Properties

Label 800.4.f.b.49.2
Level $800$
Weight $4$
Character 800.49
Analytic conductor $47.202$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,4,Mod(49,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.2015280046\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{11} + 7x^{10} - 12x^{9} + 21x^{8} - 68x^{6} + 336x^{4} - 768x^{3} + 1792x^{2} - 4096x + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{32} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(1.98839 + 0.215211i\) of defining polynomial
Character \(\chi\) \(=\) 800.49
Dual form 800.4.f.b.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.57890 q^{3} +21.5703i q^{7} +64.7554 q^{9} -37.2871i q^{11} -24.1097 q^{13} +14.4940i q^{17} -26.6887i q^{19} -206.620i q^{21} +8.36366i q^{23} -361.655 q^{27} +104.553i q^{29} -204.288 q^{31} +357.170i q^{33} +130.923 q^{37} +230.945 q^{39} -437.963 q^{41} -308.764 q^{43} +97.1081i q^{47} -122.277 q^{49} -138.836i q^{51} -154.502 q^{53} +255.648i q^{57} -544.088i q^{59} -374.601i q^{61} +1396.79i q^{63} +19.3982 q^{67} -80.1147i q^{69} +955.725 q^{71} +127.417i q^{73} +804.293 q^{77} +973.871 q^{79} +1715.87 q^{81} +55.0210 q^{83} -1001.50i q^{87} +919.812 q^{89} -520.054i q^{91} +1956.85 q^{93} -297.986i q^{97} -2414.54i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{3} + 108 q^{9} - 432 q^{27} + 264 q^{31} + 136 q^{37} + 600 q^{39} + 40 q^{41} + 1204 q^{43} - 1308 q^{49} + 1056 q^{53} + 2412 q^{67} + 1592 q^{71} + 824 q^{77} + 2016 q^{79} + 2508 q^{81}+ \cdots + 2784 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.57890 −1.84346 −0.921730 0.387831i \(-0.873224\pi\)
−0.921730 + 0.387831i \(0.873224\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 21.5703i 1.16469i 0.812943 + 0.582343i \(0.197864\pi\)
−0.812943 + 0.582343i \(0.802136\pi\)
\(8\) 0 0
\(9\) 64.7554 2.39835
\(10\) 0 0
\(11\) − 37.2871i − 1.02204i −0.859568 0.511022i \(-0.829267\pi\)
0.859568 0.511022i \(-0.170733\pi\)
\(12\) 0 0
\(13\) −24.1097 −0.514372 −0.257186 0.966362i \(-0.582795\pi\)
−0.257186 + 0.966362i \(0.582795\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.4940i 0.206783i 0.994641 + 0.103391i \(0.0329694\pi\)
−0.994641 + 0.103391i \(0.967031\pi\)
\(18\) 0 0
\(19\) − 26.6887i − 0.322253i −0.986934 0.161126i \(-0.948487\pi\)
0.986934 0.161126i \(-0.0515127\pi\)
\(20\) 0 0
\(21\) − 206.620i − 2.14705i
\(22\) 0 0
\(23\) 8.36366i 0.0758236i 0.999281 + 0.0379118i \(0.0120706\pi\)
−0.999281 + 0.0379118i \(0.987929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −361.655 −2.57780
\(28\) 0 0
\(29\) 104.553i 0.669481i 0.942310 + 0.334741i \(0.108649\pi\)
−0.942310 + 0.334741i \(0.891351\pi\)
\(30\) 0 0
\(31\) −204.288 −1.18359 −0.591793 0.806090i \(-0.701580\pi\)
−0.591793 + 0.806090i \(0.701580\pi\)
\(32\) 0 0
\(33\) 357.170i 1.88410i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 130.923 0.581720 0.290860 0.956766i \(-0.406059\pi\)
0.290860 + 0.956766i \(0.406059\pi\)
\(38\) 0 0
\(39\) 230.945 0.948225
\(40\) 0 0
\(41\) −437.963 −1.66825 −0.834126 0.551574i \(-0.814027\pi\)
−0.834126 + 0.551574i \(0.814027\pi\)
\(42\) 0 0
\(43\) −308.764 −1.09503 −0.547513 0.836797i \(-0.684425\pi\)
−0.547513 + 0.836797i \(0.684425\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 97.1081i 0.301376i 0.988581 + 0.150688i \(0.0481489\pi\)
−0.988581 + 0.150688i \(0.951851\pi\)
\(48\) 0 0
\(49\) −122.277 −0.356492
\(50\) 0 0
\(51\) − 138.836i − 0.381196i
\(52\) 0 0
\(53\) −154.502 −0.400425 −0.200212 0.979753i \(-0.564163\pi\)
−0.200212 + 0.979753i \(0.564163\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 255.648i 0.594060i
\(58\) 0 0
\(59\) − 544.088i − 1.20058i −0.799782 0.600290i \(-0.795052\pi\)
0.799782 0.600290i \(-0.204948\pi\)
\(60\) 0 0
\(61\) − 374.601i − 0.786275i −0.919480 0.393137i \(-0.871390\pi\)
0.919480 0.393137i \(-0.128610\pi\)
\(62\) 0 0
\(63\) 1396.79i 2.79332i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 19.3982 0.0353711 0.0176855 0.999844i \(-0.494370\pi\)
0.0176855 + 0.999844i \(0.494370\pi\)
\(68\) 0 0
\(69\) − 80.1147i − 0.139778i
\(70\) 0 0
\(71\) 955.725 1.59752 0.798759 0.601651i \(-0.205490\pi\)
0.798759 + 0.601651i \(0.205490\pi\)
\(72\) 0 0
\(73\) 127.417i 0.204287i 0.994770 + 0.102144i \(0.0325702\pi\)
−0.994770 + 0.102144i \(0.967430\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 804.293 1.19036
\(78\) 0 0
\(79\) 973.871 1.38695 0.693475 0.720481i \(-0.256079\pi\)
0.693475 + 0.720481i \(0.256079\pi\)
\(80\) 0 0
\(81\) 1715.87 2.35373
\(82\) 0 0
\(83\) 55.0210 0.0727631 0.0363816 0.999338i \(-0.488417\pi\)
0.0363816 + 0.999338i \(0.488417\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 1001.50i − 1.23416i
\(88\) 0 0
\(89\) 919.812 1.09550 0.547752 0.836641i \(-0.315484\pi\)
0.547752 + 0.836641i \(0.315484\pi\)
\(90\) 0 0
\(91\) − 520.054i − 0.599082i
\(92\) 0 0
\(93\) 1956.85 2.18189
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 297.986i − 0.311916i −0.987764 0.155958i \(-0.950154\pi\)
0.987764 0.155958i \(-0.0498465\pi\)
\(98\) 0 0
\(99\) − 2414.54i − 2.45122i
\(100\) 0 0
\(101\) 1793.53i 1.76696i 0.468469 + 0.883480i \(0.344806\pi\)
−0.468469 + 0.883480i \(0.655194\pi\)
\(102\) 0 0
\(103\) − 2084.11i − 1.99372i −0.0791611 0.996862i \(-0.525224\pi\)
0.0791611 0.996862i \(-0.474776\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −67.2542 −0.0607637 −0.0303818 0.999538i \(-0.509672\pi\)
−0.0303818 + 0.999538i \(0.509672\pi\)
\(108\) 0 0
\(109\) − 1459.15i − 1.28222i −0.767451 0.641108i \(-0.778475\pi\)
0.767451 0.641108i \(-0.221525\pi\)
\(110\) 0 0
\(111\) −1254.10 −1.07238
\(112\) 0 0
\(113\) 458.263i 0.381502i 0.981638 + 0.190751i \(0.0610923\pi\)
−0.981638 + 0.190751i \(0.938908\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1561.24 −1.23364
\(118\) 0 0
\(119\) −312.639 −0.240837
\(120\) 0 0
\(121\) −59.3283 −0.0445743
\(122\) 0 0
\(123\) 4195.21 3.07536
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 208.685i 0.145809i 0.997339 + 0.0729047i \(0.0232269\pi\)
−0.997339 + 0.0729047i \(0.976773\pi\)
\(128\) 0 0
\(129\) 2957.62 2.01864
\(130\) 0 0
\(131\) 1784.69i 1.19030i 0.803616 + 0.595148i \(0.202906\pi\)
−0.803616 + 0.595148i \(0.797094\pi\)
\(132\) 0 0
\(133\) 575.682 0.375323
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 2380.60i − 1.48459i −0.670075 0.742293i \(-0.733738\pi\)
0.670075 0.742293i \(-0.266262\pi\)
\(138\) 0 0
\(139\) 2858.52i 1.74429i 0.489245 + 0.872146i \(0.337272\pi\)
−0.489245 + 0.872146i \(0.662728\pi\)
\(140\) 0 0
\(141\) − 930.189i − 0.555575i
\(142\) 0 0
\(143\) 898.983i 0.525711i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1171.28 0.657179
\(148\) 0 0
\(149\) 897.894i 0.493680i 0.969056 + 0.246840i \(0.0793922\pi\)
−0.969056 + 0.246840i \(0.920608\pi\)
\(150\) 0 0
\(151\) 3431.32 1.84925 0.924625 0.380878i \(-0.124378\pi\)
0.924625 + 0.380878i \(0.124378\pi\)
\(152\) 0 0
\(153\) 938.563i 0.495937i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −571.369 −0.290447 −0.145224 0.989399i \(-0.546390\pi\)
−0.145224 + 0.989399i \(0.546390\pi\)
\(158\) 0 0
\(159\) 1479.96 0.738167
\(160\) 0 0
\(161\) −180.406 −0.0883106
\(162\) 0 0
\(163\) 236.962 0.113867 0.0569333 0.998378i \(-0.481868\pi\)
0.0569333 + 0.998378i \(0.481868\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1448.46i 0.671169i 0.942010 + 0.335585i \(0.108934\pi\)
−0.942010 + 0.335585i \(0.891066\pi\)
\(168\) 0 0
\(169\) −1615.72 −0.735421
\(170\) 0 0
\(171\) − 1728.24i − 0.772874i
\(172\) 0 0
\(173\) 2529.74 1.11175 0.555875 0.831266i \(-0.312383\pi\)
0.555875 + 0.831266i \(0.312383\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5211.77i 2.21322i
\(178\) 0 0
\(179\) 141.524i 0.0590949i 0.999563 + 0.0295475i \(0.00940662\pi\)
−0.999563 + 0.0295475i \(0.990593\pi\)
\(180\) 0 0
\(181\) − 3457.79i − 1.41997i −0.704215 0.709987i \(-0.748701\pi\)
0.704215 0.709987i \(-0.251299\pi\)
\(182\) 0 0
\(183\) 3588.27i 1.44947i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 540.438 0.211341
\(188\) 0 0
\(189\) − 7801.01i − 3.00233i
\(190\) 0 0
\(191\) 1416.99 0.536804 0.268402 0.963307i \(-0.413504\pi\)
0.268402 + 0.963307i \(0.413504\pi\)
\(192\) 0 0
\(193\) − 2681.12i − 0.999955i −0.866038 0.499978i \(-0.833342\pi\)
0.866038 0.499978i \(-0.166658\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2697.74 0.975664 0.487832 0.872938i \(-0.337788\pi\)
0.487832 + 0.872938i \(0.337788\pi\)
\(198\) 0 0
\(199\) 3543.25 1.26218 0.631091 0.775709i \(-0.282607\pi\)
0.631091 + 0.775709i \(0.282607\pi\)
\(200\) 0 0
\(201\) −185.813 −0.0652052
\(202\) 0 0
\(203\) −2255.23 −0.779735
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 541.592i 0.181851i
\(208\) 0 0
\(209\) −995.143 −0.329356
\(210\) 0 0
\(211\) − 152.205i − 0.0496598i −0.999692 0.0248299i \(-0.992096\pi\)
0.999692 0.0248299i \(-0.00790441\pi\)
\(212\) 0 0
\(213\) −9154.80 −2.94496
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 4406.54i − 1.37851i
\(218\) 0 0
\(219\) − 1220.51i − 0.376596i
\(220\) 0 0
\(221\) − 349.446i − 0.106363i
\(222\) 0 0
\(223\) 2065.40i 0.620222i 0.950700 + 0.310111i \(0.100366\pi\)
−0.950700 + 0.310111i \(0.899634\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2940.45 0.859757 0.429878 0.902887i \(-0.358556\pi\)
0.429878 + 0.902887i \(0.358556\pi\)
\(228\) 0 0
\(229\) 4949.77i 1.42834i 0.699971 + 0.714171i \(0.253196\pi\)
−0.699971 + 0.714171i \(0.746804\pi\)
\(230\) 0 0
\(231\) −7704.25 −2.19438
\(232\) 0 0
\(233\) 5193.31i 1.46019i 0.683344 + 0.730096i \(0.260525\pi\)
−0.683344 + 0.730096i \(0.739475\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −9328.62 −2.55679
\(238\) 0 0
\(239\) −2066.30 −0.559238 −0.279619 0.960111i \(-0.590208\pi\)
−0.279619 + 0.960111i \(0.590208\pi\)
\(240\) 0 0
\(241\) −2309.08 −0.617181 −0.308591 0.951195i \(-0.599857\pi\)
−0.308591 + 0.951195i \(0.599857\pi\)
\(242\) 0 0
\(243\) −6671.42 −1.76120
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 643.457i 0.165758i
\(248\) 0 0
\(249\) −527.041 −0.134136
\(250\) 0 0
\(251\) − 3802.60i − 0.956246i −0.878293 0.478123i \(-0.841317\pi\)
0.878293 0.478123i \(-0.158683\pi\)
\(252\) 0 0
\(253\) 311.857 0.0774951
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 6168.56i − 1.49721i −0.663013 0.748607i \(-0.730723\pi\)
0.663013 0.748607i \(-0.269277\pi\)
\(258\) 0 0
\(259\) 2824.05i 0.677521i
\(260\) 0 0
\(261\) 6770.36i 1.60565i
\(262\) 0 0
\(263\) 1636.11i 0.383599i 0.981434 + 0.191800i \(0.0614324\pi\)
−0.981434 + 0.191800i \(0.938568\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −8810.79 −2.01952
\(268\) 0 0
\(269\) − 2262.24i − 0.512756i −0.966577 0.256378i \(-0.917471\pi\)
0.966577 0.256378i \(-0.0825292\pi\)
\(270\) 0 0
\(271\) −41.6380 −0.00933332 −0.00466666 0.999989i \(-0.501485\pi\)
−0.00466666 + 0.999989i \(0.501485\pi\)
\(272\) 0 0
\(273\) 4981.55i 1.10438i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2139.00 0.463971 0.231986 0.972719i \(-0.425478\pi\)
0.231986 + 0.972719i \(0.425478\pi\)
\(278\) 0 0
\(279\) −13228.7 −2.83865
\(280\) 0 0
\(281\) −1493.53 −0.317069 −0.158534 0.987353i \(-0.550677\pi\)
−0.158534 + 0.987353i \(0.550677\pi\)
\(282\) 0 0
\(283\) 1090.20 0.228995 0.114498 0.993424i \(-0.463474\pi\)
0.114498 + 0.993424i \(0.463474\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 9446.98i − 1.94299i
\(288\) 0 0
\(289\) 4702.92 0.957241
\(290\) 0 0
\(291\) 2854.38i 0.575005i
\(292\) 0 0
\(293\) −4067.51 −0.811011 −0.405506 0.914093i \(-0.632905\pi\)
−0.405506 + 0.914093i \(0.632905\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 13485.1i 2.63463i
\(298\) 0 0
\(299\) − 201.646i − 0.0390016i
\(300\) 0 0
\(301\) − 6660.13i − 1.27536i
\(302\) 0 0
\(303\) − 17180.1i − 3.25732i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6736.05 1.25227 0.626135 0.779715i \(-0.284636\pi\)
0.626135 + 0.779715i \(0.284636\pi\)
\(308\) 0 0
\(309\) 19963.5i 3.67535i
\(310\) 0 0
\(311\) −3274.35 −0.597014 −0.298507 0.954407i \(-0.596489\pi\)
−0.298507 + 0.954407i \(0.596489\pi\)
\(312\) 0 0
\(313\) − 9357.60i − 1.68985i −0.534885 0.844925i \(-0.679645\pi\)
0.534885 0.844925i \(-0.320355\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9064.68 1.60607 0.803033 0.595934i \(-0.203218\pi\)
0.803033 + 0.595934i \(0.203218\pi\)
\(318\) 0 0
\(319\) 3898.47 0.684239
\(320\) 0 0
\(321\) 644.222 0.112015
\(322\) 0 0
\(323\) 386.825 0.0666362
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 13977.1i 2.36371i
\(328\) 0 0
\(329\) −2094.65 −0.351008
\(330\) 0 0
\(331\) 280.089i 0.0465108i 0.999730 + 0.0232554i \(0.00740310\pi\)
−0.999730 + 0.0232554i \(0.992597\pi\)
\(332\) 0 0
\(333\) 8477.98 1.39517
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 5748.75i 0.929242i 0.885510 + 0.464621i \(0.153809\pi\)
−0.885510 + 0.464621i \(0.846191\pi\)
\(338\) 0 0
\(339\) − 4389.65i − 0.703284i
\(340\) 0 0
\(341\) 7617.30i 1.20968i
\(342\) 0 0
\(343\) 4761.06i 0.749484i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2911.52 0.450428 0.225214 0.974309i \(-0.427692\pi\)
0.225214 + 0.974309i \(0.427692\pi\)
\(348\) 0 0
\(349\) − 5665.17i − 0.868910i −0.900693 0.434455i \(-0.856941\pi\)
0.900693 0.434455i \(-0.143059\pi\)
\(350\) 0 0
\(351\) 8719.42 1.32595
\(352\) 0 0
\(353\) − 9428.18i − 1.42156i −0.703414 0.710781i \(-0.748342\pi\)
0.703414 0.710781i \(-0.251658\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2994.74 0.443973
\(358\) 0 0
\(359\) 4573.16 0.672318 0.336159 0.941805i \(-0.390872\pi\)
0.336159 + 0.941805i \(0.390872\pi\)
\(360\) 0 0
\(361\) 6146.71 0.896153
\(362\) 0 0
\(363\) 568.300 0.0821709
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 2717.97i − 0.386585i −0.981141 0.193293i \(-0.938083\pi\)
0.981141 0.193293i \(-0.0619166\pi\)
\(368\) 0 0
\(369\) −28360.5 −4.00105
\(370\) 0 0
\(371\) − 3332.65i − 0.466369i
\(372\) 0 0
\(373\) 5627.51 0.781183 0.390592 0.920564i \(-0.372270\pi\)
0.390592 + 0.920564i \(0.372270\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2520.74i − 0.344363i
\(378\) 0 0
\(379\) 8066.74i 1.09330i 0.837361 + 0.546650i \(0.184097\pi\)
−0.837361 + 0.546650i \(0.815903\pi\)
\(380\) 0 0
\(381\) − 1998.97i − 0.268794i
\(382\) 0 0
\(383\) − 10607.8i − 1.41523i −0.706600 0.707613i \(-0.749772\pi\)
0.706600 0.707613i \(-0.250228\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −19994.1 −2.62625
\(388\) 0 0
\(389\) 8992.58i 1.17209i 0.810280 + 0.586044i \(0.199315\pi\)
−0.810280 + 0.586044i \(0.800685\pi\)
\(390\) 0 0
\(391\) −121.223 −0.0156790
\(392\) 0 0
\(393\) − 17095.3i − 2.19426i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8977.17 1.13489 0.567445 0.823411i \(-0.307932\pi\)
0.567445 + 0.823411i \(0.307932\pi\)
\(398\) 0 0
\(399\) −5514.40 −0.691893
\(400\) 0 0
\(401\) −3165.72 −0.394236 −0.197118 0.980380i \(-0.563158\pi\)
−0.197118 + 0.980380i \(0.563158\pi\)
\(402\) 0 0
\(403\) 4925.33 0.608804
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 4881.75i − 0.594543i
\(408\) 0 0
\(409\) 5417.61 0.654972 0.327486 0.944856i \(-0.393798\pi\)
0.327486 + 0.944856i \(0.393798\pi\)
\(410\) 0 0
\(411\) 22803.5i 2.73678i
\(412\) 0 0
\(413\) 11736.1 1.39830
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 27381.5i − 3.21554i
\(418\) 0 0
\(419\) 6198.14i 0.722670i 0.932436 + 0.361335i \(0.117679\pi\)
−0.932436 + 0.361335i \(0.882321\pi\)
\(420\) 0 0
\(421\) 4344.57i 0.502949i 0.967864 + 0.251474i \(0.0809154\pi\)
−0.967864 + 0.251474i \(0.919085\pi\)
\(422\) 0 0
\(423\) 6288.27i 0.722804i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8080.25 0.915763
\(428\) 0 0
\(429\) − 8611.27i − 0.969128i
\(430\) 0 0
\(431\) −4750.74 −0.530940 −0.265470 0.964119i \(-0.585527\pi\)
−0.265470 + 0.964119i \(0.585527\pi\)
\(432\) 0 0
\(433\) 4210.26i 0.467280i 0.972323 + 0.233640i \(0.0750638\pi\)
−0.972323 + 0.233640i \(0.924936\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 223.215 0.0244344
\(438\) 0 0
\(439\) −5776.50 −0.628012 −0.314006 0.949421i \(-0.601671\pi\)
−0.314006 + 0.949421i \(0.601671\pi\)
\(440\) 0 0
\(441\) −7918.08 −0.854992
\(442\) 0 0
\(443\) −11981.6 −1.28502 −0.642510 0.766278i \(-0.722107\pi\)
−0.642510 + 0.766278i \(0.722107\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 8600.84i − 0.910080i
\(448\) 0 0
\(449\) 5567.58 0.585190 0.292595 0.956236i \(-0.405481\pi\)
0.292595 + 0.956236i \(0.405481\pi\)
\(450\) 0 0
\(451\) 16330.4i 1.70503i
\(452\) 0 0
\(453\) −32868.3 −3.40902
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7283.56i 0.745538i 0.927924 + 0.372769i \(0.121592\pi\)
−0.927924 + 0.372769i \(0.878408\pi\)
\(458\) 0 0
\(459\) − 5241.82i − 0.533044i
\(460\) 0 0
\(461\) 11901.1i 1.20236i 0.799113 + 0.601181i \(0.205303\pi\)
−0.799113 + 0.601181i \(0.794697\pi\)
\(462\) 0 0
\(463\) − 4915.73i − 0.493419i −0.969089 0.246710i \(-0.920651\pi\)
0.969089 0.246710i \(-0.0793494\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3110.15 −0.308181 −0.154091 0.988057i \(-0.549245\pi\)
−0.154091 + 0.988057i \(0.549245\pi\)
\(468\) 0 0
\(469\) 418.424i 0.0411962i
\(470\) 0 0
\(471\) 5473.09 0.535428
\(472\) 0 0
\(473\) 11512.9i 1.11916i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −10004.8 −0.960358
\(478\) 0 0
\(479\) 6590.43 0.628652 0.314326 0.949315i \(-0.398221\pi\)
0.314326 + 0.949315i \(0.398221\pi\)
\(480\) 0 0
\(481\) −3156.52 −0.299221
\(482\) 0 0
\(483\) 1728.10 0.162797
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3139.99i 0.292169i 0.989272 + 0.146085i \(0.0466672\pi\)
−0.989272 + 0.146085i \(0.953333\pi\)
\(488\) 0 0
\(489\) −2269.83 −0.209909
\(490\) 0 0
\(491\) − 12057.6i − 1.10825i −0.832433 0.554126i \(-0.813053\pi\)
0.832433 0.554126i \(-0.186947\pi\)
\(492\) 0 0
\(493\) −1515.38 −0.138437
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 20615.3i 1.86061i
\(498\) 0 0
\(499\) − 8458.64i − 0.758839i −0.925225 0.379420i \(-0.876124\pi\)
0.925225 0.379420i \(-0.123876\pi\)
\(500\) 0 0
\(501\) − 13874.7i − 1.23727i
\(502\) 0 0
\(503\) − 16896.2i − 1.49774i −0.662718 0.748869i \(-0.730597\pi\)
0.662718 0.748869i \(-0.269403\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 15476.8 1.35572
\(508\) 0 0
\(509\) 6849.13i 0.596429i 0.954499 + 0.298214i \(0.0963910\pi\)
−0.954499 + 0.298214i \(0.903609\pi\)
\(510\) 0 0
\(511\) −2748.41 −0.237931
\(512\) 0 0
\(513\) 9652.10i 0.830703i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3620.88 0.308019
\(518\) 0 0
\(519\) −24232.1 −2.04947
\(520\) 0 0
\(521\) 11044.1 0.928696 0.464348 0.885653i \(-0.346289\pi\)
0.464348 + 0.885653i \(0.346289\pi\)
\(522\) 0 0
\(523\) −3115.75 −0.260502 −0.130251 0.991481i \(-0.541578\pi\)
−0.130251 + 0.991481i \(0.541578\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 2960.94i − 0.244745i
\(528\) 0 0
\(529\) 12097.0 0.994251
\(530\) 0 0
\(531\) − 35232.6i − 2.87941i
\(532\) 0 0
\(533\) 10559.2 0.858103
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 1355.64i − 0.108939i
\(538\) 0 0
\(539\) 4559.35i 0.364350i
\(540\) 0 0
\(541\) − 14840.6i − 1.17938i −0.807629 0.589691i \(-0.799249\pi\)
0.807629 0.589691i \(-0.200751\pi\)
\(542\) 0 0
\(543\) 33121.8i 2.61767i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 12622.8 0.986679 0.493340 0.869837i \(-0.335776\pi\)
0.493340 + 0.869837i \(0.335776\pi\)
\(548\) 0 0
\(549\) − 24257.5i − 1.88576i
\(550\) 0 0
\(551\) 2790.37 0.215742
\(552\) 0 0
\(553\) 21006.7i 1.61536i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13382.1 −1.01798 −0.508992 0.860771i \(-0.669982\pi\)
−0.508992 + 0.860771i \(0.669982\pi\)
\(558\) 0 0
\(559\) 7444.23 0.563251
\(560\) 0 0
\(561\) −5176.80 −0.389599
\(562\) 0 0
\(563\) 153.895 0.0115203 0.00576014 0.999983i \(-0.498166\pi\)
0.00576014 + 0.999983i \(0.498166\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 37011.7i 2.74135i
\(568\) 0 0
\(569\) 5395.71 0.397539 0.198770 0.980046i \(-0.436305\pi\)
0.198770 + 0.980046i \(0.436305\pi\)
\(570\) 0 0
\(571\) − 22390.5i − 1.64100i −0.571646 0.820500i \(-0.693695\pi\)
0.571646 0.820500i \(-0.306305\pi\)
\(572\) 0 0
\(573\) −13573.2 −0.989578
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1935.38i 0.139638i 0.997560 + 0.0698188i \(0.0222421\pi\)
−0.997560 + 0.0698188i \(0.977758\pi\)
\(578\) 0 0
\(579\) 25682.2i 1.84338i
\(580\) 0 0
\(581\) 1186.82i 0.0847461i
\(582\) 0 0
\(583\) 5760.94i 0.409252i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7905.44 −0.555865 −0.277932 0.960601i \(-0.589649\pi\)
−0.277932 + 0.960601i \(0.589649\pi\)
\(588\) 0 0
\(589\) 5452.17i 0.381414i
\(590\) 0 0
\(591\) −25841.4 −1.79860
\(592\) 0 0
\(593\) − 11141.6i − 0.771552i −0.922592 0.385776i \(-0.873934\pi\)
0.922592 0.385776i \(-0.126066\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −33940.4 −2.32678
\(598\) 0 0
\(599\) 278.847 0.0190207 0.00951033 0.999955i \(-0.496973\pi\)
0.00951033 + 0.999955i \(0.496973\pi\)
\(600\) 0 0
\(601\) 18890.7 1.28214 0.641071 0.767482i \(-0.278490\pi\)
0.641071 + 0.767482i \(0.278490\pi\)
\(602\) 0 0
\(603\) 1256.14 0.0848321
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 5398.05i 0.360956i 0.983579 + 0.180478i \(0.0577644\pi\)
−0.983579 + 0.180478i \(0.942236\pi\)
\(608\) 0 0
\(609\) 21602.6 1.43741
\(610\) 0 0
\(611\) − 2341.25i − 0.155019i
\(612\) 0 0
\(613\) −14412.8 −0.949635 −0.474817 0.880084i \(-0.657486\pi\)
−0.474817 + 0.880084i \(0.657486\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 13226.3i − 0.863001i −0.902113 0.431500i \(-0.857984\pi\)
0.902113 0.431500i \(-0.142016\pi\)
\(618\) 0 0
\(619\) − 14179.4i − 0.920705i −0.887736 0.460352i \(-0.847723\pi\)
0.887736 0.460352i \(-0.152277\pi\)
\(620\) 0 0
\(621\) − 3024.76i − 0.195458i
\(622\) 0 0
\(623\) 19840.6i 1.27592i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 9532.38 0.607156
\(628\) 0 0
\(629\) 1897.60i 0.120290i
\(630\) 0 0
\(631\) −1533.79 −0.0967657 −0.0483828 0.998829i \(-0.515407\pi\)
−0.0483828 + 0.998829i \(0.515407\pi\)
\(632\) 0 0
\(633\) 1457.96i 0.0915459i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2948.06 0.183370
\(638\) 0 0
\(639\) 61888.4 3.83140
\(640\) 0 0
\(641\) −26682.6 −1.64415 −0.822074 0.569381i \(-0.807183\pi\)
−0.822074 + 0.569381i \(0.807183\pi\)
\(642\) 0 0
\(643\) 16498.3 1.01186 0.505931 0.862574i \(-0.331149\pi\)
0.505931 + 0.862574i \(0.331149\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 20127.5i − 1.22302i −0.791236 0.611510i \(-0.790562\pi\)
0.791236 0.611510i \(-0.209438\pi\)
\(648\) 0 0
\(649\) −20287.5 −1.22705
\(650\) 0 0
\(651\) 42209.9i 2.54122i
\(652\) 0 0
\(653\) 21447.4 1.28530 0.642650 0.766160i \(-0.277835\pi\)
0.642650 + 0.766160i \(0.277835\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 8250.91i 0.489953i
\(658\) 0 0
\(659\) 19402.5i 1.14691i 0.819237 + 0.573455i \(0.194397\pi\)
−0.819237 + 0.573455i \(0.805603\pi\)
\(660\) 0 0
\(661\) 9326.38i 0.548796i 0.961616 + 0.274398i \(0.0884786\pi\)
−0.961616 + 0.274398i \(0.911521\pi\)
\(662\) 0 0
\(663\) 3347.31i 0.196076i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −874.443 −0.0507625
\(668\) 0 0
\(669\) − 19784.3i − 1.14336i
\(670\) 0 0
\(671\) −13967.8 −0.803608
\(672\) 0 0
\(673\) − 15027.4i − 0.860718i −0.902658 0.430359i \(-0.858387\pi\)
0.902658 0.430359i \(-0.141613\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9717.31 −0.551649 −0.275825 0.961208i \(-0.588951\pi\)
−0.275825 + 0.961208i \(0.588951\pi\)
\(678\) 0 0
\(679\) 6427.63 0.363284
\(680\) 0 0
\(681\) −28166.3 −1.58493
\(682\) 0 0
\(683\) −11473.9 −0.642804 −0.321402 0.946943i \(-0.604154\pi\)
−0.321402 + 0.946943i \(0.604154\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 47413.4i − 2.63309i
\(688\) 0 0
\(689\) 3725.01 0.205967
\(690\) 0 0
\(691\) − 28412.6i − 1.56421i −0.623149 0.782103i \(-0.714147\pi\)
0.623149 0.782103i \(-0.285853\pi\)
\(692\) 0 0
\(693\) 52082.3 2.85490
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 6347.82i − 0.344965i
\(698\) 0 0
\(699\) − 49746.2i − 2.69181i
\(700\) 0 0
\(701\) 12291.3i 0.662250i 0.943587 + 0.331125i \(0.107428\pi\)
−0.943587 + 0.331125i \(0.892572\pi\)
\(702\) 0 0
\(703\) − 3494.17i − 0.187461i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −38686.9 −2.05795
\(708\) 0 0
\(709\) − 12774.2i − 0.676650i −0.941029 0.338325i \(-0.890140\pi\)
0.941029 0.338325i \(-0.109860\pi\)
\(710\) 0 0
\(711\) 63063.4 3.32639
\(712\) 0 0
\(713\) − 1708.59i − 0.0897438i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 19792.9 1.03093
\(718\) 0 0
\(719\) −15748.6 −0.816861 −0.408430 0.912790i \(-0.633924\pi\)
−0.408430 + 0.912790i \(0.633924\pi\)
\(720\) 0 0
\(721\) 44954.8 2.32206
\(722\) 0 0
\(723\) 22118.4 1.13775
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 9536.44i 0.486502i 0.969963 + 0.243251i \(0.0782138\pi\)
−0.969963 + 0.243251i \(0.921786\pi\)
\(728\) 0 0
\(729\) 17576.5 0.892980
\(730\) 0 0
\(731\) − 4475.22i − 0.226432i
\(732\) 0 0
\(733\) −34913.5 −1.75929 −0.879645 0.475631i \(-0.842220\pi\)
−0.879645 + 0.475631i \(0.842220\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 723.301i − 0.0361508i
\(738\) 0 0
\(739\) − 19324.3i − 0.961918i −0.876743 0.480959i \(-0.840289\pi\)
0.876743 0.480959i \(-0.159711\pi\)
\(740\) 0 0
\(741\) − 6163.61i − 0.305568i
\(742\) 0 0
\(743\) 7053.57i 0.348278i 0.984721 + 0.174139i \(0.0557142\pi\)
−0.984721 + 0.174139i \(0.944286\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3562.91 0.174511
\(748\) 0 0
\(749\) − 1450.69i − 0.0707705i
\(750\) 0 0
\(751\) 36810.6 1.78860 0.894299 0.447471i \(-0.147675\pi\)
0.894299 + 0.447471i \(0.147675\pi\)
\(752\) 0 0
\(753\) 36424.7i 1.76280i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 28515.3 1.36910 0.684549 0.728967i \(-0.259999\pi\)
0.684549 + 0.728967i \(0.259999\pi\)
\(758\) 0 0
\(759\) −2987.24 −0.142859
\(760\) 0 0
\(761\) 1517.92 0.0723057 0.0361528 0.999346i \(-0.488490\pi\)
0.0361528 + 0.999346i \(0.488490\pi\)
\(762\) 0 0
\(763\) 31474.3 1.49338
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13117.8i 0.617545i
\(768\) 0 0
\(769\) 10413.9 0.488341 0.244171 0.969732i \(-0.421484\pi\)
0.244171 + 0.969732i \(0.421484\pi\)
\(770\) 0 0
\(771\) 59088.0i 2.76006i
\(772\) 0 0
\(773\) 32909.8 1.53129 0.765643 0.643266i \(-0.222421\pi\)
0.765643 + 0.643266i \(0.222421\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 27051.3i − 1.24898i
\(778\) 0 0
\(779\) 11688.6i 0.537599i
\(780\) 0 0
\(781\) − 35636.2i − 1.63273i
\(782\) 0 0
\(783\) − 37812.1i − 1.72579i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 35511.6 1.60845 0.804226 0.594324i \(-0.202580\pi\)
0.804226 + 0.594324i \(0.202580\pi\)
\(788\) 0 0
\(789\) − 15672.1i − 0.707150i
\(790\) 0 0
\(791\) −9884.85 −0.444330
\(792\) 0 0
\(793\) 9031.54i 0.404438i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22692.3 1.00853 0.504267 0.863548i \(-0.331763\pi\)
0.504267 + 0.863548i \(0.331763\pi\)
\(798\) 0 0
\(799\) −1407.48 −0.0623193
\(800\) 0 0
\(801\) 59562.8 2.62740
\(802\) 0 0
\(803\) 4751.00 0.208791
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 21669.8i 0.945246i
\(808\) 0 0
\(809\) 22716.0 0.987209 0.493604 0.869687i \(-0.335679\pi\)
0.493604 + 0.869687i \(0.335679\pi\)
\(810\) 0 0
\(811\) 17237.0i 0.746327i 0.927766 + 0.373164i \(0.121727\pi\)
−0.927766 + 0.373164i \(0.878273\pi\)
\(812\) 0 0
\(813\) 398.847 0.0172056
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8240.51i 0.352875i
\(818\) 0 0
\(819\) − 33676.3i − 1.43681i
\(820\) 0 0
\(821\) − 15695.7i − 0.667217i −0.942712 0.333609i \(-0.891734\pi\)
0.942712 0.333609i \(-0.108266\pi\)
\(822\) 0 0
\(823\) − 16856.0i − 0.713927i −0.934118 0.356963i \(-0.883812\pi\)
0.934118 0.356963i \(-0.116188\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3712.67 0.156109 0.0780544 0.996949i \(-0.475129\pi\)
0.0780544 + 0.996949i \(0.475129\pi\)
\(828\) 0 0
\(829\) 22469.6i 0.941376i 0.882300 + 0.470688i \(0.155994\pi\)
−0.882300 + 0.470688i \(0.844006\pi\)
\(830\) 0 0
\(831\) −20489.3 −0.855313
\(832\) 0 0
\(833\) − 1772.27i − 0.0737163i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 73881.8 3.05105
\(838\) 0 0
\(839\) −31935.2 −1.31409 −0.657046 0.753850i \(-0.728194\pi\)
−0.657046 + 0.753850i \(0.728194\pi\)
\(840\) 0 0
\(841\) 13457.7 0.551795
\(842\) 0 0
\(843\) 14306.3 0.584504
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 1279.73i − 0.0519150i
\(848\) 0 0
\(849\) −10442.9 −0.422144
\(850\) 0 0
\(851\) 1095.00i 0.0441081i
\(852\) 0 0
\(853\) 14782.2 0.593355 0.296678 0.954978i \(-0.404121\pi\)
0.296678 + 0.954978i \(0.404121\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7222.91i 0.287900i 0.989585 + 0.143950i \(0.0459804\pi\)
−0.989585 + 0.143950i \(0.954020\pi\)
\(858\) 0 0
\(859\) − 4646.96i − 0.184578i −0.995732 0.0922889i \(-0.970582\pi\)
0.995732 0.0922889i \(-0.0294183\pi\)
\(860\) 0 0
\(861\) 90491.7i 3.58182i
\(862\) 0 0
\(863\) − 8122.19i − 0.320374i −0.987087 0.160187i \(-0.948790\pi\)
0.987087 0.160187i \(-0.0512097\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −45048.9 −1.76464
\(868\) 0 0
\(869\) − 36312.8i − 1.41752i
\(870\) 0 0
\(871\) −467.685 −0.0181939
\(872\) 0 0
\(873\) − 19296.2i − 0.748083i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −31986.1 −1.23158 −0.615790 0.787910i \(-0.711163\pi\)
−0.615790 + 0.787910i \(0.711163\pi\)
\(878\) 0 0
\(879\) 38962.3 1.49507
\(880\) 0 0
\(881\) −29450.6 −1.12624 −0.563118 0.826376i \(-0.690398\pi\)
−0.563118 + 0.826376i \(0.690398\pi\)
\(882\) 0 0
\(883\) −46156.5 −1.75911 −0.879553 0.475801i \(-0.842158\pi\)
−0.879553 + 0.475801i \(0.842158\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41051.2i 1.55396i 0.629523 + 0.776982i \(0.283250\pi\)
−0.629523 + 0.776982i \(0.716750\pi\)
\(888\) 0 0
\(889\) −4501.39 −0.169822
\(890\) 0 0
\(891\) − 63979.7i − 2.40561i
\(892\) 0 0
\(893\) 2591.69 0.0971192
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1931.54i 0.0718979i
\(898\) 0 0
\(899\) − 21358.8i − 0.792389i
\(900\) 0 0
\(901\) − 2239.35i − 0.0828008i
\(902\) 0 0
\(903\) 63796.7i 2.35108i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −27915.8 −1.02197 −0.510987 0.859588i \(-0.670720\pi\)
−0.510987 + 0.859588i \(0.670720\pi\)
\(908\) 0 0
\(909\) 116141.i 4.23778i
\(910\) 0 0
\(911\) 6557.22 0.238475 0.119237 0.992866i \(-0.461955\pi\)
0.119237 + 0.992866i \(0.461955\pi\)
\(912\) 0 0
\(913\) − 2051.57i − 0.0743671i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −38496.2 −1.38632
\(918\) 0 0
\(919\) −11493.0 −0.412534 −0.206267 0.978496i \(-0.566131\pi\)
−0.206267 + 0.978496i \(0.566131\pi\)
\(920\) 0 0
\(921\) −64524.0 −2.30851
\(922\) 0 0
\(923\) −23042.3 −0.821719
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 134957.i − 4.78164i
\(928\) 0 0
\(929\) −56597.2 −1.99881 −0.999405 0.0345020i \(-0.989015\pi\)
−0.999405 + 0.0345020i \(0.989015\pi\)
\(930\) 0 0
\(931\) 3263.40i 0.114880i
\(932\) 0 0
\(933\) 31364.7 1.10057
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 37901.5i 1.32144i 0.750633 + 0.660720i \(0.229749\pi\)
−0.750633 + 0.660720i \(0.770251\pi\)
\(938\) 0 0
\(939\) 89635.5i 3.11517i
\(940\) 0 0
\(941\) 4449.85i 0.154156i 0.997025 + 0.0770781i \(0.0245591\pi\)
−0.997025 + 0.0770781i \(0.975441\pi\)
\(942\) 0 0
\(943\) − 3662.97i − 0.126493i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 225.160 0.00772620 0.00386310 0.999993i \(-0.498770\pi\)
0.00386310 + 0.999993i \(0.498770\pi\)
\(948\) 0 0
\(949\) − 3071.98i − 0.105080i
\(950\) 0 0
\(951\) −86829.7 −2.96072
\(952\) 0 0
\(953\) 4845.81i 0.164713i 0.996603 + 0.0823563i \(0.0262445\pi\)
−0.996603 + 0.0823563i \(0.973755\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −37343.1 −1.26137
\(958\) 0 0
\(959\) 51350.2 1.72908
\(960\) 0 0
\(961\) 11942.5 0.400876
\(962\) 0 0
\(963\) −4355.07 −0.145732
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 40394.8i 1.34334i 0.740851 + 0.671670i \(0.234423\pi\)
−0.740851 + 0.671670i \(0.765577\pi\)
\(968\) 0 0
\(969\) −3705.36 −0.122841
\(970\) 0 0
\(971\) 29066.2i 0.960637i 0.877094 + 0.480318i \(0.159479\pi\)
−0.877094 + 0.480318i \(0.840521\pi\)
\(972\) 0 0
\(973\) −61659.1 −2.03155
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 42580.5i − 1.39434i −0.716906 0.697170i \(-0.754442\pi\)
0.716906 0.697170i \(-0.245558\pi\)
\(978\) 0 0
\(979\) − 34297.1i − 1.11965i
\(980\) 0 0
\(981\) − 94488.0i − 3.07520i
\(982\) 0 0
\(983\) 40586.0i 1.31688i 0.752633 + 0.658440i \(0.228783\pi\)
−0.752633 + 0.658440i \(0.771217\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 20064.4 0.647070
\(988\) 0 0
\(989\) − 2582.40i − 0.0830288i
\(990\) 0 0
\(991\) 50370.4 1.61460 0.807299 0.590142i \(-0.200928\pi\)
0.807299 + 0.590142i \(0.200928\pi\)
\(992\) 0 0
\(993\) − 2682.95i − 0.0857409i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −22467.5 −0.713694 −0.356847 0.934163i \(-0.616148\pi\)
−0.356847 + 0.934163i \(0.616148\pi\)
\(998\) 0 0
\(999\) −47349.1 −1.49956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.4.f.b.49.2 12
4.3 odd 2 200.4.f.c.149.9 12
5.2 odd 4 160.4.d.a.81.12 12
5.3 odd 4 800.4.d.d.401.1 12
5.4 even 2 800.4.f.c.49.11 12
8.3 odd 2 200.4.f.b.149.3 12
8.5 even 2 800.4.f.c.49.12 12
15.2 even 4 1440.4.k.c.721.8 12
20.3 even 4 200.4.d.b.101.3 12
20.7 even 4 40.4.d.a.21.10 yes 12
20.19 odd 2 200.4.f.b.149.4 12
40.3 even 4 200.4.d.b.101.4 12
40.13 odd 4 800.4.d.d.401.12 12
40.19 odd 2 200.4.f.c.149.10 12
40.27 even 4 40.4.d.a.21.9 12
40.29 even 2 inner 800.4.f.b.49.1 12
40.37 odd 4 160.4.d.a.81.1 12
60.47 odd 4 360.4.k.c.181.3 12
80.27 even 4 1280.4.a.bb.1.1 6
80.37 odd 4 1280.4.a.bd.1.6 6
80.67 even 4 1280.4.a.bc.1.6 6
80.77 odd 4 1280.4.a.ba.1.1 6
120.77 even 4 1440.4.k.c.721.2 12
120.107 odd 4 360.4.k.c.181.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.d.a.21.9 12 40.27 even 4
40.4.d.a.21.10 yes 12 20.7 even 4
160.4.d.a.81.1 12 40.37 odd 4
160.4.d.a.81.12 12 5.2 odd 4
200.4.d.b.101.3 12 20.3 even 4
200.4.d.b.101.4 12 40.3 even 4
200.4.f.b.149.3 12 8.3 odd 2
200.4.f.b.149.4 12 20.19 odd 2
200.4.f.c.149.9 12 4.3 odd 2
200.4.f.c.149.10 12 40.19 odd 2
360.4.k.c.181.3 12 60.47 odd 4
360.4.k.c.181.4 12 120.107 odd 4
800.4.d.d.401.1 12 5.3 odd 4
800.4.d.d.401.12 12 40.13 odd 4
800.4.f.b.49.1 12 40.29 even 2 inner
800.4.f.b.49.2 12 1.1 even 1 trivial
800.4.f.c.49.11 12 5.4 even 2
800.4.f.c.49.12 12 8.5 even 2
1280.4.a.ba.1.1 6 80.77 odd 4
1280.4.a.bb.1.1 6 80.27 even 4
1280.4.a.bc.1.6 6 80.67 even 4
1280.4.a.bd.1.6 6 80.37 odd 4
1440.4.k.c.721.2 12 120.77 even 4
1440.4.k.c.721.8 12 15.2 even 4