Properties

Label 882.2.m.b.293.7
Level $882$
Weight $2$
Character 882.293
Analytic conductor $7.043$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(293,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 293.7
Root \(1.71298 + 0.256290i\) of defining polynomial
Character \(\chi\) \(=\) 882.293
Dual form 882.2.m.b.587.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(1.43162 - 0.974922i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.80966 + 3.13442i) q^{5} +(0.752355 - 1.56012i) q^{6} -1.00000i q^{8} +(1.09905 - 2.79143i) q^{9} +3.61932i q^{10} +(1.73534 - 1.00190i) q^{11} +(-0.128499 - 1.72728i) q^{12} +(2.95206 + 1.70437i) q^{13} +(0.465079 + 6.25156i) q^{15} +(-0.500000 - 0.866025i) q^{16} +6.17418 q^{17} +(-0.443907 - 2.96698i) q^{18} -1.01308i q^{19} +(1.80966 + 3.13442i) q^{20} +(1.00190 - 1.73534i) q^{22} +(2.62232 + 1.51400i) q^{23} +(-0.974922 - 1.43162i) q^{24} +(-4.04972 - 7.01433i) q^{25} +3.40874 q^{26} +(-1.14800 - 5.06775i) q^{27} +(5.04560 - 2.91308i) q^{29} +(3.52855 + 5.18147i) q^{30} +(0.787812 + 0.454844i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(1.50757 - 3.12615i) q^{33} +(5.34700 - 3.08709i) q^{34} +(-1.86792 - 2.34752i) q^{36} -7.33650 q^{37} +(-0.506540 - 0.877353i) q^{38} +(5.88785 - 0.438020i) q^{39} +(3.13442 + 1.80966i) q^{40} +(-2.85045 + 4.93712i) q^{41} +(-2.39949 - 4.15605i) q^{43} -2.00379i q^{44} +(6.76060 + 8.49643i) q^{45} +3.02799 q^{46} +(1.11511 + 1.93143i) q^{47} +(-1.56012 - 0.752355i) q^{48} +(-7.01433 - 4.04972i) q^{50} +(8.83906 - 6.01935i) q^{51} +(2.95206 - 1.70437i) q^{52} +8.75365i q^{53} +(-3.52808 - 3.81480i) q^{54} +7.25237i q^{55} +(-0.987674 - 1.45034i) q^{57} +(2.91308 - 5.04560i) q^{58} +(-4.49313 + 7.78233i) q^{59} +(5.64655 + 2.72301i) q^{60} +(-12.7410 + 7.35603i) q^{61} +0.909687 q^{62} -1.00000 q^{64} +(-10.6844 + 6.16866i) q^{65} +(-0.257486 - 3.46111i) q^{66} +(4.15821 - 7.20222i) q^{67} +(3.08709 - 5.34700i) q^{68} +(5.23019 - 0.389094i) q^{69} +0.466287i q^{71} +(-2.79143 - 1.09905i) q^{72} -4.21492i q^{73} +(-6.35359 + 3.66825i) q^{74} +(-12.6361 - 6.09366i) q^{75} +(-0.877353 - 0.506540i) q^{76} +(4.88001 - 3.32326i) q^{78} +(-1.91267 - 3.31284i) q^{79} +3.61932 q^{80} +(-6.58416 - 6.13586i) q^{81} +5.70089i q^{82} +(-4.00481 - 6.93654i) q^{83} +(-11.1732 + 19.3525i) q^{85} +(-4.15605 - 2.39949i) q^{86} +(4.38334 - 9.08948i) q^{87} +(-1.00190 - 1.73534i) q^{88} +4.78647 q^{89} +(10.1031 + 3.97782i) q^{90} +(2.62232 - 1.51400i) q^{92} +(1.57128 - 0.116894i) q^{93} +(1.93143 + 1.11511i) q^{94} +(3.17542 + 1.83333i) q^{95} +(-1.72728 + 0.128499i) q^{96} +(-10.1835 + 5.87944i) q^{97} +(-0.889499 - 5.94521i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 6 q^{9} - 12 q^{11} + 6 q^{13} - 18 q^{15} - 8 q^{16} + 36 q^{17} + 6 q^{23} - 6 q^{24} - 8 q^{25} - 24 q^{26} + 36 q^{27} + 6 q^{29} + 18 q^{30} + 6 q^{31} + 18 q^{33} + 4 q^{37} + 42 q^{39}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 1.43162 0.974922i 0.826544 0.562872i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.80966 + 3.13442i −0.809304 + 1.40175i 0.104043 + 0.994573i \(0.466822\pi\)
−0.913347 + 0.407182i \(0.866511\pi\)
\(6\) 0.752355 1.56012i 0.307148 0.636915i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 1.09905 2.79143i 0.366351 0.930477i
\(10\) 3.61932i 1.14453i
\(11\) 1.73534 1.00190i 0.523224 0.302083i −0.215029 0.976608i \(-0.568985\pi\)
0.738253 + 0.674524i \(0.235651\pi\)
\(12\) −0.128499 1.72728i −0.0370945 0.498622i
\(13\) 2.95206 + 1.70437i 0.818754 + 0.472708i 0.849987 0.526804i \(-0.176610\pi\)
−0.0312328 + 0.999512i \(0.509943\pi\)
\(14\) 0 0
\(15\) 0.465079 + 6.25156i 0.120083 + 1.61415i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 6.17418 1.49746 0.748730 0.662876i \(-0.230664\pi\)
0.748730 + 0.662876i \(0.230664\pi\)
\(18\) −0.443907 2.96698i −0.104630 0.699323i
\(19\) 1.01308i 0.232417i −0.993225 0.116208i \(-0.962926\pi\)
0.993225 0.116208i \(-0.0370740\pi\)
\(20\) 1.80966 + 3.13442i 0.404652 + 0.700877i
\(21\) 0 0
\(22\) 1.00190 1.73534i 0.213605 0.369975i
\(23\) 2.62232 + 1.51400i 0.546791 + 0.315690i 0.747827 0.663894i \(-0.231097\pi\)
−0.201035 + 0.979584i \(0.564431\pi\)
\(24\) −0.974922 1.43162i −0.199005 0.292228i
\(25\) −4.04972 7.01433i −0.809945 1.40287i
\(26\) 3.40874 0.668510
\(27\) −1.14800 5.06775i −0.220934 0.975289i
\(28\) 0 0
\(29\) 5.04560 2.91308i 0.936945 0.540945i 0.0479434 0.998850i \(-0.484733\pi\)
0.889001 + 0.457905i \(0.151400\pi\)
\(30\) 3.52855 + 5.18147i 0.644222 + 0.946003i
\(31\) 0.787812 + 0.454844i 0.141495 + 0.0816923i 0.569076 0.822285i \(-0.307301\pi\)
−0.427581 + 0.903977i \(0.640634\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 1.50757 3.12615i 0.262434 0.544193i
\(34\) 5.34700 3.08709i 0.917003 0.529432i
\(35\) 0 0
\(36\) −1.86792 2.34752i −0.311320 0.391254i
\(37\) −7.33650 −1.20611 −0.603056 0.797699i \(-0.706051\pi\)
−0.603056 + 0.797699i \(0.706051\pi\)
\(38\) −0.506540 0.877353i −0.0821717 0.142325i
\(39\) 5.88785 0.438020i 0.942810 0.0701394i
\(40\) 3.13442 + 1.80966i 0.495595 + 0.286132i
\(41\) −2.85045 + 4.93712i −0.445165 + 0.771048i −0.998064 0.0622002i \(-0.980188\pi\)
0.552899 + 0.833248i \(0.313522\pi\)
\(42\) 0 0
\(43\) −2.39949 4.15605i −0.365919 0.633791i 0.623004 0.782219i \(-0.285912\pi\)
−0.988923 + 0.148428i \(0.952579\pi\)
\(44\) 2.00379i 0.302083i
\(45\) 6.76060 + 8.49643i 1.00781 + 1.26657i
\(46\) 3.02799 0.446453
\(47\) 1.11511 + 1.93143i 0.162655 + 0.281727i 0.935820 0.352478i \(-0.114661\pi\)
−0.773165 + 0.634205i \(0.781327\pi\)
\(48\) −1.56012 0.752355i −0.225183 0.108593i
\(49\) 0 0
\(50\) −7.01433 4.04972i −0.991975 0.572717i
\(51\) 8.83906 6.01935i 1.23772 0.842877i
\(52\) 2.95206 1.70437i 0.409377 0.236354i
\(53\) 8.75365i 1.20241i 0.799096 + 0.601203i \(0.205312\pi\)
−0.799096 + 0.601203i \(0.794688\pi\)
\(54\) −3.52808 3.81480i −0.480110 0.519128i
\(55\) 7.25237i 0.977909i
\(56\) 0 0
\(57\) −0.987674 1.45034i −0.130821 0.192103i
\(58\) 2.91308 5.04560i 0.382506 0.662520i
\(59\) −4.49313 + 7.78233i −0.584956 + 1.01317i 0.409925 + 0.912119i \(0.365555\pi\)
−0.994881 + 0.101054i \(0.967778\pi\)
\(60\) 5.64655 + 2.72301i 0.728967 + 0.351539i
\(61\) −12.7410 + 7.35603i −1.63132 + 0.941843i −0.647634 + 0.761952i \(0.724241\pi\)
−0.983686 + 0.179892i \(0.942425\pi\)
\(62\) 0.909687 0.115530
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −10.6844 + 6.16866i −1.32524 + 0.765128i
\(66\) −0.257486 3.46111i −0.0316943 0.426033i
\(67\) 4.15821 7.20222i 0.508006 0.879892i −0.491951 0.870623i \(-0.663716\pi\)
0.999957 0.00926908i \(-0.00295048\pi\)
\(68\) 3.08709 5.34700i 0.374365 0.648419i
\(69\) 5.23019 0.389094i 0.629640 0.0468415i
\(70\) 0 0
\(71\) 0.466287i 0.0553381i 0.999617 + 0.0276691i \(0.00880846\pi\)
−0.999617 + 0.0276691i \(0.991192\pi\)
\(72\) −2.79143 1.09905i −0.328973 0.129525i
\(73\) 4.21492i 0.493319i −0.969102 0.246659i \(-0.920667\pi\)
0.969102 0.246659i \(-0.0793329\pi\)
\(74\) −6.35359 + 3.66825i −0.738590 + 0.426425i
\(75\) −12.6361 6.09366i −1.45909 0.703635i
\(76\) −0.877353 0.506540i −0.100639 0.0581041i
\(77\) 0 0
\(78\) 4.88001 3.32326i 0.552553 0.376285i
\(79\) −1.91267 3.31284i −0.215192 0.372723i 0.738140 0.674648i \(-0.235704\pi\)
−0.953332 + 0.301924i \(0.902371\pi\)
\(80\) 3.61932 0.404652
\(81\) −6.58416 6.13586i −0.731574 0.681762i
\(82\) 5.70089i 0.629558i
\(83\) −4.00481 6.93654i −0.439585 0.761384i 0.558072 0.829792i \(-0.311541\pi\)
−0.997657 + 0.0684084i \(0.978208\pi\)
\(84\) 0 0
\(85\) −11.1732 + 19.3525i −1.21190 + 2.09907i
\(86\) −4.15605 2.39949i −0.448158 0.258744i
\(87\) 4.38334 9.08948i 0.469944 0.974495i
\(88\) −1.00190 1.73534i −0.106803 0.184988i
\(89\) 4.78647 0.507365 0.253683 0.967288i \(-0.418358\pi\)
0.253683 + 0.967288i \(0.418358\pi\)
\(90\) 10.1031 + 3.97782i 1.06496 + 0.419299i
\(91\) 0 0
\(92\) 2.62232 1.51400i 0.273396 0.157845i
\(93\) 1.57128 0.116894i 0.162934 0.0121213i
\(94\) 1.93143 + 1.11511i 0.199211 + 0.115015i
\(95\) 3.17542 + 1.83333i 0.325791 + 0.188096i
\(96\) −1.72728 + 0.128499i −0.176290 + 0.0131149i
\(97\) −10.1835 + 5.87944i −1.03398 + 0.596967i −0.918121 0.396299i \(-0.870294\pi\)
−0.115856 + 0.993266i \(0.536961\pi\)
\(98\) 0 0
\(99\) −0.889499 5.94521i −0.0893980 0.597516i
\(100\) −8.09945 −0.809945
\(101\) −6.44610 11.1650i −0.641411 1.11096i −0.985118 0.171879i \(-0.945016\pi\)
0.343707 0.939077i \(-0.388317\pi\)
\(102\) 4.64518 9.63244i 0.459941 0.953754i
\(103\) −9.31740 5.37940i −0.918070 0.530048i −0.0350515 0.999386i \(-0.511160\pi\)
−0.883019 + 0.469337i \(0.844493\pi\)
\(104\) 1.70437 2.95206i 0.167127 0.289473i
\(105\) 0 0
\(106\) 4.37683 + 7.58088i 0.425115 + 0.736321i
\(107\) 2.63967i 0.255186i 0.991827 + 0.127593i \(0.0407251\pi\)
−0.991827 + 0.127593i \(0.959275\pi\)
\(108\) −4.96280 1.53967i −0.477546 0.148155i
\(109\) −9.03535 −0.865430 −0.432715 0.901531i \(-0.642444\pi\)
−0.432715 + 0.901531i \(0.642444\pi\)
\(110\) 3.62618 + 6.28073i 0.345743 + 0.598844i
\(111\) −10.5031 + 7.15251i −0.996905 + 0.678886i
\(112\) 0 0
\(113\) −1.46411 0.845306i −0.137732 0.0795197i 0.429551 0.903043i \(-0.358672\pi\)
−0.567283 + 0.823523i \(0.692005\pi\)
\(114\) −1.58052 0.762196i −0.148029 0.0713862i
\(115\) −9.49100 + 5.47963i −0.885041 + 0.510978i
\(116\) 5.82616i 0.540945i
\(117\) 8.00210 6.36727i 0.739795 0.588654i
\(118\) 8.98627i 0.827253i
\(119\) 0 0
\(120\) 6.25156 0.465079i 0.570687 0.0424557i
\(121\) −3.49240 + 6.04902i −0.317491 + 0.549911i
\(122\) −7.35603 + 12.7410i −0.665984 + 1.15352i
\(123\) 0.732559 + 9.84702i 0.0660526 + 0.887876i
\(124\) 0.787812 0.454844i 0.0707476 0.0408462i
\(125\) 11.2179 1.00336
\(126\) 0 0
\(127\) 17.9292 1.59096 0.795478 0.605983i \(-0.207220\pi\)
0.795478 + 0.605983i \(0.207220\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −7.48698 3.61054i −0.659192 0.317891i
\(130\) −6.16866 + 10.6844i −0.541027 + 0.937087i
\(131\) 8.66567 15.0094i 0.757123 1.31138i −0.187188 0.982324i \(-0.559938\pi\)
0.944312 0.329052i \(-0.106729\pi\)
\(132\) −1.95354 2.86867i −0.170034 0.249685i
\(133\) 0 0
\(134\) 8.31641i 0.718429i
\(135\) 17.9619 + 5.57257i 1.54592 + 0.479610i
\(136\) 6.17418i 0.529432i
\(137\) −0.000558693 0 0.000322562i −4.77324e−5 0 2.75583e-5i −0.500024 0.866012i \(-0.666675\pi\)
0.499976 + 0.866039i \(0.333342\pi\)
\(138\) 4.33493 2.95206i 0.369013 0.251296i
\(139\) −8.73273 5.04185i −0.740701 0.427644i 0.0816233 0.996663i \(-0.473990\pi\)
−0.822324 + 0.569019i \(0.807323\pi\)
\(140\) 0 0
\(141\) 3.47940 + 1.67792i 0.293018 + 0.141306i
\(142\) 0.233144 + 0.403817i 0.0195650 + 0.0338875i
\(143\) 6.83042 0.571189
\(144\) −2.96698 + 0.443907i −0.247248 + 0.0369923i
\(145\) 21.0867i 1.75116i
\(146\) −2.10746 3.65022i −0.174414 0.302095i
\(147\) 0 0
\(148\) −3.66825 + 6.35359i −0.301528 + 0.522262i
\(149\) 9.74064 + 5.62376i 0.797984 + 0.460716i 0.842766 0.538280i \(-0.180926\pi\)
−0.0447816 + 0.998997i \(0.514259\pi\)
\(150\) −13.9900 + 1.04077i −1.14228 + 0.0849786i
\(151\) 2.36189 + 4.09092i 0.192208 + 0.332914i 0.945982 0.324220i \(-0.105102\pi\)
−0.753774 + 0.657134i \(0.771768\pi\)
\(152\) −1.01308 −0.0821717
\(153\) 6.78575 17.2348i 0.548596 1.39335i
\(154\) 0 0
\(155\) −2.85134 + 1.64622i −0.229025 + 0.132228i
\(156\) 2.56459 5.31804i 0.205331 0.425784i
\(157\) 2.65845 + 1.53486i 0.212168 + 0.122495i 0.602318 0.798256i \(-0.294244\pi\)
−0.390151 + 0.920751i \(0.627577\pi\)
\(158\) −3.31284 1.91267i −0.263555 0.152164i
\(159\) 8.53413 + 12.5319i 0.676800 + 0.993842i
\(160\) 3.13442 1.80966i 0.247798 0.143066i
\(161\) 0 0
\(162\) −8.76998 2.02173i −0.689035 0.158842i
\(163\) 2.87373 0.225088 0.112544 0.993647i \(-0.464100\pi\)
0.112544 + 0.993647i \(0.464100\pi\)
\(164\) 2.85045 + 4.93712i 0.222582 + 0.385524i
\(165\) 7.07049 + 10.3826i 0.550437 + 0.808285i
\(166\) −6.93654 4.00481i −0.538380 0.310834i
\(167\) 0.730517 1.26529i 0.0565291 0.0979113i −0.836376 0.548156i \(-0.815330\pi\)
0.892905 + 0.450245i \(0.148663\pi\)
\(168\) 0 0
\(169\) −0.690233 1.19552i −0.0530948 0.0919630i
\(170\) 22.3463i 1.71388i
\(171\) −2.82794 1.11343i −0.216258 0.0851460i
\(172\) −4.79899 −0.365919
\(173\) 1.53541 + 2.65940i 0.116735 + 0.202191i 0.918472 0.395486i \(-0.129424\pi\)
−0.801737 + 0.597677i \(0.796091\pi\)
\(174\) −0.748656 10.0634i −0.0567554 0.762904i
\(175\) 0 0
\(176\) −1.73534 1.00190i −0.130806 0.0755209i
\(177\) 1.15473 + 15.5218i 0.0867946 + 1.16669i
\(178\) 4.14521 2.39324i 0.310696 0.179381i
\(179\) 19.3193i 1.44399i 0.691896 + 0.721997i \(0.256776\pi\)
−0.691896 + 0.721997i \(0.743224\pi\)
\(180\) 10.7384 1.60664i 0.800395 0.119752i
\(181\) 7.89318i 0.586695i −0.956006 0.293348i \(-0.905231\pi\)
0.956006 0.293348i \(-0.0947693\pi\)
\(182\) 0 0
\(183\) −11.0687 + 22.9525i −0.818222 + 1.69670i
\(184\) 1.51400 2.62232i 0.111613 0.193320i
\(185\) 13.2765 22.9957i 0.976111 1.69067i
\(186\) 1.30232 0.886874i 0.0954910 0.0650288i
\(187\) 10.7143 6.18590i 0.783506 0.452358i
\(188\) 2.23022 0.162655
\(189\) 0 0
\(190\) 3.66666 0.266007
\(191\) −11.5218 + 6.65211i −0.833688 + 0.481330i −0.855114 0.518441i \(-0.826513\pi\)
0.0214259 + 0.999770i \(0.493179\pi\)
\(192\) −1.43162 + 0.974922i −0.103318 + 0.0703590i
\(193\) −3.26786 + 5.66011i −0.235226 + 0.407423i −0.959338 0.282259i \(-0.908916\pi\)
0.724112 + 0.689682i \(0.242250\pi\)
\(194\) −5.87944 + 10.1835i −0.422119 + 0.731132i
\(195\) −9.28205 + 19.2476i −0.664701 + 1.37835i
\(196\) 0 0
\(197\) 4.44250i 0.316515i −0.987398 0.158258i \(-0.949412\pi\)
0.987398 0.158258i \(-0.0505876\pi\)
\(198\) −3.74293 4.70395i −0.265999 0.334295i
\(199\) 11.5108i 0.815982i 0.912986 + 0.407991i \(0.133770\pi\)
−0.912986 + 0.407991i \(0.866230\pi\)
\(200\) −7.01433 + 4.04972i −0.495988 + 0.286359i
\(201\) −1.06865 14.3648i −0.0753768 1.01321i
\(202\) −11.1650 6.44610i −0.785565 0.453546i
\(203\) 0 0
\(204\) −0.793376 10.6645i −0.0555475 0.746666i
\(205\) −10.3167 17.8690i −0.720547 1.24802i
\(206\) −10.7588 −0.749601
\(207\) 7.10829 5.65606i 0.494060 0.393123i
\(208\) 3.40874i 0.236354i
\(209\) −1.01500 1.75804i −0.0702092 0.121606i
\(210\) 0 0
\(211\) 11.3005 19.5731i 0.777961 1.34747i −0.155155 0.987890i \(-0.549588\pi\)
0.933115 0.359577i \(-0.117079\pi\)
\(212\) 7.58088 + 4.37683i 0.520657 + 0.300602i
\(213\) 0.454594 + 0.667545i 0.0311483 + 0.0457394i
\(214\) 1.31983 + 2.28602i 0.0902219 + 0.156269i
\(215\) 17.3691 1.18456
\(216\) −5.06775 + 1.14800i −0.344817 + 0.0781118i
\(217\) 0 0
\(218\) −7.82484 + 4.51768i −0.529965 + 0.305976i
\(219\) −4.10922 6.03414i −0.277675 0.407750i
\(220\) 6.28073 + 3.62618i 0.423447 + 0.244477i
\(221\) 18.2265 + 10.5231i 1.22605 + 0.707860i
\(222\) −5.51965 + 11.4458i −0.370455 + 0.768191i
\(223\) 16.2994 9.41045i 1.09149 0.630170i 0.157515 0.987517i \(-0.449652\pi\)
0.933972 + 0.357346i \(0.116318\pi\)
\(224\) 0 0
\(225\) −24.0309 + 3.59540i −1.60206 + 0.239693i
\(226\) −1.69061 −0.112458
\(227\) −7.30665 12.6555i −0.484960 0.839975i 0.514891 0.857256i \(-0.327832\pi\)
−0.999851 + 0.0172809i \(0.994499\pi\)
\(228\) −1.74987 + 0.130180i −0.115888 + 0.00862137i
\(229\) −2.06044 1.18959i −0.136158 0.0786106i 0.430374 0.902651i \(-0.358382\pi\)
−0.566531 + 0.824040i \(0.691715\pi\)
\(230\) −5.47963 + 9.49100i −0.361316 + 0.625818i
\(231\) 0 0
\(232\) −2.91308 5.04560i −0.191253 0.331260i
\(233\) 10.4324i 0.683448i −0.939800 0.341724i \(-0.888989\pi\)
0.939800 0.341724i \(-0.111011\pi\)
\(234\) 3.74639 9.51527i 0.244909 0.622033i
\(235\) −8.07186 −0.526550
\(236\) 4.49313 + 7.78233i 0.292478 + 0.506587i
\(237\) −5.96796 2.87801i −0.387661 0.186947i
\(238\) 0 0
\(239\) 20.5971 + 11.8917i 1.33232 + 0.769213i 0.985654 0.168777i \(-0.0539818\pi\)
0.346662 + 0.937990i \(0.387315\pi\)
\(240\) 5.18147 3.52855i 0.334463 0.227767i
\(241\) −24.8105 + 14.3243i −1.59818 + 0.922712i −0.606348 + 0.795200i \(0.707366\pi\)
−0.991837 + 0.127513i \(0.959301\pi\)
\(242\) 6.98481i 0.449000i
\(243\) −15.4080 2.36515i −0.988423 0.151725i
\(244\) 14.7121i 0.941843i
\(245\) 0 0
\(246\) 5.55793 + 8.16149i 0.354360 + 0.520358i
\(247\) 1.72667 2.99067i 0.109865 0.190292i
\(248\) 0.454844 0.787812i 0.0288826 0.0500261i
\(249\) −12.4959 6.02608i −0.791898 0.381888i
\(250\) 9.71496 5.60894i 0.614428 0.354740i
\(251\) −11.0301 −0.696216 −0.348108 0.937454i \(-0.613176\pi\)
−0.348108 + 0.937454i \(0.613176\pi\)
\(252\) 0 0
\(253\) 6.06748 0.381459
\(254\) 15.5271 8.96458i 0.974257 0.562488i
\(255\) 2.87148 + 38.5983i 0.179819 + 2.41712i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.54890 + 13.0751i −0.470888 + 0.815601i −0.999446 0.0332960i \(-0.989400\pi\)
0.528558 + 0.848897i \(0.322733\pi\)
\(258\) −8.28919 + 0.616665i −0.516062 + 0.0383919i
\(259\) 0 0
\(260\) 12.3373i 0.765128i
\(261\) −2.58627 17.2861i −0.160086 1.06998i
\(262\) 17.3313i 1.07073i
\(263\) −17.0075 + 9.81926i −1.04873 + 0.605482i −0.922292 0.386493i \(-0.873686\pi\)
−0.126433 + 0.991975i \(0.540353\pi\)
\(264\) −3.12615 1.50757i −0.192401 0.0927843i
\(265\) −27.4376 15.8411i −1.68548 0.973112i
\(266\) 0 0
\(267\) 6.85240 4.66644i 0.419360 0.285581i
\(268\) −4.15821 7.20222i −0.254003 0.439946i
\(269\) −0.491005 −0.0299371 −0.0149686 0.999888i \(-0.504765\pi\)
−0.0149686 + 0.999888i \(0.504765\pi\)
\(270\) 18.3418 4.15499i 1.11625 0.252865i
\(271\) 14.0789i 0.855232i 0.903960 + 0.427616i \(0.140647\pi\)
−0.903960 + 0.427616i \(0.859353\pi\)
\(272\) −3.08709 5.34700i −0.187182 0.324209i
\(273\) 0 0
\(274\) −0.000322562 0 0.000558693i −1.94867e−5 0 3.37519e-5i
\(275\) −14.0553 8.11481i −0.847565 0.489342i
\(276\) 2.27813 4.72402i 0.137127 0.284353i
\(277\) −15.3600 26.6043i −0.922894 1.59850i −0.794913 0.606723i \(-0.792484\pi\)
−0.127981 0.991777i \(-0.540850\pi\)
\(278\) −10.0837 −0.604780
\(279\) 2.13551 1.69923i 0.127850 0.101730i
\(280\) 0 0
\(281\) 6.86286 3.96227i 0.409404 0.236369i −0.281130 0.959670i \(-0.590709\pi\)
0.690534 + 0.723300i \(0.257376\pi\)
\(282\) 3.85221 0.286581i 0.229395 0.0170656i
\(283\) −9.97303 5.75793i −0.592835 0.342273i 0.173383 0.984855i \(-0.444530\pi\)
−0.766218 + 0.642581i \(0.777864\pi\)
\(284\) 0.403817 + 0.233144i 0.0239621 + 0.0138345i
\(285\) 6.33333 0.471162i 0.375154 0.0279092i
\(286\) 5.91532 3.41521i 0.349780 0.201946i
\(287\) 0 0
\(288\) −2.34752 + 1.86792i −0.138329 + 0.110068i
\(289\) 21.1205 1.24238
\(290\) 10.5434 + 18.2616i 0.619127 + 1.07236i
\(291\) −8.84686 + 18.3452i −0.518612 + 1.07542i
\(292\) −3.65022 2.10746i −0.213613 0.123330i
\(293\) −2.50937 + 4.34636i −0.146599 + 0.253917i −0.929968 0.367639i \(-0.880166\pi\)
0.783369 + 0.621557i \(0.213499\pi\)
\(294\) 0 0
\(295\) −16.2621 28.1667i −0.946814 1.63993i
\(296\) 7.33650i 0.426425i
\(297\) −7.06954 7.64407i −0.410216 0.443554i
\(298\) 11.2475 0.651551
\(299\) 5.16083 + 8.93882i 0.298458 + 0.516945i
\(300\) −11.5953 + 7.89633i −0.669455 + 0.455895i
\(301\) 0 0
\(302\) 4.09092 + 2.36189i 0.235406 + 0.135912i
\(303\) −20.1133 9.69952i −1.15548 0.557223i
\(304\) −0.877353 + 0.506540i −0.0503197 + 0.0290521i
\(305\) 53.2476i 3.04895i
\(306\) −2.74076 18.3186i −0.156679 1.04721i
\(307\) 17.5309i 1.00054i 0.865869 + 0.500271i \(0.166766\pi\)
−0.865869 + 0.500271i \(0.833234\pi\)
\(308\) 0 0
\(309\) −18.5834 + 1.38250i −1.05717 + 0.0786474i
\(310\) −1.64622 + 2.85134i −0.0934992 + 0.161945i
\(311\) −8.64759 + 14.9781i −0.490360 + 0.849328i −0.999938 0.0110959i \(-0.996468\pi\)
0.509579 + 0.860424i \(0.329801\pi\)
\(312\) −0.438020 5.88785i −0.0247980 0.333334i
\(313\) 7.78988 4.49749i 0.440310 0.254213i −0.263419 0.964681i \(-0.584850\pi\)
0.703729 + 0.710468i \(0.251517\pi\)
\(314\) 3.06972 0.173234
\(315\) 0 0
\(316\) −3.82533 −0.215192
\(317\) 5.82002 3.36019i 0.326885 0.188727i −0.327572 0.944826i \(-0.606230\pi\)
0.654457 + 0.756099i \(0.272897\pi\)
\(318\) 13.6567 + 6.58586i 0.765830 + 0.369316i
\(319\) 5.83721 10.1103i 0.326821 0.566071i
\(320\) 1.80966 3.13442i 0.101163 0.175219i
\(321\) 2.57347 + 3.77899i 0.143637 + 0.210923i
\(322\) 0 0
\(323\) 6.25494i 0.348034i
\(324\) −8.60589 + 2.63412i −0.478105 + 0.146340i
\(325\) 27.6089i 1.53147i
\(326\) 2.48873 1.43687i 0.137838 0.0795807i
\(327\) −12.9352 + 8.80877i −0.715316 + 0.487126i
\(328\) 4.93712 + 2.85045i 0.272607 + 0.157390i
\(329\) 0 0
\(330\) 11.3145 + 5.45636i 0.622844 + 0.300363i
\(331\) 9.38725 + 16.2592i 0.515970 + 0.893686i 0.999828 + 0.0185396i \(0.00590167\pi\)
−0.483858 + 0.875146i \(0.660765\pi\)
\(332\) −8.00963 −0.439585
\(333\) −8.06320 + 20.4793i −0.441861 + 1.12226i
\(334\) 1.46103i 0.0799443i
\(335\) 15.0499 + 26.0671i 0.822262 + 1.42420i
\(336\) 0 0
\(337\) 2.42287 4.19654i 0.131982 0.228600i −0.792458 0.609926i \(-0.791199\pi\)
0.924441 + 0.381326i \(0.124532\pi\)
\(338\) −1.19552 0.690233i −0.0650276 0.0375437i
\(339\) −2.92016 + 0.217242i −0.158601 + 0.0117990i
\(340\) 11.1732 + 19.3525i 0.605949 + 1.04954i
\(341\) 1.82283 0.0987116
\(342\) −3.00578 + 0.449713i −0.162534 + 0.0243177i
\(343\) 0 0
\(344\) −4.15605 + 2.39949i −0.224079 + 0.129372i
\(345\) −8.24526 + 17.0977i −0.443910 + 0.920511i
\(346\) 2.65940 + 1.53541i 0.142970 + 0.0825440i
\(347\) 15.1305 + 8.73559i 0.812247 + 0.468951i 0.847736 0.530419i \(-0.177965\pi\)
−0.0354887 + 0.999370i \(0.511299\pi\)
\(348\) −5.68005 8.34083i −0.304483 0.447115i
\(349\) 20.6338 11.9129i 1.10450 0.637683i 0.167101 0.985940i \(-0.446560\pi\)
0.937399 + 0.348257i \(0.113226\pi\)
\(350\) 0 0
\(351\) 5.24835 16.9169i 0.280136 0.902958i
\(352\) −2.00379 −0.106803
\(353\) 5.02061 + 8.69596i 0.267220 + 0.462839i 0.968143 0.250398i \(-0.0805615\pi\)
−0.700923 + 0.713237i \(0.747228\pi\)
\(354\) 8.76091 + 12.8649i 0.465637 + 0.683761i
\(355\) −1.46154 0.843820i −0.0775705 0.0447853i
\(356\) 2.39324 4.14521i 0.126841 0.219696i
\(357\) 0 0
\(358\) 9.65966 + 16.7310i 0.510529 + 0.884262i
\(359\) 12.1651i 0.642048i 0.947071 + 0.321024i \(0.104027\pi\)
−0.947071 + 0.321024i \(0.895973\pi\)
\(360\) 8.49643 6.76060i 0.447801 0.356315i
\(361\) 17.9737 0.945983
\(362\) −3.94659 6.83569i −0.207428 0.359276i
\(363\) 0.897541 + 12.0647i 0.0471087 + 0.633233i
\(364\) 0 0
\(365\) 13.2113 + 7.62756i 0.691512 + 0.399245i
\(366\) 1.89049 + 25.4118i 0.0988173 + 1.32830i
\(367\) −3.14420 + 1.81531i −0.164126 + 0.0947582i −0.579813 0.814749i \(-0.696874\pi\)
0.415687 + 0.909508i \(0.363541\pi\)
\(368\) 3.02799i 0.157845i
\(369\) 10.6488 + 13.3830i 0.554356 + 0.696690i
\(370\) 26.5531i 1.38043i
\(371\) 0 0
\(372\) 0.684408 1.41922i 0.0354849 0.0735830i
\(373\) −2.74616 + 4.75648i −0.142191 + 0.246281i −0.928321 0.371779i \(-0.878748\pi\)
0.786131 + 0.618060i \(0.212081\pi\)
\(374\) 6.18590 10.7143i 0.319865 0.554023i
\(375\) 16.0597 10.9366i 0.829319 0.564761i
\(376\) 1.93143 1.11511i 0.0996057 0.0575074i
\(377\) 19.8599 1.02284
\(378\) 0 0
\(379\) −15.5960 −0.801112 −0.400556 0.916272i \(-0.631183\pi\)
−0.400556 + 0.916272i \(0.631183\pi\)
\(380\) 3.17542 1.83333i 0.162896 0.0940478i
\(381\) 25.6677 17.4795i 1.31500 0.895504i
\(382\) −6.65211 + 11.5218i −0.340352 + 0.589506i
\(383\) 4.71534 8.16720i 0.240942 0.417324i −0.720041 0.693932i \(-0.755877\pi\)
0.960983 + 0.276607i \(0.0892102\pi\)
\(384\) −0.752355 + 1.56012i −0.0383935 + 0.0796143i
\(385\) 0 0
\(386\) 6.53573i 0.332660i
\(387\) −14.2385 + 2.13030i −0.723783 + 0.108289i
\(388\) 11.7589i 0.596967i
\(389\) −5.56142 + 3.21089i −0.281975 + 0.162798i −0.634317 0.773073i \(-0.718719\pi\)
0.352342 + 0.935871i \(0.385385\pi\)
\(390\) 1.58533 + 21.3100i 0.0802765 + 1.07907i
\(391\) 16.1907 + 9.34769i 0.818798 + 0.472733i
\(392\) 0 0
\(393\) −2.22706 29.9360i −0.112340 1.51007i
\(394\) −2.22125 3.84732i −0.111905 0.193825i
\(395\) 13.8451 0.696622
\(396\) −5.59345 2.20228i −0.281082 0.110669i
\(397\) 6.92531i 0.347572i −0.984783 0.173786i \(-0.944400\pi\)
0.984783 0.173786i \(-0.0556000\pi\)
\(398\) 5.75542 + 9.96868i 0.288493 + 0.499685i
\(399\) 0 0
\(400\) −4.04972 + 7.01433i −0.202486 + 0.350716i
\(401\) 9.16848 + 5.29343i 0.457852 + 0.264341i 0.711141 0.703050i \(-0.248179\pi\)
−0.253289 + 0.967391i \(0.581512\pi\)
\(402\) −8.10786 11.9059i −0.404383 0.593813i
\(403\) 1.55045 + 2.68545i 0.0772332 + 0.133772i
\(404\) −12.8922 −0.641411
\(405\) 31.1474 9.53372i 1.54773 0.473735i
\(406\) 0 0
\(407\) −12.7313 + 7.35042i −0.631067 + 0.364347i
\(408\) −6.01935 8.83906i −0.298002 0.437599i
\(409\) 7.72792 + 4.46172i 0.382121 + 0.220618i 0.678741 0.734378i \(-0.262526\pi\)
−0.296620 + 0.954996i \(0.595859\pi\)
\(410\) −17.8690 10.3167i −0.882486 0.509504i
\(411\) −0.000485362 0.00100647i −2.39411e−5 4.96454e-5i
\(412\) −9.31740 + 5.37940i −0.459035 + 0.265024i
\(413\) 0 0
\(414\) 3.32793 8.45243i 0.163559 0.415414i
\(415\) 28.9894 1.42303
\(416\) −1.70437 2.95206i −0.0835637 0.144737i
\(417\) −17.4173 + 1.29574i −0.852931 + 0.0634529i
\(418\) −1.75804 1.01500i −0.0859883 0.0496454i
\(419\) 17.1924 29.7781i 0.839903 1.45475i −0.0500724 0.998746i \(-0.515945\pi\)
0.889975 0.456009i \(-0.150721\pi\)
\(420\) 0 0
\(421\) −17.7840 30.8028i −0.866739 1.50124i −0.865310 0.501237i \(-0.832879\pi\)
−0.00142877 0.999999i \(-0.500455\pi\)
\(422\) 22.6011i 1.10020i
\(423\) 6.61700 0.990009i 0.321730 0.0481359i
\(424\) 8.75365 0.425115
\(425\) −25.0037 43.3077i −1.21286 2.10073i
\(426\) 0.727462 + 0.350814i 0.0352457 + 0.0169970i
\(427\) 0 0
\(428\) 2.28602 + 1.31983i 0.110499 + 0.0637965i
\(429\) 9.77855 6.65913i 0.472113 0.321506i
\(430\) 15.0420 8.68453i 0.725392 0.418805i
\(431\) 30.8695i 1.48693i −0.668774 0.743466i \(-0.733180\pi\)
0.668774 0.743466i \(-0.266820\pi\)
\(432\) −3.81480 + 3.52808i −0.183540 + 0.169745i
\(433\) 23.2463i 1.11715i 0.829455 + 0.558574i \(0.188651\pi\)
−0.829455 + 0.558574i \(0.811349\pi\)
\(434\) 0 0
\(435\) 20.5579 + 30.1881i 0.985676 + 1.44741i
\(436\) −4.51768 + 7.82484i −0.216357 + 0.374742i
\(437\) 1.53380 2.65662i 0.0733716 0.127083i
\(438\) −6.57576 3.17111i −0.314202 0.151522i
\(439\) 19.2887 11.1364i 0.920601 0.531509i 0.0367744 0.999324i \(-0.488292\pi\)
0.883827 + 0.467814i \(0.154958\pi\)
\(440\) 7.25237 0.345743
\(441\) 0 0
\(442\) 21.0462 1.00107
\(443\) −15.5756 + 8.99259i −0.740020 + 0.427251i −0.822077 0.569377i \(-0.807185\pi\)
0.0820566 + 0.996628i \(0.473851\pi\)
\(444\) 0.942733 + 12.6722i 0.0447401 + 0.601394i
\(445\) −8.66188 + 15.0028i −0.410612 + 0.711202i
\(446\) 9.41045 16.2994i 0.445598 0.771798i
\(447\) 19.4276 1.44530i 0.918894 0.0683601i
\(448\) 0 0
\(449\) 9.44363i 0.445673i 0.974856 + 0.222836i \(0.0715315\pi\)
−0.974856 + 0.222836i \(0.928468\pi\)
\(450\) −19.0136 + 15.1291i −0.896311 + 0.713194i
\(451\) 11.4234i 0.537908i
\(452\) −1.46411 + 0.845306i −0.0688661 + 0.0397599i
\(453\) 7.36966 + 3.55397i 0.346257 + 0.166980i
\(454\) −12.6555 7.30665i −0.593952 0.342918i
\(455\) 0 0
\(456\) −1.45034 + 0.987674i −0.0679185 + 0.0462521i
\(457\) 0.922251 + 1.59739i 0.0431411 + 0.0747225i 0.886790 0.462173i \(-0.152930\pi\)
−0.843649 + 0.536896i \(0.819597\pi\)
\(458\) −2.37919 −0.111172
\(459\) −7.08799 31.2892i −0.330839 1.46046i
\(460\) 10.9593i 0.510978i
\(461\) −18.1869 31.5007i −0.847050 1.46713i −0.883829 0.467810i \(-0.845043\pi\)
0.0367790 0.999323i \(-0.488290\pi\)
\(462\) 0 0
\(463\) −15.9830 + 27.6834i −0.742794 + 1.28656i 0.208425 + 0.978038i \(0.433166\pi\)
−0.951219 + 0.308518i \(0.900167\pi\)
\(464\) −5.04560 2.91308i −0.234236 0.135236i
\(465\) −2.47709 + 5.13660i −0.114872 + 0.238204i
\(466\) −5.21619 9.03470i −0.241635 0.418525i
\(467\) −24.4411 −1.13100 −0.565500 0.824748i \(-0.691317\pi\)
−0.565500 + 0.824748i \(0.691317\pi\)
\(468\) −1.51317 10.1137i −0.0699461 0.467504i
\(469\) 0 0
\(470\) −6.99044 + 4.03593i −0.322445 + 0.186164i
\(471\) 5.30225 0.394456i 0.244315 0.0181756i
\(472\) 7.78233 + 4.49313i 0.358211 + 0.206813i
\(473\) −8.32786 4.80809i −0.382916 0.221076i
\(474\) −6.60741 + 0.491552i −0.303489 + 0.0225777i
\(475\) −7.10607 + 4.10269i −0.326049 + 0.188245i
\(476\) 0 0
\(477\) 24.4352 + 9.62073i 1.11881 + 0.440503i
\(478\) 23.7835 1.08783
\(479\) 5.48032 + 9.49220i 0.250402 + 0.433710i 0.963637 0.267216i \(-0.0861037\pi\)
−0.713234 + 0.700926i \(0.752770\pi\)
\(480\) 2.72301 5.64655i 0.124288 0.257729i
\(481\) −21.6578 12.5041i −0.987509 0.570139i
\(482\) −14.3243 + 24.8105i −0.652456 + 1.13009i
\(483\) 0 0
\(484\) 3.49240 + 6.04902i 0.158746 + 0.274955i
\(485\) 42.5591i 1.93251i
\(486\) −14.5263 + 5.65571i −0.658926 + 0.256548i
\(487\) 33.6175 1.52335 0.761677 0.647957i \(-0.224376\pi\)
0.761677 + 0.647957i \(0.224376\pi\)
\(488\) 7.35603 + 12.7410i 0.332992 + 0.576759i
\(489\) 4.11408 2.80167i 0.186045 0.126696i
\(490\) 0 0
\(491\) −19.6893 11.3676i −0.888568 0.513015i −0.0150939 0.999886i \(-0.504805\pi\)
−0.873474 + 0.486871i \(0.838138\pi\)
\(492\) 8.89405 + 4.28910i 0.400975 + 0.193367i
\(493\) 31.1525 17.9859i 1.40304 0.810043i
\(494\) 3.45333i 0.155373i
\(495\) 20.2445 + 7.97074i 0.909921 + 0.358258i
\(496\) 0.909687i 0.0408462i
\(497\) 0 0
\(498\) −13.8348 + 1.02923i −0.619954 + 0.0461209i
\(499\) −9.76175 + 16.9079i −0.436996 + 0.756899i −0.997456 0.0712820i \(-0.977291\pi\)
0.560460 + 0.828181i \(0.310624\pi\)
\(500\) 5.60894 9.71496i 0.250839 0.434466i
\(501\) −0.187742 2.52361i −0.00838768 0.112747i
\(502\) −9.55238 + 5.51507i −0.426343 + 0.246149i
\(503\) −13.6867 −0.610262 −0.305131 0.952310i \(-0.598700\pi\)
−0.305131 + 0.952310i \(0.598700\pi\)
\(504\) 0 0
\(505\) 46.6609 2.07638
\(506\) 5.25459 3.03374i 0.233595 0.134866i
\(507\) −2.15369 1.03860i −0.0956486 0.0461259i
\(508\) 8.96458 15.5271i 0.397739 0.688904i
\(509\) −1.14583 + 1.98464i −0.0507881 + 0.0879675i −0.890302 0.455371i \(-0.849507\pi\)
0.839514 + 0.543338i \(0.182840\pi\)
\(510\) 21.7859 + 31.9914i 0.964697 + 1.41660i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) −5.13404 + 1.16302i −0.226673 + 0.0513486i
\(514\) 15.0978i 0.665936i
\(515\) 33.7226 19.4698i 1.48600 0.857940i
\(516\) −6.87031 + 4.67864i −0.302449 + 0.205966i
\(517\) 3.87018 + 2.23445i 0.170210 + 0.0982710i
\(518\) 0 0
\(519\) 4.79082 + 2.31034i 0.210294 + 0.101413i
\(520\) 6.16866 + 10.6844i 0.270514 + 0.468543i
\(521\) −17.0820 −0.748377 −0.374189 0.927353i \(-0.622079\pi\)
−0.374189 + 0.927353i \(0.622079\pi\)
\(522\) −10.8828 13.6770i −0.476328 0.598628i
\(523\) 41.2762i 1.80488i −0.430815 0.902440i \(-0.641774\pi\)
0.430815 0.902440i \(-0.358226\pi\)
\(524\) −8.66567 15.0094i −0.378562 0.655688i
\(525\) 0 0
\(526\) −9.81926 + 17.0075i −0.428140 + 0.741561i
\(527\) 4.86410 + 2.80829i 0.211883 + 0.122331i
\(528\) −3.46111 + 0.257486i −0.150625 + 0.0112056i
\(529\) −6.91563 11.9782i −0.300679 0.520792i
\(530\) −31.6822 −1.37619
\(531\) 16.7857 + 21.0955i 0.728435 + 0.915465i
\(532\) 0 0
\(533\) −16.8294 + 9.71644i −0.728961 + 0.420866i
\(534\) 3.60113 7.46745i 0.155836 0.323148i
\(535\) −8.27382 4.77689i −0.357708 0.206523i
\(536\) −7.20222 4.15821i −0.311089 0.179607i
\(537\) 18.8348 + 27.6579i 0.812783 + 1.19352i
\(538\) −0.425223 + 0.245503i −0.0183327 + 0.0105844i
\(539\) 0 0
\(540\) 13.8070 12.7692i 0.594157 0.549500i
\(541\) −45.4393 −1.95359 −0.976795 0.214177i \(-0.931293\pi\)
−0.976795 + 0.214177i \(0.931293\pi\)
\(542\) 7.03945 + 12.1927i 0.302370 + 0.523721i
\(543\) −7.69523 11.3000i −0.330234 0.484929i
\(544\) −5.34700 3.08709i −0.229251 0.132358i
\(545\) 16.3509 28.3206i 0.700395 1.21312i
\(546\) 0 0
\(547\) 15.1095 + 26.1705i 0.646037 + 1.11897i 0.984061 + 0.177832i \(0.0569082\pi\)
−0.338024 + 0.941138i \(0.609758\pi\)
\(548\) 0 0.000645123i 0 2.75583e-5i
\(549\) 6.53079 + 43.6503i 0.278727 + 1.86295i
\(550\) −16.2296 −0.692034
\(551\) −2.95118 5.11160i −0.125725 0.217761i
\(552\) −0.389094 5.23019i −0.0165610 0.222612i
\(553\) 0 0
\(554\) −26.6043 15.3600i −1.13031 0.652585i
\(555\) −3.41205 45.8646i −0.144833 1.94684i
\(556\) −8.73273 + 5.04185i −0.370350 + 0.213822i
\(557\) 25.4212i 1.07713i 0.842584 + 0.538565i \(0.181033\pi\)
−0.842584 + 0.538565i \(0.818967\pi\)
\(558\) 0.999795 2.53933i 0.0423247 0.107498i
\(559\) 16.3585i 0.691892i
\(560\) 0 0
\(561\) 9.30799 19.3014i 0.392983 0.814907i
\(562\) 3.96227 6.86286i 0.167138 0.289492i
\(563\) −1.44346 + 2.50015i −0.0608346 + 0.105369i −0.894839 0.446390i \(-0.852710\pi\)
0.834004 + 0.551758i \(0.186043\pi\)
\(564\) 3.19282 2.17429i 0.134442 0.0915541i
\(565\) 5.29909 3.05943i 0.222934 0.128711i
\(566\) −11.5159 −0.484048
\(567\) 0 0
\(568\) 0.466287 0.0195650
\(569\) 38.5945 22.2826i 1.61797 0.934134i 0.630523 0.776171i \(-0.282841\pi\)
0.987445 0.157963i \(-0.0504927\pi\)
\(570\) 5.24925 3.57471i 0.219867 0.149728i
\(571\) 3.26470 5.65462i 0.136623 0.236638i −0.789593 0.613631i \(-0.789708\pi\)
0.926216 + 0.376992i \(0.123042\pi\)
\(572\) 3.41521 5.91532i 0.142797 0.247332i
\(573\) −10.0095 + 20.7561i −0.418153 + 0.867100i
\(574\) 0 0
\(575\) 24.5251i 1.02277i
\(576\) −1.09905 + 2.79143i −0.0457939 + 0.116310i
\(577\) 1.35932i 0.0565891i 0.999600 + 0.0282945i \(0.00900764\pi\)
−0.999600 + 0.0282945i \(0.990992\pi\)
\(578\) 18.2909 10.5603i 0.760802 0.439249i
\(579\) 0.839835 + 11.2890i 0.0349024 + 0.469156i
\(580\) 18.2616 + 10.5434i 0.758273 + 0.437789i
\(581\) 0 0
\(582\) 1.51101 + 20.3109i 0.0626332 + 0.841912i
\(583\) 8.77026 + 15.1905i 0.363227 + 0.629128i
\(584\) −4.21492 −0.174414
\(585\) 5.47662 + 36.6045i 0.226431 + 1.51341i
\(586\) 5.01875i 0.207323i
\(587\) 22.2025 + 38.4559i 0.916397 + 1.58725i 0.804843 + 0.593488i \(0.202250\pi\)
0.111555 + 0.993758i \(0.464417\pi\)
\(588\) 0 0
\(589\) 0.460793 0.798117i 0.0189866 0.0328858i
\(590\) −28.1667 16.2621i −1.15961 0.669499i
\(591\) −4.33109 6.35996i −0.178157 0.261614i
\(592\) 3.66825 + 6.35359i 0.150764 + 0.261131i
\(593\) −14.3513 −0.589336 −0.294668 0.955600i \(-0.595209\pi\)
−0.294668 + 0.955600i \(0.595209\pi\)
\(594\) −9.94444 3.08519i −0.408025 0.126587i
\(595\) 0 0
\(596\) 9.74064 5.62376i 0.398992 0.230358i
\(597\) 11.2222 + 16.4791i 0.459293 + 0.674445i
\(598\) 8.93882 + 5.16083i 0.365535 + 0.211042i
\(599\) 3.03349 + 1.75139i 0.123945 + 0.0715597i 0.560691 0.828025i \(-0.310536\pi\)
−0.436746 + 0.899585i \(0.643869\pi\)
\(600\) −6.09366 + 12.6361i −0.248773 + 0.515866i
\(601\) 15.1846 8.76685i 0.619394 0.357607i −0.157239 0.987561i \(-0.550259\pi\)
0.776633 + 0.629953i \(0.216926\pi\)
\(602\) 0 0
\(603\) −15.5344 19.5230i −0.632610 0.795037i
\(604\) 4.72379 0.192208
\(605\) −12.6401 21.8933i −0.513894 0.890090i
\(606\) −22.2684 + 1.65664i −0.904592 + 0.0672962i
\(607\) −0.0755923 0.0436432i −0.00306820 0.00177142i 0.498465 0.866910i \(-0.333897\pi\)
−0.501533 + 0.865138i \(0.667231\pi\)
\(608\) −0.506540 + 0.877353i −0.0205429 + 0.0355814i
\(609\) 0 0
\(610\) −26.6238 46.1138i −1.07797 1.86709i
\(611\) 7.60224i 0.307554i
\(612\) −11.5329 14.4940i −0.466190 0.585887i
\(613\) −25.0704 −1.01258 −0.506292 0.862362i \(-0.668984\pi\)
−0.506292 + 0.862362i \(0.668984\pi\)
\(614\) 8.76545 + 15.1822i 0.353745 + 0.612704i
\(615\) −32.1904 15.5236i −1.29804 0.625972i
\(616\) 0 0
\(617\) −10.6365 6.14101i −0.428211 0.247228i 0.270373 0.962756i \(-0.412853\pi\)
−0.698584 + 0.715528i \(0.746186\pi\)
\(618\) −15.4025 + 10.4890i −0.619579 + 0.421929i
\(619\) 17.5869 10.1538i 0.706875 0.408115i −0.103028 0.994678i \(-0.532853\pi\)
0.809903 + 0.586564i \(0.199520\pi\)
\(620\) 3.29245i 0.132228i
\(621\) 4.66212 15.0273i 0.187085 0.603026i
\(622\) 17.2952i 0.693474i
\(623\) 0 0
\(624\) −3.32326 4.88001i −0.133037 0.195357i
\(625\) −0.0518970 + 0.0898882i −0.00207588 + 0.00359553i
\(626\) 4.49749 7.78988i 0.179756 0.311346i
\(627\) −3.16704 1.52729i −0.126479 0.0609939i
\(628\) 2.65845 1.53486i 0.106084 0.0612475i
\(629\) −45.2969 −1.80610
\(630\) 0 0
\(631\) −45.9665 −1.82990 −0.914950 0.403568i \(-0.867770\pi\)
−0.914950 + 0.403568i \(0.867770\pi\)
\(632\) −3.31284 + 1.91267i −0.131778 + 0.0760818i
\(633\) −2.90422 39.0383i −0.115432 1.55163i
\(634\) 3.36019 5.82002i 0.133450 0.231143i
\(635\) −32.4456 + 56.1975i −1.28757 + 2.23013i
\(636\) 15.1200 1.12484i 0.599546 0.0446026i
\(637\) 0 0
\(638\) 11.6744i 0.462195i
\(639\) 1.30161 + 0.512475i 0.0514908 + 0.0202732i
\(640\) 3.61932i 0.143066i
\(641\) 27.4104 15.8254i 1.08265 0.625067i 0.151038 0.988528i \(-0.451738\pi\)
0.931609 + 0.363461i \(0.118405\pi\)
\(642\) 4.11818 + 1.98597i 0.162532 + 0.0783799i
\(643\) −10.0106 5.77960i −0.394778 0.227925i 0.289450 0.957193i \(-0.406528\pi\)
−0.684228 + 0.729268i \(0.739861\pi\)
\(644\) 0 0
\(645\) 24.8658 16.9335i 0.979091 0.666755i
\(646\) −3.12747 5.41694i −0.123049 0.213127i
\(647\) 26.0730 1.02504 0.512519 0.858676i \(-0.328713\pi\)
0.512519 + 0.858676i \(0.328713\pi\)
\(648\) −6.13586 + 6.58416i −0.241039 + 0.258650i
\(649\) 18.0066i 0.706822i
\(650\) −13.8045 23.9100i −0.541456 0.937829i
\(651\) 0 0
\(652\) 1.43687 2.48873i 0.0562720 0.0974660i
\(653\) −16.3952 9.46576i −0.641593 0.370424i 0.143635 0.989631i \(-0.454121\pi\)
−0.785228 + 0.619207i \(0.787454\pi\)
\(654\) −6.79780 + 14.0962i −0.265815 + 0.551205i
\(655\) 31.3638 + 54.3237i 1.22549 + 2.12260i
\(656\) 5.70089 0.222582
\(657\) −11.7656 4.63242i −0.459021 0.180728i
\(658\) 0 0
\(659\) 23.3508 13.4816i 0.909618 0.525168i 0.0293098 0.999570i \(-0.490669\pi\)
0.880308 + 0.474402i \(0.157336\pi\)
\(660\) 12.5268 0.931922i 0.487607 0.0362750i
\(661\) 22.3201 + 12.8865i 0.868151 + 0.501227i 0.866733 0.498772i \(-0.166215\pi\)
0.00141768 + 0.999999i \(0.499549\pi\)
\(662\) 16.2592 + 9.38725i 0.631931 + 0.364846i
\(663\) 36.3526 2.70442i 1.41182 0.105031i
\(664\) −6.93654 + 4.00481i −0.269190 + 0.155417i
\(665\) 0 0
\(666\) 3.25672 + 21.7672i 0.126195 + 0.843462i
\(667\) 17.6416 0.683084
\(668\) −0.730517 1.26529i −0.0282646 0.0489557i
\(669\) 14.1600 29.3628i 0.547457 1.13523i
\(670\) 26.0671 + 15.0499i 1.00706 + 0.581427i
\(671\) −14.7400 + 25.5304i −0.569030 + 0.985590i
\(672\) 0 0
\(673\) −12.9608 22.4487i −0.499601 0.865335i 0.500398 0.865795i \(-0.333187\pi\)
−1.00000 0.000460130i \(0.999854\pi\)
\(674\) 4.84575i 0.186651i
\(675\) −30.8977 + 28.5755i −1.18925 + 1.09987i
\(676\) −1.38047 −0.0530948
\(677\) −6.55382 11.3515i −0.251884 0.436275i 0.712161 0.702016i \(-0.247717\pi\)
−0.964044 + 0.265741i \(0.914383\pi\)
\(678\) −2.42031 + 1.64822i −0.0929514 + 0.0632993i
\(679\) 0 0
\(680\) 19.3525 + 11.1732i 0.742134 + 0.428471i
\(681\) −22.7985 10.9944i −0.873639 0.421306i
\(682\) 1.57861 0.911413i 0.0604483 0.0348998i
\(683\) 29.6654i 1.13511i 0.823334 + 0.567557i \(0.192112\pi\)
−0.823334 + 0.567557i \(0.807888\pi\)
\(684\) −2.37823 + 1.89236i −0.0909339 + 0.0723560i
\(685\) 0.00233490i 8.92121e-5i
\(686\) 0 0
\(687\) −4.10952 + 0.305723i −0.156788 + 0.0116641i
\(688\) −2.39949 + 4.15605i −0.0914799 + 0.158448i
\(689\) −14.9195 + 25.8413i −0.568387 + 0.984475i
\(690\) 1.40826 + 18.9297i 0.0536114 + 0.720641i
\(691\) 40.9767 23.6579i 1.55883 0.899990i 0.561459 0.827504i \(-0.310240\pi\)
0.997369 0.0724857i \(-0.0230932\pi\)
\(692\) 3.07081 0.116735
\(693\) 0 0
\(694\) 17.4712 0.663197
\(695\) 31.6065 18.2480i 1.19890 0.692187i
\(696\) −9.08948 4.38334i −0.344536 0.166150i
\(697\) −17.5992 + 30.4827i −0.666616 + 1.15461i
\(698\) 11.9129 20.6338i 0.450910 0.780999i
\(699\) −10.1708 14.9352i −0.384693 0.564900i
\(700\) 0 0
\(701\) 13.7742i 0.520244i 0.965576 + 0.260122i \(0.0837627\pi\)
−0.965576 + 0.260122i \(0.916237\pi\)
\(702\) −3.91325 17.2747i −0.147696 0.651990i
\(703\) 7.43246i 0.280320i
\(704\) −1.73534 + 1.00190i −0.0654030 + 0.0377604i
\(705\) −11.5558 + 7.86944i −0.435217 + 0.296380i
\(706\) 8.69596 + 5.02061i 0.327277 + 0.188953i
\(707\) 0 0
\(708\) 14.0196 + 6.76087i 0.526889 + 0.254089i
\(709\) 21.9691 + 38.0517i 0.825069 + 1.42906i 0.901867 + 0.432014i \(0.142197\pi\)
−0.0767981 + 0.997047i \(0.524470\pi\)
\(710\) −1.68764 −0.0633360
\(711\) −11.3497 + 1.69809i −0.425646 + 0.0636835i
\(712\) 4.78647i 0.179381i
\(713\) 1.37726 + 2.38549i 0.0515789 + 0.0893373i
\(714\) 0 0
\(715\) −12.3607 + 21.4094i −0.462265 + 0.800667i
\(716\) 16.7310 + 9.65966i 0.625268 + 0.360998i
\(717\) 41.0807 3.05616i 1.53419 0.114134i
\(718\) 6.08254 + 10.5353i 0.226998 + 0.393173i
\(719\) 29.5860 1.10337 0.551687 0.834051i \(-0.313984\pi\)
0.551687 + 0.834051i \(0.313984\pi\)
\(720\) 3.97782 10.1031i 0.148245 0.376519i
\(721\) 0 0
\(722\) 15.5657 8.98683i 0.579294 0.334455i
\(723\) −21.5540 + 44.6953i −0.801602 + 1.66224i
\(724\) −6.83569 3.94659i −0.254046 0.146674i
\(725\) −40.8666 23.5943i −1.51775 0.876271i
\(726\) 6.80964 + 9.99957i 0.252730 + 0.371119i
\(727\) 10.1244 5.84534i 0.375494 0.216792i −0.300362 0.953825i \(-0.597107\pi\)
0.675856 + 0.737034i \(0.263774\pi\)
\(728\) 0 0
\(729\) −24.3642 + 11.6356i −0.902377 + 0.430948i
\(730\) 15.2551 0.564617
\(731\) −14.8149 25.6602i −0.547949 0.949076i
\(732\) 14.3431 + 21.0620i 0.530137 + 0.778475i
\(733\) 28.6423 + 16.5366i 1.05793 + 0.610795i 0.924858 0.380312i \(-0.124183\pi\)
0.133070 + 0.991107i \(0.457517\pi\)
\(734\) −1.81531 + 3.14420i −0.0670042 + 0.116055i
\(735\) 0 0
\(736\) −1.51400 2.62232i −0.0558067 0.0966600i
\(737\) 16.6644i 0.613841i
\(738\) 15.9136 + 6.26558i 0.585789 + 0.230639i
\(739\) 43.5056 1.60038 0.800190 0.599747i \(-0.204732\pi\)
0.800190 + 0.599747i \(0.204732\pi\)
\(740\) −13.2765 22.9957i −0.488056 0.845337i
\(741\) −0.443750 5.96486i −0.0163016 0.219125i
\(742\) 0 0
\(743\) 18.0206 + 10.4042i 0.661112 + 0.381693i 0.792701 0.609611i \(-0.208674\pi\)
−0.131589 + 0.991304i \(0.542008\pi\)
\(744\) −0.116894 1.57128i −0.00428554 0.0576060i
\(745\) −35.2544 + 20.3542i −1.29162 + 0.745719i
\(746\) 5.49231i 0.201088i
\(747\) −23.7644 + 3.55553i −0.869493 + 0.130090i
\(748\) 12.3718i 0.452358i
\(749\) 0 0
\(750\) 8.43983 17.5012i 0.308179 0.639053i
\(751\) 19.9492 34.5531i 0.727957 1.26086i −0.229788 0.973241i \(-0.573803\pi\)
0.957745 0.287618i \(-0.0928634\pi\)
\(752\) 1.11511 1.93143i 0.0406638 0.0704318i
\(753\) −15.7909 + 10.7535i −0.575453 + 0.391880i
\(754\) 17.1992 9.92994i 0.626357 0.361627i
\(755\) −17.0969 −0.622219
\(756\) 0 0
\(757\) 7.45545 0.270973 0.135486 0.990779i \(-0.456740\pi\)
0.135486 + 0.990779i \(0.456740\pi\)
\(758\) −13.5065 + 7.79800i −0.490579 + 0.283236i
\(759\) 8.68630 5.91532i 0.315293 0.214713i
\(760\) 1.83333 3.17542i 0.0665018 0.115185i
\(761\) −4.32462 + 7.49046i −0.156767 + 0.271529i −0.933701 0.358053i \(-0.883441\pi\)
0.776934 + 0.629582i \(0.216774\pi\)
\(762\) 13.4891 27.9716i 0.488658 1.01330i
\(763\) 0 0
\(764\) 13.3042i 0.481330i
\(765\) 41.7412 + 52.4585i 1.50916 + 1.89664i
\(766\) 9.43067i 0.340744i
\(767\) −26.5280 + 15.3159i −0.957870 + 0.553026i
\(768\) 0.128499 + 1.72728i 0.00463681 + 0.0623278i
\(769\) 20.4818 + 11.8252i 0.738592 + 0.426426i 0.821557 0.570126i \(-0.193106\pi\)
−0.0829652 + 0.996552i \(0.526439\pi\)
\(770\) 0 0
\(771\) 1.94005 + 26.0781i 0.0698693 + 0.939180i
\(772\) 3.26786 + 5.66011i 0.117613 + 0.203712i
\(773\) −46.5699 −1.67500 −0.837501 0.546436i \(-0.815984\pi\)
−0.837501 + 0.546436i \(0.815984\pi\)
\(774\) −11.2657 + 8.96414i −0.404939 + 0.322209i
\(775\) 7.36796i 0.264665i
\(776\) 5.87944 + 10.1835i 0.211060 + 0.365566i
\(777\) 0 0
\(778\) −3.21089 + 5.56142i −0.115116 + 0.199387i
\(779\) 5.00170 + 2.88773i 0.179204 + 0.103464i
\(780\) 12.0279 + 17.6623i 0.430669 + 0.632412i
\(781\) 0.467172 + 0.809166i 0.0167167 + 0.0289542i
\(782\) 18.6954 0.668546
\(783\) −20.5551 22.2256i −0.734580 0.794279i
\(784\) 0 0
\(785\) −9.62178 + 5.55513i −0.343416 + 0.198271i
\(786\) −16.8967 24.8118i −0.602686 0.885009i
\(787\) −21.1657 12.2200i −0.754474 0.435596i 0.0728341 0.997344i \(-0.476796\pi\)
−0.827308 + 0.561748i \(0.810129\pi\)
\(788\) −3.84732 2.22125i −0.137055 0.0791288i
\(789\) −14.7752 + 30.6384i −0.526009 + 1.09076i
\(790\) 11.9902 6.92255i 0.426592 0.246293i
\(791\) 0 0
\(792\) −5.94521 + 0.889499i −0.211254 + 0.0316070i
\(793\) −50.1496 −1.78087
\(794\) −3.46266 5.99750i −0.122885 0.212843i
\(795\) −54.7240 + 4.07114i −1.94086 + 0.144388i
\(796\) 9.96868 + 5.75542i 0.353330 + 0.203995i
\(797\) −24.9202 + 43.1631i −0.882719 + 1.52891i −0.0344128 + 0.999408i \(0.510956\pi\)
−0.848306 + 0.529506i \(0.822377\pi\)
\(798\) 0 0
\(799\) 6.88489 + 11.9250i 0.243570 + 0.421875i
\(800\) 8.09945i 0.286359i
\(801\) 5.26059 13.3611i 0.185874 0.472091i
\(802\) 10.5869 0.373835
\(803\) −4.22291 7.31430i −0.149023 0.258116i
\(804\) −12.9746 6.25690i −0.457578 0.220664i
\(805\) 0 0
\(806\) 2.68545 + 1.55045i 0.0945910 + 0.0546121i
\(807\) −0.702931 + 0.478692i −0.0247444 + 0.0168508i
\(808\) −11.1650 + 6.44610i −0.392782 + 0.226773i
\(809\) 12.3247i 0.433315i −0.976248 0.216657i \(-0.930485\pi\)
0.976248 0.216657i \(-0.0695154\pi\)
\(810\) 22.2076 23.8302i 0.780296 0.837307i
\(811\) 24.8017i 0.870906i 0.900212 + 0.435453i \(0.143412\pi\)
−0.900212 + 0.435453i \(0.856588\pi\)
\(812\) 0 0
\(813\) 13.7258 + 20.1556i 0.481386 + 0.706888i
\(814\) −7.35042 + 12.7313i −0.257632 + 0.446232i
\(815\) −5.20047 + 9.00748i −0.182165 + 0.315518i
\(816\) −9.63244 4.64518i −0.337203 0.162614i
\(817\) −4.21041 + 2.43088i −0.147304 + 0.0850457i
\(818\) 8.92343 0.312000
\(819\) 0 0
\(820\) −20.6333 −0.720547
\(821\) −31.3573 + 18.1041i −1.09438 + 0.631839i −0.934738 0.355336i \(-0.884366\pi\)
−0.159639 + 0.987175i \(0.551033\pi\)
\(822\) 8.28977e−5 0.00111431i 2.89139e−6 3.88659e-5i
\(823\) 9.54093 16.5254i 0.332576 0.576038i −0.650440 0.759557i \(-0.725416\pi\)
0.983016 + 0.183519i \(0.0587489\pi\)
\(824\) −5.37940 + 9.31740i −0.187400 + 0.324587i
\(825\) −28.0331 + 2.08549i −0.975986 + 0.0726075i
\(826\) 0 0
\(827\) 31.9013i 1.10932i 0.832079 + 0.554658i \(0.187151\pi\)
−0.832079 + 0.554658i \(0.812849\pi\)
\(828\) −1.34415 8.98399i −0.0467124 0.312215i
\(829\) 15.0856i 0.523943i 0.965076 + 0.261971i \(0.0843726\pi\)
−0.965076 + 0.261971i \(0.915627\pi\)
\(830\) 25.1055 14.4947i 0.871425 0.503118i
\(831\) −47.9268 23.1124i −1.66256 0.801760i
\(832\) −2.95206 1.70437i −0.102344 0.0590885i
\(833\) 0 0
\(834\) −14.4360 + 9.83082i −0.499877 + 0.340413i
\(835\) 2.64397 + 4.57950i 0.0914985 + 0.158480i
\(836\) −2.03000 −0.0702092
\(837\) 1.40062 4.51460i 0.0484126 0.156047i
\(838\) 34.3848i 1.18780i
\(839\) −8.19860 14.2004i −0.283047 0.490252i 0.689087 0.724679i \(-0.258012\pi\)
−0.972134 + 0.234427i \(0.924679\pi\)
\(840\) 0 0
\(841\) 2.47206 4.28173i 0.0852434 0.147646i
\(842\) −30.8028 17.7840i −1.06153 0.612877i
\(843\) 5.96208 12.3632i 0.205345 0.425812i
\(844\) −11.3005 19.5731i −0.388980 0.673734i
\(845\) 4.99634 0.171879
\(846\) 5.23549 4.16587i 0.180000 0.143226i
\(847\) 0 0
\(848\) 7.58088 4.37683i 0.260329 0.150301i
\(849\) −19.8911 + 1.47978i −0.682660 + 0.0507858i
\(850\) −43.3077 25.0037i −1.48544 0.857621i
\(851\) −19.2386 11.1074i −0.659492 0.380758i
\(852\) 0.805408 0.0599175i 0.0275928 0.00205274i
\(853\) 16.5936 9.58030i 0.568153 0.328023i −0.188258 0.982120i \(-0.560284\pi\)
0.756411 + 0.654096i \(0.226951\pi\)
\(854\) 0 0
\(855\) 8.60756 6.84903i 0.294372 0.234232i
\(856\) 2.63967 0.0902219
\(857\) 8.05723 + 13.9555i 0.275230 + 0.476712i 0.970193 0.242333i \(-0.0779127\pi\)
−0.694963 + 0.719045i \(0.744579\pi\)
\(858\) 5.13891 10.6563i 0.175439 0.363798i
\(859\) −10.4830 6.05238i −0.357677 0.206505i 0.310384 0.950611i \(-0.399542\pi\)
−0.668061 + 0.744106i \(0.732876\pi\)
\(860\) 8.68453 15.0420i 0.296140 0.512929i
\(861\) 0 0
\(862\) −15.4348 26.7338i −0.525710 0.910556i
\(863\) 37.2655i 1.26853i −0.773115 0.634265i \(-0.781303\pi\)
0.773115 0.634265i \(-0.218697\pi\)
\(864\) −1.53967 + 4.96280i −0.0523808 + 0.168838i
\(865\) −11.1142 −0.377896
\(866\) 11.6232 + 20.1319i 0.394971 + 0.684110i
\(867\) 30.2365 20.5909i 1.02689 0.699303i
\(868\) 0 0
\(869\) −6.63824 3.83259i −0.225187 0.130012i
\(870\) 32.8977 + 15.8647i 1.11534 + 0.537864i
\(871\) 24.5505 14.1743i 0.831863 0.480276i
\(872\) 9.03535i 0.305976i
\(873\) 5.21985 + 34.8883i 0.176665 + 1.18079i
\(874\) 3.06760i 0.103763i
\(875\) 0 0
\(876\) −7.28033 + 0.541613i −0.245980 + 0.0182994i
\(877\) 4.85474 8.40866i 0.163933 0.283940i −0.772343 0.635206i \(-0.780915\pi\)
0.936276 + 0.351266i \(0.114249\pi\)
\(878\) 11.1364 19.2887i 0.375834 0.650963i
\(879\) 0.644905 + 8.66877i 0.0217521 + 0.292390i
\(880\) 6.28073 3.62618i 0.211723 0.122239i
\(881\) −2.63241 −0.0886881 −0.0443440 0.999016i \(-0.514120\pi\)
−0.0443440 + 0.999016i \(0.514120\pi\)
\(882\) 0 0
\(883\) −36.3181 −1.22220 −0.611101 0.791553i \(-0.709273\pi\)
−0.611101 + 0.791553i \(0.709273\pi\)
\(884\) 18.2265 10.5231i 0.613025 0.353930i
\(885\) −50.7414 24.4697i −1.70565 0.822540i
\(886\) −8.99259 + 15.5756i −0.302112 + 0.523273i
\(887\) −8.18209 + 14.1718i −0.274728 + 0.475842i −0.970066 0.242840i \(-0.921921\pi\)
0.695339 + 0.718682i \(0.255254\pi\)
\(888\) 7.15251 + 10.5031i 0.240023 + 0.352459i
\(889\) 0 0
\(890\) 17.3238i 0.580694i
\(891\) −17.5732 4.05113i −0.588726 0.135718i
\(892\) 18.8209i 0.630170i
\(893\) 1.95669 1.12969i 0.0654781 0.0378038i
\(894\) 16.1021 10.9655i 0.538536 0.366740i
\(895\) −60.5549 34.9614i −2.02413 1.16863i
\(896\) 0 0
\(897\) 16.1030 + 7.76555i 0.537663 + 0.259284i
\(898\) 4.72182 + 8.17843i 0.157569 + 0.272918i
\(899\) 5.29998 0.176764
\(900\) −8.90172 + 22.6090i −0.296724 + 0.753635i
\(901\) 54.0466i 1.80055i
\(902\) 5.71171 + 9.89297i 0.190179 + 0.329400i
\(903\) 0 0
\(904\) −0.845306 + 1.46411i −0.0281145 + 0.0486957i
\(905\) 24.7405 + 14.2839i 0.822403 + 0.474814i
\(906\) 8.15930 0.607002i 0.271074 0.0201663i
\(907\) −5.41666 9.38192i −0.179857 0.311522i 0.761974 0.647607i \(-0.224230\pi\)
−0.941831 + 0.336086i \(0.890897\pi\)
\(908\) −14.6133 −0.484960
\(909\) −38.2509 + 5.72294i −1.26870 + 0.189818i
\(910\) 0 0
\(911\) 36.8512 21.2760i 1.22093 0.704907i 0.255817 0.966725i \(-0.417655\pi\)
0.965117 + 0.261818i \(0.0843221\pi\)
\(912\) −0.762196 + 1.58052i −0.0252388 + 0.0523363i
\(913\) −13.8994 8.02482i −0.460003 0.265583i
\(914\) 1.59739 + 0.922251i 0.0528368 + 0.0305053i
\(915\) −51.9123 76.2301i −1.71617 2.52009i
\(916\) −2.06044 + 1.18959i −0.0680788 + 0.0393053i
\(917\) 0 0
\(918\) −21.7830 23.5533i −0.718946 0.777373i
\(919\) 25.9393 0.855659 0.427829 0.903860i \(-0.359278\pi\)
0.427829 + 0.903860i \(0.359278\pi\)
\(920\) 5.47963 + 9.49100i 0.180658 + 0.312909i
\(921\) 17.0913 + 25.0975i 0.563177 + 0.826992i
\(922\) −31.5007 18.1869i −1.03742 0.598955i
\(923\) −0.794727 + 1.37651i −0.0261588 + 0.0453083i
\(924\) 0 0
\(925\) 29.7108 + 51.4606i 0.976884 + 1.69201i
\(926\) 31.9660i 1.05047i
\(927\) −25.2565 + 20.0966i −0.829534 + 0.660059i
\(928\) −5.82616 −0.191253
\(929\) −23.4456 40.6089i −0.769224 1.33234i −0.937984 0.346678i \(-0.887310\pi\)
0.168760 0.985657i \(-0.446024\pi\)
\(930\) 0.423076 + 5.68697i 0.0138732 + 0.186483i
\(931\) 0 0
\(932\) −9.03470 5.21619i −0.295942 0.170862i
\(933\) 2.22241 + 29.8736i 0.0727586 + 0.978017i
\(934\) −21.1666 + 12.2206i −0.692593 + 0.399869i
\(935\) 44.7774i 1.46438i
\(936\) −6.36727 8.00210i −0.208121 0.261557i
\(937\) 0.209357i 0.00683939i 0.999994 + 0.00341969i \(0.00108852\pi\)
−0.999994 + 0.00341969i \(0.998911\pi\)
\(938\) 0 0
\(939\) 6.76742 14.0332i 0.220846 0.457956i
\(940\) −4.03593 + 6.99044i −0.131638 + 0.228003i
\(941\) 0.388565 0.673014i 0.0126669 0.0219396i −0.859622 0.510930i \(-0.829301\pi\)
0.872289 + 0.488990i \(0.162635\pi\)
\(942\) 4.39466 2.99273i 0.143186 0.0975085i
\(943\) −14.9496 + 8.63113i −0.486825 + 0.281068i
\(944\) 8.98627 0.292478
\(945\) 0 0
\(946\) −9.61619 −0.312649
\(947\) −43.1233 + 24.8972i −1.40132 + 0.809052i −0.994528 0.104470i \(-0.966686\pi\)
−0.406791 + 0.913521i \(0.633352\pi\)
\(948\) −5.47641 + 3.72940i −0.177866 + 0.121125i
\(949\) 7.18378 12.4427i 0.233196 0.403906i
\(950\) −4.10269 + 7.10607i −0.133109 + 0.230552i
\(951\) 5.05612 10.4846i 0.163956 0.339986i
\(952\) 0 0
\(953\) 41.4104i 1.34141i 0.741722 + 0.670707i \(0.234009\pi\)
−0.741722 + 0.670707i \(0.765991\pi\)
\(954\) 25.9719 3.88581i 0.840870 0.125808i
\(955\) 48.1522i 1.55817i
\(956\) 20.5971 11.8917i 0.666158 0.384607i
\(957\) −1.50015 20.1650i −0.0484930 0.651841i
\(958\) 9.49220 + 5.48032i 0.306679 + 0.177061i
\(959\) 0 0
\(960\) −0.465079 6.25156i −0.0150103 0.201768i
\(961\) −15.0862 26.1301i −0.486653 0.842907i
\(962\) −25.0082 −0.806298
\(963\) 7.36844 + 2.90113i 0.237445 + 0.0934877i
\(964\) 28.6487i 0.922712i
\(965\) −11.8274 20.4857i −0.380739 0.659459i
\(966\) 0 0
\(967\) 22.8028 39.4956i 0.733289 1.27009i −0.222181 0.975005i \(-0.571318\pi\)
0.955470 0.295088i \(-0.0953491\pi\)
\(968\) 6.04902 + 3.49240i 0.194423 + 0.112250i
\(969\) −6.09808 8.95468i −0.195899 0.287666i
\(970\) −21.2796 36.8573i −0.683245 1.18342i
\(971\) 8.73466 0.280309 0.140154 0.990130i \(-0.455240\pi\)
0.140154 + 0.990130i \(0.455240\pi\)
\(972\) −9.75228 + 12.1611i −0.312804 + 0.390068i
\(973\) 0 0
\(974\) 29.1136 16.8087i 0.932860 0.538587i
\(975\) −26.9166 39.5254i −0.862020 1.26583i
\(976\) 12.7410 + 7.35603i 0.407830 + 0.235461i
\(977\) 12.9058 + 7.45114i 0.412892 + 0.238383i 0.692031 0.721867i \(-0.256716\pi\)
−0.279140 + 0.960250i \(0.590049\pi\)
\(978\) 2.16207 4.48336i 0.0691353 0.143362i
\(979\) 8.30615 4.79556i 0.265466 0.153267i
\(980\) 0 0
\(981\) −9.93033 + 25.2216i −0.317051 + 0.805262i
\(982\) −22.7353 −0.725512
\(983\) −1.53458 2.65798i −0.0489456 0.0847763i 0.840515 0.541789i \(-0.182253\pi\)
−0.889460 + 0.457013i \(0.848919\pi\)
\(984\) 9.84702 0.732559i 0.313912 0.0233531i
\(985\) 13.9247 + 8.03941i 0.443677 + 0.256157i
\(986\) 17.9859 31.1525i 0.572787 0.992096i
\(987\) 0 0
\(988\) −1.72667 2.99067i −0.0549325 0.0951460i
\(989\) 14.5313i 0.462069i
\(990\) 21.5176 3.21938i 0.683874 0.102318i
\(991\) −55.8150 −1.77302 −0.886510 0.462709i \(-0.846878\pi\)
−0.886510 + 0.462709i \(0.846878\pi\)
\(992\) −0.454844 0.787812i −0.0144413 0.0250131i
\(993\) 29.2904 + 14.1251i 0.929502 + 0.448246i
\(994\) 0 0
\(995\) −36.0798 20.8307i −1.14381 0.660377i
\(996\) −11.4667 + 7.80876i −0.363337 + 0.247430i
\(997\) −5.30607 + 3.06346i −0.168045 + 0.0970208i −0.581664 0.813429i \(-0.697598\pi\)
0.413619 + 0.910450i \(0.364265\pi\)
\(998\) 19.5235i 0.618006i
\(999\) 8.42233 + 37.1795i 0.266471 + 1.17631i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.m.b.293.7 16
3.2 odd 2 2646.2.m.b.881.4 16
7.2 even 3 882.2.t.a.815.3 16
7.3 odd 6 882.2.l.b.509.8 16
7.4 even 3 126.2.l.a.5.5 16
7.5 odd 6 126.2.t.a.59.2 yes 16
7.6 odd 2 882.2.m.a.293.6 16
9.2 odd 6 882.2.m.a.587.6 16
9.7 even 3 2646.2.m.a.1763.1 16
21.2 odd 6 2646.2.t.b.2285.5 16
21.5 even 6 378.2.t.a.17.8 16
21.11 odd 6 378.2.l.a.341.4 16
21.17 even 6 2646.2.l.a.1097.1 16
21.20 even 2 2646.2.m.a.881.1 16
28.11 odd 6 1008.2.ca.c.257.8 16
28.19 even 6 1008.2.df.c.689.5 16
63.2 odd 6 882.2.l.b.227.4 16
63.4 even 3 1134.2.k.a.971.1 16
63.5 even 6 1134.2.k.a.647.1 16
63.11 odd 6 126.2.t.a.47.2 yes 16
63.16 even 3 2646.2.l.a.521.5 16
63.20 even 6 inner 882.2.m.b.587.7 16
63.25 even 3 378.2.t.a.89.8 16
63.32 odd 6 1134.2.k.b.971.8 16
63.34 odd 6 2646.2.m.b.1763.4 16
63.38 even 6 882.2.t.a.803.3 16
63.40 odd 6 1134.2.k.b.647.8 16
63.47 even 6 126.2.l.a.101.1 yes 16
63.52 odd 6 2646.2.t.b.1979.5 16
63.61 odd 6 378.2.l.a.143.8 16
84.11 even 6 3024.2.ca.c.2609.7 16
84.47 odd 6 3024.2.df.c.17.7 16
252.11 even 6 1008.2.df.c.929.5 16
252.47 odd 6 1008.2.ca.c.353.8 16
252.151 odd 6 3024.2.df.c.1601.7 16
252.187 even 6 3024.2.ca.c.2033.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.5 16 7.4 even 3
126.2.l.a.101.1 yes 16 63.47 even 6
126.2.t.a.47.2 yes 16 63.11 odd 6
126.2.t.a.59.2 yes 16 7.5 odd 6
378.2.l.a.143.8 16 63.61 odd 6
378.2.l.a.341.4 16 21.11 odd 6
378.2.t.a.17.8 16 21.5 even 6
378.2.t.a.89.8 16 63.25 even 3
882.2.l.b.227.4 16 63.2 odd 6
882.2.l.b.509.8 16 7.3 odd 6
882.2.m.a.293.6 16 7.6 odd 2
882.2.m.a.587.6 16 9.2 odd 6
882.2.m.b.293.7 16 1.1 even 1 trivial
882.2.m.b.587.7 16 63.20 even 6 inner
882.2.t.a.803.3 16 63.38 even 6
882.2.t.a.815.3 16 7.2 even 3
1008.2.ca.c.257.8 16 28.11 odd 6
1008.2.ca.c.353.8 16 252.47 odd 6
1008.2.df.c.689.5 16 28.19 even 6
1008.2.df.c.929.5 16 252.11 even 6
1134.2.k.a.647.1 16 63.5 even 6
1134.2.k.a.971.1 16 63.4 even 3
1134.2.k.b.647.8 16 63.40 odd 6
1134.2.k.b.971.8 16 63.32 odd 6
2646.2.l.a.521.5 16 63.16 even 3
2646.2.l.a.1097.1 16 21.17 even 6
2646.2.m.a.881.1 16 21.20 even 2
2646.2.m.a.1763.1 16 9.7 even 3
2646.2.m.b.881.4 16 3.2 odd 2
2646.2.m.b.1763.4 16 63.34 odd 6
2646.2.t.b.1979.5 16 63.52 odd 6
2646.2.t.b.2285.5 16 21.2 odd 6
3024.2.ca.c.2033.7 16 252.187 even 6
3024.2.ca.c.2609.7 16 84.11 even 6
3024.2.df.c.17.7 16 84.47 odd 6
3024.2.df.c.1601.7 16 252.151 odd 6