Properties

Label 1008.2.df.c.689.5
Level $1008$
Weight $2$
Character 1008.689
Analytic conductor $8.049$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(689,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 689.5
Root \(1.71298 - 0.256290i\) of defining polynomial
Character \(\chi\) \(=\) 1008.689
Dual form 1008.2.df.c.929.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.128499 + 1.72728i) q^{3} -3.61932 q^{5} +(-0.266972 + 2.63225i) q^{7} +(-2.96698 + 0.443907i) q^{9} -2.00379i q^{11} +(-2.95206 - 1.70437i) q^{13} +(-0.465079 - 6.25156i) q^{15} +(3.08709 - 5.34700i) q^{17} +(-0.877353 + 0.506540i) q^{19} +(-4.58093 - 0.122894i) q^{21} +3.02799i q^{23} +8.09945 q^{25} +(-1.14800 - 5.06775i) q^{27} +(5.04560 - 2.91308i) q^{29} +(-0.787812 + 0.454844i) q^{31} +(3.46111 - 0.257486i) q^{33} +(0.966257 - 9.52693i) q^{35} +(3.66825 + 6.35359i) q^{37} +(2.56459 - 5.31804i) q^{39} +(2.85045 - 4.93712i) q^{41} +(2.39949 + 4.15605i) q^{43} +(10.7384 - 1.60664i) q^{45} +(1.11511 - 1.93143i) q^{47} +(-6.85745 - 1.40547i) q^{49} +(9.63244 + 4.64518i) q^{51} +(-7.58088 - 4.37683i) q^{53} +7.25237i q^{55} +(-0.987674 - 1.45034i) q^{57} +(-4.49313 - 7.78233i) q^{59} +(-12.7410 - 7.35603i) q^{61} +(-0.376373 - 7.92833i) q^{63} +(10.6844 + 6.16866i) q^{65} +(-4.15821 - 7.20222i) q^{67} +(-5.23019 + 0.389094i) q^{69} -0.466287i q^{71} +(-3.65022 - 2.10746i) q^{73} +(1.04077 + 13.9900i) q^{75} +(5.27448 + 0.534957i) q^{77} +(1.91267 - 3.31284i) q^{79} +(8.60589 - 2.63412i) q^{81} +(-4.00481 - 6.93654i) q^{83} +(-11.1732 + 19.3525i) q^{85} +(5.68005 + 8.34083i) q^{87} +(2.39324 + 4.14521i) q^{89} +(5.27445 - 7.31553i) q^{91} +(-0.886874 - 1.30232i) q^{93} +(3.17542 - 1.83333i) q^{95} +(10.1835 - 5.87944i) q^{97} +(0.889499 + 5.94521i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{7} - 6 q^{9} - 6 q^{13} + 18 q^{15} + 18 q^{17} - 18 q^{21} + 16 q^{25} + 36 q^{27} + 6 q^{29} - 6 q^{31} + 18 q^{33} + 30 q^{35} - 2 q^{37} + 30 q^{39} + 6 q^{41} + 2 q^{43} + 12 q^{45} + 18 q^{47}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.128499 + 1.72728i 0.0741890 + 0.997244i
\(4\) 0 0
\(5\) −3.61932 −1.61861 −0.809304 0.587391i \(-0.800155\pi\)
−0.809304 + 0.587391i \(0.800155\pi\)
\(6\) 0 0
\(7\) −0.266972 + 2.63225i −0.100906 + 0.994896i
\(8\) 0 0
\(9\) −2.96698 + 0.443907i −0.988992 + 0.147969i
\(10\) 0 0
\(11\) 2.00379i 0.604167i −0.953281 0.302083i \(-0.902318\pi\)
0.953281 0.302083i \(-0.0976821\pi\)
\(12\) 0 0
\(13\) −2.95206 1.70437i −0.818754 0.472708i 0.0312328 0.999512i \(-0.490057\pi\)
−0.849987 + 0.526804i \(0.823390\pi\)
\(14\) 0 0
\(15\) −0.465079 6.25156i −0.120083 1.61415i
\(16\) 0 0
\(17\) 3.08709 5.34700i 0.748730 1.29684i −0.199702 0.979857i \(-0.563998\pi\)
0.948432 0.316981i \(-0.102669\pi\)
\(18\) 0 0
\(19\) −0.877353 + 0.506540i −0.201279 + 0.116208i −0.597252 0.802054i \(-0.703741\pi\)
0.395973 + 0.918262i \(0.370407\pi\)
\(20\) 0 0
\(21\) −4.58093 0.122894i −0.999640 0.0268176i
\(22\) 0 0
\(23\) 3.02799i 0.631380i 0.948862 + 0.315690i \(0.102236\pi\)
−0.948862 + 0.315690i \(0.897764\pi\)
\(24\) 0 0
\(25\) 8.09945 1.61989
\(26\) 0 0
\(27\) −1.14800 5.06775i −0.220934 0.975289i
\(28\) 0 0
\(29\) 5.04560 2.91308i 0.936945 0.540945i 0.0479434 0.998850i \(-0.484733\pi\)
0.889001 + 0.457905i \(0.151400\pi\)
\(30\) 0 0
\(31\) −0.787812 + 0.454844i −0.141495 + 0.0816923i −0.569076 0.822285i \(-0.692699\pi\)
0.427581 + 0.903977i \(0.359366\pi\)
\(32\) 0 0
\(33\) 3.46111 0.257486i 0.602502 0.0448225i
\(34\) 0 0
\(35\) 0.966257 9.52693i 0.163327 1.61035i
\(36\) 0 0
\(37\) 3.66825 + 6.35359i 0.603056 + 1.04452i 0.992355 + 0.123413i \(0.0393839\pi\)
−0.389299 + 0.921111i \(0.627283\pi\)
\(38\) 0 0
\(39\) 2.56459 5.31804i 0.410663 0.851567i
\(40\) 0 0
\(41\) 2.85045 4.93712i 0.445165 0.771048i −0.552899 0.833248i \(-0.686478\pi\)
0.998064 + 0.0622002i \(0.0198117\pi\)
\(42\) 0 0
\(43\) 2.39949 + 4.15605i 0.365919 + 0.633791i 0.988923 0.148428i \(-0.0474212\pi\)
−0.623004 + 0.782219i \(0.714088\pi\)
\(44\) 0 0
\(45\) 10.7384 1.60664i 1.60079 0.239504i
\(46\) 0 0
\(47\) 1.11511 1.93143i 0.162655 0.281727i −0.773165 0.634205i \(-0.781327\pi\)
0.935820 + 0.352478i \(0.114661\pi\)
\(48\) 0 0
\(49\) −6.85745 1.40547i −0.979636 0.200782i
\(50\) 0 0
\(51\) 9.63244 + 4.64518i 1.34881 + 0.650455i
\(52\) 0 0
\(53\) −7.58088 4.37683i −1.04131 0.601203i −0.121109 0.992639i \(-0.538645\pi\)
−0.920205 + 0.391436i \(0.871978\pi\)
\(54\) 0 0
\(55\) 7.25237i 0.977909i
\(56\) 0 0
\(57\) −0.987674 1.45034i −0.130821 0.192103i
\(58\) 0 0
\(59\) −4.49313 7.78233i −0.584956 1.01317i −0.994881 0.101054i \(-0.967778\pi\)
0.409925 0.912119i \(-0.365555\pi\)
\(60\) 0 0
\(61\) −12.7410 7.35603i −1.63132 0.941843i −0.983686 0.179892i \(-0.942425\pi\)
−0.647634 0.761952i \(-0.724241\pi\)
\(62\) 0 0
\(63\) −0.376373 7.92833i −0.0474185 0.998875i
\(64\) 0 0
\(65\) 10.6844 + 6.16866i 1.32524 + 0.765128i
\(66\) 0 0
\(67\) −4.15821 7.20222i −0.508006 0.879892i −0.999957 0.00926908i \(-0.997050\pi\)
0.491951 0.870623i \(-0.336284\pi\)
\(68\) 0 0
\(69\) −5.23019 + 0.389094i −0.629640 + 0.0468415i
\(70\) 0 0
\(71\) 0.466287i 0.0553381i −0.999617 0.0276691i \(-0.991192\pi\)
0.999617 0.0276691i \(-0.00880846\pi\)
\(72\) 0 0
\(73\) −3.65022 2.10746i −0.427226 0.246659i 0.270938 0.962597i \(-0.412666\pi\)
−0.698164 + 0.715938i \(0.746000\pi\)
\(74\) 0 0
\(75\) 1.04077 + 13.9900i 0.120178 + 1.61543i
\(76\) 0 0
\(77\) 5.27448 + 0.534957i 0.601083 + 0.0609641i
\(78\) 0 0
\(79\) 1.91267 3.31284i 0.215192 0.372723i −0.738140 0.674648i \(-0.764296\pi\)
0.953332 + 0.301924i \(0.0976290\pi\)
\(80\) 0 0
\(81\) 8.60589 2.63412i 0.956210 0.292680i
\(82\) 0 0
\(83\) −4.00481 6.93654i −0.439585 0.761384i 0.558072 0.829792i \(-0.311541\pi\)
−0.997657 + 0.0684084i \(0.978208\pi\)
\(84\) 0 0
\(85\) −11.1732 + 19.3525i −1.21190 + 2.09907i
\(86\) 0 0
\(87\) 5.68005 + 8.34083i 0.608965 + 0.894230i
\(88\) 0 0
\(89\) 2.39324 + 4.14521i 0.253683 + 0.439391i 0.964537 0.263948i \(-0.0850248\pi\)
−0.710854 + 0.703339i \(0.751691\pi\)
\(90\) 0 0
\(91\) 5.27445 7.31553i 0.552912 0.766876i
\(92\) 0 0
\(93\) −0.886874 1.30232i −0.0919646 0.135045i
\(94\) 0 0
\(95\) 3.17542 1.83333i 0.325791 0.188096i
\(96\) 0 0
\(97\) 10.1835 5.87944i 1.03398 0.596967i 0.115856 0.993266i \(-0.463039\pi\)
0.918121 + 0.396299i \(0.129706\pi\)
\(98\) 0 0
\(99\) 0.889499 + 5.94521i 0.0893980 + 0.597516i
\(100\) 0 0
\(101\) −12.8922 −1.28282 −0.641411 0.767197i \(-0.721651\pi\)
−0.641411 + 0.767197i \(0.721651\pi\)
\(102\) 0 0
\(103\) 10.7588i 1.06010i 0.847968 + 0.530048i \(0.177826\pi\)
−0.847968 + 0.530048i \(0.822174\pi\)
\(104\) 0 0
\(105\) 16.5798 + 0.444792i 1.61803 + 0.0434072i
\(106\) 0 0
\(107\) −2.28602 + 1.31983i −0.220998 + 0.127593i −0.606412 0.795151i \(-0.707392\pi\)
0.385414 + 0.922744i \(0.374058\pi\)
\(108\) 0 0
\(109\) 4.51768 7.82484i 0.432715 0.749484i −0.564391 0.825507i \(-0.690889\pi\)
0.997106 + 0.0760233i \(0.0242224\pi\)
\(110\) 0 0
\(111\) −10.5031 + 7.15251i −0.996905 + 0.678886i
\(112\) 0 0
\(113\) −1.46411 0.845306i −0.137732 0.0795197i 0.429551 0.903043i \(-0.358672\pi\)
−0.567283 + 0.823523i \(0.692005\pi\)
\(114\) 0 0
\(115\) 10.9593i 1.02196i
\(116\) 0 0
\(117\) 9.51527 + 3.74639i 0.879687 + 0.346354i
\(118\) 0 0
\(119\) 13.2505 + 9.55349i 1.21467 + 0.875767i
\(120\) 0 0
\(121\) 6.98481 0.634982
\(122\) 0 0
\(123\) 8.89405 + 4.28910i 0.801950 + 0.386735i
\(124\) 0 0
\(125\) −11.2179 −1.00336
\(126\) 0 0
\(127\) −17.9292 −1.59096 −0.795478 0.605983i \(-0.792780\pi\)
−0.795478 + 0.605983i \(0.792780\pi\)
\(128\) 0 0
\(129\) −6.87031 + 4.67864i −0.604897 + 0.411931i
\(130\) 0 0
\(131\) −17.3313 −1.51425 −0.757123 0.653272i \(-0.773396\pi\)
−0.757123 + 0.653272i \(0.773396\pi\)
\(132\) 0 0
\(133\) −1.09911 2.44464i −0.0953049 0.211977i
\(134\) 0 0
\(135\) 4.15499 + 18.3418i 0.357605 + 1.57861i
\(136\) 0 0
\(137\) 0 0.000645123i 0 5.51166e-5i −1.00000 2.75583e-5i \(-0.999991\pi\)
1.00000 2.75583e-5i \(-8.77208e-6\pi\)
\(138\) 0 0
\(139\) −8.73273 5.04185i −0.740701 0.427644i 0.0816233 0.996663i \(-0.473990\pi\)
−0.822324 + 0.569019i \(0.807323\pi\)
\(140\) 0 0
\(141\) 3.47940 + 1.67792i 0.293018 + 0.141306i
\(142\) 0 0
\(143\) −3.41521 + 5.91532i −0.285594 + 0.494664i
\(144\) 0 0
\(145\) −18.2616 + 10.5434i −1.51655 + 0.875578i
\(146\) 0 0
\(147\) 1.54647 12.0253i 0.127550 0.991832i
\(148\) 0 0
\(149\) 11.2475i 0.921433i −0.887547 0.460716i \(-0.847593\pi\)
0.887547 0.460716i \(-0.152407\pi\)
\(150\) 0 0
\(151\) 4.72379 0.384417 0.192208 0.981354i \(-0.438435\pi\)
0.192208 + 0.981354i \(0.438435\pi\)
\(152\) 0 0
\(153\) −6.78575 + 17.2348i −0.548596 + 1.39335i
\(154\) 0 0
\(155\) 2.85134 1.64622i 0.229025 0.132228i
\(156\) 0 0
\(157\) 2.65845 1.53486i 0.212168 0.122495i −0.390151 0.920751i \(-0.627577\pi\)
0.602318 + 0.798256i \(0.294244\pi\)
\(158\) 0 0
\(159\) 6.58586 13.6567i 0.522292 1.08305i
\(160\) 0 0
\(161\) −7.97043 0.808390i −0.628158 0.0637101i
\(162\) 0 0
\(163\) 1.43687 + 2.48873i 0.112544 + 0.194932i 0.916795 0.399357i \(-0.130767\pi\)
−0.804251 + 0.594289i \(0.797433\pi\)
\(164\) 0 0
\(165\) −12.5268 + 0.931922i −0.975214 + 0.0725500i
\(166\) 0 0
\(167\) 0.730517 1.26529i 0.0565291 0.0979113i −0.836376 0.548156i \(-0.815330\pi\)
0.892905 + 0.450245i \(0.148663\pi\)
\(168\) 0 0
\(169\) −0.690233 1.19552i −0.0530948 0.0919630i
\(170\) 0 0
\(171\) 2.37823 1.89236i 0.181868 0.144712i
\(172\) 0 0
\(173\) −1.53541 + 2.65940i −0.116735 + 0.202191i −0.918472 0.395486i \(-0.870576\pi\)
0.801737 + 0.597677i \(0.203909\pi\)
\(174\) 0 0
\(175\) −2.16233 + 21.3197i −0.163457 + 1.61162i
\(176\) 0 0
\(177\) 12.8649 8.76091i 0.966984 0.658510i
\(178\) 0 0
\(179\) 16.7310 + 9.65966i 1.25054 + 0.721997i 0.971216 0.238201i \(-0.0765578\pi\)
0.279320 + 0.960198i \(0.409891\pi\)
\(180\) 0 0
\(181\) 7.89318i 0.586695i 0.956006 + 0.293348i \(0.0947693\pi\)
−0.956006 + 0.293348i \(0.905231\pi\)
\(182\) 0 0
\(183\) 11.0687 22.9525i 0.818222 1.69670i
\(184\) 0 0
\(185\) −13.2765 22.9957i −0.976111 1.69067i
\(186\) 0 0
\(187\) −10.7143 6.18590i −0.783506 0.452358i
\(188\) 0 0
\(189\) 13.6461 1.66888i 0.992604 0.121393i
\(190\) 0 0
\(191\) −11.5218 6.65211i −0.833688 0.481330i 0.0214259 0.999770i \(-0.493179\pi\)
−0.855114 + 0.518441i \(0.826513\pi\)
\(192\) 0 0
\(193\) −3.26786 5.66011i −0.235226 0.407423i 0.724112 0.689682i \(-0.242250\pi\)
−0.959338 + 0.282259i \(0.908916\pi\)
\(194\) 0 0
\(195\) −9.28205 + 19.2476i −0.664701 + 1.37835i
\(196\) 0 0
\(197\) 4.44250i 0.316515i −0.987398 0.158258i \(-0.949412\pi\)
0.987398 0.158258i \(-0.0505876\pi\)
\(198\) 0 0
\(199\) −9.96868 5.75542i −0.706661 0.407991i 0.103163 0.994665i \(-0.467104\pi\)
−0.809823 + 0.586674i \(0.800437\pi\)
\(200\) 0 0
\(201\) 11.9059 8.10786i 0.839779 0.571884i
\(202\) 0 0
\(203\) 6.32091 + 14.0590i 0.443641 + 0.986747i
\(204\) 0 0
\(205\) −10.3167 + 17.8690i −0.720547 + 1.24802i
\(206\) 0 0
\(207\) −1.34415 8.98399i −0.0934247 0.624430i
\(208\) 0 0
\(209\) 1.01500 + 1.75804i 0.0702092 + 0.121606i
\(210\) 0 0
\(211\) −11.3005 + 19.5731i −0.777961 + 1.34747i 0.155155 + 0.987890i \(0.450412\pi\)
−0.933115 + 0.359577i \(0.882921\pi\)
\(212\) 0 0
\(213\) 0.805408 0.0599175i 0.0551856 0.00410548i
\(214\) 0 0
\(215\) −8.68453 15.0420i −0.592280 1.02586i
\(216\) 0 0
\(217\) −0.986937 2.19515i −0.0669976 0.149016i
\(218\) 0 0
\(219\) 3.17111 6.57576i 0.214284 0.444348i
\(220\) 0 0
\(221\) −18.2265 + 10.5231i −1.22605 + 0.707860i
\(222\) 0 0
\(223\) 16.2994 9.41045i 1.09149 0.630170i 0.157515 0.987517i \(-0.449652\pi\)
0.933972 + 0.357346i \(0.116318\pi\)
\(224\) 0 0
\(225\) −24.0309 + 3.59540i −1.60206 + 0.239693i
\(226\) 0 0
\(227\) 14.6133 0.969919 0.484960 0.874537i \(-0.338834\pi\)
0.484960 + 0.874537i \(0.338834\pi\)
\(228\) 0 0
\(229\) 2.37919i 0.157221i −0.996905 0.0786106i \(-0.974952\pi\)
0.996905 0.0786106i \(-0.0250484\pi\)
\(230\) 0 0
\(231\) −0.246254 + 9.17924i −0.0162023 + 0.603950i
\(232\) 0 0
\(233\) −9.03470 + 5.21619i −0.591883 + 0.341724i −0.765842 0.643029i \(-0.777677\pi\)
0.173959 + 0.984753i \(0.444344\pi\)
\(234\) 0 0
\(235\) −4.03593 + 6.99044i −0.263275 + 0.456006i
\(236\) 0 0
\(237\) 5.96796 + 2.87801i 0.387661 + 0.186947i
\(238\) 0 0
\(239\) −20.5971 11.8917i −1.33232 0.769213i −0.346662 0.937990i \(-0.612685\pi\)
−0.985654 + 0.168777i \(0.946018\pi\)
\(240\) 0 0
\(241\) 28.6487i 1.84542i 0.385489 + 0.922712i \(0.374033\pi\)
−0.385489 + 0.922712i \(0.625967\pi\)
\(242\) 0 0
\(243\) 5.65571 + 14.5263i 0.362814 + 0.931862i
\(244\) 0 0
\(245\) 24.8193 + 5.08685i 1.58565 + 0.324987i
\(246\) 0 0
\(247\) 3.45333 0.219730
\(248\) 0 0
\(249\) 11.4667 7.80876i 0.726673 0.494860i
\(250\) 0 0
\(251\) −11.0301 −0.696216 −0.348108 0.937454i \(-0.613176\pi\)
−0.348108 + 0.937454i \(0.613176\pi\)
\(252\) 0 0
\(253\) 6.06748 0.381459
\(254\) 0 0
\(255\) −34.8628 16.8124i −2.18320 1.05283i
\(256\) 0 0
\(257\) −15.0978 −0.941775 −0.470888 0.882193i \(-0.656066\pi\)
−0.470888 + 0.882193i \(0.656066\pi\)
\(258\) 0 0
\(259\) −17.7035 + 7.95950i −1.10004 + 0.494579i
\(260\) 0 0
\(261\) −13.6770 + 10.8828i −0.846588 + 0.673629i
\(262\) 0 0
\(263\) 19.6385i 1.21096i 0.795859 + 0.605482i \(0.207020\pi\)
−0.795859 + 0.605482i \(0.792980\pi\)
\(264\) 0 0
\(265\) 27.4376 + 15.8411i 1.68548 + 0.973112i
\(266\) 0 0
\(267\) −6.85240 + 4.66644i −0.419360 + 0.285581i
\(268\) 0 0
\(269\) −0.245503 + 0.425223i −0.0149686 + 0.0259263i −0.873413 0.486981i \(-0.838098\pi\)
0.858444 + 0.512907i \(0.171431\pi\)
\(270\) 0 0
\(271\) 12.1927 7.03945i 0.740653 0.427616i −0.0816537 0.996661i \(-0.526020\pi\)
0.822307 + 0.569045i \(0.192687\pi\)
\(272\) 0 0
\(273\) 13.3137 + 8.17039i 0.805782 + 0.494495i
\(274\) 0 0
\(275\) 16.2296i 0.978683i
\(276\) 0 0
\(277\) 30.7200 1.84579 0.922894 0.385054i \(-0.125817\pi\)
0.922894 + 0.385054i \(0.125817\pi\)
\(278\) 0 0
\(279\) 2.13551 1.69923i 0.127850 0.101730i
\(280\) 0 0
\(281\) 6.86286 3.96227i 0.409404 0.236369i −0.281130 0.959670i \(-0.590709\pi\)
0.690534 + 0.723300i \(0.257376\pi\)
\(282\) 0 0
\(283\) 9.97303 5.75793i 0.592835 0.342273i −0.173383 0.984855i \(-0.555470\pi\)
0.766218 + 0.642581i \(0.222136\pi\)
\(284\) 0 0
\(285\) 3.57471 + 5.24925i 0.211747 + 0.310939i
\(286\) 0 0
\(287\) 12.2347 + 8.82115i 0.722193 + 0.520696i
\(288\) 0 0
\(289\) −10.5603 18.2909i −0.621192 1.07594i
\(290\) 0 0
\(291\) 11.4640 + 16.8342i 0.672031 + 0.986839i
\(292\) 0 0
\(293\) 2.50937 4.34636i 0.146599 0.253917i −0.783369 0.621557i \(-0.786501\pi\)
0.929968 + 0.367639i \(0.119834\pi\)
\(294\) 0 0
\(295\) 16.2621 + 28.1667i 0.946814 + 1.63993i
\(296\) 0 0
\(297\) −10.1547 + 2.30037i −0.589237 + 0.133481i
\(298\) 0 0
\(299\) 5.16083 8.93882i 0.298458 0.516945i
\(300\) 0 0
\(301\) −11.5803 + 5.20651i −0.667480 + 0.300098i
\(302\) 0 0
\(303\) −1.65664 22.2684i −0.0951712 1.27929i
\(304\) 0 0
\(305\) 46.1138 + 26.6238i 2.64047 + 1.52447i
\(306\) 0 0
\(307\) 17.5309i 1.00054i 0.865869 + 0.500271i \(0.166766\pi\)
−0.865869 + 0.500271i \(0.833234\pi\)
\(308\) 0 0
\(309\) −18.5834 + 1.38250i −1.05717 + 0.0786474i
\(310\) 0 0
\(311\) −8.64759 14.9781i −0.490360 0.849328i 0.509579 0.860424i \(-0.329801\pi\)
−0.999938 + 0.0110959i \(0.996468\pi\)
\(312\) 0 0
\(313\) 7.78988 + 4.49749i 0.440310 + 0.254213i 0.703729 0.710468i \(-0.251517\pi\)
−0.263419 + 0.964681i \(0.584850\pi\)
\(314\) 0 0
\(315\) 1.36221 + 28.6951i 0.0767520 + 1.61679i
\(316\) 0 0
\(317\) −5.82002 3.36019i −0.326885 0.188727i 0.327572 0.944826i \(-0.393770\pi\)
−0.654457 + 0.756099i \(0.727103\pi\)
\(318\) 0 0
\(319\) −5.83721 10.1103i −0.326821 0.566071i
\(320\) 0 0
\(321\) −2.57347 3.77899i −0.143637 0.210923i
\(322\) 0 0
\(323\) 6.25494i 0.348034i
\(324\) 0 0
\(325\) −23.9100 13.8045i −1.32629 0.765734i
\(326\) 0 0
\(327\) 14.0962 + 6.79780i 0.779521 + 0.375919i
\(328\) 0 0
\(329\) 4.78629 + 3.45088i 0.263876 + 0.190253i
\(330\) 0 0
\(331\) −9.38725 + 16.2592i −0.515970 + 0.893686i 0.483858 + 0.875146i \(0.339235\pi\)
−0.999828 + 0.0185396i \(0.994098\pi\)
\(332\) 0 0
\(333\) −13.7040 17.2226i −0.750975 0.943792i
\(334\) 0 0
\(335\) 15.0499 + 26.0671i 0.822262 + 1.42420i
\(336\) 0 0
\(337\) 2.42287 4.19654i 0.131982 0.228600i −0.792458 0.609926i \(-0.791199\pi\)
0.924441 + 0.381326i \(0.124532\pi\)
\(338\) 0 0
\(339\) 1.27194 2.63755i 0.0690824 0.143252i
\(340\) 0 0
\(341\) 0.911413 + 1.57861i 0.0493558 + 0.0854868i
\(342\) 0 0
\(343\) 5.53030 17.6753i 0.298608 0.954376i
\(344\) 0 0
\(345\) 18.9297 1.40826i 1.01914 0.0758179i
\(346\) 0 0
\(347\) 15.1305 8.73559i 0.812247 0.468951i −0.0354887 0.999370i \(-0.511299\pi\)
0.847736 + 0.530419i \(0.177965\pi\)
\(348\) 0 0
\(349\) −20.6338 + 11.9129i −1.10450 + 0.637683i −0.937399 0.348257i \(-0.886774\pi\)
−0.167101 + 0.985940i \(0.553440\pi\)
\(350\) 0 0
\(351\) −5.24835 + 16.9169i −0.280136 + 0.902958i
\(352\) 0 0
\(353\) 10.0412 0.534441 0.267220 0.963635i \(-0.413895\pi\)
0.267220 + 0.963635i \(0.413895\pi\)
\(354\) 0 0
\(355\) 1.68764i 0.0895707i
\(356\) 0 0
\(357\) −14.7989 + 24.1148i −0.783238 + 1.27629i
\(358\) 0 0
\(359\) −10.5353 + 6.08254i −0.556030 + 0.321024i −0.751550 0.659676i \(-0.770694\pi\)
0.195521 + 0.980700i \(0.437360\pi\)
\(360\) 0 0
\(361\) −8.98683 + 15.5657i −0.472991 + 0.819245i
\(362\) 0 0
\(363\) 0.897541 + 12.0647i 0.0471087 + 0.633233i
\(364\) 0 0
\(365\) 13.2113 + 7.62756i 0.691512 + 0.399245i
\(366\) 0 0
\(367\) 3.63061i 0.189516i −0.995500 0.0947582i \(-0.969792\pi\)
0.995500 0.0947582i \(-0.0302078\pi\)
\(368\) 0 0
\(369\) −6.26558 + 15.9136i −0.326173 + 0.828431i
\(370\) 0 0
\(371\) 13.5448 18.7863i 0.703210 0.975335i
\(372\) 0 0
\(373\) 5.49231 0.284381 0.142191 0.989839i \(-0.454585\pi\)
0.142191 + 0.989839i \(0.454585\pi\)
\(374\) 0 0
\(375\) −1.44149 19.3764i −0.0744380 1.00059i
\(376\) 0 0
\(377\) −19.8599 −1.02284
\(378\) 0 0
\(379\) 15.5960 0.801112 0.400556 0.916272i \(-0.368817\pi\)
0.400556 + 0.916272i \(0.368817\pi\)
\(380\) 0 0
\(381\) −2.30388 30.9686i −0.118031 1.58657i
\(382\) 0 0
\(383\) −9.43067 −0.481885 −0.240942 0.970539i \(-0.577456\pi\)
−0.240942 + 0.970539i \(0.577456\pi\)
\(384\) 0 0
\(385\) −19.0900 1.93618i −0.972918 0.0986769i
\(386\) 0 0
\(387\) −8.96414 11.2657i −0.455673 0.572670i
\(388\) 0 0
\(389\) 6.42177i 0.325597i −0.986659 0.162798i \(-0.947948\pi\)
0.986659 0.162798i \(-0.0520520\pi\)
\(390\) 0 0
\(391\) 16.1907 + 9.34769i 0.818798 + 0.472733i
\(392\) 0 0
\(393\) −2.22706 29.9360i −0.112340 1.51007i
\(394\) 0 0
\(395\) −6.92255 + 11.9902i −0.348311 + 0.603293i
\(396\) 0 0
\(397\) 5.99750 3.46266i 0.301006 0.173786i −0.341889 0.939740i \(-0.611067\pi\)
0.642895 + 0.765955i \(0.277733\pi\)
\(398\) 0 0
\(399\) 4.08134 2.21260i 0.204323 0.110769i
\(400\) 0 0
\(401\) 10.5869i 0.528682i −0.964429 0.264341i \(-0.914846\pi\)
0.964429 0.264341i \(-0.0851545\pi\)
\(402\) 0 0
\(403\) 3.10089 0.154466
\(404\) 0 0
\(405\) −31.1474 + 9.53372i −1.54773 + 0.473735i
\(406\) 0 0
\(407\) 12.7313 7.35042i 0.631067 0.364347i
\(408\) 0 0
\(409\) 7.72792 4.46172i 0.382121 0.220618i −0.296620 0.954996i \(-0.595859\pi\)
0.678741 + 0.734378i \(0.262526\pi\)
\(410\) 0 0
\(411\) 0.00111431 8.28977e-5i 5.49647e−5 4.08904e-6i
\(412\) 0 0
\(413\) 21.6846 9.74937i 1.06703 0.479735i
\(414\) 0 0
\(415\) 14.4947 + 25.1055i 0.711516 + 1.23238i
\(416\) 0 0
\(417\) 7.58652 15.7317i 0.371513 0.770386i
\(418\) 0 0
\(419\) 17.1924 29.7781i 0.839903 1.45475i −0.0500724 0.998746i \(-0.515945\pi\)
0.889975 0.456009i \(-0.150721\pi\)
\(420\) 0 0
\(421\) −17.7840 30.8028i −0.866739 1.50124i −0.865310 0.501237i \(-0.832879\pi\)
−0.00142877 0.999999i \(-0.500455\pi\)
\(422\) 0 0
\(423\) −2.45113 + 6.22550i −0.119178 + 0.302694i
\(424\) 0 0
\(425\) 25.0037 43.3077i 1.21286 2.10073i
\(426\) 0 0
\(427\) 22.7644 31.5737i 1.10165 1.52796i
\(428\) 0 0
\(429\) −10.6563 5.13891i −0.514489 0.248109i
\(430\) 0 0
\(431\) −26.7338 15.4348i −1.28772 0.743466i −0.309474 0.950908i \(-0.600153\pi\)
−0.978247 + 0.207442i \(0.933486\pi\)
\(432\) 0 0
\(433\) 23.2463i 1.11715i −0.829455 0.558574i \(-0.811349\pi\)
0.829455 0.558574i \(-0.188651\pi\)
\(434\) 0 0
\(435\) −20.5579 30.1881i −0.985676 1.44741i
\(436\) 0 0
\(437\) −1.53380 2.65662i −0.0733716 0.127083i
\(438\) 0 0
\(439\) −19.2887 11.1364i −0.920601 0.531509i −0.0367744 0.999324i \(-0.511708\pi\)
−0.883827 + 0.467814i \(0.845042\pi\)
\(440\) 0 0
\(441\) 20.9698 + 1.12594i 0.998562 + 0.0536160i
\(442\) 0 0
\(443\) −15.5756 8.99259i −0.740020 0.427251i 0.0820566 0.996628i \(-0.473851\pi\)
−0.822077 + 0.569377i \(0.807185\pi\)
\(444\) 0 0
\(445\) −8.66188 15.0028i −0.410612 0.711202i
\(446\) 0 0
\(447\) 19.4276 1.44530i 0.918894 0.0683601i
\(448\) 0 0
\(449\) 9.44363i 0.445673i 0.974856 + 0.222836i \(0.0715315\pi\)
−0.974856 + 0.222836i \(0.928468\pi\)
\(450\) 0 0
\(451\) −9.89297 5.71171i −0.465842 0.268954i
\(452\) 0 0
\(453\) 0.607002 + 8.15930i 0.0285195 + 0.383357i
\(454\) 0 0
\(455\) −19.0899 + 26.4772i −0.894948 + 1.24127i
\(456\) 0 0
\(457\) 0.922251 1.59739i 0.0431411 0.0747225i −0.843649 0.536896i \(-0.819597\pi\)
0.886790 + 0.462173i \(0.152930\pi\)
\(458\) 0 0
\(459\) −30.6412 9.50623i −1.43021 0.443713i
\(460\) 0 0
\(461\) 18.1869 + 31.5007i 0.847050 + 1.46713i 0.883829 + 0.467810i \(0.154957\pi\)
−0.0367790 + 0.999323i \(0.511710\pi\)
\(462\) 0 0
\(463\) 15.9830 27.6834i 0.742794 1.28656i −0.208425 0.978038i \(-0.566834\pi\)
0.951219 0.308518i \(-0.0998330\pi\)
\(464\) 0 0
\(465\) 3.20988 + 4.71352i 0.148855 + 0.218584i
\(466\) 0 0
\(467\) 12.2206 + 21.1666i 0.565500 + 0.979475i 0.997003 + 0.0773632i \(0.0246501\pi\)
−0.431503 + 0.902112i \(0.642017\pi\)
\(468\) 0 0
\(469\) 20.0682 9.02263i 0.926662 0.416627i
\(470\) 0 0
\(471\) 2.99273 + 4.39466i 0.137898 + 0.202495i
\(472\) 0 0
\(473\) 8.32786 4.80809i 0.382916 0.221076i
\(474\) 0 0
\(475\) −7.10607 + 4.10269i −0.326049 + 0.188245i
\(476\) 0 0
\(477\) 24.4352 + 9.62073i 1.11881 + 0.440503i
\(478\) 0 0
\(479\) −10.9606 −0.500805 −0.250402 0.968142i \(-0.580563\pi\)
−0.250402 + 0.968142i \(0.580563\pi\)
\(480\) 0 0
\(481\) 25.0082i 1.14028i
\(482\) 0 0
\(483\) 0.372122 13.8710i 0.0169321 0.631153i
\(484\) 0 0
\(485\) −36.8573 + 21.2796i −1.67360 + 0.966255i
\(486\) 0 0
\(487\) 16.8087 29.1136i 0.761677 1.31926i −0.180309 0.983610i \(-0.557710\pi\)
0.941986 0.335653i \(-0.108957\pi\)
\(488\) 0 0
\(489\) −4.11408 + 2.80167i −0.186045 + 0.126696i
\(490\) 0 0
\(491\) 19.6893 + 11.3676i 0.888568 + 0.513015i 0.873474 0.486871i \(-0.161862\pi\)
0.0150939 + 0.999886i \(0.495195\pi\)
\(492\) 0 0
\(493\) 35.9718i 1.62009i
\(494\) 0 0
\(495\) −3.21938 21.5176i −0.144700 0.967144i
\(496\) 0 0
\(497\) 1.22738 + 0.124486i 0.0550557 + 0.00558395i
\(498\) 0 0
\(499\) −19.5235 −0.873992 −0.436996 0.899463i \(-0.643958\pi\)
−0.436996 + 0.899463i \(0.643958\pi\)
\(500\) 0 0
\(501\) 2.27938 + 1.09922i 0.101835 + 0.0491094i
\(502\) 0 0
\(503\) −13.6867 −0.610262 −0.305131 0.952310i \(-0.598700\pi\)
−0.305131 + 0.952310i \(0.598700\pi\)
\(504\) 0 0
\(505\) 46.6609 2.07638
\(506\) 0 0
\(507\) 1.97630 1.34585i 0.0877705 0.0597712i
\(508\) 0 0
\(509\) −2.29166 −0.101576 −0.0507881 0.998709i \(-0.516173\pi\)
−0.0507881 + 0.998709i \(0.516173\pi\)
\(510\) 0 0
\(511\) 6.52186 9.04566i 0.288510 0.400156i
\(512\) 0 0
\(513\) 3.57422 + 3.86470i 0.157806 + 0.170630i
\(514\) 0 0
\(515\) 38.9395i 1.71588i
\(516\) 0 0
\(517\) −3.87018 2.23445i −0.170210 0.0982710i
\(518\) 0 0
\(519\) −4.79082 2.31034i −0.210294 0.101413i
\(520\) 0 0
\(521\) −8.54102 + 14.7935i −0.374189 + 0.648114i −0.990205 0.139619i \(-0.955412\pi\)
0.616017 + 0.787733i \(0.288745\pi\)
\(522\) 0 0
\(523\) −35.7462 + 20.6381i −1.56307 + 0.902440i −0.566128 + 0.824317i \(0.691559\pi\)
−0.996944 + 0.0781229i \(0.975107\pi\)
\(524\) 0 0
\(525\) −37.1030 0.995372i −1.61931 0.0434416i
\(526\) 0 0
\(527\) 5.61657i 0.244662i
\(528\) 0 0
\(529\) 13.8313 0.601359
\(530\) 0 0
\(531\) 16.7857 + 21.0955i 0.728435 + 0.915465i
\(532\) 0 0
\(533\) −16.8294 + 9.71644i −0.728961 + 0.420866i
\(534\) 0 0
\(535\) 8.27382 4.77689i 0.357708 0.206523i
\(536\) 0 0
\(537\) −14.5350 + 30.1404i −0.627231 + 1.30065i
\(538\) 0 0
\(539\) −2.81628 + 13.7409i −0.121306 + 0.591864i
\(540\) 0 0
\(541\) 22.7197 + 39.3516i 0.976795 + 1.69186i 0.673880 + 0.738841i \(0.264627\pi\)
0.302915 + 0.953018i \(0.402040\pi\)
\(542\) 0 0
\(543\) −13.6337 + 1.01427i −0.585078 + 0.0435263i
\(544\) 0 0
\(545\) −16.3509 + 28.3206i −0.700395 + 1.21312i
\(546\) 0 0
\(547\) −15.1095 26.1705i −0.646037 1.11897i −0.984061 0.177832i \(-0.943092\pi\)
0.338024 0.941138i \(-0.390242\pi\)
\(548\) 0 0
\(549\) 41.0677 + 16.1693i 1.75273 + 0.690091i
\(550\) 0 0
\(551\) −2.95118 + 5.11160i −0.125725 + 0.217761i
\(552\) 0 0
\(553\) 8.20958 + 5.91905i 0.349107 + 0.251704i
\(554\) 0 0
\(555\) 38.0139 25.8872i 1.61360 1.09885i
\(556\) 0 0
\(557\) −22.0154 12.7106i −0.932822 0.538565i −0.0451189 0.998982i \(-0.514367\pi\)
−0.887703 + 0.460417i \(0.847700\pi\)
\(558\) 0 0
\(559\) 16.3585i 0.691892i
\(560\) 0 0
\(561\) 9.30799 19.3014i 0.392983 0.814907i
\(562\) 0 0
\(563\) −1.44346 2.50015i −0.0608346 0.105369i 0.834004 0.551758i \(-0.186043\pi\)
−0.894839 + 0.446390i \(0.852710\pi\)
\(564\) 0 0
\(565\) 5.29909 + 3.05943i 0.222934 + 0.128711i
\(566\) 0 0
\(567\) 4.63613 + 23.3561i 0.194699 + 0.980863i
\(568\) 0 0
\(569\) −38.5945 22.2826i −1.61797 0.934134i −0.987445 0.157963i \(-0.949507\pi\)
−0.630523 0.776171i \(-0.717159\pi\)
\(570\) 0 0
\(571\) −3.26470 5.65462i −0.136623 0.236638i 0.789593 0.613631i \(-0.210292\pi\)
−0.926216 + 0.376992i \(0.876958\pi\)
\(572\) 0 0
\(573\) 10.0095 20.7561i 0.418153 0.867100i
\(574\) 0 0
\(575\) 24.5251i 1.02277i
\(576\) 0 0
\(577\) 1.17720 + 0.679658i 0.0490076 + 0.0282945i 0.524304 0.851531i \(-0.324326\pi\)
−0.475296 + 0.879826i \(0.657659\pi\)
\(578\) 0 0
\(579\) 9.35666 6.37183i 0.388850 0.264804i
\(580\) 0 0
\(581\) 19.3279 8.68979i 0.801855 0.360513i
\(582\) 0 0
\(583\) −8.77026 + 15.1905i −0.363227 + 0.629128i
\(584\) 0 0
\(585\) −34.4388 13.5594i −1.42387 0.560611i
\(586\) 0 0
\(587\) 22.2025 + 38.4559i 0.916397 + 1.58725i 0.804843 + 0.593488i \(0.202250\pi\)
0.111555 + 0.993758i \(0.464417\pi\)
\(588\) 0 0
\(589\) 0.460793 0.798117i 0.0189866 0.0328858i
\(590\) 0 0
\(591\) 7.67343 0.570857i 0.315643 0.0234819i
\(592\) 0 0
\(593\) −7.17564 12.4286i −0.294668 0.510380i 0.680240 0.732990i \(-0.261876\pi\)
−0.974908 + 0.222610i \(0.928542\pi\)
\(594\) 0 0
\(595\) −47.9576 34.5771i −1.96607 1.41752i
\(596\) 0 0
\(597\) 8.66024 17.9582i 0.354440 0.734982i
\(598\) 0 0
\(599\) 3.03349 1.75139i 0.123945 0.0715597i −0.436746 0.899585i \(-0.643869\pi\)
0.560691 + 0.828025i \(0.310536\pi\)
\(600\) 0 0
\(601\) −15.1846 + 8.76685i −0.619394 + 0.357607i −0.776633 0.629953i \(-0.783074\pi\)
0.157239 + 0.987561i \(0.449741\pi\)
\(602\) 0 0
\(603\) 15.5344 + 19.5230i 0.632610 + 0.795037i
\(604\) 0 0
\(605\) −25.2802 −1.02779
\(606\) 0 0
\(607\) 0.0872864i 0.00354285i 0.999998 + 0.00177142i \(0.000563862\pi\)
−0.999998 + 0.00177142i \(0.999436\pi\)
\(608\) 0 0
\(609\) −23.4715 + 12.7245i −0.951114 + 0.515624i
\(610\) 0 0
\(611\) −6.58373 + 3.80112i −0.266349 + 0.153777i
\(612\) 0 0
\(613\) 12.5352 21.7116i 0.506292 0.876924i −0.493681 0.869643i \(-0.664349\pi\)
0.999973 0.00728071i \(-0.00231754\pi\)
\(614\) 0 0
\(615\) −32.1904 15.5236i −1.29804 0.625972i
\(616\) 0 0
\(617\) −10.6365 6.14101i −0.428211 0.247228i 0.270373 0.962756i \(-0.412853\pi\)
−0.698584 + 0.715528i \(0.746186\pi\)
\(618\) 0 0
\(619\) 20.3076i 0.816229i 0.912931 + 0.408115i \(0.133814\pi\)
−0.912931 + 0.408115i \(0.866186\pi\)
\(620\) 0 0
\(621\) 15.3451 3.47615i 0.615778 0.139493i
\(622\) 0 0
\(623\) −11.5501 + 5.19294i −0.462747 + 0.208051i
\(624\) 0 0
\(625\) 0.103794 0.00415176
\(626\) 0 0
\(627\) −2.90619 + 1.97910i −0.116062 + 0.0790375i
\(628\) 0 0
\(629\) 45.2969 1.80610
\(630\) 0 0
\(631\) 45.9665 1.82990 0.914950 0.403568i \(-0.132230\pi\)
0.914950 + 0.403568i \(0.132230\pi\)
\(632\) 0 0
\(633\) −35.2603 17.0040i −1.40147 0.675850i
\(634\) 0 0
\(635\) 64.8913 2.57513
\(636\) 0 0
\(637\) 17.8482 + 15.8367i 0.707169 + 0.627472i
\(638\) 0 0
\(639\) 0.206988 + 1.38346i 0.00818833 + 0.0547290i
\(640\) 0 0
\(641\) 31.6509i 1.25013i 0.780571 + 0.625067i \(0.214928\pi\)
−0.780571 + 0.625067i \(0.785072\pi\)
\(642\) 0 0
\(643\) −10.0106 5.77960i −0.394778 0.227925i 0.289450 0.957193i \(-0.406528\pi\)
−0.684228 + 0.729268i \(0.739861\pi\)
\(644\) 0 0
\(645\) 24.8658 16.9335i 0.979091 0.666755i
\(646\) 0 0
\(647\) −13.0365 + 22.5799i −0.512519 + 0.887708i 0.487376 + 0.873192i \(0.337954\pi\)
−0.999895 + 0.0145160i \(0.995379\pi\)
\(648\) 0 0
\(649\) −15.5942 + 9.00332i −0.612126 + 0.353411i
\(650\) 0 0
\(651\) 3.66481 1.98679i 0.143635 0.0778684i
\(652\) 0 0
\(653\) 18.9315i 0.740847i 0.928863 + 0.370424i \(0.120788\pi\)
−0.928863 + 0.370424i \(0.879212\pi\)
\(654\) 0 0
\(655\) 62.7276 2.45097
\(656\) 0 0
\(657\) 11.7656 + 4.63242i 0.459021 + 0.180728i
\(658\) 0 0
\(659\) −23.3508 + 13.4816i −0.909618 + 0.525168i −0.880308 0.474402i \(-0.842664\pi\)
−0.0293098 + 0.999570i \(0.509331\pi\)
\(660\) 0 0
\(661\) 22.3201 12.8865i 0.868151 0.501227i 0.00141768 0.999999i \(-0.499549\pi\)
0.866733 + 0.498772i \(0.166215\pi\)
\(662\) 0 0
\(663\) −20.5184 30.1301i −0.796869 1.17016i
\(664\) 0 0
\(665\) 3.97803 + 8.84793i 0.154261 + 0.343108i
\(666\) 0 0
\(667\) 8.82079 + 15.2780i 0.341542 + 0.591568i
\(668\) 0 0
\(669\) 18.3489 + 26.9443i 0.709410 + 1.04173i
\(670\) 0 0
\(671\) −14.7400 + 25.5304i −0.569030 + 0.985590i
\(672\) 0 0
\(673\) −12.9608 22.4487i −0.499601 0.865335i 0.500398 0.865795i \(-0.333187\pi\)
−1.00000 0.000460130i \(0.999854\pi\)
\(674\) 0 0
\(675\) −9.29820 41.0460i −0.357888 1.57986i
\(676\) 0 0
\(677\) 6.55382 11.3515i 0.251884 0.436275i −0.712161 0.702016i \(-0.752283\pi\)
0.964044 + 0.265741i \(0.0856166\pi\)
\(678\) 0 0
\(679\) 12.7574 + 28.3751i 0.489585 + 1.08894i
\(680\) 0 0
\(681\) 1.87780 + 25.2412i 0.0719573 + 0.967246i
\(682\) 0 0
\(683\) 25.6910 + 14.8327i 0.983038 + 0.567557i 0.903186 0.429249i \(-0.141222\pi\)
0.0798523 + 0.996807i \(0.474555\pi\)
\(684\) 0 0
\(685\) 0.00233490i 8.92121e-5i
\(686\) 0 0
\(687\) 4.10952 0.305723i 0.156788 0.0116641i
\(688\) 0 0
\(689\) 14.9195 + 25.8413i 0.568387 + 0.984475i
\(690\) 0 0
\(691\) −40.9767 23.6579i −1.55883 0.899990i −0.997369 0.0724857i \(-0.976907\pi\)
−0.561459 0.827504i \(-0.689760\pi\)
\(692\) 0 0
\(693\) −15.8867 + 0.754174i −0.603487 + 0.0286487i
\(694\) 0 0
\(695\) 31.6065 + 18.2480i 1.19890 + 0.692187i
\(696\) 0 0
\(697\) −17.5992 30.4827i −0.666616 1.15461i
\(698\) 0 0
\(699\) −10.1708 14.9352i −0.384693 0.564900i
\(700\) 0 0
\(701\) 13.7742i 0.520244i 0.965576 + 0.260122i \(0.0837627\pi\)
−0.965576 + 0.260122i \(0.916237\pi\)
\(702\) 0 0
\(703\) −6.43670 3.71623i −0.242765 0.140160i
\(704\) 0 0
\(705\) −12.5930 6.07291i −0.474281 0.228719i
\(706\) 0 0
\(707\) 3.44186 33.9355i 0.129444 1.27627i
\(708\) 0 0
\(709\) 21.9691 38.0517i 0.825069 1.42906i −0.0767981 0.997047i \(-0.524470\pi\)
0.901867 0.432014i \(-0.142197\pi\)
\(710\) 0 0
\(711\) −4.20425 + 10.6782i −0.157672 + 0.400462i
\(712\) 0 0
\(713\) −1.37726 2.38549i −0.0515789 0.0893373i
\(714\) 0 0
\(715\) 12.3607 21.4094i 0.462265 0.800667i
\(716\) 0 0
\(717\) 17.8936 37.1050i 0.668250 1.38571i
\(718\) 0 0
\(719\) −14.7930 25.6223i −0.551687 0.955549i −0.998153 0.0607489i \(-0.980651\pi\)
0.446466 0.894800i \(-0.352682\pi\)
\(720\) 0 0
\(721\) −28.3198 2.87230i −1.05469 0.106970i
\(722\) 0 0
\(723\) −49.4843 + 3.68133i −1.84034 + 0.136910i
\(724\) 0 0
\(725\) 40.8666 23.5943i 1.51775 0.876271i
\(726\) 0 0
\(727\) 10.1244 5.84534i 0.375494 0.216792i −0.300362 0.953825i \(-0.597107\pi\)
0.675856 + 0.737034i \(0.263774\pi\)
\(728\) 0 0
\(729\) −24.3642 + 11.6356i −0.902377 + 0.430948i
\(730\) 0 0
\(731\) 29.6298 1.09590
\(732\) 0 0
\(733\) 33.0733i 1.22159i 0.791789 + 0.610795i \(0.209150\pi\)
−0.791789 + 0.610795i \(0.790850\pi\)
\(734\) 0 0
\(735\) −5.59715 + 43.5234i −0.206454 + 1.60539i
\(736\) 0 0
\(737\) −14.4318 + 8.33219i −0.531601 + 0.306920i
\(738\) 0 0
\(739\) 21.7528 37.6770i 0.800190 1.38597i −0.119301 0.992858i \(-0.538065\pi\)
0.919491 0.393111i \(-0.128601\pi\)
\(740\) 0 0
\(741\) 0.443750 + 5.96486i 0.0163016 + 0.219125i
\(742\) 0 0
\(743\) −18.0206 10.4042i −0.661112 0.381693i 0.131589 0.991304i \(-0.457992\pi\)
−0.792701 + 0.609611i \(0.791326\pi\)
\(744\) 0 0
\(745\) 40.7083i 1.49144i
\(746\) 0 0
\(747\) 14.9614 + 18.8028i 0.547408 + 0.687958i
\(748\) 0 0
\(749\) −2.86382 6.36972i −0.104642 0.232745i
\(750\) 0 0
\(751\) 39.8984 1.45591 0.727957 0.685623i \(-0.240470\pi\)
0.727957 + 0.685623i \(0.240470\pi\)
\(752\) 0 0
\(753\) −1.41736 19.0521i −0.0516515 0.694297i
\(754\) 0 0
\(755\) −17.0969 −0.622219
\(756\) 0 0
\(757\) 7.45545 0.270973 0.135486 0.990779i \(-0.456740\pi\)
0.135486 + 0.990779i \(0.456740\pi\)
\(758\) 0 0
\(759\) 0.779665 + 10.4802i 0.0283001 + 0.380408i
\(760\) 0 0
\(761\) −8.64924 −0.313535 −0.156767 0.987636i \(-0.550107\pi\)
−0.156767 + 0.987636i \(0.550107\pi\)
\(762\) 0 0
\(763\) 19.3908 + 13.9807i 0.701995 + 0.506134i
\(764\) 0 0
\(765\) 24.5598 62.3782i 0.887961 2.25529i
\(766\) 0 0
\(767\) 30.6319i 1.10605i
\(768\) 0 0
\(769\) −20.4818 11.8252i −0.738592 0.426426i 0.0829652 0.996552i \(-0.473561\pi\)
−0.821557 + 0.570126i \(0.806894\pi\)
\(770\) 0 0
\(771\) −1.94005 26.0781i −0.0698693 0.939180i
\(772\) 0 0
\(773\) −23.2849 + 40.3307i −0.837501 + 1.45059i 0.0544774 + 0.998515i \(0.482651\pi\)
−0.891978 + 0.452079i \(0.850683\pi\)
\(774\) 0 0
\(775\) −6.38084 + 3.68398i −0.229207 + 0.132333i
\(776\) 0 0
\(777\) −16.0232 29.5561i −0.574828 1.06032i
\(778\) 0 0
\(779\) 5.77546i 0.206927i
\(780\) 0 0
\(781\) −0.934344 −0.0334335
\(782\) 0 0
\(783\) −20.5551 22.2256i −0.734580 0.794279i
\(784\) 0 0
\(785\) −9.62178 + 5.55513i −0.343416 + 0.198271i
\(786\) 0 0
\(787\) 21.1657 12.2200i 0.754474 0.435596i −0.0728341 0.997344i \(-0.523204\pi\)
0.827308 + 0.561748i \(0.189871\pi\)
\(788\) 0 0
\(789\) −33.9212 + 2.52353i −1.20763 + 0.0898401i
\(790\) 0 0
\(791\) 2.61593 3.62823i 0.0930118 0.129005i
\(792\) 0 0
\(793\) 25.0748 + 43.4309i 0.890433 + 1.54228i
\(794\) 0 0
\(795\) −23.8363 + 49.4279i −0.845386 + 1.75303i
\(796\) 0 0
\(797\) 24.9202 43.1631i 0.882719 1.52891i 0.0344128 0.999408i \(-0.489044\pi\)
0.848306 0.529506i \(-0.177623\pi\)
\(798\) 0 0
\(799\) −6.88489 11.9250i −0.243570 0.421875i
\(800\) 0 0
\(801\) −8.94076 11.2364i −0.315906 0.397017i
\(802\) 0 0
\(803\) −4.22291 + 7.31430i −0.149023 + 0.258116i
\(804\) 0 0
\(805\) 28.8475 + 2.92582i 1.01674 + 0.103122i
\(806\) 0 0
\(807\) −0.766025 0.369410i −0.0269654 0.0130039i
\(808\) 0 0
\(809\) 10.6735 + 6.16237i 0.375262 + 0.216657i 0.675755 0.737127i \(-0.263818\pi\)
−0.300493 + 0.953784i \(0.597151\pi\)
\(810\) 0 0
\(811\) 24.8017i 0.870906i 0.900212 + 0.435453i \(0.143412\pi\)
−0.900212 + 0.435453i \(0.856588\pi\)
\(812\) 0 0
\(813\) 13.7258 + 20.1556i 0.481386 + 0.706888i
\(814\) 0 0
\(815\) −5.20047 9.00748i −0.182165 0.315518i
\(816\) 0 0
\(817\) −4.21041 2.43088i −0.147304 0.0850457i
\(818\) 0 0
\(819\) −12.4017 + 24.0464i −0.433352 + 0.840248i
\(820\) 0 0
\(821\) 31.3573 + 18.1041i 1.09438 + 0.631839i 0.934738 0.355336i \(-0.115634\pi\)
0.159639 + 0.987175i \(0.448967\pi\)
\(822\) 0 0
\(823\) −9.54093 16.5254i −0.332576 0.576038i 0.650440 0.759557i \(-0.274584\pi\)
−0.983016 + 0.183519i \(0.941251\pi\)
\(824\) 0 0
\(825\) 28.0331 2.08549i 0.975986 0.0726075i
\(826\) 0 0
\(827\) 31.9013i 1.10932i −0.832079 0.554658i \(-0.812849\pi\)
0.832079 0.554658i \(-0.187151\pi\)
\(828\) 0 0
\(829\) 13.0645 + 7.54278i 0.453748 + 0.261971i 0.709412 0.704794i \(-0.248961\pi\)
−0.255664 + 0.966766i \(0.582294\pi\)
\(830\) 0 0
\(831\) 3.94750 + 53.0620i 0.136937 + 1.84070i
\(832\) 0 0
\(833\) −28.6846 + 32.3280i −0.993864 + 1.12010i
\(834\) 0 0
\(835\) −2.64397 + 4.57950i −0.0914985 + 0.158480i
\(836\) 0 0
\(837\) 3.20945 + 3.47027i 0.110935 + 0.119950i
\(838\) 0 0
\(839\) −8.19860 14.2004i −0.283047 0.490252i 0.689087 0.724679i \(-0.258012\pi\)
−0.972134 + 0.234427i \(0.924679\pi\)
\(840\) 0 0
\(841\) 2.47206 4.28173i 0.0852434 0.147646i
\(842\) 0 0
\(843\) 7.72582 + 11.3449i 0.266091 + 0.390740i
\(844\) 0 0
\(845\) 2.49817 + 4.32696i 0.0859397 + 0.148852i
\(846\) 0 0
\(847\) −1.86475 + 18.3857i −0.0640735 + 0.631741i
\(848\) 0 0
\(849\) 11.2271 + 16.4863i 0.385312 + 0.565808i
\(850\) 0 0
\(851\) −19.2386 + 11.1074i −0.659492 + 0.380758i
\(852\) 0 0
\(853\) −16.5936 + 9.58030i −0.568153 + 0.328023i −0.756411 0.654096i \(-0.773049\pi\)
0.188258 + 0.982120i \(0.439716\pi\)
\(854\) 0 0
\(855\) −8.60756 + 6.84903i −0.294372 + 0.234232i
\(856\) 0 0
\(857\) 16.1145 0.550460 0.275230 0.961378i \(-0.411246\pi\)
0.275230 + 0.961378i \(0.411246\pi\)
\(858\) 0 0
\(859\) 12.1048i 0.413009i 0.978446 + 0.206505i \(0.0662089\pi\)
−0.978446 + 0.206505i \(0.933791\pi\)
\(860\) 0 0
\(861\) −13.6644 + 22.2663i −0.465682 + 0.758833i
\(862\) 0 0
\(863\) 32.2728 18.6327i 1.09858 0.634265i 0.162732 0.986670i \(-0.447969\pi\)
0.935848 + 0.352405i \(0.114636\pi\)
\(864\) 0 0
\(865\) 5.55712 9.62522i 0.188948 0.327267i
\(866\) 0 0
\(867\) 30.2365 20.5909i 1.02689 0.699303i
\(868\) 0 0
\(869\) −6.63824 3.83259i −0.225187 0.130012i
\(870\) 0 0
\(871\) 28.3485i 0.960553i
\(872\) 0 0
\(873\) −27.6043 + 21.9647i −0.934262 + 0.743392i
\(874\) 0 0
\(875\) 2.99486 29.5282i 0.101245 0.998236i
\(876\) 0 0
\(877\) −9.70948 −0.327866 −0.163933 0.986471i \(-0.552418\pi\)
−0.163933 + 0.986471i \(0.552418\pi\)
\(878\) 0 0
\(879\) 7.82983 + 3.77588i 0.264094 + 0.127357i
\(880\) 0 0
\(881\) 2.63241 0.0886881 0.0443440 0.999016i \(-0.485880\pi\)
0.0443440 + 0.999016i \(0.485880\pi\)
\(882\) 0 0
\(883\) 36.3181 1.22220 0.611101 0.791553i \(-0.290727\pi\)
0.611101 + 0.791553i \(0.290727\pi\)
\(884\) 0 0
\(885\) −46.5621 + 31.7085i −1.56517 + 1.06587i
\(886\) 0 0
\(887\) 16.3642 0.549455 0.274728 0.961522i \(-0.411412\pi\)
0.274728 + 0.961522i \(0.411412\pi\)
\(888\) 0 0
\(889\) 4.78659 47.1940i 0.160537 1.58284i
\(890\) 0 0
\(891\) −5.27824 17.2444i −0.176828 0.577711i
\(892\) 0 0
\(893\) 2.25939i 0.0756076i
\(894\) 0 0
\(895\) −60.5549 34.9614i −2.02413 1.16863i
\(896\) 0 0
\(897\) 16.1030 + 7.76555i 0.537663 + 0.259284i
\(898\) 0 0
\(899\) −2.64999 + 4.58992i −0.0883822 + 0.153082i
\(900\) 0 0
\(901\) −46.8058 + 27.0233i −1.55933 + 0.900277i
\(902\) 0 0
\(903\) −10.4812 19.3334i −0.348791 0.643376i
\(904\) 0 0
\(905\) 28.5679i 0.949629i
\(906\) 0 0
\(907\) −10.8333 −0.359714 −0.179857 0.983693i \(-0.557564\pi\)
−0.179857 + 0.983693i \(0.557564\pi\)
\(908\) 0 0
\(909\) 38.2509 5.72294i 1.26870 0.189818i
\(910\) 0 0
\(911\) −36.8512 + 21.2760i −1.22093 + 0.704907i −0.965117 0.261818i \(-0.915678\pi\)
−0.255817 + 0.966725i \(0.582345\pi\)
\(912\) 0 0
\(913\) −13.8994 + 8.02482i −0.460003 + 0.265583i
\(914\) 0 0
\(915\) −40.0611 + 83.0724i −1.32438 + 2.74629i
\(916\) 0 0
\(917\) 4.62699 45.6204i 0.152797 1.50652i
\(918\) 0 0
\(919\) 12.9697 + 22.4641i 0.427829 + 0.741022i 0.996680 0.0814187i \(-0.0259451\pi\)
−0.568851 + 0.822441i \(0.692612\pi\)
\(920\) 0 0
\(921\) −30.2807 + 2.25271i −0.997785 + 0.0742292i
\(922\) 0 0
\(923\) −0.794727 + 1.37651i −0.0261588 + 0.0453083i
\(924\) 0 0
\(925\) 29.7108 + 51.4606i 0.976884 + 1.69201i
\(926\) 0 0
\(927\) −4.77591 31.9211i −0.156861 1.04843i
\(928\) 0 0
\(929\) 23.4456 40.6089i 0.769224 1.33234i −0.168760 0.985657i \(-0.553976\pi\)
0.937984 0.346678i \(-0.112690\pi\)
\(930\) 0 0
\(931\) 6.72834 2.24048i 0.220512 0.0734287i
\(932\) 0 0
\(933\) 24.7601 16.8615i 0.810608 0.552019i
\(934\) 0 0
\(935\) 38.7784 + 22.3887i 1.26819 + 0.732189i
\(936\) 0 0
\(937\) 0.209357i 0.00683939i −0.999994 0.00341969i \(-0.998911\pi\)
0.999994 0.00341969i \(-0.00108852\pi\)
\(938\) 0 0
\(939\) −6.76742 + 14.0332i −0.220846 + 0.457956i
\(940\) 0 0
\(941\) −0.388565 0.673014i −0.0126669 0.0219396i 0.859622 0.510930i \(-0.170699\pi\)
−0.872289 + 0.488990i \(0.837365\pi\)
\(942\) 0 0
\(943\) 14.9496 + 8.63113i 0.486825 + 0.281068i
\(944\) 0 0
\(945\) −49.3894 + 6.04021i −1.60664 + 0.196488i
\(946\) 0 0
\(947\) −43.1233 24.8972i −1.40132 0.809052i −0.406791 0.913521i \(-0.633352\pi\)
−0.994528 + 0.104470i \(0.966686\pi\)
\(948\) 0 0
\(949\) 7.18378 + 12.4427i 0.233196 + 0.403906i
\(950\) 0 0
\(951\) 5.05612 10.4846i 0.163956 0.339986i
\(952\) 0 0
\(953\) 41.4104i 1.34141i 0.741722 + 0.670707i \(0.234009\pi\)
−0.741722 + 0.670707i \(0.765991\pi\)
\(954\) 0 0
\(955\) 41.7010 + 24.0761i 1.34941 + 0.779084i
\(956\) 0 0
\(957\) 16.7133 11.3817i 0.540264 0.367917i
\(958\) 0 0
\(959\) 0.00169812 0.000172230i 5.48353e−5 5.56160e-6i
\(960\) 0 0
\(961\) −15.0862 + 26.1301i −0.486653 + 0.842907i
\(962\) 0 0
\(963\) 6.19668 4.93069i 0.199685 0.158889i
\(964\) 0 0
\(965\) 11.8274 + 20.4857i 0.380739 + 0.659459i
\(966\) 0 0
\(967\) −22.8028 + 39.4956i −0.733289 + 1.27009i 0.222181 + 0.975005i \(0.428682\pi\)
−0.955470 + 0.295088i \(0.904651\pi\)
\(968\) 0 0
\(969\) −10.8040 + 0.803754i −0.347075 + 0.0258203i
\(970\) 0 0
\(971\) −4.36733 7.56444i −0.140154 0.242754i 0.787400 0.616442i \(-0.211427\pi\)
−0.927555 + 0.373688i \(0.878093\pi\)
\(972\) 0 0
\(973\) 15.6028 21.6407i 0.500202 0.693768i
\(974\) 0 0
\(975\) 20.7717 43.0731i 0.665228 1.37944i
\(976\) 0 0
\(977\) −12.9058 + 7.45114i −0.412892 + 0.238383i −0.692031 0.721867i \(-0.743284\pi\)
0.279140 + 0.960250i \(0.409951\pi\)
\(978\) 0 0
\(979\) 8.30615 4.79556i 0.265466 0.153267i
\(980\) 0 0
\(981\) −9.93033 + 25.2216i −0.317051 + 0.805262i
\(982\) 0 0
\(983\) 3.06917 0.0978912 0.0489456 0.998801i \(-0.484414\pi\)
0.0489456 + 0.998801i \(0.484414\pi\)
\(984\) 0 0
\(985\) 16.0788i 0.512314i
\(986\) 0 0
\(987\) −5.34559 + 8.71068i −0.170152 + 0.277264i
\(988\) 0 0
\(989\) −12.5845 + 7.26565i −0.400163 + 0.231034i
\(990\) 0 0
\(991\) −27.9075 + 48.3372i −0.886510 + 1.53548i −0.0425375 + 0.999095i \(0.513544\pi\)
−0.843973 + 0.536386i \(0.819789\pi\)
\(992\) 0 0
\(993\) −29.2904 14.1251i −0.929502 0.448246i
\(994\) 0 0
\(995\) 36.0798 + 20.8307i 1.14381 + 0.660377i
\(996\) 0 0
\(997\) 6.12692i 0.194042i 0.995282 + 0.0970208i \(0.0309313\pi\)
−0.995282 + 0.0970208i \(0.969069\pi\)
\(998\) 0 0
\(999\) 27.9872 25.8837i 0.885477 0.818924i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.c.689.5 16
3.2 odd 2 3024.2.df.c.17.7 16
4.3 odd 2 126.2.t.a.59.2 yes 16
7.5 odd 6 1008.2.ca.c.257.8 16
9.2 odd 6 1008.2.ca.c.353.8 16
9.7 even 3 3024.2.ca.c.2033.7 16
12.11 even 2 378.2.t.a.17.8 16
21.5 even 6 3024.2.ca.c.2609.7 16
28.3 even 6 882.2.m.b.293.7 16
28.11 odd 6 882.2.m.a.293.6 16
28.19 even 6 126.2.l.a.5.5 16
28.23 odd 6 882.2.l.b.509.8 16
28.27 even 2 882.2.t.a.815.3 16
36.7 odd 6 378.2.l.a.143.8 16
36.11 even 6 126.2.l.a.101.1 yes 16
36.23 even 6 1134.2.k.a.647.1 16
36.31 odd 6 1134.2.k.b.647.8 16
63.47 even 6 inner 1008.2.df.c.929.5 16
63.61 odd 6 3024.2.df.c.1601.7 16
84.11 even 6 2646.2.m.a.881.1 16
84.23 even 6 2646.2.l.a.1097.1 16
84.47 odd 6 378.2.l.a.341.4 16
84.59 odd 6 2646.2.m.b.881.4 16
84.83 odd 2 2646.2.t.b.2285.5 16
252.11 even 6 882.2.m.b.587.7 16
252.47 odd 6 126.2.t.a.47.2 yes 16
252.79 odd 6 2646.2.t.b.1979.5 16
252.83 odd 6 882.2.l.b.227.4 16
252.103 even 6 1134.2.k.a.971.1 16
252.115 even 6 2646.2.m.a.1763.1 16
252.131 odd 6 1134.2.k.b.971.8 16
252.151 odd 6 2646.2.m.b.1763.4 16
252.187 even 6 378.2.t.a.89.8 16
252.191 even 6 882.2.t.a.803.3 16
252.223 even 6 2646.2.l.a.521.5 16
252.227 odd 6 882.2.m.a.587.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.5 16 28.19 even 6
126.2.l.a.101.1 yes 16 36.11 even 6
126.2.t.a.47.2 yes 16 252.47 odd 6
126.2.t.a.59.2 yes 16 4.3 odd 2
378.2.l.a.143.8 16 36.7 odd 6
378.2.l.a.341.4 16 84.47 odd 6
378.2.t.a.17.8 16 12.11 even 2
378.2.t.a.89.8 16 252.187 even 6
882.2.l.b.227.4 16 252.83 odd 6
882.2.l.b.509.8 16 28.23 odd 6
882.2.m.a.293.6 16 28.11 odd 6
882.2.m.a.587.6 16 252.227 odd 6
882.2.m.b.293.7 16 28.3 even 6
882.2.m.b.587.7 16 252.11 even 6
882.2.t.a.803.3 16 252.191 even 6
882.2.t.a.815.3 16 28.27 even 2
1008.2.ca.c.257.8 16 7.5 odd 6
1008.2.ca.c.353.8 16 9.2 odd 6
1008.2.df.c.689.5 16 1.1 even 1 trivial
1008.2.df.c.929.5 16 63.47 even 6 inner
1134.2.k.a.647.1 16 36.23 even 6
1134.2.k.a.971.1 16 252.103 even 6
1134.2.k.b.647.8 16 36.31 odd 6
1134.2.k.b.971.8 16 252.131 odd 6
2646.2.l.a.521.5 16 252.223 even 6
2646.2.l.a.1097.1 16 84.23 even 6
2646.2.m.a.881.1 16 84.11 even 6
2646.2.m.a.1763.1 16 252.115 even 6
2646.2.m.b.881.4 16 84.59 odd 6
2646.2.m.b.1763.4 16 252.151 odd 6
2646.2.t.b.1979.5 16 252.79 odd 6
2646.2.t.b.2285.5 16 84.83 odd 2
3024.2.ca.c.2033.7 16 9.7 even 3
3024.2.ca.c.2609.7 16 21.5 even 6
3024.2.df.c.17.7 16 3.2 odd 2
3024.2.df.c.1601.7 16 63.61 odd 6