Properties

Label 2646.2.m.b.881.4
Level $2646$
Weight $2$
Character 2646.881
Analytic conductor $21.128$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(881,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 881.4
Root \(1.71298 + 0.256290i\) of defining polynomial
Character \(\chi\) \(=\) 2646.881
Dual form 2646.2.m.b.1763.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(1.80966 - 3.13442i) q^{5} +1.00000i q^{8} +3.61932i q^{10} +(-1.73534 + 1.00190i) q^{11} +(2.95206 + 1.70437i) q^{13} +(-0.500000 - 0.866025i) q^{16} -6.17418 q^{17} -1.01308i q^{19} +(-1.80966 - 3.13442i) q^{20} +(1.00190 - 1.73534i) q^{22} +(-2.62232 - 1.51400i) q^{23} +(-4.04972 - 7.01433i) q^{25} -3.40874 q^{26} +(-5.04560 + 2.91308i) q^{29} +(0.787812 + 0.454844i) q^{31} +(0.866025 + 0.500000i) q^{32} +(5.34700 - 3.08709i) q^{34} -7.33650 q^{37} +(0.506540 + 0.877353i) q^{38} +(3.13442 + 1.80966i) q^{40} +(2.85045 - 4.93712i) q^{41} +(-2.39949 - 4.15605i) q^{43} +2.00379i q^{44} +3.02799 q^{46} +(-1.11511 - 1.93143i) q^{47} +(7.01433 + 4.04972i) q^{50} +(2.95206 - 1.70437i) q^{52} -8.75365i q^{53} +7.25237i q^{55} +(2.91308 - 5.04560i) q^{58} +(4.49313 - 7.78233i) q^{59} +(-12.7410 + 7.35603i) q^{61} -0.909687 q^{62} -1.00000 q^{64} +(10.6844 - 6.16866i) q^{65} +(4.15821 - 7.20222i) q^{67} +(-3.08709 + 5.34700i) q^{68} -0.466287i q^{71} -4.21492i q^{73} +(6.35359 - 3.66825i) q^{74} +(-0.877353 - 0.506540i) q^{76} +(-1.91267 - 3.31284i) q^{79} -3.61932 q^{80} +5.70089i q^{82} +(4.00481 + 6.93654i) q^{83} +(-11.1732 + 19.3525i) q^{85} +(4.15605 + 2.39949i) q^{86} +(-1.00190 - 1.73534i) q^{88} -4.78647 q^{89} +(-2.62232 + 1.51400i) q^{92} +(1.93143 + 1.11511i) q^{94} +(-3.17542 - 1.83333i) q^{95} +(-10.1835 + 5.87944i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 12 q^{11} + 6 q^{13} - 8 q^{16} - 36 q^{17} - 6 q^{23} - 8 q^{25} + 24 q^{26} - 6 q^{29} + 6 q^{31} + 4 q^{37} + 6 q^{41} - 2 q^{43} - 12 q^{46} - 18 q^{47} + 12 q^{50} + 6 q^{52} + 6 q^{58}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.80966 3.13442i 0.809304 1.40175i −0.104043 0.994573i \(-0.533178\pi\)
0.913347 0.407182i \(-0.133489\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 3.61932i 1.14453i
\(11\) −1.73534 + 1.00190i −0.523224 + 0.302083i −0.738253 0.674524i \(-0.764349\pi\)
0.215029 + 0.976608i \(0.431015\pi\)
\(12\) 0 0
\(13\) 2.95206 + 1.70437i 0.818754 + 0.472708i 0.849987 0.526804i \(-0.176610\pi\)
−0.0312328 + 0.999512i \(0.509943\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −6.17418 −1.49746 −0.748730 0.662876i \(-0.769336\pi\)
−0.748730 + 0.662876i \(0.769336\pi\)
\(18\) 0 0
\(19\) 1.01308i 0.232417i −0.993225 0.116208i \(-0.962926\pi\)
0.993225 0.116208i \(-0.0370740\pi\)
\(20\) −1.80966 3.13442i −0.404652 0.700877i
\(21\) 0 0
\(22\) 1.00190 1.73534i 0.213605 0.369975i
\(23\) −2.62232 1.51400i −0.546791 0.315690i 0.201035 0.979584i \(-0.435569\pi\)
−0.747827 + 0.663894i \(0.768903\pi\)
\(24\) 0 0
\(25\) −4.04972 7.01433i −0.809945 1.40287i
\(26\) −3.40874 −0.668510
\(27\) 0 0
\(28\) 0 0
\(29\) −5.04560 + 2.91308i −0.936945 + 0.540945i −0.889001 0.457905i \(-0.848600\pi\)
−0.0479434 + 0.998850i \(0.515267\pi\)
\(30\) 0 0
\(31\) 0.787812 + 0.454844i 0.141495 + 0.0816923i 0.569076 0.822285i \(-0.307301\pi\)
−0.427581 + 0.903977i \(0.640634\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 5.34700 3.08709i 0.917003 0.529432i
\(35\) 0 0
\(36\) 0 0
\(37\) −7.33650 −1.20611 −0.603056 0.797699i \(-0.706051\pi\)
−0.603056 + 0.797699i \(0.706051\pi\)
\(38\) 0.506540 + 0.877353i 0.0821717 + 0.142325i
\(39\) 0 0
\(40\) 3.13442 + 1.80966i 0.495595 + 0.286132i
\(41\) 2.85045 4.93712i 0.445165 0.771048i −0.552899 0.833248i \(-0.686478\pi\)
0.998064 + 0.0622002i \(0.0198117\pi\)
\(42\) 0 0
\(43\) −2.39949 4.15605i −0.365919 0.633791i 0.623004 0.782219i \(-0.285912\pi\)
−0.988923 + 0.148428i \(0.952579\pi\)
\(44\) 2.00379i 0.302083i
\(45\) 0 0
\(46\) 3.02799 0.446453
\(47\) −1.11511 1.93143i −0.162655 0.281727i 0.773165 0.634205i \(-0.218673\pi\)
−0.935820 + 0.352478i \(0.885339\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 7.01433 + 4.04972i 0.991975 + 0.572717i
\(51\) 0 0
\(52\) 2.95206 1.70437i 0.409377 0.236354i
\(53\) 8.75365i 1.20241i −0.799096 0.601203i \(-0.794688\pi\)
0.799096 0.601203i \(-0.205312\pi\)
\(54\) 0 0
\(55\) 7.25237i 0.977909i
\(56\) 0 0
\(57\) 0 0
\(58\) 2.91308 5.04560i 0.382506 0.662520i
\(59\) 4.49313 7.78233i 0.584956 1.01317i −0.409925 0.912119i \(-0.634445\pi\)
0.994881 0.101054i \(-0.0322216\pi\)
\(60\) 0 0
\(61\) −12.7410 + 7.35603i −1.63132 + 0.941843i −0.647634 + 0.761952i \(0.724241\pi\)
−0.983686 + 0.179892i \(0.942425\pi\)
\(62\) −0.909687 −0.115530
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 10.6844 6.16866i 1.32524 0.765128i
\(66\) 0 0
\(67\) 4.15821 7.20222i 0.508006 0.879892i −0.491951 0.870623i \(-0.663716\pi\)
0.999957 0.00926908i \(-0.00295048\pi\)
\(68\) −3.08709 + 5.34700i −0.374365 + 0.648419i
\(69\) 0 0
\(70\) 0 0
\(71\) 0.466287i 0.0553381i −0.999617 0.0276691i \(-0.991192\pi\)
0.999617 0.0276691i \(-0.00880846\pi\)
\(72\) 0 0
\(73\) 4.21492i 0.493319i −0.969102 0.246659i \(-0.920667\pi\)
0.969102 0.246659i \(-0.0793329\pi\)
\(74\) 6.35359 3.66825i 0.738590 0.426425i
\(75\) 0 0
\(76\) −0.877353 0.506540i −0.100639 0.0581041i
\(77\) 0 0
\(78\) 0 0
\(79\) −1.91267 3.31284i −0.215192 0.372723i 0.738140 0.674648i \(-0.235704\pi\)
−0.953332 + 0.301924i \(0.902371\pi\)
\(80\) −3.61932 −0.404652
\(81\) 0 0
\(82\) 5.70089i 0.629558i
\(83\) 4.00481 + 6.93654i 0.439585 + 0.761384i 0.997657 0.0684084i \(-0.0217921\pi\)
−0.558072 + 0.829792i \(0.688459\pi\)
\(84\) 0 0
\(85\) −11.1732 + 19.3525i −1.21190 + 2.09907i
\(86\) 4.15605 + 2.39949i 0.448158 + 0.258744i
\(87\) 0 0
\(88\) −1.00190 1.73534i −0.106803 0.184988i
\(89\) −4.78647 −0.507365 −0.253683 0.967288i \(-0.581642\pi\)
−0.253683 + 0.967288i \(0.581642\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.62232 + 1.51400i −0.273396 + 0.157845i
\(93\) 0 0
\(94\) 1.93143 + 1.11511i 0.199211 + 0.115015i
\(95\) −3.17542 1.83333i −0.325791 0.188096i
\(96\) 0 0
\(97\) −10.1835 + 5.87944i −1.03398 + 0.596967i −0.918121 0.396299i \(-0.870294\pi\)
−0.115856 + 0.993266i \(0.536961\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −8.09945 −0.809945
\(101\) 6.44610 + 11.1650i 0.641411 + 1.11096i 0.985118 + 0.171879i \(0.0549840\pi\)
−0.343707 + 0.939077i \(0.611683\pi\)
\(102\) 0 0
\(103\) −9.31740 5.37940i −0.918070 0.530048i −0.0350515 0.999386i \(-0.511160\pi\)
−0.883019 + 0.469337i \(0.844493\pi\)
\(104\) −1.70437 + 2.95206i −0.167127 + 0.289473i
\(105\) 0 0
\(106\) 4.37683 + 7.58088i 0.425115 + 0.736321i
\(107\) 2.63967i 0.255186i −0.991827 0.127593i \(-0.959275\pi\)
0.991827 0.127593i \(-0.0407251\pi\)
\(108\) 0 0
\(109\) −9.03535 −0.865430 −0.432715 0.901531i \(-0.642444\pi\)
−0.432715 + 0.901531i \(0.642444\pi\)
\(110\) −3.62618 6.28073i −0.345743 0.598844i
\(111\) 0 0
\(112\) 0 0
\(113\) 1.46411 + 0.845306i 0.137732 + 0.0795197i 0.567283 0.823523i \(-0.307995\pi\)
−0.429551 + 0.903043i \(0.641328\pi\)
\(114\) 0 0
\(115\) −9.49100 + 5.47963i −0.885041 + 0.510978i
\(116\) 5.82616i 0.540945i
\(117\) 0 0
\(118\) 8.98627i 0.827253i
\(119\) 0 0
\(120\) 0 0
\(121\) −3.49240 + 6.04902i −0.317491 + 0.549911i
\(122\) 7.35603 12.7410i 0.665984 1.15352i
\(123\) 0 0
\(124\) 0.787812 0.454844i 0.0707476 0.0408462i
\(125\) −11.2179 −1.00336
\(126\) 0 0
\(127\) 17.9292 1.59096 0.795478 0.605983i \(-0.207220\pi\)
0.795478 + 0.605983i \(0.207220\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −6.16866 + 10.6844i −0.541027 + 0.937087i
\(131\) −8.66567 + 15.0094i −0.757123 + 1.31138i 0.187188 + 0.982324i \(0.440062\pi\)
−0.944312 + 0.329052i \(0.893271\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.31641i 0.718429i
\(135\) 0 0
\(136\) 6.17418i 0.529432i
\(137\) 0.000558693 0 0.000322562i 4.77324e−5 0 2.75583e-5i −0.499976 0.866039i \(-0.666658\pi\)
0.500024 + 0.866012i \(0.333325\pi\)
\(138\) 0 0
\(139\) −8.73273 5.04185i −0.740701 0.427644i 0.0816233 0.996663i \(-0.473990\pi\)
−0.822324 + 0.569019i \(0.807323\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.233144 + 0.403817i 0.0195650 + 0.0338875i
\(143\) −6.83042 −0.571189
\(144\) 0 0
\(145\) 21.0867i 1.75116i
\(146\) 2.10746 + 3.65022i 0.174414 + 0.302095i
\(147\) 0 0
\(148\) −3.66825 + 6.35359i −0.301528 + 0.522262i
\(149\) −9.74064 5.62376i −0.797984 0.460716i 0.0447816 0.998997i \(-0.485741\pi\)
−0.842766 + 0.538280i \(0.819074\pi\)
\(150\) 0 0
\(151\) 2.36189 + 4.09092i 0.192208 + 0.332914i 0.945982 0.324220i \(-0.105102\pi\)
−0.753774 + 0.657134i \(0.771768\pi\)
\(152\) 1.01308 0.0821717
\(153\) 0 0
\(154\) 0 0
\(155\) 2.85134 1.64622i 0.229025 0.132228i
\(156\) 0 0
\(157\) 2.65845 + 1.53486i 0.212168 + 0.122495i 0.602318 0.798256i \(-0.294244\pi\)
−0.390151 + 0.920751i \(0.627577\pi\)
\(158\) 3.31284 + 1.91267i 0.263555 + 0.152164i
\(159\) 0 0
\(160\) 3.13442 1.80966i 0.247798 0.143066i
\(161\) 0 0
\(162\) 0 0
\(163\) 2.87373 0.225088 0.112544 0.993647i \(-0.464100\pi\)
0.112544 + 0.993647i \(0.464100\pi\)
\(164\) −2.85045 4.93712i −0.222582 0.385524i
\(165\) 0 0
\(166\) −6.93654 4.00481i −0.538380 0.310834i
\(167\) −0.730517 + 1.26529i −0.0565291 + 0.0979113i −0.892905 0.450245i \(-0.851337\pi\)
0.836376 + 0.548156i \(0.184670\pi\)
\(168\) 0 0
\(169\) −0.690233 1.19552i −0.0530948 0.0919630i
\(170\) 22.3463i 1.71388i
\(171\) 0 0
\(172\) −4.79899 −0.365919
\(173\) −1.53541 2.65940i −0.116735 0.202191i 0.801737 0.597677i \(-0.203909\pi\)
−0.918472 + 0.395486i \(0.870576\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.73534 + 1.00190i 0.130806 + 0.0755209i
\(177\) 0 0
\(178\) 4.14521 2.39324i 0.310696 0.179381i
\(179\) 19.3193i 1.44399i −0.691896 0.721997i \(-0.743224\pi\)
0.691896 0.721997i \(-0.256776\pi\)
\(180\) 0 0
\(181\) 7.89318i 0.586695i −0.956006 0.293348i \(-0.905231\pi\)
0.956006 0.293348i \(-0.0947693\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.51400 2.62232i 0.111613 0.193320i
\(185\) −13.2765 + 22.9957i −0.976111 + 1.69067i
\(186\) 0 0
\(187\) 10.7143 6.18590i 0.783506 0.452358i
\(188\) −2.23022 −0.162655
\(189\) 0 0
\(190\) 3.66666 0.266007
\(191\) 11.5218 6.65211i 0.833688 0.481330i −0.0214259 0.999770i \(-0.506821\pi\)
0.855114 + 0.518441i \(0.173487\pi\)
\(192\) 0 0
\(193\) −3.26786 + 5.66011i −0.235226 + 0.407423i −0.959338 0.282259i \(-0.908916\pi\)
0.724112 + 0.689682i \(0.242250\pi\)
\(194\) 5.87944 10.1835i 0.422119 0.731132i
\(195\) 0 0
\(196\) 0 0
\(197\) 4.44250i 0.316515i 0.987398 + 0.158258i \(0.0505876\pi\)
−0.987398 + 0.158258i \(0.949412\pi\)
\(198\) 0 0
\(199\) 11.5108i 0.815982i 0.912986 + 0.407991i \(0.133770\pi\)
−0.912986 + 0.407991i \(0.866230\pi\)
\(200\) 7.01433 4.04972i 0.495988 0.286359i
\(201\) 0 0
\(202\) −11.1650 6.44610i −0.785565 0.453546i
\(203\) 0 0
\(204\) 0 0
\(205\) −10.3167 17.8690i −0.720547 1.24802i
\(206\) 10.7588 0.749601
\(207\) 0 0
\(208\) 3.40874i 0.236354i
\(209\) 1.01500 + 1.75804i 0.0702092 + 0.121606i
\(210\) 0 0
\(211\) 11.3005 19.5731i 0.777961 1.34747i −0.155155 0.987890i \(-0.549588\pi\)
0.933115 0.359577i \(-0.117079\pi\)
\(212\) −7.58088 4.37683i −0.520657 0.300602i
\(213\) 0 0
\(214\) 1.31983 + 2.28602i 0.0902219 + 0.156269i
\(215\) −17.3691 −1.18456
\(216\) 0 0
\(217\) 0 0
\(218\) 7.82484 4.51768i 0.529965 0.305976i
\(219\) 0 0
\(220\) 6.28073 + 3.62618i 0.423447 + 0.244477i
\(221\) −18.2265 10.5231i −1.22605 0.707860i
\(222\) 0 0
\(223\) 16.2994 9.41045i 1.09149 0.630170i 0.157515 0.987517i \(-0.449652\pi\)
0.933972 + 0.357346i \(0.116318\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1.69061 −0.112458
\(227\) 7.30665 + 12.6555i 0.484960 + 0.839975i 0.999851 0.0172809i \(-0.00550095\pi\)
−0.514891 + 0.857256i \(0.672168\pi\)
\(228\) 0 0
\(229\) −2.06044 1.18959i −0.136158 0.0786106i 0.430374 0.902651i \(-0.358382\pi\)
−0.566531 + 0.824040i \(0.691715\pi\)
\(230\) 5.47963 9.49100i 0.361316 0.625818i
\(231\) 0 0
\(232\) −2.91308 5.04560i −0.191253 0.331260i
\(233\) 10.4324i 0.683448i 0.939800 + 0.341724i \(0.111011\pi\)
−0.939800 + 0.341724i \(0.888989\pi\)
\(234\) 0 0
\(235\) −8.07186 −0.526550
\(236\) −4.49313 7.78233i −0.292478 0.506587i
\(237\) 0 0
\(238\) 0 0
\(239\) −20.5971 11.8917i −1.33232 0.769213i −0.346662 0.937990i \(-0.612685\pi\)
−0.985654 + 0.168777i \(0.946018\pi\)
\(240\) 0 0
\(241\) −24.8105 + 14.3243i −1.59818 + 0.922712i −0.606348 + 0.795200i \(0.707366\pi\)
−0.991837 + 0.127513i \(0.959301\pi\)
\(242\) 6.98481i 0.449000i
\(243\) 0 0
\(244\) 14.7121i 0.941843i
\(245\) 0 0
\(246\) 0 0
\(247\) 1.72667 2.99067i 0.109865 0.190292i
\(248\) −0.454844 + 0.787812i −0.0288826 + 0.0500261i
\(249\) 0 0
\(250\) 9.71496 5.60894i 0.614428 0.354740i
\(251\) 11.0301 0.696216 0.348108 0.937454i \(-0.386824\pi\)
0.348108 + 0.937454i \(0.386824\pi\)
\(252\) 0 0
\(253\) 6.06748 0.381459
\(254\) −15.5271 + 8.96458i −0.974257 + 0.562488i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.54890 13.0751i 0.470888 0.815601i −0.528558 0.848897i \(-0.677267\pi\)
0.999446 + 0.0332960i \(0.0106004\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 12.3373i 0.765128i
\(261\) 0 0
\(262\) 17.3313i 1.07073i
\(263\) 17.0075 9.81926i 1.04873 0.605482i 0.126433 0.991975i \(-0.459647\pi\)
0.922292 + 0.386493i \(0.126314\pi\)
\(264\) 0 0
\(265\) −27.4376 15.8411i −1.68548 0.973112i
\(266\) 0 0
\(267\) 0 0
\(268\) −4.15821 7.20222i −0.254003 0.439946i
\(269\) 0.491005 0.0299371 0.0149686 0.999888i \(-0.495235\pi\)
0.0149686 + 0.999888i \(0.495235\pi\)
\(270\) 0 0
\(271\) 14.0789i 0.855232i 0.903960 + 0.427616i \(0.140647\pi\)
−0.903960 + 0.427616i \(0.859353\pi\)
\(272\) 3.08709 + 5.34700i 0.187182 + 0.324209i
\(273\) 0 0
\(274\) −0.000322562 0 0.000558693i −1.94867e−5 0 3.37519e-5i
\(275\) 14.0553 + 8.11481i 0.847565 + 0.489342i
\(276\) 0 0
\(277\) −15.3600 26.6043i −0.922894 1.59850i −0.794913 0.606723i \(-0.792484\pi\)
−0.127981 0.991777i \(-0.540850\pi\)
\(278\) 10.0837 0.604780
\(279\) 0 0
\(280\) 0 0
\(281\) −6.86286 + 3.96227i −0.409404 + 0.236369i −0.690534 0.723300i \(-0.742624\pi\)
0.281130 + 0.959670i \(0.409291\pi\)
\(282\) 0 0
\(283\) −9.97303 5.75793i −0.592835 0.342273i 0.173383 0.984855i \(-0.444530\pi\)
−0.766218 + 0.642581i \(0.777864\pi\)
\(284\) −0.403817 0.233144i −0.0239621 0.0138345i
\(285\) 0 0
\(286\) 5.91532 3.41521i 0.349780 0.201946i
\(287\) 0 0
\(288\) 0 0
\(289\) 21.1205 1.24238
\(290\) −10.5434 18.2616i −0.619127 1.07236i
\(291\) 0 0
\(292\) −3.65022 2.10746i −0.213613 0.123330i
\(293\) 2.50937 4.34636i 0.146599 0.253917i −0.783369 0.621557i \(-0.786501\pi\)
0.929968 + 0.367639i \(0.119834\pi\)
\(294\) 0 0
\(295\) −16.2621 28.1667i −0.946814 1.63993i
\(296\) 7.33650i 0.426425i
\(297\) 0 0
\(298\) 11.2475 0.651551
\(299\) −5.16083 8.93882i −0.298458 0.516945i
\(300\) 0 0
\(301\) 0 0
\(302\) −4.09092 2.36189i −0.235406 0.135912i
\(303\) 0 0
\(304\) −0.877353 + 0.506540i −0.0503197 + 0.0290521i
\(305\) 53.2476i 3.04895i
\(306\) 0 0
\(307\) 17.5309i 1.00054i 0.865869 + 0.500271i \(0.166766\pi\)
−0.865869 + 0.500271i \(0.833234\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.64622 + 2.85134i −0.0934992 + 0.161945i
\(311\) 8.64759 14.9781i 0.490360 0.849328i −0.509579 0.860424i \(-0.670199\pi\)
0.999938 + 0.0110959i \(0.00353200\pi\)
\(312\) 0 0
\(313\) 7.78988 4.49749i 0.440310 0.254213i −0.263419 0.964681i \(-0.584850\pi\)
0.703729 + 0.710468i \(0.251517\pi\)
\(314\) −3.06972 −0.173234
\(315\) 0 0
\(316\) −3.82533 −0.215192
\(317\) −5.82002 + 3.36019i −0.326885 + 0.188727i −0.654457 0.756099i \(-0.727103\pi\)
0.327572 + 0.944826i \(0.393770\pi\)
\(318\) 0 0
\(319\) 5.83721 10.1103i 0.326821 0.566071i
\(320\) −1.80966 + 3.13442i −0.101163 + 0.175219i
\(321\) 0 0
\(322\) 0 0
\(323\) 6.25494i 0.348034i
\(324\) 0 0
\(325\) 27.6089i 1.53147i
\(326\) −2.48873 + 1.43687i −0.137838 + 0.0795807i
\(327\) 0 0
\(328\) 4.93712 + 2.85045i 0.272607 + 0.157390i
\(329\) 0 0
\(330\) 0 0
\(331\) 9.38725 + 16.2592i 0.515970 + 0.893686i 0.999828 + 0.0185396i \(0.00590167\pi\)
−0.483858 + 0.875146i \(0.660765\pi\)
\(332\) 8.00963 0.439585
\(333\) 0 0
\(334\) 1.46103i 0.0799443i
\(335\) −15.0499 26.0671i −0.822262 1.42420i
\(336\) 0 0
\(337\) 2.42287 4.19654i 0.131982 0.228600i −0.792458 0.609926i \(-0.791199\pi\)
0.924441 + 0.381326i \(0.124532\pi\)
\(338\) 1.19552 + 0.690233i 0.0650276 + 0.0375437i
\(339\) 0 0
\(340\) 11.1732 + 19.3525i 0.605949 + 1.04954i
\(341\) −1.82283 −0.0987116
\(342\) 0 0
\(343\) 0 0
\(344\) 4.15605 2.39949i 0.224079 0.129372i
\(345\) 0 0
\(346\) 2.65940 + 1.53541i 0.142970 + 0.0825440i
\(347\) −15.1305 8.73559i −0.812247 0.468951i 0.0354887 0.999370i \(-0.488701\pi\)
−0.847736 + 0.530419i \(0.822035\pi\)
\(348\) 0 0
\(349\) 20.6338 11.9129i 1.10450 0.637683i 0.167101 0.985940i \(-0.446560\pi\)
0.937399 + 0.348257i \(0.113226\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00379 −0.106803
\(353\) −5.02061 8.69596i −0.267220 0.462839i 0.700923 0.713237i \(-0.252772\pi\)
−0.968143 + 0.250398i \(0.919438\pi\)
\(354\) 0 0
\(355\) −1.46154 0.843820i −0.0775705 0.0447853i
\(356\) −2.39324 + 4.14521i −0.126841 + 0.219696i
\(357\) 0 0
\(358\) 9.65966 + 16.7310i 0.510529 + 0.884262i
\(359\) 12.1651i 0.642048i −0.947071 0.321024i \(-0.895973\pi\)
0.947071 0.321024i \(-0.104027\pi\)
\(360\) 0 0
\(361\) 17.9737 0.945983
\(362\) 3.94659 + 6.83569i 0.207428 + 0.359276i
\(363\) 0 0
\(364\) 0 0
\(365\) −13.2113 7.62756i −0.691512 0.399245i
\(366\) 0 0
\(367\) −3.14420 + 1.81531i −0.164126 + 0.0947582i −0.579813 0.814749i \(-0.696874\pi\)
0.415687 + 0.909508i \(0.363541\pi\)
\(368\) 3.02799i 0.157845i
\(369\) 0 0
\(370\) 26.5531i 1.38043i
\(371\) 0 0
\(372\) 0 0
\(373\) −2.74616 + 4.75648i −0.142191 + 0.246281i −0.928321 0.371779i \(-0.878748\pi\)
0.786131 + 0.618060i \(0.212081\pi\)
\(374\) −6.18590 + 10.7143i −0.319865 + 0.554023i
\(375\) 0 0
\(376\) 1.93143 1.11511i 0.0996057 0.0575074i
\(377\) −19.8599 −1.02284
\(378\) 0 0
\(379\) −15.5960 −0.801112 −0.400556 0.916272i \(-0.631183\pi\)
−0.400556 + 0.916272i \(0.631183\pi\)
\(380\) −3.17542 + 1.83333i −0.162896 + 0.0940478i
\(381\) 0 0
\(382\) −6.65211 + 11.5218i −0.340352 + 0.589506i
\(383\) −4.71534 + 8.16720i −0.240942 + 0.417324i −0.960983 0.276607i \(-0.910790\pi\)
0.720041 + 0.693932i \(0.244123\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6.53573i 0.332660i
\(387\) 0 0
\(388\) 11.7589i 0.596967i
\(389\) 5.56142 3.21089i 0.281975 0.162798i −0.352342 0.935871i \(-0.614615\pi\)
0.634317 + 0.773073i \(0.281281\pi\)
\(390\) 0 0
\(391\) 16.1907 + 9.34769i 0.818798 + 0.472733i
\(392\) 0 0
\(393\) 0 0
\(394\) −2.22125 3.84732i −0.111905 0.193825i
\(395\) −13.8451 −0.696622
\(396\) 0 0
\(397\) 6.92531i 0.347572i −0.984783 0.173786i \(-0.944400\pi\)
0.984783 0.173786i \(-0.0556000\pi\)
\(398\) −5.75542 9.96868i −0.288493 0.499685i
\(399\) 0 0
\(400\) −4.04972 + 7.01433i −0.202486 + 0.350716i
\(401\) −9.16848 5.29343i −0.457852 0.264341i 0.253289 0.967391i \(-0.418488\pi\)
−0.711141 + 0.703050i \(0.751821\pi\)
\(402\) 0 0
\(403\) 1.55045 + 2.68545i 0.0772332 + 0.133772i
\(404\) 12.8922 0.641411
\(405\) 0 0
\(406\) 0 0
\(407\) 12.7313 7.35042i 0.631067 0.364347i
\(408\) 0 0
\(409\) 7.72792 + 4.46172i 0.382121 + 0.220618i 0.678741 0.734378i \(-0.262526\pi\)
−0.296620 + 0.954996i \(0.595859\pi\)
\(410\) 17.8690 + 10.3167i 0.882486 + 0.509504i
\(411\) 0 0
\(412\) −9.31740 + 5.37940i −0.459035 + 0.265024i
\(413\) 0 0
\(414\) 0 0
\(415\) 28.9894 1.42303
\(416\) 1.70437 + 2.95206i 0.0835637 + 0.144737i
\(417\) 0 0
\(418\) −1.75804 1.01500i −0.0859883 0.0496454i
\(419\) −17.1924 + 29.7781i −0.839903 + 1.45475i 0.0500724 + 0.998746i \(0.484055\pi\)
−0.889975 + 0.456009i \(0.849279\pi\)
\(420\) 0 0
\(421\) −17.7840 30.8028i −0.866739 1.50124i −0.865310 0.501237i \(-0.832879\pi\)
−0.00142877 0.999999i \(-0.500455\pi\)
\(422\) 22.6011i 1.10020i
\(423\) 0 0
\(424\) 8.75365 0.425115
\(425\) 25.0037 + 43.3077i 1.21286 + 2.10073i
\(426\) 0 0
\(427\) 0 0
\(428\) −2.28602 1.31983i −0.110499 0.0637965i
\(429\) 0 0
\(430\) 15.0420 8.68453i 0.725392 0.418805i
\(431\) 30.8695i 1.48693i 0.668774 + 0.743466i \(0.266820\pi\)
−0.668774 + 0.743466i \(0.733180\pi\)
\(432\) 0 0
\(433\) 23.2463i 1.11715i 0.829455 + 0.558574i \(0.188651\pi\)
−0.829455 + 0.558574i \(0.811349\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.51768 + 7.82484i −0.216357 + 0.374742i
\(437\) −1.53380 + 2.65662i −0.0733716 + 0.127083i
\(438\) 0 0
\(439\) 19.2887 11.1364i 0.920601 0.531509i 0.0367744 0.999324i \(-0.488292\pi\)
0.883827 + 0.467814i \(0.154958\pi\)
\(440\) −7.25237 −0.345743
\(441\) 0 0
\(442\) 21.0462 1.00107
\(443\) 15.5756 8.99259i 0.740020 0.427251i −0.0820566 0.996628i \(-0.526149\pi\)
0.822077 + 0.569377i \(0.192815\pi\)
\(444\) 0 0
\(445\) −8.66188 + 15.0028i −0.410612 + 0.711202i
\(446\) −9.41045 + 16.2994i −0.445598 + 0.771798i
\(447\) 0 0
\(448\) 0 0
\(449\) 9.44363i 0.445673i −0.974856 0.222836i \(-0.928468\pi\)
0.974856 0.222836i \(-0.0715315\pi\)
\(450\) 0 0
\(451\) 11.4234i 0.537908i
\(452\) 1.46411 0.845306i 0.0688661 0.0397599i
\(453\) 0 0
\(454\) −12.6555 7.30665i −0.593952 0.342918i
\(455\) 0 0
\(456\) 0 0
\(457\) 0.922251 + 1.59739i 0.0431411 + 0.0747225i 0.886790 0.462173i \(-0.152930\pi\)
−0.843649 + 0.536896i \(0.819597\pi\)
\(458\) 2.37919 0.111172
\(459\) 0 0
\(460\) 10.9593i 0.510978i
\(461\) 18.1869 + 31.5007i 0.847050 + 1.46713i 0.883829 + 0.467810i \(0.154957\pi\)
−0.0367790 + 0.999323i \(0.511710\pi\)
\(462\) 0 0
\(463\) −15.9830 + 27.6834i −0.742794 + 1.28656i 0.208425 + 0.978038i \(0.433166\pi\)
−0.951219 + 0.308518i \(0.900167\pi\)
\(464\) 5.04560 + 2.91308i 0.234236 + 0.135236i
\(465\) 0 0
\(466\) −5.21619 9.03470i −0.241635 0.418525i
\(467\) 24.4411 1.13100 0.565500 0.824748i \(-0.308683\pi\)
0.565500 + 0.824748i \(0.308683\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 6.99044 4.03593i 0.322445 0.186164i
\(471\) 0 0
\(472\) 7.78233 + 4.49313i 0.358211 + 0.206813i
\(473\) 8.32786 + 4.80809i 0.382916 + 0.221076i
\(474\) 0 0
\(475\) −7.10607 + 4.10269i −0.326049 + 0.188245i
\(476\) 0 0
\(477\) 0 0
\(478\) 23.7835 1.08783
\(479\) −5.48032 9.49220i −0.250402 0.433710i 0.713234 0.700926i \(-0.247230\pi\)
−0.963637 + 0.267216i \(0.913896\pi\)
\(480\) 0 0
\(481\) −21.6578 12.5041i −0.987509 0.570139i
\(482\) 14.3243 24.8105i 0.652456 1.13009i
\(483\) 0 0
\(484\) 3.49240 + 6.04902i 0.158746 + 0.274955i
\(485\) 42.5591i 1.93251i
\(486\) 0 0
\(487\) 33.6175 1.52335 0.761677 0.647957i \(-0.224376\pi\)
0.761677 + 0.647957i \(0.224376\pi\)
\(488\) −7.35603 12.7410i −0.332992 0.576759i
\(489\) 0 0
\(490\) 0 0
\(491\) 19.6893 + 11.3676i 0.888568 + 0.513015i 0.873474 0.486871i \(-0.161862\pi\)
0.0150939 + 0.999886i \(0.495195\pi\)
\(492\) 0 0
\(493\) 31.1525 17.9859i 1.40304 0.810043i
\(494\) 3.45333i 0.155373i
\(495\) 0 0
\(496\) 0.909687i 0.0408462i
\(497\) 0 0
\(498\) 0 0
\(499\) −9.76175 + 16.9079i −0.436996 + 0.756899i −0.997456 0.0712820i \(-0.977291\pi\)
0.560460 + 0.828181i \(0.310624\pi\)
\(500\) −5.60894 + 9.71496i −0.250839 + 0.434466i
\(501\) 0 0
\(502\) −9.55238 + 5.51507i −0.426343 + 0.246149i
\(503\) 13.6867 0.610262 0.305131 0.952310i \(-0.401300\pi\)
0.305131 + 0.952310i \(0.401300\pi\)
\(504\) 0 0
\(505\) 46.6609 2.07638
\(506\) −5.25459 + 3.03374i −0.233595 + 0.134866i
\(507\) 0 0
\(508\) 8.96458 15.5271i 0.397739 0.688904i
\(509\) 1.14583 1.98464i 0.0507881 0.0879675i −0.839514 0.543338i \(-0.817160\pi\)
0.890302 + 0.455371i \(0.150493\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 15.0978i 0.665936i
\(515\) −33.7226 + 19.4698i −1.48600 + 0.857940i
\(516\) 0 0
\(517\) 3.87018 + 2.23445i 0.170210 + 0.0982710i
\(518\) 0 0
\(519\) 0 0
\(520\) 6.16866 + 10.6844i 0.270514 + 0.468543i
\(521\) 17.0820 0.748377 0.374189 0.927353i \(-0.377921\pi\)
0.374189 + 0.927353i \(0.377921\pi\)
\(522\) 0 0
\(523\) 41.2762i 1.80488i −0.430815 0.902440i \(-0.641774\pi\)
0.430815 0.902440i \(-0.358226\pi\)
\(524\) 8.66567 + 15.0094i 0.378562 + 0.655688i
\(525\) 0 0
\(526\) −9.81926 + 17.0075i −0.428140 + 0.741561i
\(527\) −4.86410 2.80829i −0.211883 0.122331i
\(528\) 0 0
\(529\) −6.91563 11.9782i −0.300679 0.520792i
\(530\) 31.6822 1.37619
\(531\) 0 0
\(532\) 0 0
\(533\) 16.8294 9.71644i 0.728961 0.420866i
\(534\) 0 0
\(535\) −8.27382 4.77689i −0.357708 0.206523i
\(536\) 7.20222 + 4.15821i 0.311089 + 0.179607i
\(537\) 0 0
\(538\) −0.425223 + 0.245503i −0.0183327 + 0.0105844i
\(539\) 0 0
\(540\) 0 0
\(541\) −45.4393 −1.95359 −0.976795 0.214177i \(-0.931293\pi\)
−0.976795 + 0.214177i \(0.931293\pi\)
\(542\) −7.03945 12.1927i −0.302370 0.523721i
\(543\) 0 0
\(544\) −5.34700 3.08709i −0.229251 0.132358i
\(545\) −16.3509 + 28.3206i −0.700395 + 1.21312i
\(546\) 0 0
\(547\) 15.1095 + 26.1705i 0.646037 + 1.11897i 0.984061 + 0.177832i \(0.0569082\pi\)
−0.338024 + 0.941138i \(0.609758\pi\)
\(548\) 0 0.000645123i 0 2.75583e-5i
\(549\) 0 0
\(550\) −16.2296 −0.692034
\(551\) 2.95118 + 5.11160i 0.125725 + 0.217761i
\(552\) 0 0
\(553\) 0 0
\(554\) 26.6043 + 15.3600i 1.13031 + 0.652585i
\(555\) 0 0
\(556\) −8.73273 + 5.04185i −0.370350 + 0.213822i
\(557\) 25.4212i 1.07713i −0.842584 0.538565i \(-0.818967\pi\)
0.842584 0.538565i \(-0.181033\pi\)
\(558\) 0 0
\(559\) 16.3585i 0.691892i
\(560\) 0 0
\(561\) 0 0
\(562\) 3.96227 6.86286i 0.167138 0.289492i
\(563\) 1.44346 2.50015i 0.0608346 0.105369i −0.834004 0.551758i \(-0.813957\pi\)
0.894839 + 0.446390i \(0.147290\pi\)
\(564\) 0 0
\(565\) 5.29909 3.05943i 0.222934 0.128711i
\(566\) 11.5159 0.484048
\(567\) 0 0
\(568\) 0.466287 0.0195650
\(569\) −38.5945 + 22.2826i −1.61797 + 0.934134i −0.630523 + 0.776171i \(0.717159\pi\)
−0.987445 + 0.157963i \(0.949507\pi\)
\(570\) 0 0
\(571\) 3.26470 5.65462i 0.136623 0.236638i −0.789593 0.613631i \(-0.789708\pi\)
0.926216 + 0.376992i \(0.123042\pi\)
\(572\) −3.41521 + 5.91532i −0.142797 + 0.247332i
\(573\) 0 0
\(574\) 0 0
\(575\) 24.5251i 1.02277i
\(576\) 0 0
\(577\) 1.35932i 0.0565891i 0.999600 + 0.0282945i \(0.00900764\pi\)
−0.999600 + 0.0282945i \(0.990992\pi\)
\(578\) −18.2909 + 10.5603i −0.760802 + 0.439249i
\(579\) 0 0
\(580\) 18.2616 + 10.5434i 0.758273 + 0.437789i
\(581\) 0 0
\(582\) 0 0
\(583\) 8.77026 + 15.1905i 0.363227 + 0.629128i
\(584\) 4.21492 0.174414
\(585\) 0 0
\(586\) 5.01875i 0.207323i
\(587\) −22.2025 38.4559i −0.916397 1.58725i −0.804843 0.593488i \(-0.797750\pi\)
−0.111555 0.993758i \(-0.535583\pi\)
\(588\) 0 0
\(589\) 0.460793 0.798117i 0.0189866 0.0328858i
\(590\) 28.1667 + 16.2621i 1.15961 + 0.669499i
\(591\) 0 0
\(592\) 3.66825 + 6.35359i 0.150764 + 0.261131i
\(593\) 14.3513 0.589336 0.294668 0.955600i \(-0.404791\pi\)
0.294668 + 0.955600i \(0.404791\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −9.74064 + 5.62376i −0.398992 + 0.230358i
\(597\) 0 0
\(598\) 8.93882 + 5.16083i 0.365535 + 0.211042i
\(599\) −3.03349 1.75139i −0.123945 0.0715597i 0.436746 0.899585i \(-0.356131\pi\)
−0.560691 + 0.828025i \(0.689464\pi\)
\(600\) 0 0
\(601\) 15.1846 8.76685i 0.619394 0.357607i −0.157239 0.987561i \(-0.550259\pi\)
0.776633 + 0.629953i \(0.216926\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 4.72379 0.192208
\(605\) 12.6401 + 21.8933i 0.513894 + 0.890090i
\(606\) 0 0
\(607\) −0.0755923 0.0436432i −0.00306820 0.00177142i 0.498465 0.866910i \(-0.333897\pi\)
−0.501533 + 0.865138i \(0.667231\pi\)
\(608\) 0.506540 0.877353i 0.0205429 0.0355814i
\(609\) 0 0
\(610\) −26.6238 46.1138i −1.07797 1.86709i
\(611\) 7.60224i 0.307554i
\(612\) 0 0
\(613\) −25.0704 −1.01258 −0.506292 0.862362i \(-0.668984\pi\)
−0.506292 + 0.862362i \(0.668984\pi\)
\(614\) −8.76545 15.1822i −0.353745 0.612704i
\(615\) 0 0
\(616\) 0 0
\(617\) 10.6365 + 6.14101i 0.428211 + 0.247228i 0.698584 0.715528i \(-0.253814\pi\)
−0.270373 + 0.962756i \(0.587147\pi\)
\(618\) 0 0
\(619\) 17.5869 10.1538i 0.706875 0.408115i −0.103028 0.994678i \(-0.532853\pi\)
0.809903 + 0.586564i \(0.199520\pi\)
\(620\) 3.29245i 0.132228i
\(621\) 0 0
\(622\) 17.2952i 0.693474i
\(623\) 0 0
\(624\) 0 0
\(625\) −0.0518970 + 0.0898882i −0.00207588 + 0.00359553i
\(626\) −4.49749 + 7.78988i −0.179756 + 0.311346i
\(627\) 0 0
\(628\) 2.65845 1.53486i 0.106084 0.0612475i
\(629\) 45.2969 1.80610
\(630\) 0 0
\(631\) −45.9665 −1.82990 −0.914950 0.403568i \(-0.867770\pi\)
−0.914950 + 0.403568i \(0.867770\pi\)
\(632\) 3.31284 1.91267i 0.131778 0.0760818i
\(633\) 0 0
\(634\) 3.36019 5.82002i 0.133450 0.231143i
\(635\) 32.4456 56.1975i 1.28757 2.23013i
\(636\) 0 0
\(637\) 0 0
\(638\) 11.6744i 0.462195i
\(639\) 0 0
\(640\) 3.61932i 0.143066i
\(641\) −27.4104 + 15.8254i −1.08265 + 0.625067i −0.931609 0.363461i \(-0.881595\pi\)
−0.151038 + 0.988528i \(0.548262\pi\)
\(642\) 0 0
\(643\) −10.0106 5.77960i −0.394778 0.227925i 0.289450 0.957193i \(-0.406528\pi\)
−0.684228 + 0.729268i \(0.739861\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −3.12747 5.41694i −0.123049 0.213127i
\(647\) −26.0730 −1.02504 −0.512519 0.858676i \(-0.671287\pi\)
−0.512519 + 0.858676i \(0.671287\pi\)
\(648\) 0 0
\(649\) 18.0066i 0.706822i
\(650\) 13.8045 + 23.9100i 0.541456 + 0.937829i
\(651\) 0 0
\(652\) 1.43687 2.48873i 0.0562720 0.0974660i
\(653\) 16.3952 + 9.46576i 0.641593 + 0.370424i 0.785228 0.619207i \(-0.212546\pi\)
−0.143635 + 0.989631i \(0.545879\pi\)
\(654\) 0 0
\(655\) 31.3638 + 54.3237i 1.22549 + 2.12260i
\(656\) −5.70089 −0.222582
\(657\) 0 0
\(658\) 0 0
\(659\) −23.3508 + 13.4816i −0.909618 + 0.525168i −0.880308 0.474402i \(-0.842664\pi\)
−0.0293098 + 0.999570i \(0.509331\pi\)
\(660\) 0 0
\(661\) 22.3201 + 12.8865i 0.868151 + 0.501227i 0.866733 0.498772i \(-0.166215\pi\)
0.00141768 + 0.999999i \(0.499549\pi\)
\(662\) −16.2592 9.38725i −0.631931 0.364846i
\(663\) 0 0
\(664\) −6.93654 + 4.00481i −0.269190 + 0.155417i
\(665\) 0 0
\(666\) 0 0
\(667\) 17.6416 0.683084
\(668\) 0.730517 + 1.26529i 0.0282646 + 0.0489557i
\(669\) 0 0
\(670\) 26.0671 + 15.0499i 1.00706 + 0.581427i
\(671\) 14.7400 25.5304i 0.569030 0.985590i
\(672\) 0 0
\(673\) −12.9608 22.4487i −0.499601 0.865335i 0.500398 0.865795i \(-0.333187\pi\)
−1.00000 0.000460130i \(0.999854\pi\)
\(674\) 4.84575i 0.186651i
\(675\) 0 0
\(676\) −1.38047 −0.0530948
\(677\) 6.55382 + 11.3515i 0.251884 + 0.436275i 0.964044 0.265741i \(-0.0856166\pi\)
−0.712161 + 0.702016i \(0.752283\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −19.3525 11.1732i −0.742134 0.428471i
\(681\) 0 0
\(682\) 1.57861 0.911413i 0.0604483 0.0348998i
\(683\) 29.6654i 1.13511i −0.823334 0.567557i \(-0.807888\pi\)
0.823334 0.567557i \(-0.192112\pi\)
\(684\) 0 0
\(685\) 0.00233490i 8.92121e-5i
\(686\) 0 0
\(687\) 0 0
\(688\) −2.39949 + 4.15605i −0.0914799 + 0.158448i
\(689\) 14.9195 25.8413i 0.568387 0.984475i
\(690\) 0 0
\(691\) 40.9767 23.6579i 1.55883 0.899990i 0.561459 0.827504i \(-0.310240\pi\)
0.997369 0.0724857i \(-0.0230932\pi\)
\(692\) −3.07081 −0.116735
\(693\) 0 0
\(694\) 17.4712 0.663197
\(695\) −31.6065 + 18.2480i −1.19890 + 0.692187i
\(696\) 0 0
\(697\) −17.5992 + 30.4827i −0.666616 + 1.15461i
\(698\) −11.9129 + 20.6338i −0.450910 + 0.780999i
\(699\) 0 0
\(700\) 0 0
\(701\) 13.7742i 0.520244i −0.965576 0.260122i \(-0.916237\pi\)
0.965576 0.260122i \(-0.0837627\pi\)
\(702\) 0 0
\(703\) 7.43246i 0.280320i
\(704\) 1.73534 1.00190i 0.0654030 0.0377604i
\(705\) 0 0
\(706\) 8.69596 + 5.02061i 0.327277 + 0.188953i
\(707\) 0 0
\(708\) 0 0
\(709\) 21.9691 + 38.0517i 0.825069 + 1.42906i 0.901867 + 0.432014i \(0.142197\pi\)
−0.0767981 + 0.997047i \(0.524470\pi\)
\(710\) 1.68764 0.0633360
\(711\) 0 0
\(712\) 4.78647i 0.179381i
\(713\) −1.37726 2.38549i −0.0515789 0.0893373i
\(714\) 0 0
\(715\) −12.3607 + 21.4094i −0.462265 + 0.800667i
\(716\) −16.7310 9.65966i −0.625268 0.360998i
\(717\) 0 0
\(718\) 6.08254 + 10.5353i 0.226998 + 0.393173i
\(719\) −29.5860 −1.10337 −0.551687 0.834051i \(-0.686016\pi\)
−0.551687 + 0.834051i \(0.686016\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15.5657 + 8.98683i −0.579294 + 0.334455i
\(723\) 0 0
\(724\) −6.83569 3.94659i −0.254046 0.146674i
\(725\) 40.8666 + 23.5943i 1.51775 + 0.876271i
\(726\) 0 0
\(727\) 10.1244 5.84534i 0.375494 0.216792i −0.300362 0.953825i \(-0.597107\pi\)
0.675856 + 0.737034i \(0.263774\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 15.2551 0.564617
\(731\) 14.8149 + 25.6602i 0.547949 + 0.949076i
\(732\) 0 0
\(733\) 28.6423 + 16.5366i 1.05793 + 0.610795i 0.924858 0.380312i \(-0.124183\pi\)
0.133070 + 0.991107i \(0.457517\pi\)
\(734\) 1.81531 3.14420i 0.0670042 0.116055i
\(735\) 0 0
\(736\) −1.51400 2.62232i −0.0558067 0.0966600i
\(737\) 16.6644i 0.613841i
\(738\) 0 0
\(739\) 43.5056 1.60038 0.800190 0.599747i \(-0.204732\pi\)
0.800190 + 0.599747i \(0.204732\pi\)
\(740\) 13.2765 + 22.9957i 0.488056 + 0.845337i
\(741\) 0 0
\(742\) 0 0
\(743\) −18.0206 10.4042i −0.661112 0.381693i 0.131589 0.991304i \(-0.457992\pi\)
−0.792701 + 0.609611i \(0.791326\pi\)
\(744\) 0 0
\(745\) −35.2544 + 20.3542i −1.29162 + 0.745719i
\(746\) 5.49231i 0.201088i
\(747\) 0 0
\(748\) 12.3718i 0.452358i
\(749\) 0 0
\(750\) 0 0
\(751\) 19.9492 34.5531i 0.727957 1.26086i −0.229788 0.973241i \(-0.573803\pi\)
0.957745 0.287618i \(-0.0928634\pi\)
\(752\) −1.11511 + 1.93143i −0.0406638 + 0.0704318i
\(753\) 0 0
\(754\) 17.1992 9.92994i 0.626357 0.361627i
\(755\) 17.0969 0.622219
\(756\) 0 0
\(757\) 7.45545 0.270973 0.135486 0.990779i \(-0.456740\pi\)
0.135486 + 0.990779i \(0.456740\pi\)
\(758\) 13.5065 7.79800i 0.490579 0.283236i
\(759\) 0 0
\(760\) 1.83333 3.17542i 0.0665018 0.115185i
\(761\) 4.32462 7.49046i 0.156767 0.271529i −0.776934 0.629582i \(-0.783226\pi\)
0.933701 + 0.358053i \(0.116559\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 13.3042i 0.481330i
\(765\) 0 0
\(766\) 9.43067i 0.340744i
\(767\) 26.5280 15.3159i 0.957870 0.553026i
\(768\) 0 0
\(769\) 20.4818 + 11.8252i 0.738592 + 0.426426i 0.821557 0.570126i \(-0.193106\pi\)
−0.0829652 + 0.996552i \(0.526439\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.26786 + 5.66011i 0.117613 + 0.203712i
\(773\) 46.5699 1.67500 0.837501 0.546436i \(-0.184016\pi\)
0.837501 + 0.546436i \(0.184016\pi\)
\(774\) 0 0
\(775\) 7.36796i 0.264665i
\(776\) −5.87944 10.1835i −0.211060 0.365566i
\(777\) 0 0
\(778\) −3.21089 + 5.56142i −0.115116 + 0.199387i
\(779\) −5.00170 2.88773i −0.179204 0.103464i
\(780\) 0 0
\(781\) 0.467172 + 0.809166i 0.0167167 + 0.0289542i
\(782\) −18.6954 −0.668546
\(783\) 0 0
\(784\) 0 0
\(785\) 9.62178 5.55513i 0.343416 0.198271i
\(786\) 0 0
\(787\) −21.1657 12.2200i −0.754474 0.435596i 0.0728341 0.997344i \(-0.476796\pi\)
−0.827308 + 0.561748i \(0.810129\pi\)
\(788\) 3.84732 + 2.22125i 0.137055 + 0.0791288i
\(789\) 0 0
\(790\) 11.9902 6.92255i 0.426592 0.246293i
\(791\) 0 0
\(792\) 0 0
\(793\) −50.1496 −1.78087
\(794\) 3.46266 + 5.99750i 0.122885 + 0.212843i
\(795\) 0 0
\(796\) 9.96868 + 5.75542i 0.353330 + 0.203995i
\(797\) 24.9202 43.1631i 0.882719 1.52891i 0.0344128 0.999408i \(-0.489044\pi\)
0.848306 0.529506i \(-0.177623\pi\)
\(798\) 0 0
\(799\) 6.88489 + 11.9250i 0.243570 + 0.421875i
\(800\) 8.09945i 0.286359i
\(801\) 0 0
\(802\) 10.5869 0.373835
\(803\) 4.22291 + 7.31430i 0.149023 + 0.258116i
\(804\) 0 0
\(805\) 0 0
\(806\) −2.68545 1.55045i −0.0945910 0.0546121i
\(807\) 0 0
\(808\) −11.1650 + 6.44610i −0.392782 + 0.226773i
\(809\) 12.3247i 0.433315i 0.976248 + 0.216657i \(0.0695154\pi\)
−0.976248 + 0.216657i \(0.930485\pi\)
\(810\) 0 0
\(811\) 24.8017i 0.870906i 0.900212 + 0.435453i \(0.143412\pi\)
−0.900212 + 0.435453i \(0.856588\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −7.35042 + 12.7313i −0.257632 + 0.446232i
\(815\) 5.20047 9.00748i 0.182165 0.315518i
\(816\) 0 0
\(817\) −4.21041 + 2.43088i −0.147304 + 0.0850457i
\(818\) −8.92343 −0.312000
\(819\) 0 0
\(820\) −20.6333 −0.720547
\(821\) 31.3573 18.1041i 1.09438 0.631839i 0.159639 0.987175i \(-0.448967\pi\)
0.934738 + 0.355336i \(0.115634\pi\)
\(822\) 0 0
\(823\) 9.54093 16.5254i 0.332576 0.576038i −0.650440 0.759557i \(-0.725416\pi\)
0.983016 + 0.183519i \(0.0587489\pi\)
\(824\) 5.37940 9.31740i 0.187400 0.324587i
\(825\) 0 0
\(826\) 0 0
\(827\) 31.9013i 1.10932i −0.832079 0.554658i \(-0.812849\pi\)
0.832079 0.554658i \(-0.187151\pi\)
\(828\) 0 0
\(829\) 15.0856i 0.523943i 0.965076 + 0.261971i \(0.0843726\pi\)
−0.965076 + 0.261971i \(0.915627\pi\)
\(830\) −25.1055 + 14.4947i −0.871425 + 0.503118i
\(831\) 0 0
\(832\) −2.95206 1.70437i −0.102344 0.0590885i
\(833\) 0 0
\(834\) 0 0
\(835\) 2.64397 + 4.57950i 0.0914985 + 0.158480i
\(836\) 2.03000 0.0702092
\(837\) 0 0
\(838\) 34.3848i 1.18780i
\(839\) 8.19860 + 14.2004i 0.283047 + 0.490252i 0.972134 0.234427i \(-0.0753214\pi\)
−0.689087 + 0.724679i \(0.741988\pi\)
\(840\) 0 0
\(841\) 2.47206 4.28173i 0.0852434 0.147646i
\(842\) 30.8028 + 17.7840i 1.06153 + 0.612877i
\(843\) 0 0
\(844\) −11.3005 19.5731i −0.388980 0.673734i
\(845\) −4.99634 −0.171879
\(846\) 0 0
\(847\) 0 0
\(848\) −7.58088 + 4.37683i −0.260329 + 0.150301i
\(849\) 0 0
\(850\) −43.3077 25.0037i −1.48544 0.857621i
\(851\) 19.2386 + 11.1074i 0.659492 + 0.380758i
\(852\) 0 0
\(853\) 16.5936 9.58030i 0.568153 0.328023i −0.188258 0.982120i \(-0.560284\pi\)
0.756411 + 0.654096i \(0.226951\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.63967 0.0902219
\(857\) −8.05723 13.9555i −0.275230 0.476712i 0.694963 0.719045i \(-0.255421\pi\)
−0.970193 + 0.242333i \(0.922087\pi\)
\(858\) 0 0
\(859\) −10.4830 6.05238i −0.357677 0.206505i 0.310384 0.950611i \(-0.399542\pi\)
−0.668061 + 0.744106i \(0.732876\pi\)
\(860\) −8.68453 + 15.0420i −0.296140 + 0.512929i
\(861\) 0 0
\(862\) −15.4348 26.7338i −0.525710 0.910556i
\(863\) 37.2655i 1.26853i 0.773115 + 0.634265i \(0.218697\pi\)
−0.773115 + 0.634265i \(0.781303\pi\)
\(864\) 0 0
\(865\) −11.1142 −0.377896
\(866\) −11.6232 20.1319i −0.394971 0.684110i
\(867\) 0 0
\(868\) 0 0
\(869\) 6.63824 + 3.83259i 0.225187 + 0.130012i
\(870\) 0 0
\(871\) 24.5505 14.1743i 0.831863 0.480276i
\(872\) 9.03535i 0.305976i
\(873\) 0 0
\(874\) 3.06760i 0.103763i
\(875\) 0 0
\(876\) 0 0
\(877\) 4.85474 8.40866i 0.163933 0.283940i −0.772343 0.635206i \(-0.780915\pi\)
0.936276 + 0.351266i \(0.114249\pi\)
\(878\) −11.1364 + 19.2887i −0.375834 + 0.650963i
\(879\) 0 0
\(880\) 6.28073 3.62618i 0.211723 0.122239i
\(881\) 2.63241 0.0886881 0.0443440 0.999016i \(-0.485880\pi\)
0.0443440 + 0.999016i \(0.485880\pi\)
\(882\) 0 0
\(883\) −36.3181 −1.22220 −0.611101 0.791553i \(-0.709273\pi\)
−0.611101 + 0.791553i \(0.709273\pi\)
\(884\) −18.2265 + 10.5231i −0.613025 + 0.353930i
\(885\) 0 0
\(886\) −8.99259 + 15.5756i −0.302112 + 0.523273i
\(887\) 8.18209 14.1718i 0.274728 0.475842i −0.695339 0.718682i \(-0.744746\pi\)
0.970066 + 0.242840i \(0.0780790\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 17.3238i 0.580694i
\(891\) 0 0
\(892\) 18.8209i 0.630170i
\(893\) −1.95669 + 1.12969i −0.0654781 + 0.0378038i
\(894\) 0 0
\(895\) −60.5549 34.9614i −2.02413 1.16863i
\(896\) 0 0
\(897\) 0 0
\(898\) 4.72182 + 8.17843i 0.157569 + 0.272918i
\(899\) −5.29998 −0.176764
\(900\) 0 0
\(901\) 54.0466i 1.80055i
\(902\) −5.71171 9.89297i −0.190179 0.329400i
\(903\) 0 0
\(904\) −0.845306 + 1.46411i −0.0281145 + 0.0486957i
\(905\) −24.7405 14.2839i −0.822403 0.474814i
\(906\) 0 0
\(907\) −5.41666 9.38192i −0.179857 0.311522i 0.761974 0.647607i \(-0.224230\pi\)
−0.941831 + 0.336086i \(0.890897\pi\)
\(908\) 14.6133 0.484960
\(909\) 0 0
\(910\) 0 0
\(911\) −36.8512 + 21.2760i −1.22093 + 0.704907i −0.965117 0.261818i \(-0.915678\pi\)
−0.255817 + 0.966725i \(0.582345\pi\)
\(912\) 0 0
\(913\) −13.8994 8.02482i −0.460003 0.265583i
\(914\) −1.59739 0.922251i −0.0528368 0.0305053i
\(915\) 0 0
\(916\) −2.06044 + 1.18959i −0.0680788 + 0.0393053i
\(917\) 0 0
\(918\) 0 0
\(919\) 25.9393 0.855659 0.427829 0.903860i \(-0.359278\pi\)
0.427829 + 0.903860i \(0.359278\pi\)
\(920\) −5.47963 9.49100i −0.180658 0.312909i
\(921\) 0 0
\(922\) −31.5007 18.1869i −1.03742 0.598955i
\(923\) 0.794727 1.37651i 0.0261588 0.0453083i
\(924\) 0 0
\(925\) 29.7108 + 51.4606i 0.976884 + 1.69201i
\(926\) 31.9660i 1.05047i
\(927\) 0 0
\(928\) −5.82616 −0.191253
\(929\) 23.4456 + 40.6089i 0.769224 + 1.33234i 0.937984 + 0.346678i \(0.112690\pi\)
−0.168760 + 0.985657i \(0.553976\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 9.03470 + 5.21619i 0.295942 + 0.170862i
\(933\) 0 0
\(934\) −21.1666 + 12.2206i −0.692593 + 0.399869i
\(935\) 44.7774i 1.46438i
\(936\) 0 0
\(937\) 0.209357i 0.00683939i 0.999994 + 0.00341969i \(0.00108852\pi\)
−0.999994 + 0.00341969i \(0.998911\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4.03593 + 6.99044i −0.131638 + 0.228003i
\(941\) −0.388565 + 0.673014i −0.0126669 + 0.0219396i −0.872289 0.488990i \(-0.837365\pi\)
0.859622 + 0.510930i \(0.170699\pi\)
\(942\) 0 0
\(943\) −14.9496 + 8.63113i −0.486825 + 0.281068i
\(944\) −8.98627 −0.292478
\(945\) 0 0
\(946\) −9.61619 −0.312649
\(947\) 43.1233 24.8972i 1.40132 0.809052i 0.406791 0.913521i \(-0.366648\pi\)
0.994528 + 0.104470i \(0.0333145\pi\)
\(948\) 0 0
\(949\) 7.18378 12.4427i 0.233196 0.403906i
\(950\) 4.10269 7.10607i 0.133109 0.230552i
\(951\) 0 0
\(952\) 0 0
\(953\) 41.4104i 1.34141i −0.741722 0.670707i \(-0.765991\pi\)
0.741722 0.670707i \(-0.234009\pi\)
\(954\) 0 0
\(955\) 48.1522i 1.55817i
\(956\) −20.5971 + 11.8917i −0.666158 + 0.384607i
\(957\) 0 0
\(958\) 9.49220 + 5.48032i 0.306679 + 0.177061i
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0862 26.1301i −0.486653 0.842907i
\(962\) 25.0082 0.806298
\(963\) 0 0
\(964\) 28.6487i 0.922712i
\(965\) 11.8274 + 20.4857i 0.380739 + 0.659459i
\(966\) 0 0
\(967\) 22.8028 39.4956i 0.733289 1.27009i −0.222181 0.975005i \(-0.571318\pi\)
0.955470 0.295088i \(-0.0953491\pi\)
\(968\) −6.04902 3.49240i −0.194423 0.112250i
\(969\) 0 0
\(970\) −21.2796 36.8573i −0.683245 1.18342i
\(971\) −8.73466 −0.280309 −0.140154 0.990130i \(-0.544760\pi\)
−0.140154 + 0.990130i \(0.544760\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −29.1136 + 16.8087i −0.932860 + 0.538587i
\(975\) 0 0
\(976\) 12.7410 + 7.35603i 0.407830 + 0.235461i
\(977\) −12.9058 7.45114i −0.412892 0.238383i 0.279140 0.960250i \(-0.409951\pi\)
−0.692031 + 0.721867i \(0.743284\pi\)
\(978\) 0 0
\(979\) 8.30615 4.79556i 0.265466 0.153267i
\(980\) 0 0
\(981\) 0 0
\(982\) −22.7353 −0.725512
\(983\) 1.53458 + 2.65798i 0.0489456 + 0.0847763i 0.889460 0.457013i \(-0.151081\pi\)
−0.840515 + 0.541789i \(0.817747\pi\)
\(984\) 0 0
\(985\) 13.9247 + 8.03941i 0.443677 + 0.256157i
\(986\) −17.9859 + 31.1525i −0.572787 + 0.992096i
\(987\) 0 0
\(988\) −1.72667 2.99067i −0.0549325 0.0951460i
\(989\) 14.5313i 0.462069i
\(990\) 0 0
\(991\) −55.8150 −1.77302 −0.886510 0.462709i \(-0.846878\pi\)
−0.886510 + 0.462709i \(0.846878\pi\)
\(992\) 0.454844 + 0.787812i 0.0144413 + 0.0250131i
\(993\) 0 0
\(994\) 0 0
\(995\) 36.0798 + 20.8307i 1.14381 + 0.660377i
\(996\) 0 0
\(997\) −5.30607 + 3.06346i −0.168045 + 0.0970208i −0.581664 0.813429i \(-0.697598\pi\)
0.413619 + 0.910450i \(0.364265\pi\)
\(998\) 19.5235i 0.618006i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.m.b.881.4 16
3.2 odd 2 882.2.m.b.293.7 16
7.2 even 3 2646.2.t.b.2285.5 16
7.3 odd 6 2646.2.l.a.1097.1 16
7.4 even 3 378.2.l.a.341.4 16
7.5 odd 6 378.2.t.a.17.8 16
7.6 odd 2 2646.2.m.a.881.1 16
9.2 odd 6 2646.2.m.a.1763.1 16
9.7 even 3 882.2.m.a.587.6 16
21.2 odd 6 882.2.t.a.815.3 16
21.5 even 6 126.2.t.a.59.2 yes 16
21.11 odd 6 126.2.l.a.5.5 16
21.17 even 6 882.2.l.b.509.8 16
21.20 even 2 882.2.m.a.293.6 16
28.11 odd 6 3024.2.ca.c.2609.7 16
28.19 even 6 3024.2.df.c.17.7 16
63.2 odd 6 2646.2.l.a.521.5 16
63.4 even 3 1134.2.k.b.971.8 16
63.5 even 6 1134.2.k.b.647.8 16
63.11 odd 6 378.2.t.a.89.8 16
63.16 even 3 882.2.l.b.227.4 16
63.20 even 6 inner 2646.2.m.b.1763.4 16
63.25 even 3 126.2.t.a.47.2 yes 16
63.32 odd 6 1134.2.k.a.971.1 16
63.34 odd 6 882.2.m.b.587.7 16
63.38 even 6 2646.2.t.b.1979.5 16
63.40 odd 6 1134.2.k.a.647.1 16
63.47 even 6 378.2.l.a.143.8 16
63.52 odd 6 882.2.t.a.803.3 16
63.61 odd 6 126.2.l.a.101.1 yes 16
84.11 even 6 1008.2.ca.c.257.8 16
84.47 odd 6 1008.2.df.c.689.5 16
252.11 even 6 3024.2.df.c.1601.7 16
252.47 odd 6 3024.2.ca.c.2033.7 16
252.151 odd 6 1008.2.df.c.929.5 16
252.187 even 6 1008.2.ca.c.353.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.5 16 21.11 odd 6
126.2.l.a.101.1 yes 16 63.61 odd 6
126.2.t.a.47.2 yes 16 63.25 even 3
126.2.t.a.59.2 yes 16 21.5 even 6
378.2.l.a.143.8 16 63.47 even 6
378.2.l.a.341.4 16 7.4 even 3
378.2.t.a.17.8 16 7.5 odd 6
378.2.t.a.89.8 16 63.11 odd 6
882.2.l.b.227.4 16 63.16 even 3
882.2.l.b.509.8 16 21.17 even 6
882.2.m.a.293.6 16 21.20 even 2
882.2.m.a.587.6 16 9.7 even 3
882.2.m.b.293.7 16 3.2 odd 2
882.2.m.b.587.7 16 63.34 odd 6
882.2.t.a.803.3 16 63.52 odd 6
882.2.t.a.815.3 16 21.2 odd 6
1008.2.ca.c.257.8 16 84.11 even 6
1008.2.ca.c.353.8 16 252.187 even 6
1008.2.df.c.689.5 16 84.47 odd 6
1008.2.df.c.929.5 16 252.151 odd 6
1134.2.k.a.647.1 16 63.40 odd 6
1134.2.k.a.971.1 16 63.32 odd 6
1134.2.k.b.647.8 16 63.5 even 6
1134.2.k.b.971.8 16 63.4 even 3
2646.2.l.a.521.5 16 63.2 odd 6
2646.2.l.a.1097.1 16 7.3 odd 6
2646.2.m.a.881.1 16 7.6 odd 2
2646.2.m.a.1763.1 16 9.2 odd 6
2646.2.m.b.881.4 16 1.1 even 1 trivial
2646.2.m.b.1763.4 16 63.20 even 6 inner
2646.2.t.b.1979.5 16 63.38 even 6
2646.2.t.b.2285.5 16 7.2 even 3
3024.2.ca.c.2033.7 16 252.47 odd 6
3024.2.ca.c.2609.7 16 28.11 odd 6
3024.2.df.c.17.7 16 28.19 even 6
3024.2.df.c.1601.7 16 252.11 even 6