Properties

Label 800.4.f.c.49.11
Level $800$
Weight $4$
Character 800.49
Analytic conductor $47.202$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,4,Mod(49,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.2015280046\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{11} + 7x^{10} - 12x^{9} + 21x^{8} - 68x^{6} + 336x^{4} - 768x^{3} + 1792x^{2} - 4096x + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{32} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.11
Root \(1.98839 + 0.215211i\) of defining polynomial
Character \(\chi\) \(=\) 800.49
Dual form 800.4.f.c.49.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.57890 q^{3} -21.5703i q^{7} +64.7554 q^{9} -37.2871i q^{11} +24.1097 q^{13} -14.4940i q^{17} -26.6887i q^{19} -206.620i q^{21} -8.36366i q^{23} +361.655 q^{27} +104.553i q^{29} -204.288 q^{31} -357.170i q^{33} -130.923 q^{37} +230.945 q^{39} -437.963 q^{41} +308.764 q^{43} -97.1081i q^{47} -122.277 q^{49} -138.836i q^{51} +154.502 q^{53} -255.648i q^{57} -544.088i q^{59} -374.601i q^{61} -1396.79i q^{63} -19.3982 q^{67} -80.1147i q^{69} +955.725 q^{71} -127.417i q^{73} -804.293 q^{77} +973.871 q^{79} +1715.87 q^{81} -55.0210 q^{83} +1001.50i q^{87} +919.812 q^{89} -520.054i q^{91} -1956.85 q^{93} +297.986i q^{97} -2414.54i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{3} + 108 q^{9} + 432 q^{27} + 264 q^{31} - 136 q^{37} + 600 q^{39} + 40 q^{41} - 1204 q^{43} - 1308 q^{49} - 1056 q^{53} - 2412 q^{67} + 1592 q^{71} - 824 q^{77} + 2016 q^{79} + 2508 q^{81}+ \cdots - 2784 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.57890 1.84346 0.921730 0.387831i \(-0.126776\pi\)
0.921730 + 0.387831i \(0.126776\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 21.5703i − 1.16469i −0.812943 0.582343i \(-0.802136\pi\)
0.812943 0.582343i \(-0.197864\pi\)
\(8\) 0 0
\(9\) 64.7554 2.39835
\(10\) 0 0
\(11\) − 37.2871i − 1.02204i −0.859568 0.511022i \(-0.829267\pi\)
0.859568 0.511022i \(-0.170733\pi\)
\(12\) 0 0
\(13\) 24.1097 0.514372 0.257186 0.966362i \(-0.417205\pi\)
0.257186 + 0.966362i \(0.417205\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 14.4940i − 0.206783i −0.994641 0.103391i \(-0.967031\pi\)
0.994641 0.103391i \(-0.0329694\pi\)
\(18\) 0 0
\(19\) − 26.6887i − 0.322253i −0.986934 0.161126i \(-0.948487\pi\)
0.986934 0.161126i \(-0.0515127\pi\)
\(20\) 0 0
\(21\) − 206.620i − 2.14705i
\(22\) 0 0
\(23\) − 8.36366i − 0.0758236i −0.999281 0.0379118i \(-0.987929\pi\)
0.999281 0.0379118i \(-0.0120706\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 361.655 2.57780
\(28\) 0 0
\(29\) 104.553i 0.669481i 0.942310 + 0.334741i \(0.108649\pi\)
−0.942310 + 0.334741i \(0.891351\pi\)
\(30\) 0 0
\(31\) −204.288 −1.18359 −0.591793 0.806090i \(-0.701580\pi\)
−0.591793 + 0.806090i \(0.701580\pi\)
\(32\) 0 0
\(33\) − 357.170i − 1.88410i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −130.923 −0.581720 −0.290860 0.956766i \(-0.593941\pi\)
−0.290860 + 0.956766i \(0.593941\pi\)
\(38\) 0 0
\(39\) 230.945 0.948225
\(40\) 0 0
\(41\) −437.963 −1.66825 −0.834126 0.551574i \(-0.814027\pi\)
−0.834126 + 0.551574i \(0.814027\pi\)
\(42\) 0 0
\(43\) 308.764 1.09503 0.547513 0.836797i \(-0.315575\pi\)
0.547513 + 0.836797i \(0.315575\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 97.1081i − 0.301376i −0.988581 0.150688i \(-0.951851\pi\)
0.988581 0.150688i \(-0.0481489\pi\)
\(48\) 0 0
\(49\) −122.277 −0.356492
\(50\) 0 0
\(51\) − 138.836i − 0.381196i
\(52\) 0 0
\(53\) 154.502 0.400425 0.200212 0.979753i \(-0.435837\pi\)
0.200212 + 0.979753i \(0.435837\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 255.648i − 0.594060i
\(58\) 0 0
\(59\) − 544.088i − 1.20058i −0.799782 0.600290i \(-0.795052\pi\)
0.799782 0.600290i \(-0.204948\pi\)
\(60\) 0 0
\(61\) − 374.601i − 0.786275i −0.919480 0.393137i \(-0.871390\pi\)
0.919480 0.393137i \(-0.128610\pi\)
\(62\) 0 0
\(63\) − 1396.79i − 2.79332i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −19.3982 −0.0353711 −0.0176855 0.999844i \(-0.505630\pi\)
−0.0176855 + 0.999844i \(0.505630\pi\)
\(68\) 0 0
\(69\) − 80.1147i − 0.139778i
\(70\) 0 0
\(71\) 955.725 1.59752 0.798759 0.601651i \(-0.205490\pi\)
0.798759 + 0.601651i \(0.205490\pi\)
\(72\) 0 0
\(73\) − 127.417i − 0.204287i −0.994770 0.102144i \(-0.967430\pi\)
0.994770 0.102144i \(-0.0325702\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −804.293 −1.19036
\(78\) 0 0
\(79\) 973.871 1.38695 0.693475 0.720481i \(-0.256079\pi\)
0.693475 + 0.720481i \(0.256079\pi\)
\(80\) 0 0
\(81\) 1715.87 2.35373
\(82\) 0 0
\(83\) −55.0210 −0.0727631 −0.0363816 0.999338i \(-0.511583\pi\)
−0.0363816 + 0.999338i \(0.511583\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1001.50i 1.23416i
\(88\) 0 0
\(89\) 919.812 1.09550 0.547752 0.836641i \(-0.315484\pi\)
0.547752 + 0.836641i \(0.315484\pi\)
\(90\) 0 0
\(91\) − 520.054i − 0.599082i
\(92\) 0 0
\(93\) −1956.85 −2.18189
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 297.986i 0.311916i 0.987764 + 0.155958i \(0.0498465\pi\)
−0.987764 + 0.155958i \(0.950154\pi\)
\(98\) 0 0
\(99\) − 2414.54i − 2.45122i
\(100\) 0 0
\(101\) 1793.53i 1.76696i 0.468469 + 0.883480i \(0.344806\pi\)
−0.468469 + 0.883480i \(0.655194\pi\)
\(102\) 0 0
\(103\) 2084.11i 1.99372i 0.0791611 + 0.996862i \(0.474776\pi\)
−0.0791611 + 0.996862i \(0.525224\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 67.2542 0.0607637 0.0303818 0.999538i \(-0.490328\pi\)
0.0303818 + 0.999538i \(0.490328\pi\)
\(108\) 0 0
\(109\) − 1459.15i − 1.28222i −0.767451 0.641108i \(-0.778475\pi\)
0.767451 0.641108i \(-0.221525\pi\)
\(110\) 0 0
\(111\) −1254.10 −1.07238
\(112\) 0 0
\(113\) − 458.263i − 0.381502i −0.981638 0.190751i \(-0.938908\pi\)
0.981638 0.190751i \(-0.0610923\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1561.24 1.23364
\(118\) 0 0
\(119\) −312.639 −0.240837
\(120\) 0 0
\(121\) −59.3283 −0.0445743
\(122\) 0 0
\(123\) −4195.21 −3.07536
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 208.685i − 0.145809i −0.997339 0.0729047i \(-0.976773\pi\)
0.997339 0.0729047i \(-0.0232269\pi\)
\(128\) 0 0
\(129\) 2957.62 2.01864
\(130\) 0 0
\(131\) 1784.69i 1.19030i 0.803616 + 0.595148i \(0.202906\pi\)
−0.803616 + 0.595148i \(0.797094\pi\)
\(132\) 0 0
\(133\) −575.682 −0.375323
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2380.60i 1.48459i 0.670075 + 0.742293i \(0.266262\pi\)
−0.670075 + 0.742293i \(0.733738\pi\)
\(138\) 0 0
\(139\) 2858.52i 1.74429i 0.489245 + 0.872146i \(0.337272\pi\)
−0.489245 + 0.872146i \(0.662728\pi\)
\(140\) 0 0
\(141\) − 930.189i − 0.555575i
\(142\) 0 0
\(143\) − 898.983i − 0.525711i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1171.28 −0.657179
\(148\) 0 0
\(149\) 897.894i 0.493680i 0.969056 + 0.246840i \(0.0793922\pi\)
−0.969056 + 0.246840i \(0.920608\pi\)
\(150\) 0 0
\(151\) 3431.32 1.84925 0.924625 0.380878i \(-0.124378\pi\)
0.924625 + 0.380878i \(0.124378\pi\)
\(152\) 0 0
\(153\) − 938.563i − 0.495937i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 571.369 0.290447 0.145224 0.989399i \(-0.453610\pi\)
0.145224 + 0.989399i \(0.453610\pi\)
\(158\) 0 0
\(159\) 1479.96 0.738167
\(160\) 0 0
\(161\) −180.406 −0.0883106
\(162\) 0 0
\(163\) −236.962 −0.113867 −0.0569333 0.998378i \(-0.518132\pi\)
−0.0569333 + 0.998378i \(0.518132\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 1448.46i − 0.671169i −0.942010 0.335585i \(-0.891066\pi\)
0.942010 0.335585i \(-0.108934\pi\)
\(168\) 0 0
\(169\) −1615.72 −0.735421
\(170\) 0 0
\(171\) − 1728.24i − 0.772874i
\(172\) 0 0
\(173\) −2529.74 −1.11175 −0.555875 0.831266i \(-0.687617\pi\)
−0.555875 + 0.831266i \(0.687617\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 5211.77i − 2.21322i
\(178\) 0 0
\(179\) 141.524i 0.0590949i 0.999563 + 0.0295475i \(0.00940662\pi\)
−0.999563 + 0.0295475i \(0.990593\pi\)
\(180\) 0 0
\(181\) − 3457.79i − 1.41997i −0.704215 0.709987i \(-0.748701\pi\)
0.704215 0.709987i \(-0.251299\pi\)
\(182\) 0 0
\(183\) − 3588.27i − 1.44947i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −540.438 −0.211341
\(188\) 0 0
\(189\) − 7801.01i − 3.00233i
\(190\) 0 0
\(191\) 1416.99 0.536804 0.268402 0.963307i \(-0.413504\pi\)
0.268402 + 0.963307i \(0.413504\pi\)
\(192\) 0 0
\(193\) 2681.12i 0.999955i 0.866038 + 0.499978i \(0.166658\pi\)
−0.866038 + 0.499978i \(0.833342\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2697.74 −0.975664 −0.487832 0.872938i \(-0.662212\pi\)
−0.487832 + 0.872938i \(0.662212\pi\)
\(198\) 0 0
\(199\) 3543.25 1.26218 0.631091 0.775709i \(-0.282607\pi\)
0.631091 + 0.775709i \(0.282607\pi\)
\(200\) 0 0
\(201\) −185.813 −0.0652052
\(202\) 0 0
\(203\) 2255.23 0.779735
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 541.592i − 0.181851i
\(208\) 0 0
\(209\) −995.143 −0.329356
\(210\) 0 0
\(211\) − 152.205i − 0.0496598i −0.999692 0.0248299i \(-0.992096\pi\)
0.999692 0.0248299i \(-0.00790441\pi\)
\(212\) 0 0
\(213\) 9154.80 2.94496
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4406.54i 1.37851i
\(218\) 0 0
\(219\) − 1220.51i − 0.376596i
\(220\) 0 0
\(221\) − 349.446i − 0.106363i
\(222\) 0 0
\(223\) − 2065.40i − 0.620222i −0.950700 0.310111i \(-0.899634\pi\)
0.950700 0.310111i \(-0.100366\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2940.45 −0.859757 −0.429878 0.902887i \(-0.641444\pi\)
−0.429878 + 0.902887i \(0.641444\pi\)
\(228\) 0 0
\(229\) 4949.77i 1.42834i 0.699971 + 0.714171i \(0.253196\pi\)
−0.699971 + 0.714171i \(0.746804\pi\)
\(230\) 0 0
\(231\) −7704.25 −2.19438
\(232\) 0 0
\(233\) − 5193.31i − 1.46019i −0.683344 0.730096i \(-0.739475\pi\)
0.683344 0.730096i \(-0.260525\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 9328.62 2.55679
\(238\) 0 0
\(239\) −2066.30 −0.559238 −0.279619 0.960111i \(-0.590208\pi\)
−0.279619 + 0.960111i \(0.590208\pi\)
\(240\) 0 0
\(241\) −2309.08 −0.617181 −0.308591 0.951195i \(-0.599857\pi\)
−0.308591 + 0.951195i \(0.599857\pi\)
\(242\) 0 0
\(243\) 6671.42 1.76120
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 643.457i − 0.165758i
\(248\) 0 0
\(249\) −527.041 −0.134136
\(250\) 0 0
\(251\) − 3802.60i − 0.956246i −0.878293 0.478123i \(-0.841317\pi\)
0.878293 0.478123i \(-0.158683\pi\)
\(252\) 0 0
\(253\) −311.857 −0.0774951
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6168.56i 1.49721i 0.663013 + 0.748607i \(0.269277\pi\)
−0.663013 + 0.748607i \(0.730723\pi\)
\(258\) 0 0
\(259\) 2824.05i 0.677521i
\(260\) 0 0
\(261\) 6770.36i 1.60565i
\(262\) 0 0
\(263\) − 1636.11i − 0.383599i −0.981434 0.191800i \(-0.938568\pi\)
0.981434 0.191800i \(-0.0614324\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 8810.79 2.01952
\(268\) 0 0
\(269\) − 2262.24i − 0.512756i −0.966577 0.256378i \(-0.917471\pi\)
0.966577 0.256378i \(-0.0825292\pi\)
\(270\) 0 0
\(271\) −41.6380 −0.00933332 −0.00466666 0.999989i \(-0.501485\pi\)
−0.00466666 + 0.999989i \(0.501485\pi\)
\(272\) 0 0
\(273\) − 4981.55i − 1.10438i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2139.00 −0.463971 −0.231986 0.972719i \(-0.574522\pi\)
−0.231986 + 0.972719i \(0.574522\pi\)
\(278\) 0 0
\(279\) −13228.7 −2.83865
\(280\) 0 0
\(281\) −1493.53 −0.317069 −0.158534 0.987353i \(-0.550677\pi\)
−0.158534 + 0.987353i \(0.550677\pi\)
\(282\) 0 0
\(283\) −1090.20 −0.228995 −0.114498 0.993424i \(-0.536526\pi\)
−0.114498 + 0.993424i \(0.536526\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9446.98i 1.94299i
\(288\) 0 0
\(289\) 4702.92 0.957241
\(290\) 0 0
\(291\) 2854.38i 0.575005i
\(292\) 0 0
\(293\) 4067.51 0.811011 0.405506 0.914093i \(-0.367095\pi\)
0.405506 + 0.914093i \(0.367095\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 13485.1i − 2.63463i
\(298\) 0 0
\(299\) − 201.646i − 0.0390016i
\(300\) 0 0
\(301\) − 6660.13i − 1.27536i
\(302\) 0 0
\(303\) 17180.1i 3.25732i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −6736.05 −1.25227 −0.626135 0.779715i \(-0.715364\pi\)
−0.626135 + 0.779715i \(0.715364\pi\)
\(308\) 0 0
\(309\) 19963.5i 3.67535i
\(310\) 0 0
\(311\) −3274.35 −0.597014 −0.298507 0.954407i \(-0.596489\pi\)
−0.298507 + 0.954407i \(0.596489\pi\)
\(312\) 0 0
\(313\) 9357.60i 1.68985i 0.534885 + 0.844925i \(0.320355\pi\)
−0.534885 + 0.844925i \(0.679645\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9064.68 −1.60607 −0.803033 0.595934i \(-0.796782\pi\)
−0.803033 + 0.595934i \(0.796782\pi\)
\(318\) 0 0
\(319\) 3898.47 0.684239
\(320\) 0 0
\(321\) 644.222 0.112015
\(322\) 0 0
\(323\) −386.825 −0.0666362
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 13977.1i − 2.36371i
\(328\) 0 0
\(329\) −2094.65 −0.351008
\(330\) 0 0
\(331\) 280.089i 0.0465108i 0.999730 + 0.0232554i \(0.00740310\pi\)
−0.999730 + 0.0232554i \(0.992597\pi\)
\(332\) 0 0
\(333\) −8477.98 −1.39517
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 5748.75i − 0.929242i −0.885510 0.464621i \(-0.846191\pi\)
0.885510 0.464621i \(-0.153809\pi\)
\(338\) 0 0
\(339\) − 4389.65i − 0.703284i
\(340\) 0 0
\(341\) 7617.30i 1.20968i
\(342\) 0 0
\(343\) − 4761.06i − 0.749484i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2911.52 −0.450428 −0.225214 0.974309i \(-0.572308\pi\)
−0.225214 + 0.974309i \(0.572308\pi\)
\(348\) 0 0
\(349\) − 5665.17i − 0.868910i −0.900693 0.434455i \(-0.856941\pi\)
0.900693 0.434455i \(-0.143059\pi\)
\(350\) 0 0
\(351\) 8719.42 1.32595
\(352\) 0 0
\(353\) 9428.18i 1.42156i 0.703414 + 0.710781i \(0.251658\pi\)
−0.703414 + 0.710781i \(0.748342\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −2994.74 −0.443973
\(358\) 0 0
\(359\) 4573.16 0.672318 0.336159 0.941805i \(-0.390872\pi\)
0.336159 + 0.941805i \(0.390872\pi\)
\(360\) 0 0
\(361\) 6146.71 0.896153
\(362\) 0 0
\(363\) −568.300 −0.0821709
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2717.97i 0.386585i 0.981141 + 0.193293i \(0.0619166\pi\)
−0.981141 + 0.193293i \(0.938083\pi\)
\(368\) 0 0
\(369\) −28360.5 −4.00105
\(370\) 0 0
\(371\) − 3332.65i − 0.466369i
\(372\) 0 0
\(373\) −5627.51 −0.781183 −0.390592 0.920564i \(-0.627730\pi\)
−0.390592 + 0.920564i \(0.627730\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2520.74i 0.344363i
\(378\) 0 0
\(379\) 8066.74i 1.09330i 0.837361 + 0.546650i \(0.184097\pi\)
−0.837361 + 0.546650i \(0.815903\pi\)
\(380\) 0 0
\(381\) − 1998.97i − 0.268794i
\(382\) 0 0
\(383\) 10607.8i 1.41523i 0.706600 + 0.707613i \(0.250228\pi\)
−0.706600 + 0.707613i \(0.749772\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 19994.1 2.62625
\(388\) 0 0
\(389\) 8992.58i 1.17209i 0.810280 + 0.586044i \(0.199315\pi\)
−0.810280 + 0.586044i \(0.800685\pi\)
\(390\) 0 0
\(391\) −121.223 −0.0156790
\(392\) 0 0
\(393\) 17095.3i 2.19426i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −8977.17 −1.13489 −0.567445 0.823411i \(-0.692068\pi\)
−0.567445 + 0.823411i \(0.692068\pi\)
\(398\) 0 0
\(399\) −5514.40 −0.691893
\(400\) 0 0
\(401\) −3165.72 −0.394236 −0.197118 0.980380i \(-0.563158\pi\)
−0.197118 + 0.980380i \(0.563158\pi\)
\(402\) 0 0
\(403\) −4925.33 −0.608804
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4881.75i 0.594543i
\(408\) 0 0
\(409\) 5417.61 0.654972 0.327486 0.944856i \(-0.393798\pi\)
0.327486 + 0.944856i \(0.393798\pi\)
\(410\) 0 0
\(411\) 22803.5i 2.73678i
\(412\) 0 0
\(413\) −11736.1 −1.39830
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 27381.5i 3.21554i
\(418\) 0 0
\(419\) 6198.14i 0.722670i 0.932436 + 0.361335i \(0.117679\pi\)
−0.932436 + 0.361335i \(0.882321\pi\)
\(420\) 0 0
\(421\) 4344.57i 0.502949i 0.967864 + 0.251474i \(0.0809154\pi\)
−0.967864 + 0.251474i \(0.919085\pi\)
\(422\) 0 0
\(423\) − 6288.27i − 0.722804i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −8080.25 −0.915763
\(428\) 0 0
\(429\) − 8611.27i − 0.969128i
\(430\) 0 0
\(431\) −4750.74 −0.530940 −0.265470 0.964119i \(-0.585527\pi\)
−0.265470 + 0.964119i \(0.585527\pi\)
\(432\) 0 0
\(433\) − 4210.26i − 0.467280i −0.972323 0.233640i \(-0.924936\pi\)
0.972323 0.233640i \(-0.0750638\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −223.215 −0.0244344
\(438\) 0 0
\(439\) −5776.50 −0.628012 −0.314006 0.949421i \(-0.601671\pi\)
−0.314006 + 0.949421i \(0.601671\pi\)
\(440\) 0 0
\(441\) −7918.08 −0.854992
\(442\) 0 0
\(443\) 11981.6 1.28502 0.642510 0.766278i \(-0.277893\pi\)
0.642510 + 0.766278i \(0.277893\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 8600.84i 0.910080i
\(448\) 0 0
\(449\) 5567.58 0.585190 0.292595 0.956236i \(-0.405481\pi\)
0.292595 + 0.956236i \(0.405481\pi\)
\(450\) 0 0
\(451\) 16330.4i 1.70503i
\(452\) 0 0
\(453\) 32868.3 3.40902
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 7283.56i − 0.745538i −0.927924 0.372769i \(-0.878408\pi\)
0.927924 0.372769i \(-0.121592\pi\)
\(458\) 0 0
\(459\) − 5241.82i − 0.533044i
\(460\) 0 0
\(461\) 11901.1i 1.20236i 0.799113 + 0.601181i \(0.205303\pi\)
−0.799113 + 0.601181i \(0.794697\pi\)
\(462\) 0 0
\(463\) 4915.73i 0.493419i 0.969089 + 0.246710i \(0.0793494\pi\)
−0.969089 + 0.246710i \(0.920651\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3110.15 0.308181 0.154091 0.988057i \(-0.450755\pi\)
0.154091 + 0.988057i \(0.450755\pi\)
\(468\) 0 0
\(469\) 418.424i 0.0411962i
\(470\) 0 0
\(471\) 5473.09 0.535428
\(472\) 0 0
\(473\) − 11512.9i − 1.11916i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 10004.8 0.960358
\(478\) 0 0
\(479\) 6590.43 0.628652 0.314326 0.949315i \(-0.398221\pi\)
0.314326 + 0.949315i \(0.398221\pi\)
\(480\) 0 0
\(481\) −3156.52 −0.299221
\(482\) 0 0
\(483\) −1728.10 −0.162797
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 3139.99i − 0.292169i −0.989272 0.146085i \(-0.953333\pi\)
0.989272 0.146085i \(-0.0466672\pi\)
\(488\) 0 0
\(489\) −2269.83 −0.209909
\(490\) 0 0
\(491\) − 12057.6i − 1.10825i −0.832433 0.554126i \(-0.813053\pi\)
0.832433 0.554126i \(-0.186947\pi\)
\(492\) 0 0
\(493\) 1515.38 0.138437
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 20615.3i − 1.86061i
\(498\) 0 0
\(499\) − 8458.64i − 0.758839i −0.925225 0.379420i \(-0.876124\pi\)
0.925225 0.379420i \(-0.123876\pi\)
\(500\) 0 0
\(501\) − 13874.7i − 1.23727i
\(502\) 0 0
\(503\) 16896.2i 1.49774i 0.662718 + 0.748869i \(0.269403\pi\)
−0.662718 + 0.748869i \(0.730597\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −15476.8 −1.35572
\(508\) 0 0
\(509\) 6849.13i 0.596429i 0.954499 + 0.298214i \(0.0963910\pi\)
−0.954499 + 0.298214i \(0.903609\pi\)
\(510\) 0 0
\(511\) −2748.41 −0.237931
\(512\) 0 0
\(513\) − 9652.10i − 0.830703i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −3620.88 −0.308019
\(518\) 0 0
\(519\) −24232.1 −2.04947
\(520\) 0 0
\(521\) 11044.1 0.928696 0.464348 0.885653i \(-0.346289\pi\)
0.464348 + 0.885653i \(0.346289\pi\)
\(522\) 0 0
\(523\) 3115.75 0.260502 0.130251 0.991481i \(-0.458422\pi\)
0.130251 + 0.991481i \(0.458422\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2960.94i 0.244745i
\(528\) 0 0
\(529\) 12097.0 0.994251
\(530\) 0 0
\(531\) − 35232.6i − 2.87941i
\(532\) 0 0
\(533\) −10559.2 −0.858103
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1355.64i 0.108939i
\(538\) 0 0
\(539\) 4559.35i 0.364350i
\(540\) 0 0
\(541\) − 14840.6i − 1.17938i −0.807629 0.589691i \(-0.799249\pi\)
0.807629 0.589691i \(-0.200751\pi\)
\(542\) 0 0
\(543\) − 33121.8i − 2.61767i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −12622.8 −0.986679 −0.493340 0.869837i \(-0.664224\pi\)
−0.493340 + 0.869837i \(0.664224\pi\)
\(548\) 0 0
\(549\) − 24257.5i − 1.88576i
\(550\) 0 0
\(551\) 2790.37 0.215742
\(552\) 0 0
\(553\) − 21006.7i − 1.61536i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13382.1 1.01798 0.508992 0.860771i \(-0.330018\pi\)
0.508992 + 0.860771i \(0.330018\pi\)
\(558\) 0 0
\(559\) 7444.23 0.563251
\(560\) 0 0
\(561\) −5176.80 −0.389599
\(562\) 0 0
\(563\) −153.895 −0.0115203 −0.00576014 0.999983i \(-0.501834\pi\)
−0.00576014 + 0.999983i \(0.501834\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 37011.7i − 2.74135i
\(568\) 0 0
\(569\) 5395.71 0.397539 0.198770 0.980046i \(-0.436305\pi\)
0.198770 + 0.980046i \(0.436305\pi\)
\(570\) 0 0
\(571\) − 22390.5i − 1.64100i −0.571646 0.820500i \(-0.693695\pi\)
0.571646 0.820500i \(-0.306305\pi\)
\(572\) 0 0
\(573\) 13573.2 0.989578
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 1935.38i − 0.139638i −0.997560 0.0698188i \(-0.977758\pi\)
0.997560 0.0698188i \(-0.0222421\pi\)
\(578\) 0 0
\(579\) 25682.2i 1.84338i
\(580\) 0 0
\(581\) 1186.82i 0.0847461i
\(582\) 0 0
\(583\) − 5760.94i − 0.409252i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7905.44 0.555865 0.277932 0.960601i \(-0.410351\pi\)
0.277932 + 0.960601i \(0.410351\pi\)
\(588\) 0 0
\(589\) 5452.17i 0.381414i
\(590\) 0 0
\(591\) −25841.4 −1.79860
\(592\) 0 0
\(593\) 11141.6i 0.771552i 0.922592 + 0.385776i \(0.126066\pi\)
−0.922592 + 0.385776i \(0.873934\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 33940.4 2.32678
\(598\) 0 0
\(599\) 278.847 0.0190207 0.00951033 0.999955i \(-0.496973\pi\)
0.00951033 + 0.999955i \(0.496973\pi\)
\(600\) 0 0
\(601\) 18890.7 1.28214 0.641071 0.767482i \(-0.278490\pi\)
0.641071 + 0.767482i \(0.278490\pi\)
\(602\) 0 0
\(603\) −1256.14 −0.0848321
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 5398.05i − 0.360956i −0.983579 0.180478i \(-0.942236\pi\)
0.983579 0.180478i \(-0.0577644\pi\)
\(608\) 0 0
\(609\) 21602.6 1.43741
\(610\) 0 0
\(611\) − 2341.25i − 0.155019i
\(612\) 0 0
\(613\) 14412.8 0.949635 0.474817 0.880084i \(-0.342514\pi\)
0.474817 + 0.880084i \(0.342514\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13226.3i 0.863001i 0.902113 + 0.431500i \(0.142016\pi\)
−0.902113 + 0.431500i \(0.857984\pi\)
\(618\) 0 0
\(619\) − 14179.4i − 0.920705i −0.887736 0.460352i \(-0.847723\pi\)
0.887736 0.460352i \(-0.152277\pi\)
\(620\) 0 0
\(621\) − 3024.76i − 0.195458i
\(622\) 0 0
\(623\) − 19840.6i − 1.27592i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −9532.38 −0.607156
\(628\) 0 0
\(629\) 1897.60i 0.120290i
\(630\) 0 0
\(631\) −1533.79 −0.0967657 −0.0483828 0.998829i \(-0.515407\pi\)
−0.0483828 + 0.998829i \(0.515407\pi\)
\(632\) 0 0
\(633\) − 1457.96i − 0.0915459i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −2948.06 −0.183370
\(638\) 0 0
\(639\) 61888.4 3.83140
\(640\) 0 0
\(641\) −26682.6 −1.64415 −0.822074 0.569381i \(-0.807183\pi\)
−0.822074 + 0.569381i \(0.807183\pi\)
\(642\) 0 0
\(643\) −16498.3 −1.01186 −0.505931 0.862574i \(-0.668851\pi\)
−0.505931 + 0.862574i \(0.668851\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20127.5i 1.22302i 0.791236 + 0.611510i \(0.209438\pi\)
−0.791236 + 0.611510i \(0.790562\pi\)
\(648\) 0 0
\(649\) −20287.5 −1.22705
\(650\) 0 0
\(651\) 42209.9i 2.54122i
\(652\) 0 0
\(653\) −21447.4 −1.28530 −0.642650 0.766160i \(-0.722165\pi\)
−0.642650 + 0.766160i \(0.722165\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 8250.91i − 0.489953i
\(658\) 0 0
\(659\) 19402.5i 1.14691i 0.819237 + 0.573455i \(0.194397\pi\)
−0.819237 + 0.573455i \(0.805603\pi\)
\(660\) 0 0
\(661\) 9326.38i 0.548796i 0.961616 + 0.274398i \(0.0884786\pi\)
−0.961616 + 0.274398i \(0.911521\pi\)
\(662\) 0 0
\(663\) − 3347.31i − 0.196076i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 874.443 0.0507625
\(668\) 0 0
\(669\) − 19784.3i − 1.14336i
\(670\) 0 0
\(671\) −13967.8 −0.803608
\(672\) 0 0
\(673\) 15027.4i 0.860718i 0.902658 + 0.430359i \(0.141613\pi\)
−0.902658 + 0.430359i \(0.858387\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9717.31 0.551649 0.275825 0.961208i \(-0.411049\pi\)
0.275825 + 0.961208i \(0.411049\pi\)
\(678\) 0 0
\(679\) 6427.63 0.363284
\(680\) 0 0
\(681\) −28166.3 −1.58493
\(682\) 0 0
\(683\) 11473.9 0.642804 0.321402 0.946943i \(-0.395846\pi\)
0.321402 + 0.946943i \(0.395846\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 47413.4i 2.63309i
\(688\) 0 0
\(689\) 3725.01 0.205967
\(690\) 0 0
\(691\) − 28412.6i − 1.56421i −0.623149 0.782103i \(-0.714147\pi\)
0.623149 0.782103i \(-0.285853\pi\)
\(692\) 0 0
\(693\) −52082.3 −2.85490
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6347.82i 0.344965i
\(698\) 0 0
\(699\) − 49746.2i − 2.69181i
\(700\) 0 0
\(701\) 12291.3i 0.662250i 0.943587 + 0.331125i \(0.107428\pi\)
−0.943587 + 0.331125i \(0.892572\pi\)
\(702\) 0 0
\(703\) 3494.17i 0.187461i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 38686.9 2.05795
\(708\) 0 0
\(709\) − 12774.2i − 0.676650i −0.941029 0.338325i \(-0.890140\pi\)
0.941029 0.338325i \(-0.109860\pi\)
\(710\) 0 0
\(711\) 63063.4 3.32639
\(712\) 0 0
\(713\) 1708.59i 0.0897438i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −19792.9 −1.03093
\(718\) 0 0
\(719\) −15748.6 −0.816861 −0.408430 0.912790i \(-0.633924\pi\)
−0.408430 + 0.912790i \(0.633924\pi\)
\(720\) 0 0
\(721\) 44954.8 2.32206
\(722\) 0 0
\(723\) −22118.4 −1.13775
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 9536.44i − 0.486502i −0.969963 0.243251i \(-0.921786\pi\)
0.969963 0.243251i \(-0.0782138\pi\)
\(728\) 0 0
\(729\) 17576.5 0.892980
\(730\) 0 0
\(731\) − 4475.22i − 0.226432i
\(732\) 0 0
\(733\) 34913.5 1.75929 0.879645 0.475631i \(-0.157780\pi\)
0.879645 + 0.475631i \(0.157780\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 723.301i 0.0361508i
\(738\) 0 0
\(739\) − 19324.3i − 0.961918i −0.876743 0.480959i \(-0.840289\pi\)
0.876743 0.480959i \(-0.159711\pi\)
\(740\) 0 0
\(741\) − 6163.61i − 0.305568i
\(742\) 0 0
\(743\) − 7053.57i − 0.348278i −0.984721 0.174139i \(-0.944286\pi\)
0.984721 0.174139i \(-0.0557142\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3562.91 −0.174511
\(748\) 0 0
\(749\) − 1450.69i − 0.0707705i
\(750\) 0 0
\(751\) 36810.6 1.78860 0.894299 0.447471i \(-0.147675\pi\)
0.894299 + 0.447471i \(0.147675\pi\)
\(752\) 0 0
\(753\) − 36424.7i − 1.76280i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −28515.3 −1.36910 −0.684549 0.728967i \(-0.740001\pi\)
−0.684549 + 0.728967i \(0.740001\pi\)
\(758\) 0 0
\(759\) −2987.24 −0.142859
\(760\) 0 0
\(761\) 1517.92 0.0723057 0.0361528 0.999346i \(-0.488490\pi\)
0.0361528 + 0.999346i \(0.488490\pi\)
\(762\) 0 0
\(763\) −31474.3 −1.49338
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 13117.8i − 0.617545i
\(768\) 0 0
\(769\) 10413.9 0.488341 0.244171 0.969732i \(-0.421484\pi\)
0.244171 + 0.969732i \(0.421484\pi\)
\(770\) 0 0
\(771\) 59088.0i 2.76006i
\(772\) 0 0
\(773\) −32909.8 −1.53129 −0.765643 0.643266i \(-0.777579\pi\)
−0.765643 + 0.643266i \(0.777579\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 27051.3i 1.24898i
\(778\) 0 0
\(779\) 11688.6i 0.537599i
\(780\) 0 0
\(781\) − 35636.2i − 1.63273i
\(782\) 0 0
\(783\) 37812.1i 1.72579i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −35511.6 −1.60845 −0.804226 0.594324i \(-0.797420\pi\)
−0.804226 + 0.594324i \(0.797420\pi\)
\(788\) 0 0
\(789\) − 15672.1i − 0.707150i
\(790\) 0 0
\(791\) −9884.85 −0.444330
\(792\) 0 0
\(793\) − 9031.54i − 0.404438i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −22692.3 −1.00853 −0.504267 0.863548i \(-0.668237\pi\)
−0.504267 + 0.863548i \(0.668237\pi\)
\(798\) 0 0
\(799\) −1407.48 −0.0623193
\(800\) 0 0
\(801\) 59562.8 2.62740
\(802\) 0 0
\(803\) −4751.00 −0.208791
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 21669.8i − 0.945246i
\(808\) 0 0
\(809\) 22716.0 0.987209 0.493604 0.869687i \(-0.335679\pi\)
0.493604 + 0.869687i \(0.335679\pi\)
\(810\) 0 0
\(811\) 17237.0i 0.746327i 0.927766 + 0.373164i \(0.121727\pi\)
−0.927766 + 0.373164i \(0.878273\pi\)
\(812\) 0 0
\(813\) −398.847 −0.0172056
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 8240.51i − 0.352875i
\(818\) 0 0
\(819\) − 33676.3i − 1.43681i
\(820\) 0 0
\(821\) − 15695.7i − 0.667217i −0.942712 0.333609i \(-0.891734\pi\)
0.942712 0.333609i \(-0.108266\pi\)
\(822\) 0 0
\(823\) 16856.0i 0.713927i 0.934118 + 0.356963i \(0.116188\pi\)
−0.934118 + 0.356963i \(0.883812\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3712.67 −0.156109 −0.0780544 0.996949i \(-0.524871\pi\)
−0.0780544 + 0.996949i \(0.524871\pi\)
\(828\) 0 0
\(829\) 22469.6i 0.941376i 0.882300 + 0.470688i \(0.155994\pi\)
−0.882300 + 0.470688i \(0.844006\pi\)
\(830\) 0 0
\(831\) −20489.3 −0.855313
\(832\) 0 0
\(833\) 1772.27i 0.0737163i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −73881.8 −3.05105
\(838\) 0 0
\(839\) −31935.2 −1.31409 −0.657046 0.753850i \(-0.728194\pi\)
−0.657046 + 0.753850i \(0.728194\pi\)
\(840\) 0 0
\(841\) 13457.7 0.551795
\(842\) 0 0
\(843\) −14306.3 −0.584504
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1279.73i 0.0519150i
\(848\) 0 0
\(849\) −10442.9 −0.422144
\(850\) 0 0
\(851\) 1095.00i 0.0441081i
\(852\) 0 0
\(853\) −14782.2 −0.593355 −0.296678 0.954978i \(-0.595879\pi\)
−0.296678 + 0.954978i \(0.595879\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 7222.91i − 0.287900i −0.989585 0.143950i \(-0.954020\pi\)
0.989585 0.143950i \(-0.0459804\pi\)
\(858\) 0 0
\(859\) − 4646.96i − 0.184578i −0.995732 0.0922889i \(-0.970582\pi\)
0.995732 0.0922889i \(-0.0294183\pi\)
\(860\) 0 0
\(861\) 90491.7i 3.58182i
\(862\) 0 0
\(863\) 8122.19i 0.320374i 0.987087 + 0.160187i \(0.0512097\pi\)
−0.987087 + 0.160187i \(0.948790\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 45048.9 1.76464
\(868\) 0 0
\(869\) − 36312.8i − 1.41752i
\(870\) 0 0
\(871\) −467.685 −0.0181939
\(872\) 0 0
\(873\) 19296.2i 0.748083i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 31986.1 1.23158 0.615790 0.787910i \(-0.288837\pi\)
0.615790 + 0.787910i \(0.288837\pi\)
\(878\) 0 0
\(879\) 38962.3 1.49507
\(880\) 0 0
\(881\) −29450.6 −1.12624 −0.563118 0.826376i \(-0.690398\pi\)
−0.563118 + 0.826376i \(0.690398\pi\)
\(882\) 0 0
\(883\) 46156.5 1.75911 0.879553 0.475801i \(-0.157842\pi\)
0.879553 + 0.475801i \(0.157842\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 41051.2i − 1.55396i −0.629523 0.776982i \(-0.716750\pi\)
0.629523 0.776982i \(-0.283250\pi\)
\(888\) 0 0
\(889\) −4501.39 −0.169822
\(890\) 0 0
\(891\) − 63979.7i − 2.40561i
\(892\) 0 0
\(893\) −2591.69 −0.0971192
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1931.54i − 0.0718979i
\(898\) 0 0
\(899\) − 21358.8i − 0.792389i
\(900\) 0 0
\(901\) − 2239.35i − 0.0828008i
\(902\) 0 0
\(903\) − 63796.7i − 2.35108i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 27915.8 1.02197 0.510987 0.859588i \(-0.329280\pi\)
0.510987 + 0.859588i \(0.329280\pi\)
\(908\) 0 0
\(909\) 116141.i 4.23778i
\(910\) 0 0
\(911\) 6557.22 0.238475 0.119237 0.992866i \(-0.461955\pi\)
0.119237 + 0.992866i \(0.461955\pi\)
\(912\) 0 0
\(913\) 2051.57i 0.0743671i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 38496.2 1.38632
\(918\) 0 0
\(919\) −11493.0 −0.412534 −0.206267 0.978496i \(-0.566131\pi\)
−0.206267 + 0.978496i \(0.566131\pi\)
\(920\) 0 0
\(921\) −64524.0 −2.30851
\(922\) 0 0
\(923\) 23042.3 0.821719
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 134957.i 4.78164i
\(928\) 0 0
\(929\) −56597.2 −1.99881 −0.999405 0.0345020i \(-0.989015\pi\)
−0.999405 + 0.0345020i \(0.989015\pi\)
\(930\) 0 0
\(931\) 3263.40i 0.114880i
\(932\) 0 0
\(933\) −31364.7 −1.10057
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 37901.5i − 1.32144i −0.750633 0.660720i \(-0.770251\pi\)
0.750633 0.660720i \(-0.229749\pi\)
\(938\) 0 0
\(939\) 89635.5i 3.11517i
\(940\) 0 0
\(941\) 4449.85i 0.154156i 0.997025 + 0.0770781i \(0.0245591\pi\)
−0.997025 + 0.0770781i \(0.975441\pi\)
\(942\) 0 0
\(943\) 3662.97i 0.126493i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −225.160 −0.00772620 −0.00386310 0.999993i \(-0.501230\pi\)
−0.00386310 + 0.999993i \(0.501230\pi\)
\(948\) 0 0
\(949\) − 3071.98i − 0.105080i
\(950\) 0 0
\(951\) −86829.7 −2.96072
\(952\) 0 0
\(953\) − 4845.81i − 0.164713i −0.996603 0.0823563i \(-0.973755\pi\)
0.996603 0.0823563i \(-0.0262445\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 37343.1 1.26137
\(958\) 0 0
\(959\) 51350.2 1.72908
\(960\) 0 0
\(961\) 11942.5 0.400876
\(962\) 0 0
\(963\) 4355.07 0.145732
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 40394.8i − 1.34334i −0.740851 0.671670i \(-0.765577\pi\)
0.740851 0.671670i \(-0.234423\pi\)
\(968\) 0 0
\(969\) −3705.36 −0.122841
\(970\) 0 0
\(971\) 29066.2i 0.960637i 0.877094 + 0.480318i \(0.159479\pi\)
−0.877094 + 0.480318i \(0.840521\pi\)
\(972\) 0 0
\(973\) 61659.1 2.03155
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42580.5i 1.39434i 0.716906 + 0.697170i \(0.245558\pi\)
−0.716906 + 0.697170i \(0.754442\pi\)
\(978\) 0 0
\(979\) − 34297.1i − 1.11965i
\(980\) 0 0
\(981\) − 94488.0i − 3.07520i
\(982\) 0 0
\(983\) − 40586.0i − 1.31688i −0.752633 0.658440i \(-0.771217\pi\)
0.752633 0.658440i \(-0.228783\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −20064.4 −0.647070
\(988\) 0 0
\(989\) − 2582.40i − 0.0830288i
\(990\) 0 0
\(991\) 50370.4 1.61460 0.807299 0.590142i \(-0.200928\pi\)
0.807299 + 0.590142i \(0.200928\pi\)
\(992\) 0 0
\(993\) 2682.95i 0.0857409i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 22467.5 0.713694 0.356847 0.934163i \(-0.383852\pi\)
0.356847 + 0.934163i \(0.383852\pi\)
\(998\) 0 0
\(999\) −47349.1 −1.49956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.4.f.c.49.11 12
4.3 odd 2 200.4.f.b.149.4 12
5.2 odd 4 800.4.d.d.401.1 12
5.3 odd 4 160.4.d.a.81.12 12
5.4 even 2 800.4.f.b.49.2 12
8.3 odd 2 200.4.f.c.149.10 12
8.5 even 2 800.4.f.b.49.1 12
15.8 even 4 1440.4.k.c.721.8 12
20.3 even 4 40.4.d.a.21.10 yes 12
20.7 even 4 200.4.d.b.101.3 12
20.19 odd 2 200.4.f.c.149.9 12
40.3 even 4 40.4.d.a.21.9 12
40.13 odd 4 160.4.d.a.81.1 12
40.19 odd 2 200.4.f.b.149.3 12
40.27 even 4 200.4.d.b.101.4 12
40.29 even 2 inner 800.4.f.c.49.12 12
40.37 odd 4 800.4.d.d.401.12 12
60.23 odd 4 360.4.k.c.181.3 12
80.3 even 4 1280.4.a.bc.1.6 6
80.13 odd 4 1280.4.a.ba.1.1 6
80.43 even 4 1280.4.a.bb.1.1 6
80.53 odd 4 1280.4.a.bd.1.6 6
120.53 even 4 1440.4.k.c.721.2 12
120.83 odd 4 360.4.k.c.181.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.d.a.21.9 12 40.3 even 4
40.4.d.a.21.10 yes 12 20.3 even 4
160.4.d.a.81.1 12 40.13 odd 4
160.4.d.a.81.12 12 5.3 odd 4
200.4.d.b.101.3 12 20.7 even 4
200.4.d.b.101.4 12 40.27 even 4
200.4.f.b.149.3 12 40.19 odd 2
200.4.f.b.149.4 12 4.3 odd 2
200.4.f.c.149.9 12 20.19 odd 2
200.4.f.c.149.10 12 8.3 odd 2
360.4.k.c.181.3 12 60.23 odd 4
360.4.k.c.181.4 12 120.83 odd 4
800.4.d.d.401.1 12 5.2 odd 4
800.4.d.d.401.12 12 40.37 odd 4
800.4.f.b.49.1 12 8.5 even 2
800.4.f.b.49.2 12 5.4 even 2
800.4.f.c.49.11 12 1.1 even 1 trivial
800.4.f.c.49.12 12 40.29 even 2 inner
1280.4.a.ba.1.1 6 80.13 odd 4
1280.4.a.bb.1.1 6 80.43 even 4
1280.4.a.bc.1.6 6 80.3 even 4
1280.4.a.bd.1.6 6 80.53 odd 4
1440.4.k.c.721.2 12 120.53 even 4
1440.4.k.c.721.8 12 15.8 even 4