874 1.30232i −0.0919646 0.135045i
\(94\) 1.93143 1.11511i 0.199211 0.115015i
\(95\) −3.17542 + 1.83333i −0.325791 + 0.188096i
\(96\) −0.974922 1.43162i −0.0995026 0.146114i
\(97\) 10.1835 5.87944i 1.03398 0.596967i 0.115856 0.993266i \(-0.463039\pi\)
0.918121 + 0.396299i \(0.129706\pi\)
\(98\) 5.23599 + 4.64590i 0.528915 + 0.469307i
\(99\) −0.889499 5.94521i −0.0893980 0.597516i
\(100\) 4.04972 + 7.01433i 0.404972 + 0.701433i
\(101\) −12.8922 −1.28282 −0.641411 0.767197i \(-0.721651\pi\)
−0.641411 + 0.767197i \(0.721651\pi\)
\(102\) 6.01935 + 8.83906i 0.596004 + 0.875198i
\(103\) 10.7588i 1.06010i −0.847968 0.530048i \(-0.822174\pi\)
0.847968 0.530048i \(-0.177826\pi\)
\(104\) −1.70437 + 2.95206i −0.167127 + 0.289473i
\(105\) 16.5798 + 0.444792i 1.61803 + 0.0434072i
\(106\) 4.37683 + 7.58088i 0.425115 + 0.736321i
\(107\) 2.28602 1.31983i 0.220998 0.127593i −0.385414 0.922744i \(-0.625942\pi\)
0.606412 + 0.795151i \(0.292608\pi\)
\(108\) −3.81480 + 3.52808i −0.367079 + 0.339489i
\(109\) 4.51768 7.82484i 0.432715 0.749484i −0.564391 0.825507i \(-0.690889\pi\)
0.997106 + 0.0760233i \(0.0242224\pi\)
\(110\) −3.62618 + 6.28073i −0.345743 + 0.598844i
\(111\) 10.5031 7.15251i 0.996905 0.678886i
\(112\) 2.14611 + 1.54733i 0.202788 + 0.146209i
\(113\) −1.46411 0.845306i −0.137732 0.0795197i 0.429551 0.903043i \(-0.358672\pi\)
−0.567283 + 0.823523i \(0.692005\pi\)
\(114\) 0.130180 + 1.74987i 0.0121925 + 0.163890i
\(115\) 10.9593i 1.02196i
\(116\) 5.04560 + 2.91308i 0.468472 + 0.270473i
\(117\) 9.51527 + 3.74639i 0.879687 + 0.346354i
\(118\) 8.98627i 0.827253i
\(119\) −13.2505 9.55349i −1.21467 0.875767i
\(120\) 6.25156 0.465079i 0.570687 0.0424557i
\(121\) 6.98481 0.634982
\(122\) 7.35603 + 12.7410i 0.665984 + 1.15352i
\(123\) −8.89405 4.28910i −0.801950 0.386735i
\(124\) 0.787812 + 0.454844i 0.0707476 + 0.0408462i
\(125\) −11.2179 −1.00336
\(126\) 3.63821 7.05432i 0.324118 0.628449i
\(127\) 17.9292 1.59096 0.795478 0.605983i \(-0.207220\pi\)
0.795478 + 0.605983i \(0.207220\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −6.87031 + 4.67864i −0.604897 + 0.411931i
\(130\) −6.16866 10.6844i −0.541027 0.937087i
\(131\) 17.3313 1.51425 0.757123 0.653272i \(-0.226604\pi\)
0.757123 + 0.653272i \(0.226604\pi\)
\(132\) 1.95354 + 2.86867i 0.170034 + 0.249685i
\(133\) −1.09911 2.44464i −0.0953049 0.211977i
\(134\) 8.31641i 0.718429i
\(135\) −4.15499 18.3418i −0.357605 1.57861i
\(136\) −5.34700 3.08709i −0.458501 0.264716i
\(137\) 0 0.000645123i 0 5.51166e-5i −1.00000 2.75583e-5i \(-0.999991\pi\)
1.00000 2.75583e-5i \(-8.77208e-6\pi\)
\(138\) 4.72402 + 2.27813i 0.402135 + 0.193927i
\(139\) 8.73273 + 5.04185i 0.740701 + 0.427644i 0.822324 0.569019i \(-0.192677\pi\)
−0.0816233 + 0.996663i \(0.526010\pi\)
\(140\) −8.73370 + 3.92666i −0.738132 + 0.331864i
\(141\) 3.47940 + 1.67792i 0.293018 + 0.141306i
\(142\) 0.233144 0.403817i 0.0195650 0.0338875i
\(143\) 3.41521 5.91532i 0.285594 0.494664i
\(144\) 1.09905 2.79143i 0.0915878 0.232619i
\(145\) −18.2616 + 10.5434i −1.51655 + 0.875578i
\(146\) 2.10746 + 3.65022i 0.174414 + 0.302095i
\(147\) −1.54647 + 12.0253i −0.127550 + 0.991832i
\(148\) −3.66825 + 6.35359i −0.301528 + 0.522262i
\(149\) 11.2475i 0.921433i −0.887547 0.460716i \(-0.847593\pi\)
0.887547 0.460716i \(-0.152407\pi\)
\(150\) −6.09366 + 12.6361i −0.497545 + 1.03173i
\(151\) −4.72379 −0.384417 −0.192208 0.981354i \(-0.561565\pi\)
−0.192208 + 0.981354i \(0.561565\pi\)
\(152\) −0.506540 0.877353i −0.0410858 0.0711627i
\(153\) −6.78575 + 17.2348i −0.548596 + 1.39335i
\(154\) −4.30036 3.10053i −0.346533 0.249848i
\(155\) −2.85134 + 1.64622i −0.229025 + 0.132228i
\(156\) −5.88785 + 0.438020i −0.471405 + 0.0350697i
\(157\) 2.65845 1.53486i 0.212168 0.122495i −0.390151 0.920751i \(-0.627577\pi\)
0.602318 + 0.798256i \(0.294244\pi\)
\(158\) 3.31284 1.91267i 0.263555 0.152164i
\(159\) −6.58586 + 13.6567i −0.522292 + 1.08305i
\(160\) −3.13442 + 1.80966i −0.247798 + 0.143066i
\(161\) −7.97043 0.808390i −0.628158 0.0637101i
\(162\) −8.76998 2.02173i −0.689035 0.158842i
\(163\) −1.43687 2.48873i −0.112544 0.194932i 0.804251 0.594289i \(-0.202567\pi\)
−0.916795 + 0.399357i \(0.869233\pi\)
\(164\) 5.70089 0.445165
\(165\) −12.5268 + 0.931922i −0.975214 + 0.0725500i
\(166\) 8.00963i 0.621668i
\(167\) −0.730517 + 1.26529i −0.0565291 + 0.0979113i −0.892905 0.450245i \(-0.851337\pi\)
0.836376 + 0.548156i \(0.184670\pi\)
\(168\) −0.122894 + 4.58093i −0.00948147 + 0.353426i
\(169\) −0.690233 1.19552i −0.0530948 0.0919630i
\(170\) 19.3525 11.1732i 1.48427 0.856942i
\(171\) −2.37823 + 1.89236i −0.181868 + 0.144712i
\(172\) 2.39949 4.15605i 0.182960 0.316896i
\(173\) −1.53541 + 2.65940i −0.116735 + 0.202191i −0.918472 0.395486i \(-0.870576\pi\)
0.801737 + 0.597677i \(0.203909\pi\)
\(174\) 0.748656 + 10.0634i 0.0567554 + 0.762904i
\(175\) 2.16233 21.3197i 0.163457 1.61162i
\(176\) −1.73534 1.00190i −0.130806 0.0755209i
\(177\) 12.8649 8.76091i 0.966984 0.658510i
\(178\) 4.78647i 0.358761i
\(179\) −16.7310 9.65966i −1.25054 0.721997i −0.279320 0.960198i \(-0.590109\pi\)
−0.971216 + 0.238201i \(0.923442\pi\)
\(180\) 6.76060 + 8.49643i 0.503906 + 0.633286i
\(181\) 7.89318i 0.586695i 0.956006 + 0.293348i \(0.0947693\pi\)
−0.956006 + 0.293348i \(0.905231\pi\)
\(182\) 8.22557 3.69821i 0.609720 0.274130i
\(183\) −11.0687 + 22.9525i −0.818222 + 1.69670i
\(184\) −3.02799 −0.223227
\(185\) −13.2765 22.9957i −0.976111 1.69067i
\(186\) 0.116894 + 1.57128i 0.00857108 + 0.115212i
\(187\) 10.7143 + 6.18590i 0.783506 + 0.452358i
\(188\) −2.23022 −0.162655
\(189\) 13.6461 1.66888i 0.992604 0.121393i
\(190\) 3.66666 0.266007
\(191\) 11.5218 + 6.65211i 0.833688 + 0.481330i 0.855114 0.518441i \(-0.173487\pi\)
−0.0214259 + 0.999770i \(0.506821\pi\)
\(192\) 0.128499 + 1.72728i 0.00927362 + 0.124656i
\(193\) −3.26786 5.66011i −0.235226 0.407423i 0.724112 0.689682i \(-0.242250\pi\)
−0.959338 + 0.282259i \(0.908916\pi\)
\(194\) −11.7589 −0.844239
\(195\) 9.28205 19.2476i 0.664701 1.37835i
\(196\) −2.21155 6.64146i −0.157968 0.474390i
\(197\) 4.44250i 0.316515i −0.987398 0.158258i \(-0.949412\pi\)
0.987398 0.158258i \(-0.0505876\pi\)
\(198\) −2.20228 + 5.59345i −0.156509 + 0.397509i
\(199\) 9.96868 + 5.75542i 0.706661 + 0.407991i 0.809823 0.586674i \(-0.199563\pi\)
−0.103163 + 0.994665i \(0.532896\pi\)
\(200\) 8.09945i 0.572717i
\(201\) 11.9059 8.10786i 0.839779 0.571884i
\(202\) 11.1650 + 6.44610i 0.785565 + 0.453546i
\(203\) −6.32091 14.0590i −0.443641 0.986747i
\(204\) −0.793376 10.6645i −0.0555475 0.746666i
\(205\) −10.3167 + 17.8690i −0.720547 + 1.24802i
\(206\) −5.37940 + 9.31740i −0.374801 + 0.649174i
\(207\) 1.34415 + 8.98399i 0.0934247 + 0.624430i
\(208\) 2.95206 1.70437i 0.204688 0.118177i
\(209\) 1.01500 + 1.75804i 0.0702092 + 0.121606i
\(210\) −14.1362 8.67511i −0.975487 0.598640i
\(211\) 11.3005 19.5731i 0.777961 1.34747i −0.155155 0.987890i \(-0.549588\pi\)
0.933115 0.359577i \(-0.117079\pi\)
\(212\) 8.75365i 0.601203i
\(213\) 0.805408 0.0599175i 0.0551856 0.00410548i
\(214\) −2.63967 −0.180444
\(215\) 8.68453 + 15.0420i 0.592280 + 1.02586i
\(216\) 5.06775 1.14800i 0.344817 0.0781118i
\(217\) −0.986937 2.19515i −0.0669976 0.149016i
\(218\) −7.82484 + 4.51768i −0.529965 + 0.305976i
\(219\) −3.17111 + 6.57576i −0.214284 + 0.444348i
\(220\) 6.28073 3.62618i 0.423447 0.244477i
\(221\) −18.2265 + 10.5231i −1.22605 + 0.707860i
\(222\) −12.6722 + 0.942733i −0.850500 + 0.0632721i
\(223\) −16.2994 + 9.41045i −1.09149 + 0.630170i −0.933972 0.357346i \(-0.883682\pi\)
−0.157515 + 0.987517i \(0.550348\pi\)
\(224\) −1.08492 2.41308i −0.0724892 0.161231i
\(225\) −24.0309 + 3.59540i −1.60206 + 0.239693i
\(226\) 0.845306 + 1.46411i 0.0562289 + 0.0973914i
\(227\) −14.6133 −0.969919 −0.484960 0.874537i \(-0.661166\pi\)
−0.484960 + 0.874537i \(0.661166\pi\)
\(228\) 0.762196 1.58052i 0.0504777 0.104673i
\(229\) 2.37919i 0.157221i −0.996905 0.0786106i \(-0.974952\pi\)
0.996905 0.0786106i \(-0.0250484\pi\)
\(230\) 5.47963 9.49100i 0.361316 0.625818i
\(231\) 0.246254 9.17924i 0.0162023 0.603950i
\(232\) −2.91308 5.04560i −0.191253 0.331260i
\(233\) −9.03470 + 5.21619i −0.591883 + 0.341724i −0.765842 0.643029i \(-0.777677\pi\)
0.173959 + 0.984753i \(0.444344\pi\)
\(234\) −6.36727 8.00210i −0.416241 0.523114i
\(235\) 4.03593 6.99044i 0.263275 0.456006i
\(236\) −4.49313 + 7.78233i −0.292478 + 0.506587i
\(237\) 5.96796 + 2.87801i 0.387661 + 0.186947i
\(238\) 6.69849 + 14.8988i 0.434198 + 0.965745i
\(239\) 20.5971 + 11.8917i 1.33232 + 0.769213i 0.985654 0.168777i \(-0.0539818\pi\)
0.346662 + 0.937990i \(0.387315\pi\)
\(240\) −5.64655 2.72301i −0.364483 0.175770i
\(241\) 28.6487i 1.84542i 0.385489 + 0.922712i \(0.374033\pi\)
−0.385489 + 0.922712i \(0.625967\pi\)
\(242\) −6.04902 3.49240i −0.388846 0.224500i
\(243\) −5.65571 14.5263i −0.362814 0.931862i
\(244\) 14.7121i 0.941843i
\(245\) 24.8193 + 5.08685i 1.58565 + 0.324987i
\(246\) 5.55793 + 8.16149i 0.354360 + 0.520358i
\(247\) −3.45333 −0.219730
\(248\) −0.454844 0.787812i −0.0288826 0.0500261i
\(249\) 11.4667 7.80876i 0.726673 0.494860i
\(250\) 9.71496 + 5.60894i 0.614428 + 0.354740i
\(251\) 11.0301 0.696216 0.348108 0.937454i \(-0.386824\pi\)
0.348108 + 0.937454i \(0.386824\pi\)
\(252\) −6.67794 + 4.29011i −0.420671 + 0.270252i
\(253\) 6.06748 0.381459
\(254\) −15.5271 8.96458i −0.974257 0.562488i
\(255\) 34.8628 + 16.8124i 2.18320 + 1.05283i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −15.0978 −0.941775 −0.470888 0.882193i \(-0.656066\pi\)
−0.470888 + 0.882193i \(0.656066\pi\)
\(258\) 8.28919 0.616665i 0.516062 0.0383919i
\(259\) 17.7035 7.95950i 1.10004 0.494579i
\(260\) 12.3373i 0.765128i
\(261\) −13.6770 + 10.8828i −0.846588 + 0.673629i
\(262\) −15.0094 8.66567i −0.927283 0.535367i
\(263\) 19.6385i 1.21096i −0.795859 0.605482i \(-0.792980\pi\)
0.795859 0.605482i \(-0.207020\pi\)
\(264\) −0.257486 3.46111i −0.0158472 0.213017i
\(265\) 27.4376 + 15.8411i 1.68548 + 0.973112i
\(266\) −0.270464 + 2.66668i −0.0165832 + 0.163504i
\(267\) 6.85240 4.66644i 0.419360 0.285581i
\(268\) −4.15821 + 7.20222i −0.254003 + 0.439946i
\(269\) −0.245503 + 0.425223i −0.0149686 + 0.0259263i −0.873413 0.486981i \(-0.838098\pi\)
0.858444 + 0.512907i \(0.171431\pi\)
\(270\) −5.57257 + 17.9619i −0.339136 + 1.09313i
\(271\) −12.1927 + 7.03945i −0.740653 + 0.427616i −0.822307 0.569045i \(-0.807313\pi\)
0.0816537 + 0.996661i \(0.473980\pi\)
\(272\) 3.08709 + 5.34700i 0.187182 + 0.324209i
\(273\) 13.3137 + 8.17039i 0.805782 + 0.494495i
\(274\) −0.000322562 0 0.000558693i −1.94867e−5 0 3.37519e-5i
\(275\) 16.2296i 0.978683i
\(276\) −2.95206 4.33493i −0.177693 0.260932i
\(277\) 30.7200 1.84579 0.922894 0.385054i \(-0.125817\pi\)
0.922894 + 0.385054i \(0.125817\pi\)
\(278\) −5.04185 8.73273i −0.302390 0.523755i
\(279\) −2.13551 + 1.69923i −0.127850 + 0.101730i
\(280\) 9.52693 + 0.966257i 0.569343 + 0.0577449i
\(281\) 6.86286 3.96227i 0.409404 0.236369i −0.281130 0.959670i \(-0.590709\pi\)
0.690534 + 0.723300i \(0.257376\pi\)
\(282\) −2.17429 3.19282i −0.129477 0.190130i
\(283\) −9.97303 + 5.75793i −0.592835 + 0.342273i −0.766218 0.642581i \(-0.777864\pi\)
0.173383 + 0.984855i \(0.444530\pi\)
\(284\) −0.403817 + 0.233144i −0.0239621 + 0.0138345i
\(285\) 3.57471 + 5.24925i 0.211747 + 0.310939i
\(286\) −5.91532 + 3.41521i −0.349780 + 0.201946i
\(287\) −12.2347 8.82115i −0.722193 0.520696i
\(288\) −2.34752 + 1.86792i −0.138329 + 0.110068i
\(289\) −10.5603 18.2909i −0.621192 1.07594i
\(290\) 21.0867 1.23825
\(291\) −11.4640 16.8342i −0.672031 0.986839i
\(292\) 4.21492i 0.246659i
\(293\) 2.50937 4.34636i 0.146599 0.253917i −0.783369 0.621557i \(-0.786501\pi\)
0.929968 + 0.367639i \(0.119834\pi\)
\(294\) 7.35194 9.64100i 0.428774 0.562275i
\(295\) −16.2621 28.1667i −0.946814 1.63993i
\(296\) 6.35359 3.66825i 0.369295 0.213213i
\(297\) −10.1547 + 2.30037i −0.589237 + 0.133481i
\(298\) −5.62376 + 9.74064i −0.325776 + 0.564260i
\(299\) −5.16083 + 8.93882i −0.298458 + 0.516945i
\(300\) 11.5953 7.89633i 0.669455 0.455895i
\(301\) −11.5803 + 5.20651i −0.667480 + 0.300098i
\(302\) 4.09092 + 2.36189i 0.235406 + 0.135912i
\(303\) 1.65664 + 22.2684i 0.0951712 + 1.27929i
\(304\) 1.01308i 0.0581041i
\(305\) 46.1138 + 26.6238i 2.64047 + 1.52447i
\(306\) 14.4940 11.5329i 0.828569 0.659292i
\(307\) 17.5309i 1.00054i −0.865869 0.500271i \(-0.833234\pi\)
0.865869 0.500271i \(-0.166766\pi\)
\(308\) 2.17395 + 4.83532i 0.123873 + 0.275518i
\(309\) −18.5834 + 1.38250i −1.05717 + 0.0786474i
\(310\) 3.29245 0.186998
\(311\) 8.64759 + 14.9781i 0.490360 + 0.849328i 0.999938 0.0110959i \(-0.00353200\pi\)
−0.509579 + 0.860424i \(0.670199\pi\)
\(312\) 5.31804 + 2.56459i 0.301074 + 0.145191i
\(313\) 7.78988 + 4.49749i 0.440310 + 0.254213i 0.703729 0.710468i \(-0.251517\pi\)
−0.263419 + 0.964681i \(0.584850\pi\)
\(314\) −3.06972 −0.173234
\(315\) −1.36221 28.6951i −0.0767520 1.61679i
\(316\) −3.82533 −0.215192
\(317\) −5.82002 3.36019i −0.326885 0.188727i 0.327572 0.944826i \(-0.393770\pi\)
−0.654457 + 0.756099i \(0.727103\pi\)
\(318\) 12.5319 8.53413i 0.702753 0.478570i
\(319\) 5.83721 + 10.1103i 0.326821 + 0.566071i
\(320\) 3.61932 0.202326
\(321\) −2.57347 3.77899i −0.143637 0.210923i
\(322\) 6.49840 + 4.68530i 0.362142 + 0.261102i
\(323\) 6.25494i 0.348034i
\(324\) 6.58416 + 6.13586i 0.365787 + 0.340881i
\(325\) −23.9100 13.8045i −1.32629 0.765734i
\(326\) 2.87373i 0.159161i
\(327\) −14.0962 6.79780i −0.779521 0.375919i
\(328\) −4.93712 2.85045i −0.272607 0.157390i
\(329\) 4.78629 + 3.45088i 0.263876 + 0.190253i
\(330\) 11.3145 + 5.45636i 0.622844 + 0.300363i
\(331\) 9.38725 16.2592i 0.515970 0.893686i −0.483858 0.875146i \(-0.660765\pi\)
0.999828 0.0185396i \(-0.00590167\pi\)
\(332\) −4.00481 + 6.93654i −0.219793 + 0.380692i
\(333\) −13.7040 17.2226i −0.750975 0.943792i
\(334\) 1.26529 0.730517i 0.0692338 0.0399721i
\(335\) −15.0499 26.0671i −0.822262 1.42420i
\(336\) 2.39689 3.90575i 0.130761 0.213076i
\(337\) 2.42287 4.19654i 0.131982 0.228600i −0.792458 0.609926i \(-0.791199\pi\)
0.924441 + 0.381326i \(0.124532\pi\)
\(338\) 1.38047i 0.0750874i
\(339\) −1.27194 + 2.63755i −0.0690824 + 0.143252i
\(340\) −22.3463 −1.21190
\(341\) 0.911413 + 1.57861i 0.0493558 + 0.0854868i
\(342\) 3.00578 0.449713i 0.162534 0.0243177i
\(343\) −5.53030 + 17.6753i −0.298608 + 0.954376i
\(344\) −4.15605 + 2.39949i −0.224079 + 0.129372i
\(345\) 18.9297 1.40826i 1.01914 0.0758179i
\(346\) 2.65940 1.53541i 0.142970 0.0825440i
\(347\) −15.1305 + 8.73559i −0.812247 + 0.468951i −0.847736 0.530419i \(-0.822035\pi\)
0.0354887 + 0.999370i \(0.488701\pi\)
\(348\) 4.38334 9.08948i 0.234972 0.487247i
\(349\) −20.6338 + 11.9129i −1.10450 + 0.637683i −0.937399 0.348257i \(-0.886774\pi\)
−0.167101 + 0.985940i \(0.553440\pi\)
\(350\) −12.5325 + 17.3823i −0.669890 + 0.929122i
\(351\) 5.24835 16.9169i 0.280136 0.902958i
\(352\) 1.00190 + 1.73534i 0.0534013 + 0.0924938i
\(353\) 10.0412 0.534441 0.267220 0.963635i \(-0.413895\pi\)
0.267220 + 0.963635i \(0.413895\pi\)
\(354\) −15.5218 + 1.15473i −0.824973 + 0.0613730i
\(355\) 1.68764i 0.0895707i
\(356\) −2.39324 + 4.14521i −0.126841 + 0.219696i
\(357\) −14.7989 + 24.1148i −0.783238 + 1.27629i
\(358\) 9.65966 + 16.7310i 0.510529 + 0.884262i
\(359\) 10.5353 6.08254i 0.556030 0.321024i −0.195521 0.980700i \(-0.562640\pi\)
0.751550 + 0.659676i \(0.229306\pi\)
\(360\) −1.60664 10.7384i −0.0846774 0.565965i
\(361\) −8.98683 + 15.5657i −0.472991 + 0.819245i
\(362\) 3.94659 6.83569i 0.207428 0.359276i
\(363\) −0.897541 12.0647i −0.0471087 0.633233i
\(364\) −8.97266 0.910040i −0.470295 0.0476990i
\(365\) 13.2113 + 7.62756i 0.691512 + 0.399245i
\(366\) 21.0620 14.3431i 1.10093 0.749727i
\(367\) 3.63061i 0.189516i 0.995500 + 0.0947582i \(0.0302078\pi\)
−0.995500 + 0.0947582i \(0.969792\pi\)
\(368\) 2.62232 + 1.51400i 0.136698 + 0.0789225i
\(369\) −6.26558 + 15.9136i −0.326173 + 0.828431i
\(370\) 26.5531i 1.38043i
\(371\) −13.5448 + 18.7863i −0.703210 + 0.975335i
\(372\) 0.684408 1.41922i 0.0354849 0.0735830i
\(373\) 5.49231 0.284381 0.142191 0.989839i \(-0.454585\pi\)
0.142191 + 0.989839i \(0.454585\pi\)
\(374\) −6.18590 10.7143i −0.319865 0.554023i
\(375\) 1.44149 + 19.3764i 0.0744380 + 1.00059i
\(376\) 1.93143 + 1.11511i 0.0996057 + 0.0575074i
\(377\) −19.8599 −1.02284
\(378\) −12.6523 5.37773i −0.650763 0.276601i
\(379\) −15.5960 −0.801112 −0.400556 0.916272i \(-0.631183\pi\)
−0.400556 + 0.916272i \(0.631183\pi\)
\(380\) −3.17542 1.83333i −0.162896 0.0940478i
\(381\) −2.30388 30.9686i −0.118031 1.58657i
\(382\) −6.65211 11.5218i −0.340352 0.589506i
\(383\) 9.43067 0.481885 0.240942 0.970539i \(-0.422544\pi\)
0.240942 + 0.970539i \(0.422544\pi\)
\(384\) 0.752355 1.56012i 0.0383935 0.0796143i
\(385\) −19.0900 1.93618i −0.972918 0.0986769i
\(386\) 6.53573i 0.332660i
\(387\) 8.96414 + 11.2657i 0.455673 + 0.572670i
\(388\) 10.1835 + 5.87944i 0.516989 + 0.298483i
\(389\) 6.42177i 0.325597i −0.986659 0.162798i \(-0.947948\pi\)
0.986659 0.162798i \(-0.0520520\pi\)
\(390\) −17.6623 + 12.0279i −0.894366 + 0.609058i
\(391\) −16.1907 9.34769i −0.818798 0.472733i
\(392\) −1.40547 + 6.85745i −0.0709871 + 0.346354i
\(393\) −2.22706 29.9360i −0.112340 1.51007i
\(394\) −2.22125 + 3.84732i −0.111905 + 0.193825i
\(395\) 6.92255 11.9902i 0.348311 0.603293i
\(396\) 4.70395 3.74293i 0.236383 0.188090i
\(397\) 5.99750 3.46266i 0.301006 0.173786i −0.341889 0.939740i \(-0.611067\pi\)
0.642895 + 0.765955i \(0.277733\pi\)
\(398\) −5.75542 9.96868i −0.288493 0.499685i
\(399\) −4.08134 + 2.21260i −0.204323 + 0.110769i
\(400\) −4.04972 + 7.01433i −0.202486 + 0.350716i
\(401\) 10.5869i 0.528682i −0.964429 0.264341i \(-0.914846\pi\)
0.964429 0.264341i \(-0.0851545\pi\)
\(402\) −14.3648 + 1.06865i −0.716449 + 0.0532995i
\(403\) −3.10089 −0.154466
\(404\) −6.44610 11.1650i −0.320705 0.555478i
\(405\) −31.1474 + 9.53372i −1.54773 + 0.473735i
\(406\) −1.55542 + 15.3359i −0.0771943 + 0.761107i
\(407\) −12.7313 + 7.35042i −0.631067 + 0.364347i
\(408\) −4.64518 + 9.63244i −0.229971 + 0.476877i
\(409\) 7.72792 4.46172i 0.382121 0.220618i −0.296620 0.954996i \(-0.595859\pi\)
0.678741 + 0.734378i \(0.262526\pi\)
\(410\) 17.8690 10.3167i 0.882486 0.509504i
\(411\) −0.00111431 8.28977e-5i −5.49647e−5 4.08904e-6i
\(412\) 9.31740 5.37940i 0.459035 0.265024i
\(413\) 21.6846 9.74937i 1.06703 0.479735i
\(414\) 3.32793 8.45243i 0.163559 0.415414i
\(415\) −14.4947 25.1055i −0.711516 1.23238i
\(416\) −3.40874 −0.167127
\(417\) 7.58652 15.7317i 0.371513 0.770386i
\(418\) 2.03000i 0.0992908i
\(419\) −17.1924 + 29.7781i −0.839903 + 1.45475i 0.0500724 + 0.998746i \(0.484055\pi\)
−0.889975 + 0.456009i \(0.849279\pi\)
\(420\) 7.90471 + 14.5809i 0.385710 + 0.711477i
\(421\) −17.7840 30.8028i −0.866739 1.50124i −0.865310 0.501237i \(-0.832879\pi\)
−0.00142877 0.999999i \(-0.500455\pi\)
\(422\) −19.5731 + 11.3005i −0.952803 + 0.550101i
\(423\) 2.45113 6.22550i 0.119178 0.302694i
\(424\) −4.37683 + 7.58088i −0.212557 + 0.368160i
\(425\) 25.0037 43.3077i 1.21286 2.10073i
\(426\) −0.727462 0.350814i −0.0352457 0.0169970i
\(427\) −22.7644 + 31.5737i −1.10165 + 1.52796i
\(428\) 2.28602 + 1.31983i 0.110499 + 0.0637965i
\(429\) −10.6563 5.13891i −0.514489 0.248109i
\(430\) 17.3691i 0.837610i
\(431\) 26.7338 + 15.4348i 1.28772 + 0.743466i 0.978247 0.207442i \(-0.0665138\pi\)
0.309474 + 0.950908i \(0.399847\pi\)
\(432\) −4.96280 1.53967i −0.238773 0.0740776i
\(433\) 23.2463i 1.11715i −0.829455 0.558574i \(-0.811349\pi\)
0.829455 0.558574i \(-0.188651\pi\)
\(434\) −0.242861 + 2.39452i −0.0116577 + 0.114941i
\(435\) 20.5579 + 30.1881i 0.985676 + 1.44741i
\(436\) 9.03535 0.432715
\(437\) −1.53380 2.65662i −0.0733716 0.127083i
\(438\) 6.03414 4.10922i 0.288323 0.196346i
\(439\) 19.2887 + 11.1364i 0.920601 + 0.531509i 0.883827 0.467814i \(-0.154958\pi\)
0.0367744 + 0.999324i \(0.488292\pi\)
\(440\) −7.25237 −0.345743
\(441\) 20.9698 + 1.12594i 0.998562 + 0.0536160i
\(442\) 21.0462 1.00107
\(443\) 15.5756 + 8.99259i 0.740020 + 0.427251i 0.822077 0.569377i \(-0.192815\pi\)
−0.0820566 + 0.996628i \(0.526149\pi\)
\(444\) 11.4458 + 5.51965i 0.543193 + 0.261951i
\(445\) −8.66188 15.0028i −0.410612 0.711202i
\(446\) 18.8209 0.891195
\(447\) −19.4276 + 1.44530i −0.918894 + 0.0683601i
\(448\) −0.266972 + 2.63225i −0.0126133 + 0.124362i
\(449\) 9.44363i 0.445673i 0.974856 + 0.222836i \(0.0715315\pi\)
−0.974856 + 0.222836i \(0.928468\pi\)
\(450\) 22.6090 + 8.90172i 1.06580 + 0.419631i
\(451\) 9.89297 + 5.71171i 0.465842 + 0.268954i
\(452\) 1.69061i 0.0795197i
\(453\) 0.607002 + 8.15930i 0.0285195 + 0.383357i
\(454\) 12.6555 + 7.30665i 0.593952 + 0.342918i
\(455\) 19.0899 26.4772i 0.894948 1.24127i
\(456\) −1.45034 + 0.987674i −0.0679185 + 0.0462521i
\(457\) 0.922251 1.59739i 0.0431411 0.0747225i −0.843649 0.536896i \(-0.819597\pi\)
0.886790 + 0.462173i \(0.152930\pi\)
\(458\) −1.18959 + 2.06044i −0.0555861 + 0.0962779i
\(459\) 30.6412 + 9.50623i 1.43021 + 0.443713i
\(460\) −9.49100 + 5.47963i −0.442520 + 0.255489i
\(461\) 18.1869 + 31.5007i 0.847050 + 1.46713i 0.883829 + 0.467810i \(0.154957\pi\)
−0.0367790 + 0.999323i \(0.511710\pi\)
\(462\) −4.80288 + 7.82633i −0.223450 + 0.364114i
\(463\) −15.9830 + 27.6834i −0.742794 + 1.28656i 0.208425 + 0.978038i \(0.433166\pi\)
−0.951219 + 0.308518i \(0.900167\pi\)
\(464\) 5.82616i 0.270473i
\(465\) 3.20988 + 4.71352i 0.148855 + 0.218584i
\(466\) 10.4324 0.483271
\(467\) −12.2206 21.1666i −0.565500 0.979475i −0.997003 0.0773632i \(-0.975350\pi\)
0.431503 0.902112i \(-0.357983\pi\)
\(468\) 1.51317 + 10.1137i 0.0699461 + 0.467504i
\(469\) 20.0682 9.02263i 0.926662 0.416627i
\(470\) −6.99044 + 4.03593i −0.322445 + 0.186164i
\(471\) −2.99273 4.39466i −0.137898 0.202495i
\(472\) 7.78233 4.49313i 0.358211 0.206813i
\(473\) 8.32786 4.80809i 0.382916 0.221076i
\(474\) −3.72940 5.47641i −0.171297 0.251540i
\(475\) 7.10607 4.10269i 0.326049 0.188245i
\(476\) 1.64833 16.2520i 0.0755513 0.744908i
\(477\) 24.4352 + 9.62073i 1.11881 + 0.440503i
\(478\) −11.8917 20.5971i −0.543916 0.942090i
\(479\) 10.9606 0.500805 0.250402 0.968142i \(-0.419437\pi\)
0.250402 + 0.968142i \(0.419437\pi\)
\(480\) 3.52855 + 5.18147i 0.161056 + 0.236501i
\(481\) 25.0082i 1.14028i
\(482\) 14.3243 24.8105i 0.652456 1.13009i
\(483\) −0.372122 + 13.8710i −0.0169321 + 0.631153i
\(484\) 3.49240 + 6.04902i 0.158746 + 0.274955i
\(485\) −36.8573 + 21.2796i −1.67360 + 0.966255i
\(486\) −2.36515 + 15.4080i −0.107286 + 0.698920i
\(487\) −16.8087 + 29.1136i −0.761677 + 1.31926i 0.180309 + 0.983610i \(0.442290\pi\)
−0.941986 + 0.335653i \(0.891043\pi\)
\(488\) −7.35603 + 12.7410i −0.332992 + 0.576759i
\(489\) −4.11408 + 2.80167i −0.186045 + 0.126696i
\(490\) −18.9507 16.8150i −0.856105 0.759624i
\(491\) −19.6893 11.3676i −0.888568 0.513015i −0.0150939 0.999886i \(-0.504805\pi\)
−0.873474 + 0.486871i \(0.838138\pi\)
\(492\) −0.732559 9.84702i −0.0330263 0.443938i
\(493\) 35.9718i 1.62009i
\(494\) 2.99067 + 1.72667i 0.134557 + 0.0776863i
\(495\) 3.21938 + 21.5176i 0.144700 + 0.967144i
\(496\) 0.909687i 0.0408462i
\(497\) 1.22738 + 0.124486i 0.0550557 + 0.00558395i
\(498\) −13.8348 + 1.02923i −0.619954 + 0.0461209i
\(499\) 19.5235 0.873992 0.436996 0.899463i \(-0.356042\pi\)
0.436996 + 0.899463i \(0.356042\pi\)
\(500\) −5.60894 9.71496i −0.250839 0.434466i
\(501\) 2.27938 + 1.09922i 0.101835 + 0.0491094i
\(502\) −9.55238 5.51507i −0.426343 0.246149i
\(503\) 13.6867 0.610262 0.305131 0.952310i \(-0.401300\pi\)
0.305131 + 0.952310i \(0.401300\pi\)
\(504\) 7.92833 0.376373i 0.353156 0.0167650i
\(505\) 46.6609 2.07638
\(506\) −5.25459 3.03374i −0.233595 0.134866i
\(507\) −1.97630 + 1.34585i −0.0877705 + 0.0597712i
\(508\) 8.96458 + 15.5271i 0.397739 + 0.688904i
\(509\) −2.29166 −0.101576 −0.0507881 0.998709i \(-0.516173\pi\)
−0.0507881 + 0.998709i \(0.516173\pi\)
\(510\) −21.7859 31.9914i −0.964697 1.41660i
\(511\) −6.52186 + 9.04566i −0.288510 + 0.400156i
\(512\) 1.00000i 0.0441942i
\(513\) 3.57422 + 3.86470i 0.157806 + 0.170630i
\(514\) 13.0751 + 7.54890i 0.576717 + 0.332968i
\(515\) 38.9395i 1.71588i
\(516\) −7.48698 3.61054i −0.329596 0.158945i
\(517\) −3.87018 2.23445i −0.170210 0.0982710i
\(518\) −19.3115 1.95864i −0.848497 0.0860577i
\(519\) 4.79082 + 2.31034i 0.210294 + 0.101413i
\(520\) 6.16866 10.6844i 0.270514 0.468543i
\(521\) −8.54102 + 14.7935i −0.374189 + 0.648114i −0.990205 0.139619i \(-0.955412\pi\)
0.616017 + 0.787733i \(0.288745\pi\)
\(522\) 17.2861 2.58627i 0.756591 0.113198i
\(523\) 35.7462 20.6381i 1.56307 0.902440i 0.566128 0.824317i \(-0.308441\pi\)
0.996944 0.0781229i \(-0.0248927\pi\)
\(524\) 8.66567 + 15.0094i 0.378562 + 0.655688i
\(525\) −37.1030 0.995372i −1.61931 0.0434416i
\(526\) −9.81926 + 17.0075i −0.428140 + 0.741561i
\(527\) 5.61657i 0.244662i
\(528\) −1.50757 + 3.12615i −0.0656084 + 0.136048i
\(529\) 13.8313 0.601359
\(530\) −15.8411 27.4376i −0.688094 1.19181i
\(531\) −16.7857 21.0955i −0.728435 0.915465i
\(532\) 1.56757 2.17418i 0.0679627 0.0942626i
\(533\) −16.8294 + 9.71644i −0.728961 + 0.420866i
\(534\) −8.26757 + 0.615057i −0.357773 + 0.0266161i
\(535\) −8.27382 + 4.77689i −0.357708 + 0.206523i
\(536\) 7.20222 4.15821i 0.311089 0.179607i
\(537\) −14.5350 + 30.1404i −0.627231 + 1.30065i
\(538\) 0.425223 0.245503i 0.0183327 0.0105844i
\(539\) 2.81628 13.7409i 0.121306 0.591864i
\(540\) 13.8070 12.7692i 0.594157 0.549500i
\(541\) 22.7197 + 39.3516i 0.976795 + 1.69186i 0.673880 + 0.738841i \(0.264627\pi\)
0.302915 + 0.953018i \(0.402040\pi\)
\(542\) 14.0789 0.604741
\(543\) 13.6337 1.01427i 0.585078 0.0435263i
\(544\) 6.17418i 0.264716i
\(545\) −16.3509 + 28.3206i −0.700395 + 1.21312i
\(546\) −7.44481 13.7326i −0.318609 0.587702i
\(547\) 15.1095 + 26.1705i 0.646037 + 1.11897i 0.984061 + 0.177832i \(0.0569082\pi\)
−0.338024 + 0.941138i \(0.609758\pi\)
\(548\) 0.000558693 0 0.000322562i 2.38662e−5 0 1.37791e-5i
\(549\) 41.0677 + 16.1693i 1.75273 + 0.690091i
\(550\) 8.11481 14.0553i 0.346017 0.599319i
\(551\) 2.95118 5.11160i 0.125725 0.217761i
\(552\) 0.389094 + 5.23019i 0.0165610 + 0.222612i
\(553\) 8.20958 + 5.91905i 0.349107 + 0.251704i
\(554\) −26.6043 15.3600i −1.13031 0.652585i
\(555\) −38.0139 + 25.8872i −1.61360 + 1.09885i
\(556\) 10.0837i 0.427644i
\(557\) −22.0154 12.7106i −0.932822 0.538565i −0.0451189 0.998982i \(-0.514367\pi\)
−0.887703 + 0.460417i \(0.847700\pi\)
\(558\) 2.69902 0.403817i 0.114259 0.0170949i
\(559\) 16.3585i 0.691892i
\(560\) −7.76744 5.60027i −0.328234 0.236655i
\(561\) 9.30799 19.3014i 0.392983 0.814907i
\(562\) −7.92455 −0.334277
\(563\) 1.44346 + 2.50015i 0.0608346 + 0.105369i 0.894839 0.446390i \(-0.147290\pi\)
−0.834004 + 0.551758i \(0.813957\pi\)
\(564\) 0.286581 + 3.85221i 0.0120672 + 0.162207i
\(565\) 5.29909 + 3.05943i 0.222934 + 0.128711i
\(566\) 11.5159 0.484048
\(567\) −4.63613 23.3561i −0.194699 0.980863i
\(568\) 0.466287 0.0195650
\(569\) −38.5945 22.2826i −1.61797 0.934134i −0.987445 0.157963i \(-0.949507\pi\)
−0.630523 0.776171i \(-0.717159\pi\)
\(570\) −0.471162 6.33333i −0.0197348 0.265274i
\(571\) 3.26470 + 5.65462i 0.136623 + 0.236638i 0.926216 0.376992i \(-0.123042\pi\)
−0.789593 + 0.613631i \(0.789708\pi\)
\(572\) 6.83042 0.285594
\(573\) 10.0095 20.7561i 0.418153 0.867100i
\(574\) 6.18501 + 13.7567i 0.258157 + 0.574194i
\(575\) 24.5251i 1.02277i
\(576\) 2.96698 0.443907i 0.123624 0.0184961i
\(577\) 1.17720 + 0.679658i 0.0490076 + 0.0282945i 0.524304 0.851531i \(-0.324326\pi\)
−0.475296 + 0.879826i \(0.657659\pi\)
\(578\) 21.1205i 0.878498i
\(579\) −9.35666 + 6.37183i −0.388850 + 0.264804i
\(580\) −18.2616 10.5434i −0.758273 0.437789i
\(581\) 19.3279 8.68979i 0.801855 0.360513i
\(582\) 1.51101 + 20.3109i 0.0626332 + 0.841912i
\(583\) 8.77026 15.1905i 0.363227 0.629128i
\(584\) −2.10746 + 3.65022i −0.0872072 + 0.151047i
\(585\) −34.4388 13.5594i −1.42387 0.560611i
\(586\) −4.34636 + 2.50937i −0.179547 + 0.103661i
\(587\) −22.2025 38.4559i −0.916397 1.58725i −0.804843 0.593488i \(-0.797750\pi\)
−0.111555 0.993758i \(-0.535583\pi\)
\(588\) −11.1875 + 4.67338i −0.461364 + 0.192727i
\(589\) 0.460793 0.798117i 0.0189866 0.0328858i
\(590\) 32.5241i 1.33900i
\(591\) −7.67343 + 0.570857i −0.315643 + 0.0234819i
\(592\) −7.33650 −0.301528
\(593\) −7.17564 12.4286i −0.294668 0.510380i 0.680240 0.732990i \(-0.261876\pi\)
−0.974908 + 0.222610i \(0.928542\pi\)
\(594\) 9.94444 + 3.08519i 0.408025 + 0.126587i
\(595\) 47.9576 + 34.5771i 1.96607 + 1.41752i
\(596\) 9.74064 5.62376i 0.398992 0.230358i
\(597\) 8.66024 17.9582i 0.354440 0.734982i
\(598\) 8.93882 5.16083i 0.365535 0.211042i
\(599\) −3.03349 + 1.75139i −0.123945 + 0.0715597i −0.560691 0.828025i \(-0.689464\pi\)
0.436746 + 0.899585i \(0.356131\pi\)
\(600\) −13.9900 + 1.04077i −0.571139 + 0.0424893i
\(601\) −15.1846 + 8.76685i −0.619394 + 0.357607i −0.776633 0.629953i \(-0.783074\pi\)
0.157239 + 0.987561i \(0.449741\pi\)
\(602\) 12.6321 + 1.28120i 0.514847 + 0.0522177i
\(603\) −15.5344 19.5230i −0.632610 0.795037i
\(604\) −2.36189 4.09092i −0.0961041 0.166457i
\(605\) −25.2802 −1.02779
\(606\) 9.69952 20.1133i 0.394016 0.817048i
\(607\) 0.0872864i 0.00354285i −0.999998 0.00177142i \(-0.999436\pi\)
0.999998 0.00177142i \(-0.000563862\pi\)
\(608\) 0.506540 0.877353i 0.0205429 0.0355814i
\(609\) −23.4715 + 12.7245i −0.951114 + 0.515624i
\(610\) −26.6238 46.1138i −1.07797 1.86709i
\(611\) 6.58373 3.80112i 0.266349 0.153777i
\(612\) −18.3186 + 2.74076i −0.740488 + 0.110789i
\(613\) 12.5352 21.7116i 0.506292 0.876924i −0.493681 0.869643i \(-0.664349\pi\)
0.999973 0.00728071i \(-0.00231754\pi\)
\(614\) −8.76545 + 15.1822i −0.353745 + 0.612704i
\(615\) 32.1904 + 15.5236i 1.29804 + 0.625972i
\(616\) 0.534957 5.27448i 0.0215541 0.212515i
\(617\) −10.6365 6.14101i −0.428211 0.247228i 0.270373 0.962756i \(-0.412853\pi\)
−0.698584 + 0.715528i \(0.746186\pi\)
\(618\) 16.7850 + 8.09444i 0.675191 + 0.325606i
\(619\) 20.3076i 0.816229i −0.912931 0.408115i \(-0.866186\pi\)
0.912931 0.408115i \(-0.133814\pi\)
\(620\) −2.85134 1.64622i −0.114513 0.0661139i
\(621\) 15.3451 3.47615i 0.615778 0.139493i
\(622\) 17.2952i 0.693474i
\(623\) 11.5501 5.19294i 0.462747 0.208051i
\(624\) −3.32326 4.88001i −0.133037 0.195357i
\(625\) 0.103794 0.00415176
\(626\) −4.49749 7.78988i −0.179756 0.311346i
\(627\) 2.90619 1.97910i 0.116062 0.0790375i
\(628\) 2.65845 + 1.53486i 0.106084 + 0.0612475i
\(629\) 45.2969 1.80610
\(630\) −13.1678 + 25.5318i −0.524620 + 1.01721i
\(631\) −45.9665 −1.82990 −0.914950 0.403568i \(-0.867770\pi\)
−0.914950 + 0.403568i \(0.867770\pi\)
\(632\) 3.31284 + 1.91267i 0.131778 + 0.0760818i
\(633\) −35.2603 17.0040i −1.40147 0.675850i
\(634\) 3.36019 + 5.82002i 0.133450 + 0.231143i
\(635\) −64.8913 −2.57513
\(636\) −15.1200 + 1.12484i −0.599546 + 0.0446026i
\(637\) 17.8482 + 15.8367i 0.707169 + 0.627472i
\(638\) 11.6744i 0.462195i
\(639\) −0.206988 1.38346i −0.00818833 0.0547290i
\(640\) −3.13442 1.80966i −0.123899 0.0715330i
\(641\) 31.6509i 1.25013i 0.780571 + 0.625067i \(0.214928\pi\)
−0.780571 + 0.625067i \(0.785072\pi\)
\(642\) 0.339195 + 4.55944i 0.0133869 + 0.179947i
\(643\) 10.0106 + 5.77960i 0.394778 + 0.227925i 0.684228 0.729268i \(-0.260139\pi\)
−0.289450 + 0.957193i \(0.593472\pi\)
\(644\) −3.28513 7.30679i −0.129452 0.287928i
\(645\) 24.8658 16.9335i 0.979091 0.666755i
\(646\) −3.12747 + 5.41694i −0.123049 + 0.213127i
\(647\) 13.0365 22.5799i 0.512519 0.887708i −0.487376 0.873192i \(-0.662046\pi\)
0.999895 0.0145160i \(-0.00462076\pi\)
\(648\) −2.63412 8.60589i −0.103478 0.338071i
\(649\) −15.5942 + 9.00332i −0.612126 + 0.353411i
\(650\) 13.8045 + 23.9100i 0.541456 + 0.937829i
\(651\) −3.66481 + 1.98679i −0.143635 + 0.0778684i
\(652\) 1.43687 2.48873i 0.0562720 0.0974660i
\(653\) 18.9315i 0.740847i 0.928863 + 0.370424i \(0.120788\pi\)
−0.928863 + 0.370424i \(0.879212\pi\)
\(654\) 8.80877 + 12.9352i 0.344450 + 0.505805i
\(655\) −62.7276 −2.45097
\(656\) 2.85045 + 4.93712i 0.111291 + 0.192762i
\(657\) 11.7656 + 4.63242i 0.459021 + 0.180728i
\(658\) −2.41961 5.38169i −0.0943260 0.209800i
\(659\) 23.3508 13.4816i 0.909618 0.525168i 0.0293098 0.999570i \(-0.490669\pi\)
0.880308 + 0.474402i \(0.157336\pi\)
\(660\) −7.07049 10.3826i −0.275219 0.404142i
\(661\) 22.3201 12.8865i 0.868151 0.501227i 0.00141768 0.999999i \(-0.499549\pi\)
0.866733 + 0.498772i \(0.166215\pi\)
\(662\) −16.2592 + 9.38725i −0.631931 + 0.364846i
\(663\) 20.5184 + 30.1301i 0.796869 + 1.17016i
\(664\) 6.93654 4.00481i 0.269190 0.155417i
\(665\) 3.97803 + 8.84793i 0.154261 + 0.343108i
\(666\) 3.25672 + 21.7672i 0.126195 + 0.843462i
\(667\) −8.82079 15.2780i −0.341542 0.591568i
\(668\) −1.46103 −0.0565291
\(669\) 18.3489 + 26.9443i 0.709410 + 1.04173i
\(670\) 30.0997i 1.16285i
\(671\) 14.7400 25.5304i 0.569030 0.985590i
\(672\) −4.02865 + 2.18403i −0.155408 + 0.0842510i
\(673\) −12.9608 22.4487i −0.499601 0.865335i 0.500398 0.865795i \(-0.333187\pi\)
−1.00000 0.000460130i \(0.999854\pi\)
\(674\) −4.19654 + 2.42287i −0.161645 + 0.0933256i
\(675\) 9.29820 + 41.0460i 0.357888 + 1.57986i
\(676\) 0.690233 1.19552i 0.0265474 0.0459815i
\(677\) 6.55382 11.3515i 0.251884 0.436275i −0.712161 0.702016i \(-0.752283\pi\)
0.964044 + 0.265741i \(0.0856166\pi\)
\(678\) 2.42031 1.64822i 0.0929514 0.0632993i
\(679\) −12.7574 28.3751i −0.489585 1.08894i
\(680\) 19.3525 + 11.1732i 0.742134 + 0.428471i
\(681\) 1.87780 + 25.2412i 0.0719573 + 0.967246i
\(682\) 1.82283i 0.0697996i
\(683\) −25.6910 14.8327i −0.983038 0.567557i −0.0798523 0.996807i \(-0.525445\pi\)
−0.903186 + 0.429249i \(0.858778\pi\)
\(684\) −2.82794 1.11343i −0.108129 0.0425730i
\(685\) 0.00233490i 8.92121e-5i
\(686\) 13.6270 12.5421i 0.520282 0.478859i
\(687\) −4.10952 + 0.305723i −0.156788 + 0.0116641i
\(688\) 4.79899 0.182960
\(689\) 14.9195 + 25.8413i 0.568387 + 0.984475i
\(690\) −17.0977 8.24526i −0.650899 0.313892i
\(691\) 40.9767 + 23.6579i 1.55883 + 0.899990i 0.997369 + 0.0724857i \(0.0230932\pi\)
0.561459 + 0.827504i \(0.310240\pi\)
\(692\) −3.07081 −0.116735
\(693\) −15.8867 + 0.754174i −0.603487 + 0.0286487i
\(694\) 17.4712 0.663197
\(695\) −31.6065 18.2480i −1.19890 0.692187i
\(696\) −8.34083 + 5.68005i −0.316158 + 0.215302i
\(697\) −17.5992 30.4827i −0.666616 1.15461i
\(698\) 23.8258 0.901820
\(699\) 10.1708 + 14.9352i 0.384693 + 0.564900i
\(700\) 19.5446 8.78724i 0.738717 0.332127i
\(701\) 13.7742i 0.520244i 0.965576 + 0.260122i \(0.0837627\pi\)
−0.965576 + 0.260122i \(0.916237\pi\)
\(702\) −13.0037 + 12.0263i −0.490792 + 0.453904i
\(703\) 6.43670 + 3.71623i 0.242765 + 0.140160i
\(704\) 2.00379i 0.0755209i
\(705\) −12.5930 6.07291i −0.474281 0.228719i
\(706\) −8.69596 5.02061i −0.327277 0.188953i
\(707\) −3.44186 + 33.9355i −0.129444 + 1.27627i
\(708\) 14.0196 + 6.76087i 0.526889 + 0.254089i
\(709\) 21.9691 38.0517i 0.825069 1.42906i −0.0767981 0.997047i \(-0.524470\pi\)
0.901867 0.432014i \(-0.142197\pi\)
\(710\) −0.843820 + 1.46154i −0.0316680 + 0.0548506i
\(711\) 4.20425 10.6782i 0.157672 0.400462i
\(712\) 4.14521 2.39324i 0.155348 0.0896903i
\(713\) −1.37726 2.38549i −0.0515789 0.0893373i
\(714\) 24.8736 13.4846i 0.930871 0.504649i
\(715\) −12.3607 + 21.4094i −0.462265 + 0.800667i
\(716\) 19.3193i 0.721997i
\(717\) 17.8936 37.1050i 0.668250 1.38571i
\(718\) −12.1651 −0.453997
\(719\) 14.7930 + 25.6223i 0.551687 + 0.955549i 0.998153 + 0.0607489i \(0.0193489\pi\)
−0.446466 + 0.894800i \(0.647318\pi\)
\(720\) −3.97782 + 10.1031i −0.148245 + 0.376519i
\(721\) −28.3198 2.87230i −1.05469 0.106970i
\(722\) 15.5657 8.98683i 0.579294 0.334455i
\(723\) 49.4843 3.68133i 1.84034 0.136910i
\(724\) −6.83569 + 3.94659i −0.254046 + 0.146674i
\(725\) 40.8666 23.5943i 1.51775 0.876271i
\(726\) −5.25506 + 10.8971i −0.195033 + 0.404430i
\(727\) −10.1244 + 5.84534i −0.375494 + 0.216792i −0.675856 0.737034i \(-0.736226\pi\)
0.300362 + 0.953825i \(0.402893\pi\)
\(728\) 7.31553 + 5.27445i 0.271132 + 0.195484i
\(729\) −24.3642 + 11.6356i −0.902377 + 0.430948i
\(730\) −7.62756 13.2113i −0.282308 0.488973i
\(731\) −29.6298 −1.09590
\(732\) −25.4118 + 1.89049i −0.939248 + 0.0698744i
\(733\) 33.0733i 1.22159i 0.791789 + 0.610795i \(0.209150\pi\)
−0.791789 + 0.610795i \(0.790850\pi\)
\(734\) 1.81531 3.14420i 0.0670042 0.116055i
\(735\) 5.59715 43.5234i 0.206454 1.60539i
\(736\) −1.51400 2.62232i −0.0558067 0.0966600i
\(737\) −14.4318 + 8.33219i −0.531601 + 0.306920i
\(738\) 13.3830 10.6488i 0.492634 0.391989i
\(739\) −21.7528 + 37.6770i −0.800190 + 1.38597i 0.119301 + 0.992858i \(0.461935\pi\)
−0.919491 + 0.393111i \(0.871399\pi\)
\(740\) 13.2765 22.9957i 0.488056 0.845337i
\(741\) 0.443750 + 5.96486i 0.0163016 + 0.219125i
\(742\) 21.1233 9.49700i 0.775459 0.348646i
\(743\) 18.0206 + 10.4042i 0.661112 + 0.381693i 0.792701 0.609611i \(-0.208674\pi\)
−0.131589 + 0.991304i \(0.542008\pi\)
\(744\) −1.30232 + 0.886874i −0.0477455 + 0.0325144i
\(745\) 40.7083i 1.49144i
\(746\) −4.75648 2.74616i −0.174147 0.100544i
\(747\) −14.9614 18.8028i −0.547408 0.687958i
\(748\) 12.3718i 0.452358i
\(749\) −2.86382 6.36972i −0.104642 0.232745i
\(750\) 8.43983 17.5012i 0.308179 0.639053i
\(751\) −39.8984 −1.45591 −0.727957 0.685623i \(-0.759530\pi\)
−0.727957 + 0.685623i \(0.759530\pi\)
\(752\) −1.11511 1.93143i −0.0406638 0.0704318i
\(753\) −1.41736 19.0521i −0.0516515 0.694297i
\(754\) 17.1992 + 9.92994i 0.626357 + 0.361627i
\(755\) 17.0969 0.622219
\(756\) 8.26832 + 10.9834i 0.300716 + 0.399462i
\(757\) 7.45545 0.270973 0.135486 0.990779i \(-0.456740\pi\)
0.135486 + 0.990779i \(0.456740\pi\)
\(758\) 13.5065 + 7.79800i 0.490579 + 0.283236i
\(759\) −0.779665 10.4802i −0.0283001 0.380408i
\(760\) 1.83333 + 3.17542i 0.0665018 + 0.115185i
\(761\) −8.64924 −0.313535 −0.156767 0.987636i \(-0.550107\pi\)
−0.156767 + 0.987636i \(0.550107\pi\)
\(762\) −13.4891 + 27.9716i −0.488658 + 1.01330i
\(763\) −19.3908 13.9807i −0.701995 0.506134i
\(764\) 13.3042i 0.481330i
\(765\) 24.5598 62.3782i 0.887961 2.25529i
\(766\) −8.16720 4.71534i −0.295093 0.170372i
\(767\) 30.6319i 1.10605i
\(768\) −1.43162 + 0.974922i −0.0516590 + 0.0351795i
\(769\) −20.4818 11.8252i −0.738592 0.426426i 0.0829652 0.996552i \(-0.473561\pi\)
−0.821557 + 0.570126i \(0.806894\pi\)
\(770\) 15.5644 + 11.2218i 0.560900 + 0.404405i
\(771\) 1.94005 + 26.0781i 0.0698693 + 0.939180i
\(772\) 3.26786 5.66011i 0.117613 0.203712i
\(773\) −23.2849 + 40.3307i −0.837501 + 1.45059i 0.0544774 + 0.998515i \(0.482651\pi\)
−0.891978 + 0.452079i \(0.850683\pi\)
\(774\) −2.13030 14.2385i −0.0765722 0.511792i
\(775\) 6.38084 3.68398i 0.229207 0.132333i
\(776\) −5.87944 10.1835i −0.211060 0.365566i
\(777\) −16.0232 29.5561i −0.574828 1.06032i
\(778\) −3.21089 + 5.56142i −0.115116 + 0.199387i
\(779\) 5.77546i 0.206927i
\(780\) 21.3100 1.58533i 0.763020 0.0567641i
\(781\) −0.934344 −0.0334335
\(782\) 9.34769 + 16.1907i 0.334273 + 0.578977i
\(783\) 20.5551 + 22.2256i 0.734580 + 0.794279i
\(784\) 4.64590 5.23599i 0.165925 0.187000i
\(785\) −9.62178 + 5.55513i −0.343416 + 0.198271i
\(786\) −13.0393 + 27.0389i −0.465098 + 0.964446i
\(787\) −21.1657 + 12.2200i −0.754474 + 0.435596i −0.827308 0.561748i \(-0.810129\pi\)
0.0728341 + 0.997344i \(0.476796\pi\)
\(788\) 3.84732 2.22125i 0.137055 0.0791288i
\(789\) −33.9212 + 2.52353i −1.20763 + 0.0898401i
\(790\) −11.9902 + 6.92255i −0.426592 + 0.246293i
\(791\) −2.61593 + 3.62823i −0.0930118 + 0.129005i
\(792\) −5.94521 + 0.889499i −0.211254 + 0.0316070i
\(793\) 25.0748 + 43.4309i 0.890433 + 1.54228i
\(794\) −6.92531 −0.245770
\(795\) 23.8363 49.4279i 0.845386 1.75303i
\(796\) 11.5108i 0.407991i
\(797\) 24.9202 43.1631i 0.882719 1.52891i 0.0344128 0.999408i \(-0.489044\pi\)
0.848306 0.529506i \(-0.177623\pi\)
\(798\) 4.64085 + 0.124501i 0.164284 + 0.00440730i
\(799\) 6.88489 + 11.9250i 0.243570 + 0.421875i
\(800\) 7.01433 4.04972i 0.247994 0.143179i
\(801\) −8.94076 11.2364i −0.315906 0.397017i
\(802\) −5.29343 + 9.16848i −0.186917 + 0.323750i
\(803\) 4.22291 7.31430i 0.149023 0.258116i
\(804\) 12.9746 + 6.25690i 0.457578 + 0.220664i
\(805\) 28.8475 + 2.92582i 1.01674 + 0.103122i
\(806\) 2.68545 + 1.55045i 0.0945910 + 0.0546121i
\(807\) 0.766025 + 0.369410i 0.0269654 + 0.0130039i
\(808\) 12.8922i 0.453546i
\(809\) 10.6735 + 6.16237i 0.375262 + 0.216657i 0.675755 0.737127i \(-0.263818\pi\)
−0.300493 + 0.953784i \(0.597151\pi\)
\(810\) 31.7413 + 7.31728i 1.11528 + 0.257103i
\(811\) 24.8017i 0.870906i −0.900212 0.435453i \(-0.856588\pi\)
0.900212 0.435453i \(-0.143412\pi\)
\(812\) 9.01498 12.5036i 0.316364 0.438789i
\(813\) 13.7258 + 20.1556i 0.481386 + 0.706888i
\(814\) 14.7008 0.515264
\(815\) 5.20047 + 9.00748i 0.182165 + 0.315518i
\(816\) 8.83906 6.01935i 0.309429 0.210719i
\(817\) −4.21041 2.43088i −0.147304 0.0850457i
\(818\) −8.92343 −0.312000
\(819\) 12.4017 24.0464i 0.433352 0.840248i
\(820\) −20.6333 −0.720547
\(821\) 31.3573 + 18.1041i 1.09438 + 0.631839i 0.934738 0.355336i \(-0.115634\pi\)
0.159639 + 0.987175i \(0.448967\pi\)
\(822\) 0.00100647 0.000485362i 3.51046e−5 1.69289e-5i
\(823\) 9.54093 + 16.5254i 0.332576 + 0.576038i 0.983016 0.183519i \(-0.0587489\pi\)
−0.650440 + 0.759557i \(0.725416\pi\)
\(824\) −10.7588 −0.374801
\(825\) 28.0331 2.08549i 0.975986 0.0726075i
\(826\) −23.6541 2.39908i −0.823030 0.0834748i
\(827\) 31.9013i 1.10932i 0.832079 + 0.554658i \(0.187151\pi\)
−0.832079 + 0.554658i \(0.812849\pi\)
\(828\) −7.10829 + 5.65606i −0.247030 + 0.196562i
\(829\) 13.0645 + 7.54278i 0.453748 + 0.261971i 0.709412 0.704794i \(-0.248961\pi\)
−0.255664 + 0.966766i \(0.582294\pi\)
\(830\) 28.9894i 1.00624i
\(831\) −3.94750 53.0620i −0.136937 1.84070i
\(832\) 2.95206 + 1.70437i 0.102344 + 0.0590885i
\(833\) −28.6846 + 32.3280i −0.993864 + 1.12010i
\(834\) −14.4360 + 9.83082i −0.499877 + 0.340413i
\(835\) 2.64397 4.57950i 0.0914985 0.158480i
\(836\) −1.01500 + 1.75804i −0.0351046 + 0.0608029i
\(837\) 3.20945 + 3.47027i 0.110935 + 0.119950i
\(838\) 29.7781 17.1924i 1.02867 0.593901i
\(839\) 8.19860 + 14.2004i 0.283047 + 0.490252i 0.972134 0.234427i \(-0.0753214\pi\)
−0.689087 + 0.724679i \(0.741988\pi\)
\(840\) 0.444792 16.5798i 0.0153468 0.572058i
\(841\) 2.47206 4.28173i 0.0852434 0.147646i
\(842\) 35.5680i 1.22575i
\(843\) −7.72582 11.3449i −0.266091 0.390740i
\(844\) 22.6011 0.777961
\(845\) 2.49817 + 4.32696i 0.0859397 + 0.148852i
\(846\) −5.23549 + 4.16587i −0.180000 + 0.143226i
\(847\) 1.86475 18.3857i 0.0640735 0.631741i
\(848\) 7.58088 4.37683i 0.260329 0.150301i
\(849\) 11.2271 + 16.4863i 0.385312 + 0.565808i
\(850\) −43.3077 + 25.0037i −1.48544 + 0.857621i
\(851\) 19.2386 11.1074i 0.659492 0.380758i
\(852\) 0.454594 + 0.667545i 0.0155741 + 0.0228697i
\(853\) −16.5936 + 9.58030i −0.568153 + 0.328023i −0.756411 0.654096i \(-0.773049\pi\)
0.188258 + 0.982120i \(0.439716\pi\)
\(854\) 35.5014 15.9614i 1.21483 0.546188i
\(855\) 8.60756 6.84903i 0.294372 0.234232i
\(856\) −1.31983 2.28602i −0.0451110 0.0781345i
\(857\) 16.1145 0.550460 0.275230 0.961378i \(-0.411246\pi\)
0.275230 + 0.961378i \(0.411246\pi\)
\(858\) 6.65913 + 9.77855i 0.227339 + 0.333834i
\(859\) 12.1048i 0.413009i −0.978446 0.206505i \(-0.933791\pi\)
0.978446 0.206505i \(-0.0662089\pi\)
\(860\) −8.68453 + 15.0420i −0.296140 + 0.512929i
\(861\) −13.6644 + 22.2663i −0.465682 + 0.758833i
\(862\) −15.4348 26.7338i −0.525710 0.910556i
\(863\) −32.2728 + 18.6327i −1.09858 + 0.634265i −0.935848 0.352405i \(-0.885364\pi\)
−0.162732 + 0.986670i \(0.552031\pi\)
\(864\) 3.52808 + 3.81480i 0.120028 + 0.129782i
\(865\) 5.55712 9.62522i 0.188948 0.327267i
\(866\) −11.6232 + 20.1319i −0.394971 + 0.684110i
\(867\) −30.2365 + 20.5909i −1.02689 + 0.699303i
\(868\) 1.40758 1.95229i 0.0477765 0.0662649i
\(869\) −6.63824 3.83259i −0.225187 0.130012i
\(870\) −2.70962 36.4226i −0.0918648 1.23484i
\(871\) 28.3485i 0.960553i
\(872\) −7.82484 4.51768i −0.264983 0.152988i
\(873\) −27.6043 + 21.9647i −0.934262 + 0.743392i
\(874\) 3.06760i 0.103763i
\(875\) −2.99486 + 29.5282i −0.101245 + 0.998236i
\(876\) −7.28033 + 0.541613i −0.245980 + 0.0182994i
\(877\) −9.70948 −0.327866 −0.163933 0.986471i \(-0.552418\pi\)
−0.163933 + 0.986471i \(0.552418\pi\)
\(878\) −11.1364 19.2887i −0.375834 0.650963i
\(879\) −7.82983 3.77588i −0.264094 0.127357i
\(880\) 6.28073 + 3.62618i 0.211723 + 0.122239i
\(881\) 2.63241 0.0886881 0.0443440 0.999016i \(-0.485880\pi\)
0.0443440 + 0.999016i \(0.485880\pi\)
\(882\) −17.5974 11.4600i −0.592536 0.385878i
\(883\) −36.3181 −1.22220 −0.611101 0.791553i \(-0.709273\pi\)
−0.611101 + 0.791553i \(0.709273\pi\)
\(884\) −18.2265 10.5231i −0.613025 0.353930i
\(885\) −46.5621 + 31.7085i −1.56517 + 1.06587i
\(886\) −8.99259 15.5756i −0.302112 0.523273i
\(887\) −16.3642 −0.549455 −0.274728 0.961522i \(-0.588588\pi\)
−0.274728 + 0.961522i \(0.588588\pi\)
\(888\) −7.15251 10.5031i −0.240023 0.352459i
\(889\) 4.78659 47.1940i 0.160537 1.58284i
\(890\) 17.3238i 0.580694i
\(891\) 5.27824 + 17.2444i 0.176828 + 0.577711i
\(892\) −16.2994 9.41045i −0.545744 0.315085i
\(893\) 2.25939i 0.0756076i
\(894\) 17.5474 + 8.46213i 0.586874 + 0.283016i
\(895\) 60.5549 + 34.9614i 2.02413 + 1.16863i
\(896\) 1.54733 2.14611i 0.0516926 0.0716964i
\(897\) 16.1030 + 7.76555i 0.537663 + 0.259284i
\(898\) 4.72182 8.17843i 0.157569 0.272918i
\(899\) 2.64999 4.58992i 0.0883822 0.153082i
\(900\) −15.1291 19.0136i −0.504305 0.633788i
\(901\) −46.8058 + 27.0233i −1.55933 + 0.900277i
\(902\) −5.71171 9.89297i −0.190179 0.329400i
\(903\) 10.4812 + 19.3334i 0.348791 + 0.643376i
\(904\) −0.845306 + 1.46411i −0.0281145 + 0.0486957i
\(905\) 28.5679i 0.949629i
\(906\) 3.55397 7.36966i 0.118073 0.244840i
\(907\) 10.8333 0.359714 0.179857 0.983693i \(-0.442436\pi\)
0.179857 + 0.983693i \(0.442436\pi\)
\(908\) −7.30665 12.6555i −0.242480 0.419987i
\(909\) 38.2509 5.72294i 1.26870 0.189818i
\(910\) −29.7709 + 13.3850i −0.986897 + 0.443708i
\(911\) 36.8512 21.2760i 1.22093 0.704907i 0.255817 0.966725i \(-0.417655\pi\)
0.965117 + 0.261818i \(0.0843221\pi\)
\(912\) 1.74987 0.130180i 0.0579440 0.00431069i
\(913\) −13.8994 + 8.02482i −0.460003 + 0.265583i
\(914\) −1.59739 + 0.922251i −0.0528368 + 0.0305053i
\(915\) 40.0611 83.0724i 1.32438 2.74629i
\(916\) 2.06044 1.18959i 0.0680788 0.0393053i
\(917\) 4.62699 45.6204i 0.152797 1.50652i
\(918\) −21.7830 23.5533i −0.718946 0.777373i
\(919\) −12.9697 22.4641i −0.427829 0.741022i 0.568851 0.822441i \(-0.307388\pi\)
−0.996680 + 0.0814187i \(0.974055\pi\)
\(920\) 10.9593 0.361316
\(921\) −30.2807 + 2.25271i −0.997785 + 0.0742292i
\(922\) 36.3739i 1.19791i
\(923\) 0.794727 1.37651i 0.0261588 0.0453083i
\(924\) 8.07258 4.37636i 0.265568 0.143972i
\(925\) 29.7108 + 51.4606i 0.976884 + 1.69201i
\(926\) 27.6834 15.9830i 0.909733 0.525234i
\(927\) 4.77591 + 31.9211i 0.156861 + 1.04843i
\(928\) 2.91308 5.04560i 0.0956265 0.165630i
\(929\) 23.4456 40.6089i 0.769224 1.33234i −0.168760 0.985657i \(-0.553976\pi\)
0.937984 0.346678i \(-0.112690\pi\)
\(930\) −0.423076 5.68697i −0.0138732 0.186483i
\(931\) −6.72834 + 2.24048i −0.220512 + 0.0734287i
\(932\) −9.03470 5.21619i −0.295942 0.170862i
\(933\) 24.7601 16.8615i 0.810608 0.552019i
\(934\) 24.4411i 0.799738i
\(935\) −38.7784 22.3887i −1.26819 0.732189i
\(936\) 3.74639 9.51527i 0.122455 0.311016i
\(937\) 0.209357i 0.00683939i −0.999994 0.00341969i \(-0.998911\pi\)
0.999994 0.00341969i \(-0.00108852\pi\)
\(938\) −21.8909 2.22025i −0.714762 0.0724938i
\(939\) 6.76742 14.0332i 0.220846 0.457956i
\(940\) 8.07186 0.263275
\(941\) −0.388565 0.673014i −0.0126669 0.0219396i 0.859622 0.510930i \(-0.170699\pi\)
−0.872289 + 0.488990i \(0.837365\pi\)
\(942\) 0.394456 + 5.30225i 0.0128521 + 0.172757i
\(943\) −14.9496 8.63113i −0.486825 0.281068i
\(944\) −8.98627 −0.292478
\(945\) −49.3894 + 6.04021i −1.60664 + 0.196488i
\(946\) −9.61619 −0.312649
\(947\) 43.1233 + 24.8972i 1.40132 + 0.809052i 0.994528 0.104470i \(-0.0333145\pi\)
0.406791 + 0.913521i \(0.366648\pi\)
\(948\) 0.491552 + 6.60741i 0.0159649 + 0.214599i
\(949\) 7.18378 + 12.4427i 0.233196 + 0.403906i
\(950\) −8.20539 −0.266218
\(951\) −5.05612 + 10.4846i −0.163956 + 0.339986i
\(952\) −9.55349 + 13.2505i −0.309630 + 0.429450i
\(953\) 41.4104i 1.34141i 0.741722 + 0.670707i \(0.234009\pi\)
−0.741722 + 0.670707i \(0.765991\pi\)
\(954\) −16.3511 20.5494i −0.529388 0.665311i
\(955\) −41.7010 24.0761i −1.34941 0.779084i
\(956\) 23.7835i 0.769213i
\(957\) 16.7133 11.3817i 0.540264 0.367917i
\(958\) −9.49220 5.48032i −0.306679 0.177061i
\(959\) −0.00169812 0.000172230i −5.48353e−5 5.56160e-6i
\(960\) −0.465079 6.25156i −0.0150103 0.201768i
\(961\) −15.0862 + 26.1301i −0.486653 + 0.842907i
\(962\) −12.5041 + 21.6578i −0.403149 + 0.698274i
\(963\) −6.19668 + 4.93069i −0.199685 + 0.158889i
\(964\) −24.8105 + 14.3243i −0.799092 + 0.461356i
\(965\) 11.8274 + 20.4857i 0.380739 + 0.659459i
\(966\) 7.25778 11.8266i 0.233515 0.380514i
\(967\) 22.8028 39.4956i 0.733289 1.27009i −0.222181 0.975005i \(-0.571318\pi\)
0.955470 0.295088i \(-0.0953491\pi\)
\(968\) 6.98481i 0.224500i
\(969\) −10.8040 + 0.803754i −0.347075 + 0.0258203i
\(970\) 42.5591 1.36649
\(971\) 4.36733 + 7.56444i 0.140154 + 0.242754i 0.927555 0.373688i \(-0.121907\pi\)
−0.787400 + 0.616442i \(0.788573\pi\)
\(972\) 9.75228 12.1611i 0.312804 0.390068i
\(973\) 15.6028 21.6407i 0.500202 0.693768i
\(974\) 29.1136 16.8087i 0.932860 0.538587i
\(975\) −20.7717 + 43.0731i −0.665228 + 1.37944i
\(976\) 12.7410 7.35603i 0.407830 0.235461i
\(977\) −12.9058 + 7.45114i −0.412892 + 0.238383i −0.692031 0.721867i \(-0.743284\pi\)
0.279140 + 0.960250i \(0.409951\pi\)
\(978\) 4.96373 0.369272i 0.158723 0.0118080i
\(979\) −8.30615 + 4.79556i −0.265466 + 0.153267i
\(980\) 8.00430 + 24.0376i 0.255688 + 0.767852i
\(981\) −9.93033 + 25.2216i −0.317051 + 0.805262i
\(982\) 11.3676 + 19.6893i 0.362756 + 0.628312i
\(983\) −3.06917 −0.0978912 −0.0489456 0.998801i \(-0.515586\pi\)
−0.0489456 + 0.998801i \(0.515586\pi\)
\(984\) −4.28910 + 8.89405i −0.136731 + 0.283532i
\(985\) 16.0788i 0.512314i
\(986\) −17.9859 + 31.1525i −0.572787 + 0.992096i
\(987\) 5.34559 8.71068i 0.170152 0.277264i
\(988\) −1.72667 2.99067i −0.0549325 0.0951460i
\(989\) −12.5845 + 7.26565i −0.400163 + 0.231034i
\(990\) 7.97074 20.2445i 0.253327 0.643412i
\(991\) 27.9075 48.3372i 0.886510 1.53548i 0.0425375 0.999095i \(-0.486456\pi\)
0.843973 0.536386i \(-0.180211\pi\)
\(992\) 0.454844 0.787812i 0.0144413 0.0250131i
\(993\) −29.2904 14.1251i −0.929502 0.448246i
\(994\) −1.00070 0.721500i −0.0317404 0.0228846i
\(995\) −36.0798 20.8307i −1.14381 0.660377i
\(996\) 12.4959 + 6.02608i 0.395949 + 0.190944i
\(997\) 6.12692i 0.194042i 0.995282 + 0.0970208i \(0.0309313\pi\)
−0.995282 + 0.0970208i \(0.969069\pi\)
\(998\) −16.9079 9.76175i −0.535209 0.309003i
\(999\) −27.9872 + 25.8837i −0.885477 + 0.818924i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.2.t.a.59.2 yes 16
3.2 odd 2 378.2.t.a.17.8 16
4.3 odd 2 1008.2.df.c.689.5 16
7.2 even 3 882.2.l.b.509.8 16
7.3 odd 6 882.2.m.b.293.7 16
7.4 even 3 882.2.m.a.293.6 16
7.5 odd 6 126.2.l.a.5.5 16
7.6 odd 2 882.2.t.a.815.3 16
9.2 odd 6 126.2.l.a.101.1 yes 16
9.4 even 3 1134.2.k.b.647.8 16
9.5 odd 6 1134.2.k.a.647.1 16
9.7 even 3 378.2.l.a.143.8 16
12.11 even 2 3024.2.df.c.17.7 16
21.2 odd 6 2646.2.l.a.1097.1 16
21.5 even 6 378.2.l.a.341.4 16
21.11 odd 6 2646.2.m.a.881.1 16
21.17 even 6 2646.2.m.b.881.4 16
21.20 even 2 2646.2.t.b.2285.5 16
28.19 even 6 1008.2.ca.c.257.8 16
36.7 odd 6 3024.2.ca.c.2033.7 16
36.11 even 6 1008.2.ca.c.353.8 16
63.2 odd 6 882.2.t.a.803.3 16
63.5 even 6 1134.2.k.b.971.8 16
63.11 odd 6 882.2.m.b.587.7 16
63.16 even 3 2646.2.t.b.1979.5 16
63.20 even 6 882.2.l.b.227.4 16
63.25 even 3 2646.2.m.b.1763.4 16
63.34 odd 6 2646.2.l.a.521.5 16
63.38 even 6 882.2.m.a.587.6 16
63.40 odd 6 1134.2.k.a.971.1 16
63.47 even 6 inner 126.2.t.a.47.2 yes 16
63.52 odd 6 2646.2.m.a.1763.1 16
63.61 odd 6 378.2.t.a.89.8 16
84.47 odd 6 3024.2.ca.c.2609.7 16
252.47 odd 6 1008.2.df.c.929.5 16
252.187 even 6 3024.2.df.c.1601.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.5 16 7.5 odd 6
126.2.l.a.101.1 yes 16 9.2 odd 6
126.2.t.a.47.2 yes 16 63.47 even 6 inner
126.2.t.a.59.2 yes 16 1.1 even 1 trivial
378.2.l.a.143.8 16 9.7 even 3
378.2.l.a.341.4 16 21.5 even 6
378.2.t.a.17.8 16 3.2 odd 2
378.2.t.a.89.8 16 63.61 odd 6
882.2.l.b.227.4 16 63.20 even 6
882.2.l.b.509.8 16 7.2 even 3
882.2.m.a.293.6 16 7.4 even 3
882.2.m.a.587.6 16 63.38 even 6
882.2.m.b.293.7 16 7.3 odd 6
882.2.m.b.587.7 16 63.11 odd 6
882.2.t.a.803.3 16 63.2 odd 6
882.2.t.a.815.3 16 7.6 odd 2
1008.2.ca.c.257.8 16 28.19 even 6
1008.2.ca.c.353.8 16 36.11 even 6
1008.2.df.c.689.5 16 4.3 odd 2
1008.2.df.c.929.5 16 252.47 odd 6
1134.2.k.a.647.1 16 9.5 odd 6
1134.2.k.a.971.1 16 63.40 odd 6
1134.2.k.b.647.8 16 9.4 even 3
1134.2.k.b.971.8 16 63.5 even 6
2646.2.l.a.521.5 16 63.34 odd 6
2646.2.l.a.1097.1 16 21.2 odd 6
2646.2.m.a.881.1 16 21.11 odd 6
2646.2.m.a.1763.1 16 63.52 odd 6
2646.2.m.b.881.4 16 21.17 even 6
2646.2.m.b.1763.4 16 63.25 even 3
2646.2.t.b.1979.5 16 63.16 even 3
2646.2.t.b.2285.5 16 21.20 even 2
3024.2.ca.c.2033.7 16 36.7 odd 6
3024.2.ca.c.2609.7 16 84.47 odd 6
3024.2.df.c.17.7 16 12.11 even 2
3024.2.df.c.1601.7 16 252.187 even 6