Properties

Label 1008.2.df.c.929.5
Level $1008$
Weight $2$
Character 1008.929
Analytic conductor $8.049$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(689,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 929.5
Root \(1.71298 + 0.256290i\) of defining polynomial
Character \(\chi\) \(=\) 1008.929
Dual form 1008.2.df.c.689.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.128499 - 1.72728i) q^{3} -3.61932 q^{5} +(-0.266972 - 2.63225i) q^{7} +(-2.96698 - 0.443907i) q^{9} +2.00379i q^{11} +(-2.95206 + 1.70437i) q^{13} +(-0.465079 + 6.25156i) q^{15} +(3.08709 + 5.34700i) q^{17} +(-0.877353 - 0.506540i) q^{19} +(-4.58093 + 0.122894i) q^{21} -3.02799i q^{23} +8.09945 q^{25} +(-1.14800 + 5.06775i) q^{27} +(5.04560 + 2.91308i) q^{29} +(-0.787812 - 0.454844i) q^{31} +(3.46111 + 0.257486i) q^{33} +(0.966257 + 9.52693i) q^{35} +(3.66825 - 6.35359i) q^{37} +(2.56459 + 5.31804i) q^{39} +(2.85045 + 4.93712i) q^{41} +(2.39949 - 4.15605i) q^{43} +(10.7384 + 1.60664i) q^{45} +(1.11511 + 1.93143i) q^{47} +(-6.85745 + 1.40547i) q^{49} +(9.63244 - 4.64518i) q^{51} +(-7.58088 + 4.37683i) q^{53} -7.25237i q^{55} +(-0.987674 + 1.45034i) q^{57} +(-4.49313 + 7.78233i) q^{59} +(-12.7410 + 7.35603i) q^{61} +(-0.376373 + 7.92833i) q^{63} +(10.6844 - 6.16866i) q^{65} +(-4.15821 + 7.20222i) q^{67} +(-5.23019 - 0.389094i) q^{69} +0.466287i q^{71} +(-3.65022 + 2.10746i) q^{73} +(1.04077 - 13.9900i) q^{75} +(5.27448 - 0.534957i) q^{77} +(1.91267 + 3.31284i) q^{79} +(8.60589 + 2.63412i) q^{81} +(-4.00481 + 6.93654i) q^{83} +(-11.1732 - 19.3525i) q^{85} +(5.68005 - 8.34083i) q^{87} +(2.39324 - 4.14521i) q^{89} +(5.27445 + 7.31553i) q^{91} +(-0.886874 + 1.30232i) q^{93} +(3.17542 + 1.83333i) q^{95} +(10.1835 + 5.87944i) q^{97} +(0.889499 - 5.94521i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{7} - 6 q^{9} - 6 q^{13} + 18 q^{15} + 18 q^{17} - 18 q^{21} + 16 q^{25} + 36 q^{27} + 6 q^{29} - 6 q^{31} + 18 q^{33} + 30 q^{35} - 2 q^{37} + 30 q^{39} + 6 q^{41} + 2 q^{43} + 12 q^{45} + 18 q^{47}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.128499 1.72728i 0.0741890 0.997244i
\(4\) 0 0
\(5\) −3.61932 −1.61861 −0.809304 0.587391i \(-0.800155\pi\)
−0.809304 + 0.587391i \(0.800155\pi\)
\(6\) 0 0
\(7\) −0.266972 2.63225i −0.100906 0.994896i
\(8\) 0 0
\(9\) −2.96698 0.443907i −0.988992 0.147969i
\(10\) 0 0
\(11\) 2.00379i 0.604167i 0.953281 + 0.302083i \(0.0976821\pi\)
−0.953281 + 0.302083i \(0.902318\pi\)
\(12\) 0 0
\(13\) −2.95206 + 1.70437i −0.818754 + 0.472708i −0.849987 0.526804i \(-0.823390\pi\)
0.0312328 + 0.999512i \(0.490057\pi\)
\(14\) 0 0
\(15\) −0.465079 + 6.25156i −0.120083 + 1.61415i
\(16\) 0 0
\(17\) 3.08709 + 5.34700i 0.748730 + 1.29684i 0.948432 + 0.316981i \(0.102669\pi\)
−0.199702 + 0.979857i \(0.563998\pi\)
\(18\) 0 0
\(19\) −0.877353 0.506540i −0.201279 0.116208i 0.395973 0.918262i \(-0.370407\pi\)
−0.597252 + 0.802054i \(0.703741\pi\)
\(20\) 0 0
\(21\) −4.58093 + 0.122894i −0.999640 + 0.0268176i
\(22\) 0 0
\(23\) 3.02799i 0.631380i −0.948862 0.315690i \(-0.897764\pi\)
0.948862 0.315690i \(-0.102236\pi\)
\(24\) 0 0
\(25\) 8.09945 1.61989
\(26\) 0 0
\(27\) −1.14800 + 5.06775i −0.220934 + 0.975289i
\(28\) 0 0
\(29\) 5.04560 + 2.91308i 0.936945 + 0.540945i 0.889001 0.457905i \(-0.151400\pi\)
0.0479434 + 0.998850i \(0.484733\pi\)
\(30\) 0 0
\(31\) −0.787812 0.454844i −0.141495 0.0816923i 0.427581 0.903977i \(-0.359366\pi\)
−0.569076 + 0.822285i \(0.692699\pi\)
\(32\) 0 0
\(33\) 3.46111 + 0.257486i 0.602502 + 0.0448225i
\(34\) 0 0
\(35\) 0.966257 + 9.52693i 0.163327 + 1.61035i
\(36\) 0 0
\(37\) 3.66825 6.35359i 0.603056 1.04452i −0.389299 0.921111i \(-0.627283\pi\)
0.992355 0.123413i \(-0.0393839\pi\)
\(38\) 0 0
\(39\) 2.56459 + 5.31804i 0.410663 + 0.851567i
\(40\) 0 0
\(41\) 2.85045 + 4.93712i 0.445165 + 0.771048i 0.998064 0.0622002i \(-0.0198117\pi\)
−0.552899 + 0.833248i \(0.686478\pi\)
\(42\) 0 0
\(43\) 2.39949 4.15605i 0.365919 0.633791i −0.623004 0.782219i \(-0.714088\pi\)
0.988923 + 0.148428i \(0.0474212\pi\)
\(44\) 0 0
\(45\) 10.7384 + 1.60664i 1.60079 + 0.239504i
\(46\) 0 0
\(47\) 1.11511 + 1.93143i 0.162655 + 0.281727i 0.935820 0.352478i \(-0.114661\pi\)
−0.773165 + 0.634205i \(0.781327\pi\)
\(48\) 0 0
\(49\) −6.85745 + 1.40547i −0.979636 + 0.200782i
\(50\) 0 0
\(51\) 9.63244 4.64518i 1.34881 0.650455i
\(52\) 0 0
\(53\) −7.58088 + 4.37683i −1.04131 + 0.601203i −0.920205 0.391436i \(-0.871978\pi\)
−0.121109 + 0.992639i \(0.538645\pi\)
\(54\) 0 0
\(55\) 7.25237i 0.977909i
\(56\) 0 0
\(57\) −0.987674 + 1.45034i −0.130821 + 0.192103i
\(58\) 0 0
\(59\) −4.49313 + 7.78233i −0.584956 + 1.01317i 0.409925 + 0.912119i \(0.365555\pi\)
−0.994881 + 0.101054i \(0.967778\pi\)
\(60\) 0 0
\(61\) −12.7410 + 7.35603i −1.63132 + 0.941843i −0.647634 + 0.761952i \(0.724241\pi\)
−0.983686 + 0.179892i \(0.942425\pi\)
\(62\) 0 0
\(63\) −0.376373 + 7.92833i −0.0474185 + 0.998875i
\(64\) 0 0
\(65\) 10.6844 6.16866i 1.32524 0.765128i
\(66\) 0 0
\(67\) −4.15821 + 7.20222i −0.508006 + 0.879892i 0.491951 + 0.870623i \(0.336284\pi\)
−0.999957 + 0.00926908i \(0.997050\pi\)
\(68\) 0 0
\(69\) −5.23019 0.389094i −0.629640 0.0468415i
\(70\) 0 0
\(71\) 0.466287i 0.0553381i 0.999617 + 0.0276691i \(0.00880846\pi\)
−0.999617 + 0.0276691i \(0.991192\pi\)
\(72\) 0 0
\(73\) −3.65022 + 2.10746i −0.427226 + 0.246659i −0.698164 0.715938i \(-0.746000\pi\)
0.270938 + 0.962597i \(0.412666\pi\)
\(74\) 0 0
\(75\) 1.04077 13.9900i 0.120178 1.61543i
\(76\) 0 0
\(77\) 5.27448 0.534957i 0.601083 0.0609641i
\(78\) 0 0
\(79\) 1.91267 + 3.31284i 0.215192 + 0.372723i 0.953332 0.301924i \(-0.0976290\pi\)
−0.738140 + 0.674648i \(0.764296\pi\)
\(80\) 0 0
\(81\) 8.60589 + 2.63412i 0.956210 + 0.292680i
\(82\) 0 0
\(83\) −4.00481 + 6.93654i −0.439585 + 0.761384i −0.997657 0.0684084i \(-0.978208\pi\)
0.558072 + 0.829792i \(0.311541\pi\)
\(84\) 0 0
\(85\) −11.1732 19.3525i −1.21190 2.09907i
\(86\) 0 0
\(87\) 5.68005 8.34083i 0.608965 0.894230i
\(88\) 0 0
\(89\) 2.39324 4.14521i 0.253683 0.439391i −0.710854 0.703339i \(-0.751691\pi\)
0.964537 + 0.263948i \(0.0850248\pi\)
\(90\) 0 0
\(91\) 5.27445 + 7.31553i 0.552912 + 0.766876i
\(92\) 0 0
\(93\) −0.886874 + 1.30232i −0.0919646 + 0.135045i
\(94\) 0 0
\(95\) 3.17542 + 1.83333i 0.325791 + 0.188096i
\(96\) 0 0
\(97\) 10.1835 + 5.87944i 1.03398 + 0.596967i 0.918121 0.396299i \(-0.129706\pi\)
0.115856 + 0.993266i \(0.463039\pi\)
\(98\) 0 0
\(99\) 0.889499 5.94521i 0.0893980 0.597516i
\(100\) 0 0
\(101\) −12.8922 −1.28282 −0.641411 0.767197i \(-0.721651\pi\)
−0.641411 + 0.767197i \(0.721651\pi\)
\(102\) 0 0
\(103\) 10.7588i 1.06010i −0.847968 0.530048i \(-0.822174\pi\)
0.847968 0.530048i \(-0.177826\pi\)
\(104\) 0 0
\(105\) 16.5798 0.444792i 1.61803 0.0434072i
\(106\) 0 0
\(107\) −2.28602 1.31983i −0.220998 0.127593i 0.385414 0.922744i \(-0.374058\pi\)
−0.606412 + 0.795151i \(0.707392\pi\)
\(108\) 0 0
\(109\) 4.51768 + 7.82484i 0.432715 + 0.749484i 0.997106 0.0760233i \(-0.0242224\pi\)
−0.564391 + 0.825507i \(0.690889\pi\)
\(110\) 0 0
\(111\) −10.5031 7.15251i −0.996905 0.678886i
\(112\) 0 0
\(113\) −1.46411 + 0.845306i −0.137732 + 0.0795197i −0.567283 0.823523i \(-0.692005\pi\)
0.429551 + 0.903043i \(0.358672\pi\)
\(114\) 0 0
\(115\) 10.9593i 1.02196i
\(116\) 0 0
\(117\) 9.51527 3.74639i 0.879687 0.346354i
\(118\) 0 0
\(119\) 13.2505 9.55349i 1.21467 0.875767i
\(120\) 0 0
\(121\) 6.98481 0.634982
\(122\) 0 0
\(123\) 8.89405 4.28910i 0.801950 0.386735i
\(124\) 0 0
\(125\) −11.2179 −1.00336
\(126\) 0 0
\(127\) −17.9292 −1.59096 −0.795478 0.605983i \(-0.792780\pi\)
−0.795478 + 0.605983i \(0.792780\pi\)
\(128\) 0 0
\(129\) −6.87031 4.67864i −0.604897 0.411931i
\(130\) 0 0
\(131\) −17.3313 −1.51425 −0.757123 0.653272i \(-0.773396\pi\)
−0.757123 + 0.653272i \(0.773396\pi\)
\(132\) 0 0
\(133\) −1.09911 + 2.44464i −0.0953049 + 0.211977i
\(134\) 0 0
\(135\) 4.15499 18.3418i 0.357605 1.57861i
\(136\) 0 0
\(137\) 0 0.000645123i 0 5.51166e-5i 1.00000 2.75583e-5i \(8.77208e-6\pi\)
−1.00000 2.75583e-5i \(0.999991\pi\)
\(138\) 0 0
\(139\) −8.73273 + 5.04185i −0.740701 + 0.427644i −0.822324 0.569019i \(-0.807323\pi\)
0.0816233 + 0.996663i \(0.473990\pi\)
\(140\) 0 0
\(141\) 3.47940 1.67792i 0.293018 0.141306i
\(142\) 0 0
\(143\) −3.41521 5.91532i −0.285594 0.494664i
\(144\) 0 0
\(145\) −18.2616 10.5434i −1.51655 0.875578i
\(146\) 0 0
\(147\) 1.54647 + 12.0253i 0.127550 + 0.991832i
\(148\) 0 0
\(149\) 11.2475i 0.921433i 0.887547 + 0.460716i \(0.152407\pi\)
−0.887547 + 0.460716i \(0.847593\pi\)
\(150\) 0 0
\(151\) 4.72379 0.384417 0.192208 0.981354i \(-0.438435\pi\)
0.192208 + 0.981354i \(0.438435\pi\)
\(152\) 0 0
\(153\) −6.78575 17.2348i −0.548596 1.39335i
\(154\) 0 0
\(155\) 2.85134 + 1.64622i 0.229025 + 0.132228i
\(156\) 0 0
\(157\) 2.65845 + 1.53486i 0.212168 + 0.122495i 0.602318 0.798256i \(-0.294244\pi\)
−0.390151 + 0.920751i \(0.627577\pi\)
\(158\) 0 0
\(159\) 6.58586 + 13.6567i 0.522292 + 1.08305i
\(160\) 0 0
\(161\) −7.97043 + 0.808390i −0.628158 + 0.0637101i
\(162\) 0 0
\(163\) 1.43687 2.48873i 0.112544 0.194932i −0.804251 0.594289i \(-0.797433\pi\)
0.916795 + 0.399357i \(0.130767\pi\)
\(164\) 0 0
\(165\) −12.5268 0.931922i −0.975214 0.0725500i
\(166\) 0 0
\(167\) 0.730517 + 1.26529i 0.0565291 + 0.0979113i 0.892905 0.450245i \(-0.148663\pi\)
−0.836376 + 0.548156i \(0.815330\pi\)
\(168\) 0 0
\(169\) −0.690233 + 1.19552i −0.0530948 + 0.0919630i
\(170\) 0 0
\(171\) 2.37823 + 1.89236i 0.181868 + 0.144712i
\(172\) 0 0
\(173\) −1.53541 2.65940i −0.116735 0.202191i 0.801737 0.597677i \(-0.203909\pi\)
−0.918472 + 0.395486i \(0.870576\pi\)
\(174\) 0 0
\(175\) −2.16233 21.3197i −0.163457 1.61162i
\(176\) 0 0
\(177\) 12.8649 + 8.76091i 0.966984 + 0.658510i
\(178\) 0 0
\(179\) 16.7310 9.65966i 1.25054 0.721997i 0.279320 0.960198i \(-0.409891\pi\)
0.971216 + 0.238201i \(0.0765578\pi\)
\(180\) 0 0
\(181\) 7.89318i 0.586695i −0.956006 0.293348i \(-0.905231\pi\)
0.956006 0.293348i \(-0.0947693\pi\)
\(182\) 0 0
\(183\) 11.0687 + 22.9525i 0.818222 + 1.69670i
\(184\) 0 0
\(185\) −13.2765 + 22.9957i −0.976111 + 1.69067i
\(186\) 0 0
\(187\) −10.7143 + 6.18590i −0.783506 + 0.452358i
\(188\) 0 0
\(189\) 13.6461 + 1.66888i 0.992604 + 0.121393i
\(190\) 0 0
\(191\) −11.5218 + 6.65211i −0.833688 + 0.481330i −0.855114 0.518441i \(-0.826513\pi\)
0.0214259 + 0.999770i \(0.493179\pi\)
\(192\) 0 0
\(193\) −3.26786 + 5.66011i −0.235226 + 0.407423i −0.959338 0.282259i \(-0.908916\pi\)
0.724112 + 0.689682i \(0.242250\pi\)
\(194\) 0 0
\(195\) −9.28205 19.2476i −0.664701 1.37835i
\(196\) 0 0
\(197\) 4.44250i 0.316515i 0.987398 + 0.158258i \(0.0505876\pi\)
−0.987398 + 0.158258i \(0.949412\pi\)
\(198\) 0 0
\(199\) −9.96868 + 5.75542i −0.706661 + 0.407991i −0.809823 0.586674i \(-0.800437\pi\)
0.103163 + 0.994665i \(0.467104\pi\)
\(200\) 0 0
\(201\) 11.9059 + 8.10786i 0.839779 + 0.571884i
\(202\) 0 0
\(203\) 6.32091 14.0590i 0.443641 0.986747i
\(204\) 0 0
\(205\) −10.3167 17.8690i −0.720547 1.24802i
\(206\) 0 0
\(207\) −1.34415 + 8.98399i −0.0934247 + 0.624430i
\(208\) 0 0
\(209\) 1.01500 1.75804i 0.0702092 0.121606i
\(210\) 0 0
\(211\) −11.3005 19.5731i −0.777961 1.34747i −0.933115 0.359577i \(-0.882921\pi\)
0.155155 0.987890i \(-0.450412\pi\)
\(212\) 0 0
\(213\) 0.805408 + 0.0599175i 0.0551856 + 0.00410548i
\(214\) 0 0
\(215\) −8.68453 + 15.0420i −0.592280 + 1.02586i
\(216\) 0 0
\(217\) −0.986937 + 2.19515i −0.0669976 + 0.149016i
\(218\) 0 0
\(219\) 3.17111 + 6.57576i 0.214284 + 0.444348i
\(220\) 0 0
\(221\) −18.2265 10.5231i −1.22605 0.707860i
\(222\) 0 0
\(223\) 16.2994 + 9.41045i 1.09149 + 0.630170i 0.933972 0.357346i \(-0.116318\pi\)
0.157515 + 0.987517i \(0.449652\pi\)
\(224\) 0 0
\(225\) −24.0309 3.59540i −1.60206 0.239693i
\(226\) 0 0
\(227\) 14.6133 0.969919 0.484960 0.874537i \(-0.338834\pi\)
0.484960 + 0.874537i \(0.338834\pi\)
\(228\) 0 0
\(229\) 2.37919i 0.157221i 0.996905 + 0.0786106i \(0.0250484\pi\)
−0.996905 + 0.0786106i \(0.974952\pi\)
\(230\) 0 0
\(231\) −0.246254 9.17924i −0.0162023 0.603950i
\(232\) 0 0
\(233\) −9.03470 5.21619i −0.591883 0.341724i 0.173959 0.984753i \(-0.444344\pi\)
−0.765842 + 0.643029i \(0.777677\pi\)
\(234\) 0 0
\(235\) −4.03593 6.99044i −0.263275 0.456006i
\(236\) 0 0
\(237\) 5.96796 2.87801i 0.387661 0.186947i
\(238\) 0 0
\(239\) −20.5971 + 11.8917i −1.33232 + 0.769213i −0.985654 0.168777i \(-0.946018\pi\)
−0.346662 + 0.937990i \(0.612685\pi\)
\(240\) 0 0
\(241\) 28.6487i 1.84542i −0.385489 0.922712i \(-0.625967\pi\)
0.385489 0.922712i \(-0.374033\pi\)
\(242\) 0 0
\(243\) 5.65571 14.5263i 0.362814 0.931862i
\(244\) 0 0
\(245\) 24.8193 5.08685i 1.58565 0.324987i
\(246\) 0 0
\(247\) 3.45333 0.219730
\(248\) 0 0
\(249\) 11.4667 + 7.80876i 0.726673 + 0.494860i
\(250\) 0 0
\(251\) −11.0301 −0.696216 −0.348108 0.937454i \(-0.613176\pi\)
−0.348108 + 0.937454i \(0.613176\pi\)
\(252\) 0 0
\(253\) 6.06748 0.381459
\(254\) 0 0
\(255\) −34.8628 + 16.8124i −2.18320 + 1.05283i
\(256\) 0 0
\(257\) −15.0978 −0.941775 −0.470888 0.882193i \(-0.656066\pi\)
−0.470888 + 0.882193i \(0.656066\pi\)
\(258\) 0 0
\(259\) −17.7035 7.95950i −1.10004 0.494579i
\(260\) 0 0
\(261\) −13.6770 10.8828i −0.846588 0.673629i
\(262\) 0 0
\(263\) 19.6385i 1.21096i −0.795859 0.605482i \(-0.792980\pi\)
0.795859 0.605482i \(-0.207020\pi\)
\(264\) 0 0
\(265\) 27.4376 15.8411i 1.68548 0.973112i
\(266\) 0 0
\(267\) −6.85240 4.66644i −0.419360 0.285581i
\(268\) 0 0
\(269\) −0.245503 0.425223i −0.0149686 0.0259263i 0.858444 0.512907i \(-0.171431\pi\)
−0.873413 + 0.486981i \(0.838098\pi\)
\(270\) 0 0
\(271\) 12.1927 + 7.03945i 0.740653 + 0.427616i 0.822307 0.569045i \(-0.192687\pi\)
−0.0816537 + 0.996661i \(0.526020\pi\)
\(272\) 0 0
\(273\) 13.3137 8.17039i 0.805782 0.494495i
\(274\) 0 0
\(275\) 16.2296i 0.978683i
\(276\) 0 0
\(277\) 30.7200 1.84579 0.922894 0.385054i \(-0.125817\pi\)
0.922894 + 0.385054i \(0.125817\pi\)
\(278\) 0 0
\(279\) 2.13551 + 1.69923i 0.127850 + 0.101730i
\(280\) 0 0
\(281\) 6.86286 + 3.96227i 0.409404 + 0.236369i 0.690534 0.723300i \(-0.257376\pi\)
−0.281130 + 0.959670i \(0.590709\pi\)
\(282\) 0 0
\(283\) 9.97303 + 5.75793i 0.592835 + 0.342273i 0.766218 0.642581i \(-0.222136\pi\)
−0.173383 + 0.984855i \(0.555470\pi\)
\(284\) 0 0
\(285\) 3.57471 5.24925i 0.211747 0.310939i
\(286\) 0 0
\(287\) 12.2347 8.82115i 0.722193 0.520696i
\(288\) 0 0
\(289\) −10.5603 + 18.2909i −0.621192 + 1.07594i
\(290\) 0 0
\(291\) 11.4640 16.8342i 0.672031 0.986839i
\(292\) 0 0
\(293\) 2.50937 + 4.34636i 0.146599 + 0.253917i 0.929968 0.367639i \(-0.119834\pi\)
−0.783369 + 0.621557i \(0.786501\pi\)
\(294\) 0 0
\(295\) 16.2621 28.1667i 0.946814 1.63993i
\(296\) 0 0
\(297\) −10.1547 2.30037i −0.589237 0.133481i
\(298\) 0 0
\(299\) 5.16083 + 8.93882i 0.298458 + 0.516945i
\(300\) 0 0
\(301\) −11.5803 5.20651i −0.667480 0.300098i
\(302\) 0 0
\(303\) −1.65664 + 22.2684i −0.0951712 + 1.27929i
\(304\) 0 0
\(305\) 46.1138 26.6238i 2.64047 1.52447i
\(306\) 0 0
\(307\) 17.5309i 1.00054i −0.865869 0.500271i \(-0.833234\pi\)
0.865869 0.500271i \(-0.166766\pi\)
\(308\) 0 0
\(309\) −18.5834 1.38250i −1.05717 0.0786474i
\(310\) 0 0
\(311\) −8.64759 + 14.9781i −0.490360 + 0.849328i −0.999938 0.0110959i \(-0.996468\pi\)
0.509579 + 0.860424i \(0.329801\pi\)
\(312\) 0 0
\(313\) 7.78988 4.49749i 0.440310 0.254213i −0.263419 0.964681i \(-0.584850\pi\)
0.703729 + 0.710468i \(0.251517\pi\)
\(314\) 0 0
\(315\) 1.36221 28.6951i 0.0767520 1.61679i
\(316\) 0 0
\(317\) −5.82002 + 3.36019i −0.326885 + 0.188727i −0.654457 0.756099i \(-0.727103\pi\)
0.327572 + 0.944826i \(0.393770\pi\)
\(318\) 0 0
\(319\) −5.83721 + 10.1103i −0.326821 + 0.566071i
\(320\) 0 0
\(321\) −2.57347 + 3.77899i −0.143637 + 0.210923i
\(322\) 0 0
\(323\) 6.25494i 0.348034i
\(324\) 0 0
\(325\) −23.9100 + 13.8045i −1.32629 + 0.765734i
\(326\) 0 0
\(327\) 14.0962 6.79780i 0.779521 0.375919i
\(328\) 0 0
\(329\) 4.78629 3.45088i 0.263876 0.190253i
\(330\) 0 0
\(331\) −9.38725 16.2592i −0.515970 0.893686i −0.999828 0.0185396i \(-0.994098\pi\)
0.483858 0.875146i \(-0.339235\pi\)
\(332\) 0 0
\(333\) −13.7040 + 17.2226i −0.750975 + 0.943792i
\(334\) 0 0
\(335\) 15.0499 26.0671i 0.822262 1.42420i
\(336\) 0 0
\(337\) 2.42287 + 4.19654i 0.131982 + 0.228600i 0.924441 0.381326i \(-0.124532\pi\)
−0.792458 + 0.609926i \(0.791199\pi\)
\(338\) 0 0
\(339\) 1.27194 + 2.63755i 0.0690824 + 0.143252i
\(340\) 0 0
\(341\) 0.911413 1.57861i 0.0493558 0.0854868i
\(342\) 0 0
\(343\) 5.53030 + 17.6753i 0.298608 + 0.954376i
\(344\) 0 0
\(345\) 18.9297 + 1.40826i 1.01914 + 0.0758179i
\(346\) 0 0
\(347\) 15.1305 + 8.73559i 0.812247 + 0.468951i 0.847736 0.530419i \(-0.177965\pi\)
−0.0354887 + 0.999370i \(0.511299\pi\)
\(348\) 0 0
\(349\) −20.6338 11.9129i −1.10450 0.637683i −0.167101 0.985940i \(-0.553440\pi\)
−0.937399 + 0.348257i \(0.886774\pi\)
\(350\) 0 0
\(351\) −5.24835 16.9169i −0.280136 0.902958i
\(352\) 0 0
\(353\) 10.0412 0.534441 0.267220 0.963635i \(-0.413895\pi\)
0.267220 + 0.963635i \(0.413895\pi\)
\(354\) 0 0
\(355\) 1.68764i 0.0895707i
\(356\) 0 0
\(357\) −14.7989 24.1148i −0.783238 1.27629i
\(358\) 0 0
\(359\) −10.5353 6.08254i −0.556030 0.321024i 0.195521 0.980700i \(-0.437360\pi\)
−0.751550 + 0.659676i \(0.770694\pi\)
\(360\) 0 0
\(361\) −8.98683 15.5657i −0.472991 0.819245i
\(362\) 0 0
\(363\) 0.897541 12.0647i 0.0471087 0.633233i
\(364\) 0 0
\(365\) 13.2113 7.62756i 0.691512 0.399245i
\(366\) 0 0
\(367\) 3.63061i 0.189516i 0.995500 + 0.0947582i \(0.0302078\pi\)
−0.995500 + 0.0947582i \(0.969792\pi\)
\(368\) 0 0
\(369\) −6.26558 15.9136i −0.326173 0.828431i
\(370\) 0 0
\(371\) 13.5448 + 18.7863i 0.703210 + 0.975335i
\(372\) 0 0
\(373\) 5.49231 0.284381 0.142191 0.989839i \(-0.454585\pi\)
0.142191 + 0.989839i \(0.454585\pi\)
\(374\) 0 0
\(375\) −1.44149 + 19.3764i −0.0744380 + 1.00059i
\(376\) 0 0
\(377\) −19.8599 −1.02284
\(378\) 0 0
\(379\) 15.5960 0.801112 0.400556 0.916272i \(-0.368817\pi\)
0.400556 + 0.916272i \(0.368817\pi\)
\(380\) 0 0
\(381\) −2.30388 + 30.9686i −0.118031 + 1.58657i
\(382\) 0 0
\(383\) −9.43067 −0.481885 −0.240942 0.970539i \(-0.577456\pi\)
−0.240942 + 0.970539i \(0.577456\pi\)
\(384\) 0 0
\(385\) −19.0900 + 1.93618i −0.972918 + 0.0986769i
\(386\) 0 0
\(387\) −8.96414 + 11.2657i −0.455673 + 0.572670i
\(388\) 0 0
\(389\) 6.42177i 0.325597i 0.986659 + 0.162798i \(0.0520520\pi\)
−0.986659 + 0.162798i \(0.947948\pi\)
\(390\) 0 0
\(391\) 16.1907 9.34769i 0.818798 0.472733i
\(392\) 0 0
\(393\) −2.22706 + 29.9360i −0.112340 + 1.51007i
\(394\) 0 0
\(395\) −6.92255 11.9902i −0.348311 0.603293i
\(396\) 0 0
\(397\) 5.99750 + 3.46266i 0.301006 + 0.173786i 0.642895 0.765955i \(-0.277733\pi\)
−0.341889 + 0.939740i \(0.611067\pi\)
\(398\) 0 0
\(399\) 4.08134 + 2.21260i 0.204323 + 0.110769i
\(400\) 0 0
\(401\) 10.5869i 0.528682i 0.964429 + 0.264341i \(0.0851545\pi\)
−0.964429 + 0.264341i \(0.914846\pi\)
\(402\) 0 0
\(403\) 3.10089 0.154466
\(404\) 0 0
\(405\) −31.1474 9.53372i −1.54773 0.473735i
\(406\) 0 0
\(407\) 12.7313 + 7.35042i 0.631067 + 0.364347i
\(408\) 0 0
\(409\) 7.72792 + 4.46172i 0.382121 + 0.220618i 0.678741 0.734378i \(-0.262526\pi\)
−0.296620 + 0.954996i \(0.595859\pi\)
\(410\) 0 0
\(411\) 0.00111431 8.28977e-5i 5.49647e−5 4.08904e-6i
\(412\) 0 0
\(413\) 21.6846 + 9.74937i 1.06703 + 0.479735i
\(414\) 0 0
\(415\) 14.4947 25.1055i 0.711516 1.23238i
\(416\) 0 0
\(417\) 7.58652 + 15.7317i 0.371513 + 0.770386i
\(418\) 0 0
\(419\) 17.1924 + 29.7781i 0.839903 + 1.45475i 0.889975 + 0.456009i \(0.150721\pi\)
−0.0500724 + 0.998746i \(0.515945\pi\)
\(420\) 0 0
\(421\) −17.7840 + 30.8028i −0.866739 + 1.50124i −0.00142877 + 0.999999i \(0.500455\pi\)
−0.865310 + 0.501237i \(0.832879\pi\)
\(422\) 0 0
\(423\) −2.45113 6.22550i −0.119178 0.302694i
\(424\) 0 0
\(425\) 25.0037 + 43.3077i 1.21286 + 2.10073i
\(426\) 0 0
\(427\) 22.7644 + 31.5737i 1.10165 + 1.52796i
\(428\) 0 0
\(429\) −10.6563 + 5.13891i −0.514489 + 0.248109i
\(430\) 0 0
\(431\) −26.7338 + 15.4348i −1.28772 + 0.743466i −0.978247 0.207442i \(-0.933486\pi\)
−0.309474 + 0.950908i \(0.600153\pi\)
\(432\) 0 0
\(433\) 23.2463i 1.11715i 0.829455 + 0.558574i \(0.188651\pi\)
−0.829455 + 0.558574i \(0.811349\pi\)
\(434\) 0 0
\(435\) −20.5579 + 30.1881i −0.985676 + 1.44741i
\(436\) 0 0
\(437\) −1.53380 + 2.65662i −0.0733716 + 0.127083i
\(438\) 0 0
\(439\) −19.2887 + 11.1364i −0.920601 + 0.531509i −0.883827 0.467814i \(-0.845042\pi\)
−0.0367744 + 0.999324i \(0.511708\pi\)
\(440\) 0 0
\(441\) 20.9698 1.12594i 0.998562 0.0536160i
\(442\) 0 0
\(443\) −15.5756 + 8.99259i −0.740020 + 0.427251i −0.822077 0.569377i \(-0.807185\pi\)
0.0820566 + 0.996628i \(0.473851\pi\)
\(444\) 0 0
\(445\) −8.66188 + 15.0028i −0.410612 + 0.711202i
\(446\) 0 0
\(447\) 19.4276 + 1.44530i 0.918894 + 0.0683601i
\(448\) 0 0
\(449\) 9.44363i 0.445673i −0.974856 0.222836i \(-0.928468\pi\)
0.974856 0.222836i \(-0.0715315\pi\)
\(450\) 0 0
\(451\) −9.89297 + 5.71171i −0.465842 + 0.268954i
\(452\) 0 0
\(453\) 0.607002 8.15930i 0.0285195 0.383357i
\(454\) 0 0
\(455\) −19.0899 26.4772i −0.894948 1.24127i
\(456\) 0 0
\(457\) 0.922251 + 1.59739i 0.0431411 + 0.0747225i 0.886790 0.462173i \(-0.152930\pi\)
−0.843649 + 0.536896i \(0.819597\pi\)
\(458\) 0 0
\(459\) −30.6412 + 9.50623i −1.43021 + 0.443713i
\(460\) 0 0
\(461\) 18.1869 31.5007i 0.847050 1.46713i −0.0367790 0.999323i \(-0.511710\pi\)
0.883829 0.467810i \(-0.154957\pi\)
\(462\) 0 0
\(463\) 15.9830 + 27.6834i 0.742794 + 1.28656i 0.951219 + 0.308518i \(0.0998330\pi\)
−0.208425 + 0.978038i \(0.566834\pi\)
\(464\) 0 0
\(465\) 3.20988 4.71352i 0.148855 0.218584i
\(466\) 0 0
\(467\) 12.2206 21.1666i 0.565500 0.979475i −0.431503 0.902112i \(-0.642017\pi\)
0.997003 0.0773632i \(-0.0246501\pi\)
\(468\) 0 0
\(469\) 20.0682 + 9.02263i 0.926662 + 0.416627i
\(470\) 0 0
\(471\) 2.99273 4.39466i 0.137898 0.202495i
\(472\) 0 0
\(473\) 8.32786 + 4.80809i 0.382916 + 0.221076i
\(474\) 0 0
\(475\) −7.10607 4.10269i −0.326049 0.188245i
\(476\) 0 0
\(477\) 24.4352 9.62073i 1.11881 0.440503i
\(478\) 0 0
\(479\) −10.9606 −0.500805 −0.250402 0.968142i \(-0.580563\pi\)
−0.250402 + 0.968142i \(0.580563\pi\)
\(480\) 0 0
\(481\) 25.0082i 1.14028i
\(482\) 0 0
\(483\) 0.372122 + 13.8710i 0.0169321 + 0.631153i
\(484\) 0 0
\(485\) −36.8573 21.2796i −1.67360 0.966255i
\(486\) 0 0
\(487\) 16.8087 + 29.1136i 0.761677 + 1.31926i 0.941986 + 0.335653i \(0.108957\pi\)
−0.180309 + 0.983610i \(0.557710\pi\)
\(488\) 0 0
\(489\) −4.11408 2.80167i −0.186045 0.126696i
\(490\) 0 0
\(491\) 19.6893 11.3676i 0.888568 0.513015i 0.0150939 0.999886i \(-0.495195\pi\)
0.873474 + 0.486871i \(0.161862\pi\)
\(492\) 0 0
\(493\) 35.9718i 1.62009i
\(494\) 0 0
\(495\) −3.21938 + 21.5176i −0.144700 + 0.967144i
\(496\) 0 0
\(497\) 1.22738 0.124486i 0.0550557 0.00558395i
\(498\) 0 0
\(499\) −19.5235 −0.873992 −0.436996 0.899463i \(-0.643958\pi\)
−0.436996 + 0.899463i \(0.643958\pi\)
\(500\) 0 0
\(501\) 2.27938 1.09922i 0.101835 0.0491094i
\(502\) 0 0
\(503\) −13.6867 −0.610262 −0.305131 0.952310i \(-0.598700\pi\)
−0.305131 + 0.952310i \(0.598700\pi\)
\(504\) 0 0
\(505\) 46.6609 2.07638
\(506\) 0 0
\(507\) 1.97630 + 1.34585i 0.0877705 + 0.0597712i
\(508\) 0 0
\(509\) −2.29166 −0.101576 −0.0507881 0.998709i \(-0.516173\pi\)
−0.0507881 + 0.998709i \(0.516173\pi\)
\(510\) 0 0
\(511\) 6.52186 + 9.04566i 0.288510 + 0.400156i
\(512\) 0 0
\(513\) 3.57422 3.86470i 0.157806 0.170630i
\(514\) 0 0
\(515\) 38.9395i 1.71588i
\(516\) 0 0
\(517\) −3.87018 + 2.23445i −0.170210 + 0.0982710i
\(518\) 0 0
\(519\) −4.79082 + 2.31034i −0.210294 + 0.101413i
\(520\) 0 0
\(521\) −8.54102 14.7935i −0.374189 0.648114i 0.616017 0.787733i \(-0.288745\pi\)
−0.990205 + 0.139619i \(0.955412\pi\)
\(522\) 0 0
\(523\) −35.7462 20.6381i −1.56307 0.902440i −0.996944 0.0781229i \(-0.975107\pi\)
−0.566128 0.824317i \(-0.691559\pi\)
\(524\) 0 0
\(525\) −37.1030 + 0.995372i −1.61931 + 0.0434416i
\(526\) 0 0
\(527\) 5.61657i 0.244662i
\(528\) 0 0
\(529\) 13.8313 0.601359
\(530\) 0 0
\(531\) 16.7857 21.0955i 0.728435 0.915465i
\(532\) 0 0
\(533\) −16.8294 9.71644i −0.728961 0.420866i
\(534\) 0 0
\(535\) 8.27382 + 4.77689i 0.357708 + 0.206523i
\(536\) 0 0
\(537\) −14.5350 30.1404i −0.627231 1.30065i
\(538\) 0 0
\(539\) −2.81628 13.7409i −0.121306 0.591864i
\(540\) 0 0
\(541\) 22.7197 39.3516i 0.976795 1.69186i 0.302915 0.953018i \(-0.402040\pi\)
0.673880 0.738841i \(-0.264627\pi\)
\(542\) 0 0
\(543\) −13.6337 1.01427i −0.585078 0.0435263i
\(544\) 0 0
\(545\) −16.3509 28.3206i −0.700395 1.21312i
\(546\) 0 0
\(547\) −15.1095 + 26.1705i −0.646037 + 1.11897i 0.338024 + 0.941138i \(0.390242\pi\)
−0.984061 + 0.177832i \(0.943092\pi\)
\(548\) 0 0
\(549\) 41.0677 16.1693i 1.75273 0.690091i
\(550\) 0 0
\(551\) −2.95118 5.11160i −0.125725 0.217761i
\(552\) 0 0
\(553\) 8.20958 5.91905i 0.349107 0.251704i
\(554\) 0 0
\(555\) 38.0139 + 25.8872i 1.61360 + 1.09885i
\(556\) 0 0
\(557\) −22.0154 + 12.7106i −0.932822 + 0.538565i −0.887703 0.460417i \(-0.847700\pi\)
−0.0451189 + 0.998982i \(0.514367\pi\)
\(558\) 0 0
\(559\) 16.3585i 0.691892i
\(560\) 0 0
\(561\) 9.30799 + 19.3014i 0.392983 + 0.814907i
\(562\) 0 0
\(563\) −1.44346 + 2.50015i −0.0608346 + 0.105369i −0.894839 0.446390i \(-0.852710\pi\)
0.834004 + 0.551758i \(0.186043\pi\)
\(564\) 0 0
\(565\) 5.29909 3.05943i 0.222934 0.128711i
\(566\) 0 0
\(567\) 4.63613 23.3561i 0.194699 0.980863i
\(568\) 0 0
\(569\) −38.5945 + 22.2826i −1.61797 + 0.934134i −0.630523 + 0.776171i \(0.717159\pi\)
−0.987445 + 0.157963i \(0.949507\pi\)
\(570\) 0 0
\(571\) −3.26470 + 5.65462i −0.136623 + 0.236638i −0.926216 0.376992i \(-0.876958\pi\)
0.789593 + 0.613631i \(0.210292\pi\)
\(572\) 0 0
\(573\) 10.0095 + 20.7561i 0.418153 + 0.867100i
\(574\) 0 0
\(575\) 24.5251i 1.02277i
\(576\) 0 0
\(577\) 1.17720 0.679658i 0.0490076 0.0282945i −0.475296 0.879826i \(-0.657659\pi\)
0.524304 + 0.851531i \(0.324326\pi\)
\(578\) 0 0
\(579\) 9.35666 + 6.37183i 0.388850 + 0.264804i
\(580\) 0 0
\(581\) 19.3279 + 8.68979i 0.801855 + 0.360513i
\(582\) 0 0
\(583\) −8.77026 15.1905i −0.363227 0.629128i
\(584\) 0 0
\(585\) −34.4388 + 13.5594i −1.42387 + 0.560611i
\(586\) 0 0
\(587\) 22.2025 38.4559i 0.916397 1.58725i 0.111555 0.993758i \(-0.464417\pi\)
0.804843 0.593488i \(-0.202250\pi\)
\(588\) 0 0
\(589\) 0.460793 + 0.798117i 0.0189866 + 0.0328858i
\(590\) 0 0
\(591\) 7.67343 + 0.570857i 0.315643 + 0.0234819i
\(592\) 0 0
\(593\) −7.17564 + 12.4286i −0.294668 + 0.510380i −0.974908 0.222610i \(-0.928542\pi\)
0.680240 + 0.732990i \(0.261876\pi\)
\(594\) 0 0
\(595\) −47.9576 + 34.5771i −1.96607 + 1.41752i
\(596\) 0 0
\(597\) 8.66024 + 17.9582i 0.354440 + 0.734982i
\(598\) 0 0
\(599\) 3.03349 + 1.75139i 0.123945 + 0.0715597i 0.560691 0.828025i \(-0.310536\pi\)
−0.436746 + 0.899585i \(0.643869\pi\)
\(600\) 0 0
\(601\) −15.1846 8.76685i −0.619394 0.357607i 0.157239 0.987561i \(-0.449741\pi\)
−0.776633 + 0.629953i \(0.783074\pi\)
\(602\) 0 0
\(603\) 15.5344 19.5230i 0.632610 0.795037i
\(604\) 0 0
\(605\) −25.2802 −1.02779
\(606\) 0 0
\(607\) 0.0872864i 0.00354285i −0.999998 0.00177142i \(-0.999436\pi\)
0.999998 0.00177142i \(-0.000563862\pi\)
\(608\) 0 0
\(609\) −23.4715 12.7245i −0.951114 0.515624i
\(610\) 0 0
\(611\) −6.58373 3.80112i −0.266349 0.153777i
\(612\) 0 0
\(613\) 12.5352 + 21.7116i 0.506292 + 0.876924i 0.999973 + 0.00728071i \(0.00231754\pi\)
−0.493681 + 0.869643i \(0.664349\pi\)
\(614\) 0 0
\(615\) −32.1904 + 15.5236i −1.29804 + 0.625972i
\(616\) 0 0
\(617\) −10.6365 + 6.14101i −0.428211 + 0.247228i −0.698584 0.715528i \(-0.746186\pi\)
0.270373 + 0.962756i \(0.412853\pi\)
\(618\) 0 0
\(619\) 20.3076i 0.816229i −0.912931 0.408115i \(-0.866186\pi\)
0.912931 0.408115i \(-0.133814\pi\)
\(620\) 0 0
\(621\) 15.3451 + 3.47615i 0.615778 + 0.139493i
\(622\) 0 0
\(623\) −11.5501 5.19294i −0.462747 0.208051i
\(624\) 0 0
\(625\) 0.103794 0.00415176
\(626\) 0 0
\(627\) −2.90619 1.97910i −0.116062 0.0790375i
\(628\) 0 0
\(629\) 45.2969 1.80610
\(630\) 0 0
\(631\) 45.9665 1.82990 0.914950 0.403568i \(-0.132230\pi\)
0.914950 + 0.403568i \(0.132230\pi\)
\(632\) 0 0
\(633\) −35.2603 + 17.0040i −1.40147 + 0.675850i
\(634\) 0 0
\(635\) 64.8913 2.57513
\(636\) 0 0
\(637\) 17.8482 15.8367i 0.707169 0.627472i
\(638\) 0 0
\(639\) 0.206988 1.38346i 0.00818833 0.0547290i
\(640\) 0 0
\(641\) 31.6509i 1.25013i −0.780571 0.625067i \(-0.785072\pi\)
0.780571 0.625067i \(-0.214928\pi\)
\(642\) 0 0
\(643\) −10.0106 + 5.77960i −0.394778 + 0.227925i −0.684228 0.729268i \(-0.739861\pi\)
0.289450 + 0.957193i \(0.406528\pi\)
\(644\) 0 0
\(645\) 24.8658 + 16.9335i 0.979091 + 0.666755i
\(646\) 0 0
\(647\) −13.0365 22.5799i −0.512519 0.887708i −0.999895 0.0145160i \(-0.995379\pi\)
0.487376 0.873192i \(-0.337954\pi\)
\(648\) 0 0
\(649\) −15.5942 9.00332i −0.612126 0.353411i
\(650\) 0 0
\(651\) 3.66481 + 1.98679i 0.143635 + 0.0778684i
\(652\) 0 0
\(653\) 18.9315i 0.740847i −0.928863 0.370424i \(-0.879212\pi\)
0.928863 0.370424i \(-0.120788\pi\)
\(654\) 0 0
\(655\) 62.7276 2.45097
\(656\) 0 0
\(657\) 11.7656 4.63242i 0.459021 0.180728i
\(658\) 0 0
\(659\) −23.3508 13.4816i −0.909618 0.525168i −0.0293098 0.999570i \(-0.509331\pi\)
−0.880308 + 0.474402i \(0.842664\pi\)
\(660\) 0 0
\(661\) 22.3201 + 12.8865i 0.868151 + 0.501227i 0.866733 0.498772i \(-0.166215\pi\)
0.00141768 + 0.999999i \(0.499549\pi\)
\(662\) 0 0
\(663\) −20.5184 + 30.1301i −0.796869 + 1.17016i
\(664\) 0 0
\(665\) 3.97803 8.84793i 0.154261 0.343108i
\(666\) 0 0
\(667\) 8.82079 15.2780i 0.341542 0.591568i
\(668\) 0 0
\(669\) 18.3489 26.9443i 0.709410 1.04173i
\(670\) 0 0
\(671\) −14.7400 25.5304i −0.569030 0.985590i
\(672\) 0 0
\(673\) −12.9608 + 22.4487i −0.499601 + 0.865335i −1.00000 0.000460130i \(-0.999854\pi\)
0.500398 + 0.865795i \(0.333187\pi\)
\(674\) 0 0
\(675\) −9.29820 + 41.0460i −0.357888 + 1.57986i
\(676\) 0 0
\(677\) 6.55382 + 11.3515i 0.251884 + 0.436275i 0.964044 0.265741i \(-0.0856166\pi\)
−0.712161 + 0.702016i \(0.752283\pi\)
\(678\) 0 0
\(679\) 12.7574 28.3751i 0.489585 1.08894i
\(680\) 0 0
\(681\) 1.87780 25.2412i 0.0719573 0.967246i
\(682\) 0 0
\(683\) 25.6910 14.8327i 0.983038 0.567557i 0.0798523 0.996807i \(-0.474555\pi\)
0.903186 + 0.429249i \(0.141222\pi\)
\(684\) 0 0
\(685\) 0.00233490i 8.92121e-5i
\(686\) 0 0
\(687\) 4.10952 + 0.305723i 0.156788 + 0.0116641i
\(688\) 0 0
\(689\) 14.9195 25.8413i 0.568387 0.984475i
\(690\) 0 0
\(691\) −40.9767 + 23.6579i −1.55883 + 0.899990i −0.561459 + 0.827504i \(0.689760\pi\)
−0.997369 + 0.0724857i \(0.976907\pi\)
\(692\) 0 0
\(693\) −15.8867 0.754174i −0.603487 0.0286487i
\(694\) 0 0
\(695\) 31.6065 18.2480i 1.19890 0.692187i
\(696\) 0 0
\(697\) −17.5992 + 30.4827i −0.666616 + 1.15461i
\(698\) 0 0
\(699\) −10.1708 + 14.9352i −0.384693 + 0.564900i
\(700\) 0 0
\(701\) 13.7742i 0.520244i −0.965576 0.260122i \(-0.916237\pi\)
0.965576 0.260122i \(-0.0837627\pi\)
\(702\) 0 0
\(703\) −6.43670 + 3.71623i −0.242765 + 0.140160i
\(704\) 0 0
\(705\) −12.5930 + 6.07291i −0.474281 + 0.228719i
\(706\) 0 0
\(707\) 3.44186 + 33.9355i 0.129444 + 1.27627i
\(708\) 0 0
\(709\) 21.9691 + 38.0517i 0.825069 + 1.42906i 0.901867 + 0.432014i \(0.142197\pi\)
−0.0767981 + 0.997047i \(0.524470\pi\)
\(710\) 0 0
\(711\) −4.20425 10.6782i −0.157672 0.400462i
\(712\) 0 0
\(713\) −1.37726 + 2.38549i −0.0515789 + 0.0893373i
\(714\) 0 0
\(715\) 12.3607 + 21.4094i 0.462265 + 0.800667i
\(716\) 0 0
\(717\) 17.8936 + 37.1050i 0.668250 + 1.38571i
\(718\) 0 0
\(719\) −14.7930 + 25.6223i −0.551687 + 0.955549i 0.446466 + 0.894800i \(0.352682\pi\)
−0.998153 + 0.0607489i \(0.980651\pi\)
\(720\) 0 0
\(721\) −28.3198 + 2.87230i −1.05469 + 0.106970i
\(722\) 0 0
\(723\) −49.4843 3.68133i −1.84034 0.136910i
\(724\) 0 0
\(725\) 40.8666 + 23.5943i 1.51775 + 0.876271i
\(726\) 0 0
\(727\) 10.1244 + 5.84534i 0.375494 + 0.216792i 0.675856 0.737034i \(-0.263774\pi\)
−0.300362 + 0.953825i \(0.597107\pi\)
\(728\) 0 0
\(729\) −24.3642 11.6356i −0.902377 0.430948i
\(730\) 0 0
\(731\) 29.6298 1.09590
\(732\) 0 0
\(733\) 33.0733i 1.22159i −0.791789 0.610795i \(-0.790850\pi\)
0.791789 0.610795i \(-0.209150\pi\)
\(734\) 0 0
\(735\) −5.59715 43.5234i −0.206454 1.60539i
\(736\) 0 0
\(737\) −14.4318 8.33219i −0.531601 0.306920i
\(738\) 0 0
\(739\) 21.7528 + 37.6770i 0.800190 + 1.38597i 0.919491 + 0.393111i \(0.128601\pi\)
−0.119301 + 0.992858i \(0.538065\pi\)
\(740\) 0 0
\(741\) 0.443750 5.96486i 0.0163016 0.219125i
\(742\) 0 0
\(743\) −18.0206 + 10.4042i −0.661112 + 0.381693i −0.792701 0.609611i \(-0.791326\pi\)
0.131589 + 0.991304i \(0.457992\pi\)
\(744\) 0 0
\(745\) 40.7083i 1.49144i
\(746\) 0 0
\(747\) 14.9614 18.8028i 0.547408 0.687958i
\(748\) 0 0
\(749\) −2.86382 + 6.36972i −0.104642 + 0.232745i
\(750\) 0 0
\(751\) 39.8984 1.45591 0.727957 0.685623i \(-0.240470\pi\)
0.727957 + 0.685623i \(0.240470\pi\)
\(752\) 0 0
\(753\) −1.41736 + 19.0521i −0.0516515 + 0.694297i
\(754\) 0 0
\(755\) −17.0969 −0.622219
\(756\) 0 0
\(757\) 7.45545 0.270973 0.135486 0.990779i \(-0.456740\pi\)
0.135486 + 0.990779i \(0.456740\pi\)
\(758\) 0 0
\(759\) 0.779665 10.4802i 0.0283001 0.380408i
\(760\) 0 0
\(761\) −8.64924 −0.313535 −0.156767 0.987636i \(-0.550107\pi\)
−0.156767 + 0.987636i \(0.550107\pi\)
\(762\) 0 0
\(763\) 19.3908 13.9807i 0.701995 0.506134i
\(764\) 0 0
\(765\) 24.5598 + 62.3782i 0.887961 + 2.25529i
\(766\) 0 0
\(767\) 30.6319i 1.10605i
\(768\) 0 0
\(769\) −20.4818 + 11.8252i −0.738592 + 0.426426i −0.821557 0.570126i \(-0.806894\pi\)
0.0829652 + 0.996552i \(0.473561\pi\)
\(770\) 0 0
\(771\) −1.94005 + 26.0781i −0.0698693 + 0.939180i
\(772\) 0 0
\(773\) −23.2849 40.3307i −0.837501 1.45059i −0.891978 0.452079i \(-0.850683\pi\)
0.0544774 0.998515i \(-0.482651\pi\)
\(774\) 0 0
\(775\) −6.38084 3.68398i −0.229207 0.132333i
\(776\) 0 0
\(777\) −16.0232 + 29.5561i −0.574828 + 1.06032i
\(778\) 0 0
\(779\) 5.77546i 0.206927i
\(780\) 0 0
\(781\) −0.934344 −0.0334335
\(782\) 0 0
\(783\) −20.5551 + 22.2256i −0.734580 + 0.794279i
\(784\) 0 0
\(785\) −9.62178 5.55513i −0.343416 0.198271i
\(786\) 0 0
\(787\) 21.1657 + 12.2200i 0.754474 + 0.435596i 0.827308 0.561748i \(-0.189871\pi\)
−0.0728341 + 0.997344i \(0.523204\pi\)
\(788\) 0 0
\(789\) −33.9212 2.52353i −1.20763 0.0898401i
\(790\) 0 0
\(791\) 2.61593 + 3.62823i 0.0930118 + 0.129005i
\(792\) 0 0
\(793\) 25.0748 43.4309i 0.890433 1.54228i
\(794\) 0 0
\(795\) −23.8363 49.4279i −0.845386 1.75303i
\(796\) 0 0
\(797\) 24.9202 + 43.1631i 0.882719 + 1.52891i 0.848306 + 0.529506i \(0.177623\pi\)
0.0344128 + 0.999408i \(0.489044\pi\)
\(798\) 0 0
\(799\) −6.88489 + 11.9250i −0.243570 + 0.421875i
\(800\) 0 0
\(801\) −8.94076 + 11.2364i −0.315906 + 0.397017i
\(802\) 0 0
\(803\) −4.22291 7.31430i −0.149023 0.258116i
\(804\) 0 0
\(805\) 28.8475 2.92582i 1.01674 0.103122i
\(806\) 0 0
\(807\) −0.766025 + 0.369410i −0.0269654 + 0.0130039i
\(808\) 0 0
\(809\) 10.6735 6.16237i 0.375262 0.216657i −0.300493 0.953784i \(-0.597151\pi\)
0.675755 + 0.737127i \(0.263818\pi\)
\(810\) 0 0
\(811\) 24.8017i 0.870906i −0.900212 0.435453i \(-0.856588\pi\)
0.900212 0.435453i \(-0.143412\pi\)
\(812\) 0 0
\(813\) 13.7258 20.1556i 0.481386 0.706888i
\(814\) 0 0
\(815\) −5.20047 + 9.00748i −0.182165 + 0.315518i
\(816\) 0 0
\(817\) −4.21041 + 2.43088i −0.147304 + 0.0850457i
\(818\) 0 0
\(819\) −12.4017 24.0464i −0.433352 0.840248i
\(820\) 0 0
\(821\) 31.3573 18.1041i 1.09438 0.631839i 0.159639 0.987175i \(-0.448967\pi\)
0.934738 + 0.355336i \(0.115634\pi\)
\(822\) 0 0
\(823\) −9.54093 + 16.5254i −0.332576 + 0.576038i −0.983016 0.183519i \(-0.941251\pi\)
0.650440 + 0.759557i \(0.274584\pi\)
\(824\) 0 0
\(825\) 28.0331 + 2.08549i 0.975986 + 0.0726075i
\(826\) 0 0
\(827\) 31.9013i 1.10932i 0.832079 + 0.554658i \(0.187151\pi\)
−0.832079 + 0.554658i \(0.812849\pi\)
\(828\) 0 0
\(829\) 13.0645 7.54278i 0.453748 0.261971i −0.255664 0.966766i \(-0.582294\pi\)
0.709412 + 0.704794i \(0.248961\pi\)
\(830\) 0 0
\(831\) 3.94750 53.0620i 0.136937 1.84070i
\(832\) 0 0
\(833\) −28.6846 32.3280i −0.993864 1.12010i
\(834\) 0 0
\(835\) −2.64397 4.57950i −0.0914985 0.158480i
\(836\) 0 0
\(837\) 3.20945 3.47027i 0.110935 0.119950i
\(838\) 0 0
\(839\) −8.19860 + 14.2004i −0.283047 + 0.490252i −0.972134 0.234427i \(-0.924679\pi\)
0.689087 + 0.724679i \(0.258012\pi\)
\(840\) 0 0
\(841\) 2.47206 + 4.28173i 0.0852434 + 0.147646i
\(842\) 0 0
\(843\) 7.72582 11.3449i 0.266091 0.390740i
\(844\) 0 0
\(845\) 2.49817 4.32696i 0.0859397 0.148852i
\(846\) 0 0
\(847\) −1.86475 18.3857i −0.0640735 0.631741i
\(848\) 0 0
\(849\) 11.2271 16.4863i 0.385312 0.565808i
\(850\) 0 0
\(851\) −19.2386 11.1074i −0.659492 0.380758i
\(852\) 0 0
\(853\) −16.5936 9.58030i −0.568153 0.328023i 0.188258 0.982120i \(-0.439716\pi\)
−0.756411 + 0.654096i \(0.773049\pi\)
\(854\) 0 0
\(855\) −8.60756 6.84903i −0.294372 0.234232i
\(856\) 0 0
\(857\) 16.1145 0.550460 0.275230 0.961378i \(-0.411246\pi\)
0.275230 + 0.961378i \(0.411246\pi\)
\(858\) 0 0
\(859\) 12.1048i 0.413009i −0.978446 0.206505i \(-0.933791\pi\)
0.978446 0.206505i \(-0.0662089\pi\)
\(860\) 0 0
\(861\) −13.6644 22.2663i −0.465682 0.758833i
\(862\) 0 0
\(863\) 32.2728 + 18.6327i 1.09858 + 0.634265i 0.935848 0.352405i \(-0.114636\pi\)
0.162732 + 0.986670i \(0.447969\pi\)
\(864\) 0 0
\(865\) 5.55712 + 9.62522i 0.188948 + 0.327267i
\(866\) 0 0
\(867\) 30.2365 + 20.5909i 1.02689 + 0.699303i
\(868\) 0 0
\(869\) −6.63824 + 3.83259i −0.225187 + 0.130012i
\(870\) 0 0
\(871\) 28.3485i 0.960553i
\(872\) 0 0
\(873\) −27.6043 21.9647i −0.934262 0.743392i
\(874\) 0 0
\(875\) 2.99486 + 29.5282i 0.101245 + 0.998236i
\(876\) 0 0
\(877\) −9.70948 −0.327866 −0.163933 0.986471i \(-0.552418\pi\)
−0.163933 + 0.986471i \(0.552418\pi\)
\(878\) 0 0
\(879\) 7.82983 3.77588i 0.264094 0.127357i
\(880\) 0 0
\(881\) 2.63241 0.0886881 0.0443440 0.999016i \(-0.485880\pi\)
0.0443440 + 0.999016i \(0.485880\pi\)
\(882\) 0 0
\(883\) 36.3181 1.22220 0.611101 0.791553i \(-0.290727\pi\)
0.611101 + 0.791553i \(0.290727\pi\)
\(884\) 0 0
\(885\) −46.5621 31.7085i −1.56517 1.06587i
\(886\) 0 0
\(887\) 16.3642 0.549455 0.274728 0.961522i \(-0.411412\pi\)
0.274728 + 0.961522i \(0.411412\pi\)
\(888\) 0 0
\(889\) 4.78659 + 47.1940i 0.160537 + 1.58284i
\(890\) 0 0
\(891\) −5.27824 + 17.2444i −0.176828 + 0.577711i
\(892\) 0 0
\(893\) 2.25939i 0.0756076i
\(894\) 0 0
\(895\) −60.5549 + 34.9614i −2.02413 + 1.16863i
\(896\) 0 0
\(897\) 16.1030 7.76555i 0.537663 0.259284i
\(898\) 0 0
\(899\) −2.64999 4.58992i −0.0883822 0.153082i
\(900\) 0 0
\(901\) −46.8058 27.0233i −1.55933 0.900277i
\(902\) 0 0
\(903\) −10.4812 + 19.3334i −0.348791 + 0.643376i
\(904\) 0 0
\(905\) 28.5679i 0.949629i
\(906\) 0 0
\(907\) −10.8333 −0.359714 −0.179857 0.983693i \(-0.557564\pi\)
−0.179857 + 0.983693i \(0.557564\pi\)
\(908\) 0 0
\(909\) 38.2509 + 5.72294i 1.26870 + 0.189818i
\(910\) 0 0
\(911\) −36.8512 21.2760i −1.22093 0.704907i −0.255817 0.966725i \(-0.582345\pi\)
−0.965117 + 0.261818i \(0.915678\pi\)
\(912\) 0 0
\(913\) −13.8994 8.02482i −0.460003 0.265583i
\(914\) 0 0
\(915\) −40.0611 83.0724i −1.32438 2.74629i
\(916\) 0 0
\(917\) 4.62699 + 45.6204i 0.152797 + 1.50652i
\(918\) 0 0
\(919\) 12.9697 22.4641i 0.427829 0.741022i −0.568851 0.822441i \(-0.692612\pi\)
0.996680 + 0.0814187i \(0.0259451\pi\)
\(920\) 0 0
\(921\) −30.2807 2.25271i −0.997785 0.0742292i
\(922\) 0 0
\(923\) −0.794727 1.37651i −0.0261588 0.0453083i
\(924\) 0 0
\(925\) 29.7108 51.4606i 0.976884 1.69201i
\(926\) 0 0
\(927\) −4.77591 + 31.9211i −0.156861 + 1.04843i
\(928\) 0 0
\(929\) 23.4456 + 40.6089i 0.769224 + 1.33234i 0.937984 + 0.346678i \(0.112690\pi\)
−0.168760 + 0.985657i \(0.553976\pi\)
\(930\) 0 0
\(931\) 6.72834 + 2.24048i 0.220512 + 0.0734287i
\(932\) 0 0
\(933\) 24.7601 + 16.8615i 0.810608 + 0.552019i
\(934\) 0 0
\(935\) 38.7784 22.3887i 1.26819 0.732189i
\(936\) 0 0
\(937\) 0.209357i 0.00683939i 0.999994 + 0.00341969i \(0.00108852\pi\)
−0.999994 + 0.00341969i \(0.998911\pi\)
\(938\) 0 0
\(939\) −6.76742 14.0332i −0.220846 0.457956i
\(940\) 0 0
\(941\) −0.388565 + 0.673014i −0.0126669 + 0.0219396i −0.872289 0.488990i \(-0.837365\pi\)
0.859622 + 0.510930i \(0.170699\pi\)
\(942\) 0 0
\(943\) 14.9496 8.63113i 0.486825 0.281068i
\(944\) 0 0
\(945\) −49.3894 6.04021i −1.60664 0.196488i
\(946\) 0 0
\(947\) −43.1233 + 24.8972i −1.40132 + 0.809052i −0.994528 0.104470i \(-0.966686\pi\)
−0.406791 + 0.913521i \(0.633352\pi\)
\(948\) 0 0
\(949\) 7.18378 12.4427i 0.233196 0.403906i
\(950\) 0 0
\(951\) 5.05612 + 10.4846i 0.163956 + 0.339986i
\(952\) 0 0
\(953\) 41.4104i 1.34141i −0.741722 0.670707i \(-0.765991\pi\)
0.741722 0.670707i \(-0.234009\pi\)
\(954\) 0 0
\(955\) 41.7010 24.0761i 1.34941 0.779084i
\(956\) 0 0
\(957\) 16.7133 + 11.3817i 0.540264 + 0.367917i
\(958\) 0 0
\(959\) 0.00169812 0.000172230i 5.48353e−5 5.56160e-6i
\(960\) 0 0
\(961\) −15.0862 26.1301i −0.486653 0.842907i
\(962\) 0 0
\(963\) 6.19668 + 4.93069i 0.199685 + 0.158889i
\(964\) 0 0
\(965\) 11.8274 20.4857i 0.380739 0.659459i
\(966\) 0 0
\(967\) −22.8028 39.4956i −0.733289 1.27009i −0.955470 0.295088i \(-0.904651\pi\)
0.222181 0.975005i \(-0.428682\pi\)
\(968\) 0 0
\(969\) −10.8040 0.803754i −0.347075 0.0258203i
\(970\) 0 0
\(971\) −4.36733 + 7.56444i −0.140154 + 0.242754i −0.927555 0.373688i \(-0.878093\pi\)
0.787400 + 0.616442i \(0.211427\pi\)
\(972\) 0 0
\(973\) 15.6028 + 21.6407i 0.500202 + 0.693768i
\(974\) 0 0
\(975\) 20.7717 + 43.0731i 0.665228 + 1.37944i
\(976\) 0 0
\(977\) −12.9058 7.45114i −0.412892 0.238383i 0.279140 0.960250i \(-0.409951\pi\)
−0.692031 + 0.721867i \(0.743284\pi\)
\(978\) 0 0
\(979\) 8.30615 + 4.79556i 0.265466 + 0.153267i
\(980\) 0 0
\(981\) −9.93033 25.2216i −0.317051 0.805262i
\(982\) 0 0
\(983\) 3.06917 0.0978912 0.0489456 0.998801i \(-0.484414\pi\)
0.0489456 + 0.998801i \(0.484414\pi\)
\(984\) 0 0
\(985\) 16.0788i 0.512314i
\(986\) 0 0
\(987\) −5.34559 8.71068i −0.170152 0.277264i
\(988\) 0 0
\(989\) −12.5845 7.26565i −0.400163 0.231034i
\(990\) 0 0
\(991\) −27.9075 48.3372i −0.886510 1.53548i −0.843973 0.536386i \(-0.819789\pi\)
−0.0425375 0.999095i \(-0.513544\pi\)
\(992\) 0 0
\(993\) −29.2904 + 14.1251i −0.929502 + 0.448246i
\(994\) 0 0
\(995\) 36.0798 20.8307i 1.14381 0.660377i
\(996\) 0 0
\(997\) 6.12692i 0.194042i −0.995282 0.0970208i \(-0.969069\pi\)
0.995282 0.0970208i \(-0.0309313\pi\)
\(998\) 0 0
\(999\) 27.9872 + 25.8837i 0.885477 + 0.818924i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.c.929.5 16
3.2 odd 2 3024.2.df.c.1601.7 16
4.3 odd 2 126.2.t.a.47.2 yes 16
7.3 odd 6 1008.2.ca.c.353.8 16
9.4 even 3 3024.2.ca.c.2609.7 16
9.5 odd 6 1008.2.ca.c.257.8 16
12.11 even 2 378.2.t.a.89.8 16
21.17 even 6 3024.2.ca.c.2033.7 16
28.3 even 6 126.2.l.a.101.1 yes 16
28.11 odd 6 882.2.l.b.227.4 16
28.19 even 6 882.2.m.b.587.7 16
28.23 odd 6 882.2.m.a.587.6 16
28.27 even 2 882.2.t.a.803.3 16
36.7 odd 6 1134.2.k.b.971.8 16
36.11 even 6 1134.2.k.a.971.1 16
36.23 even 6 126.2.l.a.5.5 16
36.31 odd 6 378.2.l.a.341.4 16
63.31 odd 6 3024.2.df.c.17.7 16
63.59 even 6 inner 1008.2.df.c.689.5 16
84.11 even 6 2646.2.l.a.521.5 16
84.23 even 6 2646.2.m.a.1763.1 16
84.47 odd 6 2646.2.m.b.1763.4 16
84.59 odd 6 378.2.l.a.143.8 16
84.83 odd 2 2646.2.t.b.1979.5 16
252.23 even 6 882.2.m.b.293.7 16
252.31 even 6 378.2.t.a.17.8 16
252.59 odd 6 126.2.t.a.59.2 yes 16
252.67 odd 6 2646.2.t.b.2285.5 16
252.95 even 6 882.2.t.a.815.3 16
252.103 even 6 2646.2.m.a.881.1 16
252.115 even 6 1134.2.k.a.647.1 16
252.131 odd 6 882.2.m.a.293.6 16
252.139 even 6 2646.2.l.a.1097.1 16
252.167 odd 6 882.2.l.b.509.8 16
252.227 odd 6 1134.2.k.b.647.8 16
252.247 odd 6 2646.2.m.b.881.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.5 16 36.23 even 6
126.2.l.a.101.1 yes 16 28.3 even 6
126.2.t.a.47.2 yes 16 4.3 odd 2
126.2.t.a.59.2 yes 16 252.59 odd 6
378.2.l.a.143.8 16 84.59 odd 6
378.2.l.a.341.4 16 36.31 odd 6
378.2.t.a.17.8 16 252.31 even 6
378.2.t.a.89.8 16 12.11 even 2
882.2.l.b.227.4 16 28.11 odd 6
882.2.l.b.509.8 16 252.167 odd 6
882.2.m.a.293.6 16 252.131 odd 6
882.2.m.a.587.6 16 28.23 odd 6
882.2.m.b.293.7 16 252.23 even 6
882.2.m.b.587.7 16 28.19 even 6
882.2.t.a.803.3 16 28.27 even 2
882.2.t.a.815.3 16 252.95 even 6
1008.2.ca.c.257.8 16 9.5 odd 6
1008.2.ca.c.353.8 16 7.3 odd 6
1008.2.df.c.689.5 16 63.59 even 6 inner
1008.2.df.c.929.5 16 1.1 even 1 trivial
1134.2.k.a.647.1 16 252.115 even 6
1134.2.k.a.971.1 16 36.11 even 6
1134.2.k.b.647.8 16 252.227 odd 6
1134.2.k.b.971.8 16 36.7 odd 6
2646.2.l.a.521.5 16 84.11 even 6
2646.2.l.a.1097.1 16 252.139 even 6
2646.2.m.a.881.1 16 252.103 even 6
2646.2.m.a.1763.1 16 84.23 even 6
2646.2.m.b.881.4 16 252.247 odd 6
2646.2.m.b.1763.4 16 84.47 odd 6
2646.2.t.b.1979.5 16 84.83 odd 2
2646.2.t.b.2285.5 16 252.67 odd 6
3024.2.ca.c.2033.7 16 21.17 even 6
3024.2.ca.c.2609.7 16 9.4 even 3
3024.2.df.c.17.7 16 63.31 odd 6
3024.2.df.c.1601.7 16 3.2 odd 2