Properties

Label 1280.4.a.bd.1.6
Level $1280$
Weight $4$
Character 1280.1
Self dual yes
Analytic conductor $75.522$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,4,Mod(1,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5224448073\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 21x^{4} + 38x^{3} + 93x^{2} - 108x - 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.430422\) of defining polynomial
Character \(\chi\) \(=\) 1280.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.57890 q^{3} +5.00000 q^{5} +21.5703 q^{7} +64.7554 q^{9} +37.2871 q^{11} +24.1097 q^{13} +47.8945 q^{15} -14.4940 q^{17} +26.6887 q^{19} +206.620 q^{21} -8.36366 q^{23} +25.0000 q^{25} +361.655 q^{27} -104.553 q^{29} -204.288 q^{31} +357.170 q^{33} +107.851 q^{35} -130.923 q^{37} +230.945 q^{39} +437.963 q^{41} -308.764 q^{43} +323.777 q^{45} -97.1081 q^{47} +122.277 q^{49} -138.836 q^{51} -154.502 q^{53} +186.436 q^{55} +255.648 q^{57} -544.088 q^{59} -374.601 q^{61} +1396.79 q^{63} +120.549 q^{65} +19.3982 q^{67} -80.1147 q^{69} -955.725 q^{71} -127.417 q^{73} +239.473 q^{75} +804.293 q^{77} -973.871 q^{79} +1715.87 q^{81} -55.0210 q^{83} -72.4698 q^{85} -1001.50 q^{87} +919.812 q^{89} +520.054 q^{91} -1956.85 q^{93} +133.443 q^{95} +297.986 q^{97} +2414.54 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} + 30 q^{5} + 14 q^{7} + 54 q^{9} + 44 q^{11} + 30 q^{15} + 152 q^{19} + 4 q^{21} + 302 q^{23} + 150 q^{25} + 216 q^{27} + 132 q^{31} - 116 q^{33} + 70 q^{35} - 68 q^{37} + 300 q^{39} - 20 q^{41}+ \cdots + 5516 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.57890 1.84346 0.921730 0.387831i \(-0.126776\pi\)
0.921730 + 0.387831i \(0.126776\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 21.5703 1.16469 0.582343 0.812943i \(-0.302136\pi\)
0.582343 + 0.812943i \(0.302136\pi\)
\(8\) 0 0
\(9\) 64.7554 2.39835
\(10\) 0 0
\(11\) 37.2871 1.02204 0.511022 0.859568i \(-0.329267\pi\)
0.511022 + 0.859568i \(0.329267\pi\)
\(12\) 0 0
\(13\) 24.1097 0.514372 0.257186 0.966362i \(-0.417205\pi\)
0.257186 + 0.966362i \(0.417205\pi\)
\(14\) 0 0
\(15\) 47.8945 0.824421
\(16\) 0 0
\(17\) −14.4940 −0.206783 −0.103391 0.994641i \(-0.532969\pi\)
−0.103391 + 0.994641i \(0.532969\pi\)
\(18\) 0 0
\(19\) 26.6887 0.322253 0.161126 0.986934i \(-0.448487\pi\)
0.161126 + 0.986934i \(0.448487\pi\)
\(20\) 0 0
\(21\) 206.620 2.14705
\(22\) 0 0
\(23\) −8.36366 −0.0758236 −0.0379118 0.999281i \(-0.512071\pi\)
−0.0379118 + 0.999281i \(0.512071\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 361.655 2.57780
\(28\) 0 0
\(29\) −104.553 −0.669481 −0.334741 0.942310i \(-0.608649\pi\)
−0.334741 + 0.942310i \(0.608649\pi\)
\(30\) 0 0
\(31\) −204.288 −1.18359 −0.591793 0.806090i \(-0.701580\pi\)
−0.591793 + 0.806090i \(0.701580\pi\)
\(32\) 0 0
\(33\) 357.170 1.88410
\(34\) 0 0
\(35\) 107.851 0.520863
\(36\) 0 0
\(37\) −130.923 −0.581720 −0.290860 0.956766i \(-0.593941\pi\)
−0.290860 + 0.956766i \(0.593941\pi\)
\(38\) 0 0
\(39\) 230.945 0.948225
\(40\) 0 0
\(41\) 437.963 1.66825 0.834126 0.551574i \(-0.185973\pi\)
0.834126 + 0.551574i \(0.185973\pi\)
\(42\) 0 0
\(43\) −308.764 −1.09503 −0.547513 0.836797i \(-0.684425\pi\)
−0.547513 + 0.836797i \(0.684425\pi\)
\(44\) 0 0
\(45\) 323.777 1.07257
\(46\) 0 0
\(47\) −97.1081 −0.301376 −0.150688 0.988581i \(-0.548149\pi\)
−0.150688 + 0.988581i \(0.548149\pi\)
\(48\) 0 0
\(49\) 122.277 0.356492
\(50\) 0 0
\(51\) −138.836 −0.381196
\(52\) 0 0
\(53\) −154.502 −0.400425 −0.200212 0.979753i \(-0.564163\pi\)
−0.200212 + 0.979753i \(0.564163\pi\)
\(54\) 0 0
\(55\) 186.436 0.457072
\(56\) 0 0
\(57\) 255.648 0.594060
\(58\) 0 0
\(59\) −544.088 −1.20058 −0.600290 0.799782i \(-0.704948\pi\)
−0.600290 + 0.799782i \(0.704948\pi\)
\(60\) 0 0
\(61\) −374.601 −0.786275 −0.393137 0.919480i \(-0.628610\pi\)
−0.393137 + 0.919480i \(0.628610\pi\)
\(62\) 0 0
\(63\) 1396.79 2.79332
\(64\) 0 0
\(65\) 120.549 0.230034
\(66\) 0 0
\(67\) 19.3982 0.0353711 0.0176855 0.999844i \(-0.494370\pi\)
0.0176855 + 0.999844i \(0.494370\pi\)
\(68\) 0 0
\(69\) −80.1147 −0.139778
\(70\) 0 0
\(71\) −955.725 −1.59752 −0.798759 0.601651i \(-0.794510\pi\)
−0.798759 + 0.601651i \(0.794510\pi\)
\(72\) 0 0
\(73\) −127.417 −0.204287 −0.102144 0.994770i \(-0.532570\pi\)
−0.102144 + 0.994770i \(0.532570\pi\)
\(74\) 0 0
\(75\) 239.473 0.368692
\(76\) 0 0
\(77\) 804.293 1.19036
\(78\) 0 0
\(79\) −973.871 −1.38695 −0.693475 0.720481i \(-0.743921\pi\)
−0.693475 + 0.720481i \(0.743921\pi\)
\(80\) 0 0
\(81\) 1715.87 2.35373
\(82\) 0 0
\(83\) −55.0210 −0.0727631 −0.0363816 0.999338i \(-0.511583\pi\)
−0.0363816 + 0.999338i \(0.511583\pi\)
\(84\) 0 0
\(85\) −72.4698 −0.0924760
\(86\) 0 0
\(87\) −1001.50 −1.23416
\(88\) 0 0
\(89\) 919.812 1.09550 0.547752 0.836641i \(-0.315484\pi\)
0.547752 + 0.836641i \(0.315484\pi\)
\(90\) 0 0
\(91\) 520.054 0.599082
\(92\) 0 0
\(93\) −1956.85 −2.18189
\(94\) 0 0
\(95\) 133.443 0.144116
\(96\) 0 0
\(97\) 297.986 0.311916 0.155958 0.987764i \(-0.450154\pi\)
0.155958 + 0.987764i \(0.450154\pi\)
\(98\) 0 0
\(99\) 2414.54 2.45122
\(100\) 0 0
\(101\) −1793.53 −1.76696 −0.883480 0.468469i \(-0.844806\pi\)
−0.883480 + 0.468469i \(0.844806\pi\)
\(102\) 0 0
\(103\) 2084.11 1.99372 0.996862 0.0791611i \(-0.0252241\pi\)
0.996862 + 0.0791611i \(0.0252241\pi\)
\(104\) 0 0
\(105\) 1033.10 0.960191
\(106\) 0 0
\(107\) 67.2542 0.0607637 0.0303818 0.999538i \(-0.490328\pi\)
0.0303818 + 0.999538i \(0.490328\pi\)
\(108\) 0 0
\(109\) 1459.15 1.28222 0.641108 0.767451i \(-0.278475\pi\)
0.641108 + 0.767451i \(0.278475\pi\)
\(110\) 0 0
\(111\) −1254.10 −1.07238
\(112\) 0 0
\(113\) 458.263 0.381502 0.190751 0.981638i \(-0.438908\pi\)
0.190751 + 0.981638i \(0.438908\pi\)
\(114\) 0 0
\(115\) −41.8183 −0.0339093
\(116\) 0 0
\(117\) 1561.24 1.23364
\(118\) 0 0
\(119\) −312.639 −0.240837
\(120\) 0 0
\(121\) 59.3283 0.0445743
\(122\) 0 0
\(123\) 4195.21 3.07536
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −208.685 −0.145809 −0.0729047 0.997339i \(-0.523227\pi\)
−0.0729047 + 0.997339i \(0.523227\pi\)
\(128\) 0 0
\(129\) −2957.62 −2.01864
\(130\) 0 0
\(131\) 1784.69 1.19030 0.595148 0.803616i \(-0.297094\pi\)
0.595148 + 0.803616i \(0.297094\pi\)
\(132\) 0 0
\(133\) 575.682 0.375323
\(134\) 0 0
\(135\) 1808.28 1.15283
\(136\) 0 0
\(137\) −2380.60 −1.48459 −0.742293 0.670075i \(-0.766262\pi\)
−0.742293 + 0.670075i \(0.766262\pi\)
\(138\) 0 0
\(139\) 2858.52 1.74429 0.872146 0.489245i \(-0.162728\pi\)
0.872146 + 0.489245i \(0.162728\pi\)
\(140\) 0 0
\(141\) −930.189 −0.555575
\(142\) 0 0
\(143\) 898.983 0.525711
\(144\) 0 0
\(145\) −522.764 −0.299401
\(146\) 0 0
\(147\) 1171.28 0.657179
\(148\) 0 0
\(149\) 897.894 0.493680 0.246840 0.969056i \(-0.420608\pi\)
0.246840 + 0.969056i \(0.420608\pi\)
\(150\) 0 0
\(151\) −3431.32 −1.84925 −0.924625 0.380878i \(-0.875622\pi\)
−0.924625 + 0.380878i \(0.875622\pi\)
\(152\) 0 0
\(153\) −938.563 −0.495937
\(154\) 0 0
\(155\) −1021.44 −0.529316
\(156\) 0 0
\(157\) −571.369 −0.290447 −0.145224 0.989399i \(-0.546390\pi\)
−0.145224 + 0.989399i \(0.546390\pi\)
\(158\) 0 0
\(159\) −1479.96 −0.738167
\(160\) 0 0
\(161\) −180.406 −0.0883106
\(162\) 0 0
\(163\) −236.962 −0.113867 −0.0569333 0.998378i \(-0.518132\pi\)
−0.0569333 + 0.998378i \(0.518132\pi\)
\(164\) 0 0
\(165\) 1785.85 0.842594
\(166\) 0 0
\(167\) 1448.46 0.671169 0.335585 0.942010i \(-0.391066\pi\)
0.335585 + 0.942010i \(0.391066\pi\)
\(168\) 0 0
\(169\) −1615.72 −0.735421
\(170\) 0 0
\(171\) 1728.24 0.772874
\(172\) 0 0
\(173\) −2529.74 −1.11175 −0.555875 0.831266i \(-0.687617\pi\)
−0.555875 + 0.831266i \(0.687617\pi\)
\(174\) 0 0
\(175\) 539.257 0.232937
\(176\) 0 0
\(177\) −5211.77 −2.21322
\(178\) 0 0
\(179\) −141.524 −0.0590949 −0.0295475 0.999563i \(-0.509407\pi\)
−0.0295475 + 0.999563i \(0.509407\pi\)
\(180\) 0 0
\(181\) 3457.79 1.41997 0.709987 0.704215i \(-0.248701\pi\)
0.709987 + 0.704215i \(0.248701\pi\)
\(182\) 0 0
\(183\) −3588.27 −1.44947
\(184\) 0 0
\(185\) −654.616 −0.260153
\(186\) 0 0
\(187\) −540.438 −0.211341
\(188\) 0 0
\(189\) 7801.01 3.00233
\(190\) 0 0
\(191\) 1416.99 0.536804 0.268402 0.963307i \(-0.413504\pi\)
0.268402 + 0.963307i \(0.413504\pi\)
\(192\) 0 0
\(193\) −2681.12 −0.999955 −0.499978 0.866038i \(-0.666658\pi\)
−0.499978 + 0.866038i \(0.666658\pi\)
\(194\) 0 0
\(195\) 1154.72 0.424059
\(196\) 0 0
\(197\) −2697.74 −0.975664 −0.487832 0.872938i \(-0.662212\pi\)
−0.487832 + 0.872938i \(0.662212\pi\)
\(198\) 0 0
\(199\) 3543.25 1.26218 0.631091 0.775709i \(-0.282607\pi\)
0.631091 + 0.775709i \(0.282607\pi\)
\(200\) 0 0
\(201\) 185.813 0.0652052
\(202\) 0 0
\(203\) −2255.23 −0.779735
\(204\) 0 0
\(205\) 2189.81 0.746065
\(206\) 0 0
\(207\) −541.592 −0.181851
\(208\) 0 0
\(209\) 995.143 0.329356
\(210\) 0 0
\(211\) −152.205 −0.0496598 −0.0248299 0.999692i \(-0.507904\pi\)
−0.0248299 + 0.999692i \(0.507904\pi\)
\(212\) 0 0
\(213\) −9154.80 −2.94496
\(214\) 0 0
\(215\) −1543.82 −0.489710
\(216\) 0 0
\(217\) −4406.54 −1.37851
\(218\) 0 0
\(219\) −1220.51 −0.376596
\(220\) 0 0
\(221\) −349.446 −0.106363
\(222\) 0 0
\(223\) 2065.40 0.620222 0.310111 0.950700i \(-0.399634\pi\)
0.310111 + 0.950700i \(0.399634\pi\)
\(224\) 0 0
\(225\) 1618.89 0.479670
\(226\) 0 0
\(227\) 2940.45 0.859757 0.429878 0.902887i \(-0.358556\pi\)
0.429878 + 0.902887i \(0.358556\pi\)
\(228\) 0 0
\(229\) 4949.77 1.42834 0.714171 0.699971i \(-0.246804\pi\)
0.714171 + 0.699971i \(0.246804\pi\)
\(230\) 0 0
\(231\) 7704.25 2.19438
\(232\) 0 0
\(233\) −5193.31 −1.46019 −0.730096 0.683344i \(-0.760525\pi\)
−0.730096 + 0.683344i \(0.760525\pi\)
\(234\) 0 0
\(235\) −485.540 −0.134779
\(236\) 0 0
\(237\) −9328.62 −2.55679
\(238\) 0 0
\(239\) 2066.30 0.559238 0.279619 0.960111i \(-0.409792\pi\)
0.279619 + 0.960111i \(0.409792\pi\)
\(240\) 0 0
\(241\) −2309.08 −0.617181 −0.308591 0.951195i \(-0.599857\pi\)
−0.308591 + 0.951195i \(0.599857\pi\)
\(242\) 0 0
\(243\) 6671.42 1.76120
\(244\) 0 0
\(245\) 611.384 0.159428
\(246\) 0 0
\(247\) 643.457 0.165758
\(248\) 0 0
\(249\) −527.041 −0.134136
\(250\) 0 0
\(251\) 3802.60 0.956246 0.478123 0.878293i \(-0.341317\pi\)
0.478123 + 0.878293i \(0.341317\pi\)
\(252\) 0 0
\(253\) −311.857 −0.0774951
\(254\) 0 0
\(255\) −694.182 −0.170476
\(256\) 0 0
\(257\) 6168.56 1.49721 0.748607 0.663013i \(-0.230723\pi\)
0.748607 + 0.663013i \(0.230723\pi\)
\(258\) 0 0
\(259\) −2824.05 −0.677521
\(260\) 0 0
\(261\) −6770.36 −1.60565
\(262\) 0 0
\(263\) −1636.11 −0.383599 −0.191800 0.981434i \(-0.561432\pi\)
−0.191800 + 0.981434i \(0.561432\pi\)
\(264\) 0 0
\(265\) −772.511 −0.179075
\(266\) 0 0
\(267\) 8810.79 2.01952
\(268\) 0 0
\(269\) 2262.24 0.512756 0.256378 0.966577i \(-0.417471\pi\)
0.256378 + 0.966577i \(0.417471\pi\)
\(270\) 0 0
\(271\) −41.6380 −0.00933332 −0.00466666 0.999989i \(-0.501485\pi\)
−0.00466666 + 0.999989i \(0.501485\pi\)
\(272\) 0 0
\(273\) 4981.55 1.10438
\(274\) 0 0
\(275\) 932.178 0.204409
\(276\) 0 0
\(277\) −2139.00 −0.463971 −0.231986 0.972719i \(-0.574522\pi\)
−0.231986 + 0.972719i \(0.574522\pi\)
\(278\) 0 0
\(279\) −13228.7 −2.83865
\(280\) 0 0
\(281\) 1493.53 0.317069 0.158534 0.987353i \(-0.449323\pi\)
0.158534 + 0.987353i \(0.449323\pi\)
\(282\) 0 0
\(283\) 1090.20 0.228995 0.114498 0.993424i \(-0.463474\pi\)
0.114498 + 0.993424i \(0.463474\pi\)
\(284\) 0 0
\(285\) 1278.24 0.265672
\(286\) 0 0
\(287\) 9446.98 1.94299
\(288\) 0 0
\(289\) −4702.92 −0.957241
\(290\) 0 0
\(291\) 2854.38 0.575005
\(292\) 0 0
\(293\) −4067.51 −0.811011 −0.405506 0.914093i \(-0.632905\pi\)
−0.405506 + 0.914093i \(0.632905\pi\)
\(294\) 0 0
\(295\) −2720.44 −0.536916
\(296\) 0 0
\(297\) 13485.1 2.63463
\(298\) 0 0
\(299\) −201.646 −0.0390016
\(300\) 0 0
\(301\) −6660.13 −1.27536
\(302\) 0 0
\(303\) −17180.1 −3.25732
\(304\) 0 0
\(305\) −1873.01 −0.351633
\(306\) 0 0
\(307\) 6736.05 1.25227 0.626135 0.779715i \(-0.284636\pi\)
0.626135 + 0.779715i \(0.284636\pi\)
\(308\) 0 0
\(309\) 19963.5 3.67535
\(310\) 0 0
\(311\) 3274.35 0.597014 0.298507 0.954407i \(-0.403511\pi\)
0.298507 + 0.954407i \(0.403511\pi\)
\(312\) 0 0
\(313\) 9357.60 1.68985 0.844925 0.534885i \(-0.179645\pi\)
0.844925 + 0.534885i \(0.179645\pi\)
\(314\) 0 0
\(315\) 6983.96 1.24921
\(316\) 0 0
\(317\) 9064.68 1.60607 0.803033 0.595934i \(-0.203218\pi\)
0.803033 + 0.595934i \(0.203218\pi\)
\(318\) 0 0
\(319\) −3898.47 −0.684239
\(320\) 0 0
\(321\) 644.222 0.112015
\(322\) 0 0
\(323\) −386.825 −0.0666362
\(324\) 0 0
\(325\) 602.744 0.102874
\(326\) 0 0
\(327\) 13977.1 2.36371
\(328\) 0 0
\(329\) −2094.65 −0.351008
\(330\) 0 0
\(331\) −280.089 −0.0465108 −0.0232554 0.999730i \(-0.507403\pi\)
−0.0232554 + 0.999730i \(0.507403\pi\)
\(332\) 0 0
\(333\) −8477.98 −1.39517
\(334\) 0 0
\(335\) 96.9908 0.0158184
\(336\) 0 0
\(337\) −5748.75 −0.929242 −0.464621 0.885510i \(-0.653809\pi\)
−0.464621 + 0.885510i \(0.653809\pi\)
\(338\) 0 0
\(339\) 4389.65 0.703284
\(340\) 0 0
\(341\) −7617.30 −1.20968
\(342\) 0 0
\(343\) −4761.06 −0.749484
\(344\) 0 0
\(345\) −400.573 −0.0625106
\(346\) 0 0
\(347\) −2911.52 −0.450428 −0.225214 0.974309i \(-0.572308\pi\)
−0.225214 + 0.974309i \(0.572308\pi\)
\(348\) 0 0
\(349\) 5665.17 0.868910 0.434455 0.900693i \(-0.356941\pi\)
0.434455 + 0.900693i \(0.356941\pi\)
\(350\) 0 0
\(351\) 8719.42 1.32595
\(352\) 0 0
\(353\) −9428.18 −1.42156 −0.710781 0.703414i \(-0.751658\pi\)
−0.710781 + 0.703414i \(0.751658\pi\)
\(354\) 0 0
\(355\) −4778.63 −0.714432
\(356\) 0 0
\(357\) −2994.74 −0.443973
\(358\) 0 0
\(359\) 4573.16 0.672318 0.336159 0.941805i \(-0.390872\pi\)
0.336159 + 0.941805i \(0.390872\pi\)
\(360\) 0 0
\(361\) −6146.71 −0.896153
\(362\) 0 0
\(363\) 568.300 0.0821709
\(364\) 0 0
\(365\) −637.083 −0.0913601
\(366\) 0 0
\(367\) 2717.97 0.386585 0.193293 0.981141i \(-0.438083\pi\)
0.193293 + 0.981141i \(0.438083\pi\)
\(368\) 0 0
\(369\) 28360.5 4.00105
\(370\) 0 0
\(371\) −3332.65 −0.466369
\(372\) 0 0
\(373\) 5627.51 0.781183 0.390592 0.920564i \(-0.372270\pi\)
0.390592 + 0.920564i \(0.372270\pi\)
\(374\) 0 0
\(375\) 1197.36 0.164884
\(376\) 0 0
\(377\) −2520.74 −0.344363
\(378\) 0 0
\(379\) 8066.74 1.09330 0.546650 0.837361i \(-0.315903\pi\)
0.546650 + 0.837361i \(0.315903\pi\)
\(380\) 0 0
\(381\) −1998.97 −0.268794
\(382\) 0 0
\(383\) −10607.8 −1.41523 −0.707613 0.706600i \(-0.750228\pi\)
−0.707613 + 0.706600i \(0.750228\pi\)
\(384\) 0 0
\(385\) 4021.47 0.532345
\(386\) 0 0
\(387\) −19994.1 −2.62625
\(388\) 0 0
\(389\) 8992.58 1.17209 0.586044 0.810280i \(-0.300685\pi\)
0.586044 + 0.810280i \(0.300685\pi\)
\(390\) 0 0
\(391\) 121.223 0.0156790
\(392\) 0 0
\(393\) 17095.3 2.19426
\(394\) 0 0
\(395\) −4869.36 −0.620263
\(396\) 0 0
\(397\) 8977.17 1.13489 0.567445 0.823411i \(-0.307932\pi\)
0.567445 + 0.823411i \(0.307932\pi\)
\(398\) 0 0
\(399\) 5514.40 0.691893
\(400\) 0 0
\(401\) −3165.72 −0.394236 −0.197118 0.980380i \(-0.563158\pi\)
−0.197118 + 0.980380i \(0.563158\pi\)
\(402\) 0 0
\(403\) −4925.33 −0.608804
\(404\) 0 0
\(405\) 8579.33 1.05262
\(406\) 0 0
\(407\) −4881.75 −0.594543
\(408\) 0 0
\(409\) 5417.61 0.654972 0.327486 0.944856i \(-0.393798\pi\)
0.327486 + 0.944856i \(0.393798\pi\)
\(410\) 0 0
\(411\) −22803.5 −2.73678
\(412\) 0 0
\(413\) −11736.1 −1.39830
\(414\) 0 0
\(415\) −275.105 −0.0325407
\(416\) 0 0
\(417\) 27381.5 3.21554
\(418\) 0 0
\(419\) −6198.14 −0.722670 −0.361335 0.932436i \(-0.617679\pi\)
−0.361335 + 0.932436i \(0.617679\pi\)
\(420\) 0 0
\(421\) −4344.57 −0.502949 −0.251474 0.967864i \(-0.580915\pi\)
−0.251474 + 0.967864i \(0.580915\pi\)
\(422\) 0 0
\(423\) −6288.27 −0.722804
\(424\) 0 0
\(425\) −362.349 −0.0413565
\(426\) 0 0
\(427\) −8080.25 −0.915763
\(428\) 0 0
\(429\) 8611.27 0.969128
\(430\) 0 0
\(431\) −4750.74 −0.530940 −0.265470 0.964119i \(-0.585527\pi\)
−0.265470 + 0.964119i \(0.585527\pi\)
\(432\) 0 0
\(433\) 4210.26 0.467280 0.233640 0.972323i \(-0.424936\pi\)
0.233640 + 0.972323i \(0.424936\pi\)
\(434\) 0 0
\(435\) −5007.50 −0.551934
\(436\) 0 0
\(437\) −223.215 −0.0244344
\(438\) 0 0
\(439\) −5776.50 −0.628012 −0.314006 0.949421i \(-0.601671\pi\)
−0.314006 + 0.949421i \(0.601671\pi\)
\(440\) 0 0
\(441\) 7918.08 0.854992
\(442\) 0 0
\(443\) −11981.6 −1.28502 −0.642510 0.766278i \(-0.722107\pi\)
−0.642510 + 0.766278i \(0.722107\pi\)
\(444\) 0 0
\(445\) 4599.06 0.489924
\(446\) 0 0
\(447\) 8600.84 0.910080
\(448\) 0 0
\(449\) −5567.58 −0.585190 −0.292595 0.956236i \(-0.594519\pi\)
−0.292595 + 0.956236i \(0.594519\pi\)
\(450\) 0 0
\(451\) 16330.4 1.70503
\(452\) 0 0
\(453\) −32868.3 −3.40902
\(454\) 0 0
\(455\) 2600.27 0.267918
\(456\) 0 0
\(457\) 7283.56 0.745538 0.372769 0.927924i \(-0.378408\pi\)
0.372769 + 0.927924i \(0.378408\pi\)
\(458\) 0 0
\(459\) −5241.82 −0.533044
\(460\) 0 0
\(461\) 11901.1 1.20236 0.601181 0.799113i \(-0.294697\pi\)
0.601181 + 0.799113i \(0.294697\pi\)
\(462\) 0 0
\(463\) −4915.73 −0.493419 −0.246710 0.969089i \(-0.579349\pi\)
−0.246710 + 0.969089i \(0.579349\pi\)
\(464\) 0 0
\(465\) −9784.27 −0.975773
\(466\) 0 0
\(467\) −3110.15 −0.308181 −0.154091 0.988057i \(-0.549245\pi\)
−0.154091 + 0.988057i \(0.549245\pi\)
\(468\) 0 0
\(469\) 418.424 0.0411962
\(470\) 0 0
\(471\) −5473.09 −0.535428
\(472\) 0 0
\(473\) −11512.9 −1.11916
\(474\) 0 0
\(475\) 667.217 0.0644505
\(476\) 0 0
\(477\) −10004.8 −0.960358
\(478\) 0 0
\(479\) −6590.43 −0.628652 −0.314326 0.949315i \(-0.601779\pi\)
−0.314326 + 0.949315i \(0.601779\pi\)
\(480\) 0 0
\(481\) −3156.52 −0.299221
\(482\) 0 0
\(483\) −1728.10 −0.162797
\(484\) 0 0
\(485\) 1489.93 0.139493
\(486\) 0 0
\(487\) 3139.99 0.292169 0.146085 0.989272i \(-0.453333\pi\)
0.146085 + 0.989272i \(0.453333\pi\)
\(488\) 0 0
\(489\) −2269.83 −0.209909
\(490\) 0 0
\(491\) 12057.6 1.10825 0.554126 0.832433i \(-0.313053\pi\)
0.554126 + 0.832433i \(0.313053\pi\)
\(492\) 0 0
\(493\) 1515.38 0.138437
\(494\) 0 0
\(495\) 12072.7 1.09622
\(496\) 0 0
\(497\) −20615.3 −1.86061
\(498\) 0 0
\(499\) 8458.64 0.758839 0.379420 0.925225i \(-0.376124\pi\)
0.379420 + 0.925225i \(0.376124\pi\)
\(500\) 0 0
\(501\) 13874.7 1.23727
\(502\) 0 0
\(503\) 16896.2 1.49774 0.748869 0.662718i \(-0.230597\pi\)
0.748869 + 0.662718i \(0.230597\pi\)
\(504\) 0 0
\(505\) −8967.65 −0.790208
\(506\) 0 0
\(507\) −15476.8 −1.35572
\(508\) 0 0
\(509\) −6849.13 −0.596429 −0.298214 0.954499i \(-0.596391\pi\)
−0.298214 + 0.954499i \(0.596391\pi\)
\(510\) 0 0
\(511\) −2748.41 −0.237931
\(512\) 0 0
\(513\) 9652.10 0.830703
\(514\) 0 0
\(515\) 10420.6 0.891620
\(516\) 0 0
\(517\) −3620.88 −0.308019
\(518\) 0 0
\(519\) −24232.1 −2.04947
\(520\) 0 0
\(521\) −11044.1 −0.928696 −0.464348 0.885653i \(-0.653711\pi\)
−0.464348 + 0.885653i \(0.653711\pi\)
\(522\) 0 0
\(523\) −3115.75 −0.260502 −0.130251 0.991481i \(-0.541578\pi\)
−0.130251 + 0.991481i \(0.541578\pi\)
\(524\) 0 0
\(525\) 5165.49 0.429410
\(526\) 0 0
\(527\) 2960.94 0.244745
\(528\) 0 0
\(529\) −12097.0 −0.994251
\(530\) 0 0
\(531\) −35232.6 −2.87941
\(532\) 0 0
\(533\) 10559.2 0.858103
\(534\) 0 0
\(535\) 336.271 0.0271743
\(536\) 0 0
\(537\) −1355.64 −0.108939
\(538\) 0 0
\(539\) 4559.35 0.364350
\(540\) 0 0
\(541\) −14840.6 −1.17938 −0.589691 0.807629i \(-0.700751\pi\)
−0.589691 + 0.807629i \(0.700751\pi\)
\(542\) 0 0
\(543\) 33121.8 2.61767
\(544\) 0 0
\(545\) 7295.76 0.573424
\(546\) 0 0
\(547\) 12622.8 0.986679 0.493340 0.869837i \(-0.335776\pi\)
0.493340 + 0.869837i \(0.335776\pi\)
\(548\) 0 0
\(549\) −24257.5 −1.88576
\(550\) 0 0
\(551\) −2790.37 −0.215742
\(552\) 0 0
\(553\) −21006.7 −1.61536
\(554\) 0 0
\(555\) −6270.50 −0.479582
\(556\) 0 0
\(557\) −13382.1 −1.01798 −0.508992 0.860771i \(-0.669982\pi\)
−0.508992 + 0.860771i \(0.669982\pi\)
\(558\) 0 0
\(559\) −7444.23 −0.563251
\(560\) 0 0
\(561\) −5176.80 −0.389599
\(562\) 0 0
\(563\) −153.895 −0.0115203 −0.00576014 0.999983i \(-0.501834\pi\)
−0.00576014 + 0.999983i \(0.501834\pi\)
\(564\) 0 0
\(565\) 2291.31 0.170613
\(566\) 0 0
\(567\) 37011.7 2.74135
\(568\) 0 0
\(569\) 5395.71 0.397539 0.198770 0.980046i \(-0.436305\pi\)
0.198770 + 0.980046i \(0.436305\pi\)
\(570\) 0 0
\(571\) 22390.5 1.64100 0.820500 0.571646i \(-0.193695\pi\)
0.820500 + 0.571646i \(0.193695\pi\)
\(572\) 0 0
\(573\) 13573.2 0.989578
\(574\) 0 0
\(575\) −209.091 −0.0151647
\(576\) 0 0
\(577\) −1935.38 −0.139638 −0.0698188 0.997560i \(-0.522242\pi\)
−0.0698188 + 0.997560i \(0.522242\pi\)
\(578\) 0 0
\(579\) −25682.2 −1.84338
\(580\) 0 0
\(581\) −1186.82 −0.0847461
\(582\) 0 0
\(583\) −5760.94 −0.409252
\(584\) 0 0
\(585\) 7806.18 0.551702
\(586\) 0 0
\(587\) 7905.44 0.555865 0.277932 0.960601i \(-0.410351\pi\)
0.277932 + 0.960601i \(0.410351\pi\)
\(588\) 0 0
\(589\) −5452.17 −0.381414
\(590\) 0 0
\(591\) −25841.4 −1.79860
\(592\) 0 0
\(593\) −11141.6 −0.771552 −0.385776 0.922592i \(-0.626066\pi\)
−0.385776 + 0.922592i \(0.626066\pi\)
\(594\) 0 0
\(595\) −1563.19 −0.107705
\(596\) 0 0
\(597\) 33940.4 2.32678
\(598\) 0 0
\(599\) 278.847 0.0190207 0.00951033 0.999955i \(-0.496973\pi\)
0.00951033 + 0.999955i \(0.496973\pi\)
\(600\) 0 0
\(601\) −18890.7 −1.28214 −0.641071 0.767482i \(-0.721510\pi\)
−0.641071 + 0.767482i \(0.721510\pi\)
\(602\) 0 0
\(603\) 1256.14 0.0848321
\(604\) 0 0
\(605\) 296.642 0.0199342
\(606\) 0 0
\(607\) −5398.05 −0.360956 −0.180478 0.983579i \(-0.557764\pi\)
−0.180478 + 0.983579i \(0.557764\pi\)
\(608\) 0 0
\(609\) −21602.6 −1.43741
\(610\) 0 0
\(611\) −2341.25 −0.155019
\(612\) 0 0
\(613\) −14412.8 −0.949635 −0.474817 0.880084i \(-0.657486\pi\)
−0.474817 + 0.880084i \(0.657486\pi\)
\(614\) 0 0
\(615\) 20976.0 1.37534
\(616\) 0 0
\(617\) −13226.3 −0.863001 −0.431500 0.902113i \(-0.642016\pi\)
−0.431500 + 0.902113i \(0.642016\pi\)
\(618\) 0 0
\(619\) −14179.4 −0.920705 −0.460352 0.887736i \(-0.652277\pi\)
−0.460352 + 0.887736i \(0.652277\pi\)
\(620\) 0 0
\(621\) −3024.76 −0.195458
\(622\) 0 0
\(623\) 19840.6 1.27592
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 9532.38 0.607156
\(628\) 0 0
\(629\) 1897.60 0.120290
\(630\) 0 0
\(631\) 1533.79 0.0967657 0.0483828 0.998829i \(-0.484593\pi\)
0.0483828 + 0.998829i \(0.484593\pi\)
\(632\) 0 0
\(633\) −1457.96 −0.0915459
\(634\) 0 0
\(635\) −1043.42 −0.0652079
\(636\) 0 0
\(637\) 2948.06 0.183370
\(638\) 0 0
\(639\) −61888.4 −3.83140
\(640\) 0 0
\(641\) −26682.6 −1.64415 −0.822074 0.569381i \(-0.807183\pi\)
−0.822074 + 0.569381i \(0.807183\pi\)
\(642\) 0 0
\(643\) −16498.3 −1.01186 −0.505931 0.862574i \(-0.668851\pi\)
−0.505931 + 0.862574i \(0.668851\pi\)
\(644\) 0 0
\(645\) −14788.1 −0.902762
\(646\) 0 0
\(647\) −20127.5 −1.22302 −0.611510 0.791236i \(-0.709438\pi\)
−0.611510 + 0.791236i \(0.709438\pi\)
\(648\) 0 0
\(649\) −20287.5 −1.22705
\(650\) 0 0
\(651\) −42209.9 −2.54122
\(652\) 0 0
\(653\) −21447.4 −1.28530 −0.642650 0.766160i \(-0.722165\pi\)
−0.642650 + 0.766160i \(0.722165\pi\)
\(654\) 0 0
\(655\) 8923.43 0.532316
\(656\) 0 0
\(657\) −8250.91 −0.489953
\(658\) 0 0
\(659\) −19402.5 −1.14691 −0.573455 0.819237i \(-0.694397\pi\)
−0.573455 + 0.819237i \(0.694397\pi\)
\(660\) 0 0
\(661\) −9326.38 −0.548796 −0.274398 0.961616i \(-0.588479\pi\)
−0.274398 + 0.961616i \(0.588479\pi\)
\(662\) 0 0
\(663\) −3347.31 −0.196076
\(664\) 0 0
\(665\) 2878.41 0.167850
\(666\) 0 0
\(667\) 874.443 0.0507625
\(668\) 0 0
\(669\) 19784.3 1.14336
\(670\) 0 0
\(671\) −13967.8 −0.803608
\(672\) 0 0
\(673\) −15027.4 −0.860718 −0.430359 0.902658i \(-0.641613\pi\)
−0.430359 + 0.902658i \(0.641613\pi\)
\(674\) 0 0
\(675\) 9041.38 0.515560
\(676\) 0 0
\(677\) 9717.31 0.551649 0.275825 0.961208i \(-0.411049\pi\)
0.275825 + 0.961208i \(0.411049\pi\)
\(678\) 0 0
\(679\) 6427.63 0.363284
\(680\) 0 0
\(681\) 28166.3 1.58493
\(682\) 0 0
\(683\) −11473.9 −0.642804 −0.321402 0.946943i \(-0.604154\pi\)
−0.321402 + 0.946943i \(0.604154\pi\)
\(684\) 0 0
\(685\) −11903.0 −0.663927
\(686\) 0 0
\(687\) 47413.4 2.63309
\(688\) 0 0
\(689\) −3725.01 −0.205967
\(690\) 0 0
\(691\) −28412.6 −1.56421 −0.782103 0.623149i \(-0.785853\pi\)
−0.782103 + 0.623149i \(0.785853\pi\)
\(692\) 0 0
\(693\) 52082.3 2.85490
\(694\) 0 0
\(695\) 14292.6 0.780071
\(696\) 0 0
\(697\) −6347.82 −0.344965
\(698\) 0 0
\(699\) −49746.2 −2.69181
\(700\) 0 0
\(701\) 12291.3 0.662250 0.331125 0.943587i \(-0.392572\pi\)
0.331125 + 0.943587i \(0.392572\pi\)
\(702\) 0 0
\(703\) −3494.17 −0.187461
\(704\) 0 0
\(705\) −4650.94 −0.248461
\(706\) 0 0
\(707\) −38686.9 −2.05795
\(708\) 0 0
\(709\) −12774.2 −0.676650 −0.338325 0.941029i \(-0.609860\pi\)
−0.338325 + 0.941029i \(0.609860\pi\)
\(710\) 0 0
\(711\) −63063.4 −3.32639
\(712\) 0 0
\(713\) 1708.59 0.0897438
\(714\) 0 0
\(715\) 4494.91 0.235105
\(716\) 0 0
\(717\) 19792.9 1.03093
\(718\) 0 0
\(719\) 15748.6 0.816861 0.408430 0.912790i \(-0.366076\pi\)
0.408430 + 0.912790i \(0.366076\pi\)
\(720\) 0 0
\(721\) 44954.8 2.32206
\(722\) 0 0
\(723\) −22118.4 −1.13775
\(724\) 0 0
\(725\) −2613.82 −0.133896
\(726\) 0 0
\(727\) 9536.44 0.486502 0.243251 0.969963i \(-0.421786\pi\)
0.243251 + 0.969963i \(0.421786\pi\)
\(728\) 0 0
\(729\) 17576.5 0.892980
\(730\) 0 0
\(731\) 4475.22 0.226432
\(732\) 0 0
\(733\) 34913.5 1.75929 0.879645 0.475631i \(-0.157780\pi\)
0.879645 + 0.475631i \(0.157780\pi\)
\(734\) 0 0
\(735\) 5856.38 0.293899
\(736\) 0 0
\(737\) 723.301 0.0361508
\(738\) 0 0
\(739\) 19324.3 0.961918 0.480959 0.876743i \(-0.340289\pi\)
0.480959 + 0.876743i \(0.340289\pi\)
\(740\) 0 0
\(741\) 6163.61 0.305568
\(742\) 0 0
\(743\) −7053.57 −0.348278 −0.174139 0.984721i \(-0.555714\pi\)
−0.174139 + 0.984721i \(0.555714\pi\)
\(744\) 0 0
\(745\) 4489.47 0.220781
\(746\) 0 0
\(747\) −3562.91 −0.174511
\(748\) 0 0
\(749\) 1450.69 0.0707705
\(750\) 0 0
\(751\) 36810.6 1.78860 0.894299 0.447471i \(-0.147675\pi\)
0.894299 + 0.447471i \(0.147675\pi\)
\(752\) 0 0
\(753\) 36424.7 1.76280
\(754\) 0 0
\(755\) −17156.6 −0.827010
\(756\) 0 0
\(757\) −28515.3 −1.36910 −0.684549 0.728967i \(-0.740001\pi\)
−0.684549 + 0.728967i \(0.740001\pi\)
\(758\) 0 0
\(759\) −2987.24 −0.142859
\(760\) 0 0
\(761\) −1517.92 −0.0723057 −0.0361528 0.999346i \(-0.511510\pi\)
−0.0361528 + 0.999346i \(0.511510\pi\)
\(762\) 0 0
\(763\) 31474.3 1.49338
\(764\) 0 0
\(765\) −4692.81 −0.221790
\(766\) 0 0
\(767\) −13117.8 −0.617545
\(768\) 0 0
\(769\) −10413.9 −0.488341 −0.244171 0.969732i \(-0.578516\pi\)
−0.244171 + 0.969732i \(0.578516\pi\)
\(770\) 0 0
\(771\) 59088.0 2.76006
\(772\) 0 0
\(773\) 32909.8 1.53129 0.765643 0.643266i \(-0.222421\pi\)
0.765643 + 0.643266i \(0.222421\pi\)
\(774\) 0 0
\(775\) −5107.19 −0.236717
\(776\) 0 0
\(777\) −27051.3 −1.24898
\(778\) 0 0
\(779\) 11688.6 0.537599
\(780\) 0 0
\(781\) −35636.2 −1.63273
\(782\) 0 0
\(783\) −37812.1 −1.72579
\(784\) 0 0
\(785\) −2856.84 −0.129892
\(786\) 0 0
\(787\) 35511.6 1.60845 0.804226 0.594324i \(-0.202580\pi\)
0.804226 + 0.594324i \(0.202580\pi\)
\(788\) 0 0
\(789\) −15672.1 −0.707150
\(790\) 0 0
\(791\) 9884.85 0.444330
\(792\) 0 0
\(793\) −9031.54 −0.404438
\(794\) 0 0
\(795\) −7399.81 −0.330118
\(796\) 0 0
\(797\) 22692.3 1.00853 0.504267 0.863548i \(-0.331763\pi\)
0.504267 + 0.863548i \(0.331763\pi\)
\(798\) 0 0
\(799\) 1407.48 0.0623193
\(800\) 0 0
\(801\) 59562.8 2.62740
\(802\) 0 0
\(803\) −4751.00 −0.208791
\(804\) 0 0
\(805\) −902.032 −0.0394937
\(806\) 0 0
\(807\) 21669.8 0.945246
\(808\) 0 0
\(809\) 22716.0 0.987209 0.493604 0.869687i \(-0.335679\pi\)
0.493604 + 0.869687i \(0.335679\pi\)
\(810\) 0 0
\(811\) −17237.0 −0.746327 −0.373164 0.927766i \(-0.621727\pi\)
−0.373164 + 0.927766i \(0.621727\pi\)
\(812\) 0 0
\(813\) −398.847 −0.0172056
\(814\) 0 0
\(815\) −1184.81 −0.0509227
\(816\) 0 0
\(817\) −8240.51 −0.352875
\(818\) 0 0
\(819\) 33676.3 1.43681
\(820\) 0 0
\(821\) 15695.7 0.667217 0.333609 0.942712i \(-0.391734\pi\)
0.333609 + 0.942712i \(0.391734\pi\)
\(822\) 0 0
\(823\) 16856.0 0.713927 0.356963 0.934118i \(-0.383812\pi\)
0.356963 + 0.934118i \(0.383812\pi\)
\(824\) 0 0
\(825\) 8929.24 0.376820
\(826\) 0 0
\(827\) −3712.67 −0.156109 −0.0780544 0.996949i \(-0.524871\pi\)
−0.0780544 + 0.996949i \(0.524871\pi\)
\(828\) 0 0
\(829\) −22469.6 −0.941376 −0.470688 0.882300i \(-0.655994\pi\)
−0.470688 + 0.882300i \(0.655994\pi\)
\(830\) 0 0
\(831\) −20489.3 −0.855313
\(832\) 0 0
\(833\) −1772.27 −0.0737163
\(834\) 0 0
\(835\) 7242.30 0.300156
\(836\) 0 0
\(837\) −73881.8 −3.05105
\(838\) 0 0
\(839\) −31935.2 −1.31409 −0.657046 0.753850i \(-0.728194\pi\)
−0.657046 + 0.753850i \(0.728194\pi\)
\(840\) 0 0
\(841\) −13457.7 −0.551795
\(842\) 0 0
\(843\) 14306.3 0.584504
\(844\) 0 0
\(845\) −8078.60 −0.328890
\(846\) 0 0
\(847\) 1279.73 0.0519150
\(848\) 0 0
\(849\) 10442.9 0.422144
\(850\) 0 0
\(851\) 1095.00 0.0441081
\(852\) 0 0
\(853\) 14782.2 0.593355 0.296678 0.954978i \(-0.404121\pi\)
0.296678 + 0.954978i \(0.404121\pi\)
\(854\) 0 0
\(855\) 8641.18 0.345640
\(856\) 0 0
\(857\) 7222.91 0.287900 0.143950 0.989585i \(-0.454020\pi\)
0.143950 + 0.989585i \(0.454020\pi\)
\(858\) 0 0
\(859\) −4646.96 −0.184578 −0.0922889 0.995732i \(-0.529418\pi\)
−0.0922889 + 0.995732i \(0.529418\pi\)
\(860\) 0 0
\(861\) 90491.7 3.58182
\(862\) 0 0
\(863\) −8122.19 −0.320374 −0.160187 0.987087i \(-0.551210\pi\)
−0.160187 + 0.987087i \(0.551210\pi\)
\(864\) 0 0
\(865\) −12648.7 −0.497189
\(866\) 0 0
\(867\) −45048.9 −1.76464
\(868\) 0 0
\(869\) −36312.8 −1.41752
\(870\) 0 0
\(871\) 467.685 0.0181939
\(872\) 0 0
\(873\) 19296.2 0.748083
\(874\) 0 0
\(875\) 2696.28 0.104173
\(876\) 0 0
\(877\) −31986.1 −1.23158 −0.615790 0.787910i \(-0.711163\pi\)
−0.615790 + 0.787910i \(0.711163\pi\)
\(878\) 0 0
\(879\) −38962.3 −1.49507
\(880\) 0 0
\(881\) −29450.6 −1.12624 −0.563118 0.826376i \(-0.690398\pi\)
−0.563118 + 0.826376i \(0.690398\pi\)
\(882\) 0 0
\(883\) 46156.5 1.75911 0.879553 0.475801i \(-0.157842\pi\)
0.879553 + 0.475801i \(0.157842\pi\)
\(884\) 0 0
\(885\) −26058.8 −0.989783
\(886\) 0 0
\(887\) 41051.2 1.55396 0.776982 0.629523i \(-0.216750\pi\)
0.776982 + 0.629523i \(0.216750\pi\)
\(888\) 0 0
\(889\) −4501.39 −0.169822
\(890\) 0 0
\(891\) 63979.7 2.40561
\(892\) 0 0
\(893\) −2591.69 −0.0971192
\(894\) 0 0
\(895\) −707.620 −0.0264281
\(896\) 0 0
\(897\) −1931.54 −0.0718979
\(898\) 0 0
\(899\) 21358.8 0.792389
\(900\) 0 0
\(901\) 2239.35 0.0828008
\(902\) 0 0
\(903\) −63796.7 −2.35108
\(904\) 0 0
\(905\) 17288.9 0.635031
\(906\) 0 0
\(907\) 27915.8 1.02197 0.510987 0.859588i \(-0.329280\pi\)
0.510987 + 0.859588i \(0.329280\pi\)
\(908\) 0 0
\(909\) −116141. −4.23778
\(910\) 0 0
\(911\) 6557.22 0.238475 0.119237 0.992866i \(-0.461955\pi\)
0.119237 + 0.992866i \(0.461955\pi\)
\(912\) 0 0
\(913\) −2051.57 −0.0743671
\(914\) 0 0
\(915\) −17941.3 −0.648221
\(916\) 0 0
\(917\) 38496.2 1.38632
\(918\) 0 0
\(919\) −11493.0 −0.412534 −0.206267 0.978496i \(-0.566131\pi\)
−0.206267 + 0.978496i \(0.566131\pi\)
\(920\) 0 0
\(921\) 64524.0 2.30851
\(922\) 0 0
\(923\) −23042.3 −0.821719
\(924\) 0 0
\(925\) −3273.08 −0.116344
\(926\) 0 0
\(927\) 134957. 4.78164
\(928\) 0 0
\(929\) 56597.2 1.99881 0.999405 0.0345020i \(-0.0109845\pi\)
0.999405 + 0.0345020i \(0.0109845\pi\)
\(930\) 0 0
\(931\) 3263.40 0.114880
\(932\) 0 0
\(933\) 31364.7 1.10057
\(934\) 0 0
\(935\) −2702.19 −0.0945145
\(936\) 0 0
\(937\) 37901.5 1.32144 0.660720 0.750633i \(-0.270251\pi\)
0.660720 + 0.750633i \(0.270251\pi\)
\(938\) 0 0
\(939\) 89635.5 3.11517
\(940\) 0 0
\(941\) 4449.85 0.154156 0.0770781 0.997025i \(-0.475441\pi\)
0.0770781 + 0.997025i \(0.475441\pi\)
\(942\) 0 0
\(943\) −3662.97 −0.126493
\(944\) 0 0
\(945\) 39005.0 1.34268
\(946\) 0 0
\(947\) 225.160 0.00772620 0.00386310 0.999993i \(-0.498770\pi\)
0.00386310 + 0.999993i \(0.498770\pi\)
\(948\) 0 0
\(949\) −3071.98 −0.105080
\(950\) 0 0
\(951\) 86829.7 2.96072
\(952\) 0 0
\(953\) −4845.81 −0.164713 −0.0823563 0.996603i \(-0.526245\pi\)
−0.0823563 + 0.996603i \(0.526245\pi\)
\(954\) 0 0
\(955\) 7084.94 0.240066
\(956\) 0 0
\(957\) −37343.1 −1.26137
\(958\) 0 0
\(959\) −51350.2 −1.72908
\(960\) 0 0
\(961\) 11942.5 0.400876
\(962\) 0 0
\(963\) 4355.07 0.145732
\(964\) 0 0
\(965\) −13405.6 −0.447194
\(966\) 0 0
\(967\) 40394.8 1.34334 0.671670 0.740851i \(-0.265577\pi\)
0.671670 + 0.740851i \(0.265577\pi\)
\(968\) 0 0
\(969\) −3705.36 −0.122841
\(970\) 0 0
\(971\) −29066.2 −0.960637 −0.480318 0.877094i \(-0.659479\pi\)
−0.480318 + 0.877094i \(0.659479\pi\)
\(972\) 0 0
\(973\) 61659.1 2.03155
\(974\) 0 0
\(975\) 5773.62 0.189645
\(976\) 0 0
\(977\) 42580.5 1.39434 0.697170 0.716906i \(-0.254442\pi\)
0.697170 + 0.716906i \(0.254442\pi\)
\(978\) 0 0
\(979\) 34297.1 1.11965
\(980\) 0 0
\(981\) 94488.0 3.07520
\(982\) 0 0
\(983\) −40586.0 −1.31688 −0.658440 0.752633i \(-0.728783\pi\)
−0.658440 + 0.752633i \(0.728783\pi\)
\(984\) 0 0
\(985\) −13488.7 −0.436330
\(986\) 0 0
\(987\) −20064.4 −0.647070
\(988\) 0 0
\(989\) 2582.40 0.0830288
\(990\) 0 0
\(991\) 50370.4 1.61460 0.807299 0.590142i \(-0.200928\pi\)
0.807299 + 0.590142i \(0.200928\pi\)
\(992\) 0 0
\(993\) −2682.95 −0.0857409
\(994\) 0 0
\(995\) 17716.2 0.564465
\(996\) 0 0
\(997\) 22467.5 0.713694 0.356847 0.934163i \(-0.383852\pi\)
0.356847 + 0.934163i \(0.383852\pi\)
\(998\) 0 0
\(999\) −47349.1 −1.49956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.4.a.bd.1.6 6
4.3 odd 2 1280.4.a.bb.1.1 6
8.3 odd 2 1280.4.a.bc.1.6 6
8.5 even 2 1280.4.a.ba.1.1 6
16.3 odd 4 40.4.d.a.21.10 yes 12
16.5 even 4 160.4.d.a.81.1 12
16.11 odd 4 40.4.d.a.21.9 12
16.13 even 4 160.4.d.a.81.12 12
48.5 odd 4 1440.4.k.c.721.2 12
48.11 even 4 360.4.k.c.181.4 12
48.29 odd 4 1440.4.k.c.721.8 12
48.35 even 4 360.4.k.c.181.3 12
80.3 even 4 200.4.f.c.149.9 12
80.13 odd 4 800.4.f.b.49.2 12
80.19 odd 4 200.4.d.b.101.3 12
80.27 even 4 200.4.f.c.149.10 12
80.29 even 4 800.4.d.d.401.1 12
80.37 odd 4 800.4.f.b.49.1 12
80.43 even 4 200.4.f.b.149.3 12
80.53 odd 4 800.4.f.c.49.12 12
80.59 odd 4 200.4.d.b.101.4 12
80.67 even 4 200.4.f.b.149.4 12
80.69 even 4 800.4.d.d.401.12 12
80.77 odd 4 800.4.f.c.49.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.d.a.21.9 12 16.11 odd 4
40.4.d.a.21.10 yes 12 16.3 odd 4
160.4.d.a.81.1 12 16.5 even 4
160.4.d.a.81.12 12 16.13 even 4
200.4.d.b.101.3 12 80.19 odd 4
200.4.d.b.101.4 12 80.59 odd 4
200.4.f.b.149.3 12 80.43 even 4
200.4.f.b.149.4 12 80.67 even 4
200.4.f.c.149.9 12 80.3 even 4
200.4.f.c.149.10 12 80.27 even 4
360.4.k.c.181.3 12 48.35 even 4
360.4.k.c.181.4 12 48.11 even 4
800.4.d.d.401.1 12 80.29 even 4
800.4.d.d.401.12 12 80.69 even 4
800.4.f.b.49.1 12 80.37 odd 4
800.4.f.b.49.2 12 80.13 odd 4
800.4.f.c.49.11 12 80.77 odd 4
800.4.f.c.49.12 12 80.53 odd 4
1280.4.a.ba.1.1 6 8.5 even 2
1280.4.a.bb.1.1 6 4.3 odd 2
1280.4.a.bc.1.6 6 8.3 odd 2
1280.4.a.bd.1.6 6 1.1 even 1 trivial
1440.4.k.c.721.2 12 48.5 odd 4
1440.4.k.c.721.8 12 48.29 odd 4