Properties

Label 160.4.d.a.81.12
Level $160$
Weight $4$
Character 160.81
Analytic conductor $9.440$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,4,Mod(81,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 160.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44030560092\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{11} + 7x^{10} - 12x^{9} + 21x^{8} - 68x^{6} + 336x^{4} - 768x^{3} + 1792x^{2} - 4096x + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{30}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 81.12
Root \(1.98839 - 0.215211i\) of defining polynomial
Character \(\chi\) \(=\) 160.81
Dual form 160.4.d.a.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.57890i q^{3} -5.00000i q^{5} -21.5703 q^{7} -64.7554 q^{9} -37.2871i q^{11} +24.1097i q^{13} +47.8945 q^{15} -14.4940 q^{17} +26.6887i q^{19} -206.620i q^{21} +8.36366 q^{23} -25.0000 q^{25} -361.655i q^{27} -104.553i q^{29} -204.288 q^{31} +357.170 q^{33} +107.851i q^{35} +130.923i q^{37} -230.945 q^{39} -437.963 q^{41} +308.764i q^{43} +323.777i q^{45} -97.1081 q^{47} +122.277 q^{49} -138.836i q^{51} +154.502i q^{53} -186.436 q^{55} -255.648 q^{57} +544.088i q^{59} -374.601i q^{61} +1396.79 q^{63} +120.549 q^{65} +19.3982i q^{67} +80.1147i q^{69} +955.725 q^{71} +127.417 q^{73} -239.473i q^{75} +804.293i q^{77} -973.871 q^{79} +1715.87 q^{81} -55.0210i q^{83} +72.4698i q^{85} +1001.50 q^{87} -919.812 q^{89} -520.054i q^{91} -1956.85i q^{93} +133.443 q^{95} +297.986 q^{97} +2414.54i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 28 q^{7} - 108 q^{9} + 60 q^{15} - 604 q^{23} - 300 q^{25} + 264 q^{31} - 232 q^{33} - 600 q^{39} + 40 q^{41} + 940 q^{47} + 1308 q^{49} - 440 q^{55} - 680 q^{57} + 1300 q^{63} + 1592 q^{71} + 432 q^{73}+ \cdots - 1584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.57890i 1.84346i 0.387831 + 0.921730i \(0.373224\pi\)
−0.387831 + 0.921730i \(0.626776\pi\)
\(4\) 0 0
\(5\) − 5.00000i − 0.447214i
\(6\) 0 0
\(7\) −21.5703 −1.16469 −0.582343 0.812943i \(-0.697864\pi\)
−0.582343 + 0.812943i \(0.697864\pi\)
\(8\) 0 0
\(9\) −64.7554 −2.39835
\(10\) 0 0
\(11\) − 37.2871i − 1.02204i −0.859568 0.511022i \(-0.829267\pi\)
0.859568 0.511022i \(-0.170733\pi\)
\(12\) 0 0
\(13\) 24.1097i 0.514372i 0.966362 + 0.257186i \(0.0827954\pi\)
−0.966362 + 0.257186i \(0.917205\pi\)
\(14\) 0 0
\(15\) 47.8945 0.824421
\(16\) 0 0
\(17\) −14.4940 −0.206783 −0.103391 0.994641i \(-0.532969\pi\)
−0.103391 + 0.994641i \(0.532969\pi\)
\(18\) 0 0
\(19\) 26.6887i 0.322253i 0.986934 + 0.161126i \(0.0515127\pi\)
−0.986934 + 0.161126i \(0.948487\pi\)
\(20\) 0 0
\(21\) − 206.620i − 2.14705i
\(22\) 0 0
\(23\) 8.36366 0.0758236 0.0379118 0.999281i \(-0.487929\pi\)
0.0379118 + 0.999281i \(0.487929\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) − 361.655i − 2.57780i
\(28\) 0 0
\(29\) − 104.553i − 0.669481i −0.942310 0.334741i \(-0.891351\pi\)
0.942310 0.334741i \(-0.108649\pi\)
\(30\) 0 0
\(31\) −204.288 −1.18359 −0.591793 0.806090i \(-0.701580\pi\)
−0.591793 + 0.806090i \(0.701580\pi\)
\(32\) 0 0
\(33\) 357.170 1.88410
\(34\) 0 0
\(35\) 107.851i 0.520863i
\(36\) 0 0
\(37\) 130.923i 0.581720i 0.956766 + 0.290860i \(0.0939414\pi\)
−0.956766 + 0.290860i \(0.906059\pi\)
\(38\) 0 0
\(39\) −230.945 −0.948225
\(40\) 0 0
\(41\) −437.963 −1.66825 −0.834126 0.551574i \(-0.814027\pi\)
−0.834126 + 0.551574i \(0.814027\pi\)
\(42\) 0 0
\(43\) 308.764i 1.09503i 0.836797 + 0.547513i \(0.184425\pi\)
−0.836797 + 0.547513i \(0.815575\pi\)
\(44\) 0 0
\(45\) 323.777i 1.07257i
\(46\) 0 0
\(47\) −97.1081 −0.301376 −0.150688 0.988581i \(-0.548149\pi\)
−0.150688 + 0.988581i \(0.548149\pi\)
\(48\) 0 0
\(49\) 122.277 0.356492
\(50\) 0 0
\(51\) − 138.836i − 0.381196i
\(52\) 0 0
\(53\) 154.502i 0.400425i 0.979753 + 0.200212i \(0.0641632\pi\)
−0.979753 + 0.200212i \(0.935837\pi\)
\(54\) 0 0
\(55\) −186.436 −0.457072
\(56\) 0 0
\(57\) −255.648 −0.594060
\(58\) 0 0
\(59\) 544.088i 1.20058i 0.799782 + 0.600290i \(0.204948\pi\)
−0.799782 + 0.600290i \(0.795052\pi\)
\(60\) 0 0
\(61\) − 374.601i − 0.786275i −0.919480 0.393137i \(-0.871390\pi\)
0.919480 0.393137i \(-0.128610\pi\)
\(62\) 0 0
\(63\) 1396.79 2.79332
\(64\) 0 0
\(65\) 120.549 0.230034
\(66\) 0 0
\(67\) 19.3982i 0.0353711i 0.999844 + 0.0176855i \(0.00562977\pi\)
−0.999844 + 0.0176855i \(0.994370\pi\)
\(68\) 0 0
\(69\) 80.1147i 0.139778i
\(70\) 0 0
\(71\) 955.725 1.59752 0.798759 0.601651i \(-0.205490\pi\)
0.798759 + 0.601651i \(0.205490\pi\)
\(72\) 0 0
\(73\) 127.417 0.204287 0.102144 0.994770i \(-0.467430\pi\)
0.102144 + 0.994770i \(0.467430\pi\)
\(74\) 0 0
\(75\) − 239.473i − 0.368692i
\(76\) 0 0
\(77\) 804.293i 1.19036i
\(78\) 0 0
\(79\) −973.871 −1.38695 −0.693475 0.720481i \(-0.743921\pi\)
−0.693475 + 0.720481i \(0.743921\pi\)
\(80\) 0 0
\(81\) 1715.87 2.35373
\(82\) 0 0
\(83\) − 55.0210i − 0.0727631i −0.999338 0.0363816i \(-0.988417\pi\)
0.999338 0.0363816i \(-0.0115832\pi\)
\(84\) 0 0
\(85\) 72.4698i 0.0924760i
\(86\) 0 0
\(87\) 1001.50 1.23416
\(88\) 0 0
\(89\) −919.812 −1.09550 −0.547752 0.836641i \(-0.684516\pi\)
−0.547752 + 0.836641i \(0.684516\pi\)
\(90\) 0 0
\(91\) − 520.054i − 0.599082i
\(92\) 0 0
\(93\) − 1956.85i − 2.18189i
\(94\) 0 0
\(95\) 133.443 0.144116
\(96\) 0 0
\(97\) 297.986 0.311916 0.155958 0.987764i \(-0.450154\pi\)
0.155958 + 0.987764i \(0.450154\pi\)
\(98\) 0 0
\(99\) 2414.54i 2.45122i
\(100\) 0 0
\(101\) 1793.53i 1.76696i 0.468469 + 0.883480i \(0.344806\pi\)
−0.468469 + 0.883480i \(0.655194\pi\)
\(102\) 0 0
\(103\) −2084.11 −1.99372 −0.996862 0.0791611i \(-0.974776\pi\)
−0.996862 + 0.0791611i \(0.974776\pi\)
\(104\) 0 0
\(105\) −1033.10 −0.960191
\(106\) 0 0
\(107\) − 67.2542i − 0.0607637i −0.999538 0.0303818i \(-0.990328\pi\)
0.999538 0.0303818i \(-0.00967233\pi\)
\(108\) 0 0
\(109\) 1459.15i 1.28222i 0.767451 + 0.641108i \(0.221525\pi\)
−0.767451 + 0.641108i \(0.778475\pi\)
\(110\) 0 0
\(111\) −1254.10 −1.07238
\(112\) 0 0
\(113\) 458.263 0.381502 0.190751 0.981638i \(-0.438908\pi\)
0.190751 + 0.981638i \(0.438908\pi\)
\(114\) 0 0
\(115\) − 41.8183i − 0.0339093i
\(116\) 0 0
\(117\) − 1561.24i − 1.23364i
\(118\) 0 0
\(119\) 312.639 0.240837
\(120\) 0 0
\(121\) −59.3283 −0.0445743
\(122\) 0 0
\(123\) − 4195.21i − 3.07536i
\(124\) 0 0
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) −208.685 −0.145809 −0.0729047 0.997339i \(-0.523227\pi\)
−0.0729047 + 0.997339i \(0.523227\pi\)
\(128\) 0 0
\(129\) −2957.62 −2.01864
\(130\) 0 0
\(131\) 1784.69i 1.19030i 0.803616 + 0.595148i \(0.202906\pi\)
−0.803616 + 0.595148i \(0.797094\pi\)
\(132\) 0 0
\(133\) − 575.682i − 0.375323i
\(134\) 0 0
\(135\) −1808.28 −1.15283
\(136\) 0 0
\(137\) 2380.60 1.48459 0.742293 0.670075i \(-0.233738\pi\)
0.742293 + 0.670075i \(0.233738\pi\)
\(138\) 0 0
\(139\) − 2858.52i − 1.74429i −0.489245 0.872146i \(-0.662728\pi\)
0.489245 0.872146i \(-0.337272\pi\)
\(140\) 0 0
\(141\) − 930.189i − 0.555575i
\(142\) 0 0
\(143\) 898.983 0.525711
\(144\) 0 0
\(145\) −522.764 −0.299401
\(146\) 0 0
\(147\) 1171.28i 0.657179i
\(148\) 0 0
\(149\) − 897.894i − 0.493680i −0.969056 0.246840i \(-0.920608\pi\)
0.969056 0.246840i \(-0.0793922\pi\)
\(150\) 0 0
\(151\) 3431.32 1.84925 0.924625 0.380878i \(-0.124378\pi\)
0.924625 + 0.380878i \(0.124378\pi\)
\(152\) 0 0
\(153\) 938.563 0.495937
\(154\) 0 0
\(155\) 1021.44i 0.529316i
\(156\) 0 0
\(157\) − 571.369i − 0.290447i −0.989399 0.145224i \(-0.953610\pi\)
0.989399 0.145224i \(-0.0463901\pi\)
\(158\) 0 0
\(159\) −1479.96 −0.738167
\(160\) 0 0
\(161\) −180.406 −0.0883106
\(162\) 0 0
\(163\) − 236.962i − 0.113867i −0.998378 0.0569333i \(-0.981868\pi\)
0.998378 0.0569333i \(-0.0181322\pi\)
\(164\) 0 0
\(165\) − 1785.85i − 0.842594i
\(166\) 0 0
\(167\) −1448.46 −0.671169 −0.335585 0.942010i \(-0.608934\pi\)
−0.335585 + 0.942010i \(0.608934\pi\)
\(168\) 0 0
\(169\) 1615.72 0.735421
\(170\) 0 0
\(171\) − 1728.24i − 0.772874i
\(172\) 0 0
\(173\) − 2529.74i − 1.11175i −0.831266 0.555875i \(-0.812383\pi\)
0.831266 0.555875i \(-0.187617\pi\)
\(174\) 0 0
\(175\) 539.257 0.232937
\(176\) 0 0
\(177\) −5211.77 −2.21322
\(178\) 0 0
\(179\) − 141.524i − 0.0590949i −0.999563 0.0295475i \(-0.990593\pi\)
0.999563 0.0295475i \(-0.00940662\pi\)
\(180\) 0 0
\(181\) − 3457.79i − 1.41997i −0.704215 0.709987i \(-0.748701\pi\)
0.704215 0.709987i \(-0.251299\pi\)
\(182\) 0 0
\(183\) 3588.27 1.44947
\(184\) 0 0
\(185\) 654.616 0.260153
\(186\) 0 0
\(187\) 540.438i 0.211341i
\(188\) 0 0
\(189\) 7801.01i 3.00233i
\(190\) 0 0
\(191\) 1416.99 0.536804 0.268402 0.963307i \(-0.413504\pi\)
0.268402 + 0.963307i \(0.413504\pi\)
\(192\) 0 0
\(193\) −2681.12 −0.999955 −0.499978 0.866038i \(-0.666658\pi\)
−0.499978 + 0.866038i \(0.666658\pi\)
\(194\) 0 0
\(195\) 1154.72i 0.424059i
\(196\) 0 0
\(197\) 2697.74i 0.975664i 0.872938 + 0.487832i \(0.162212\pi\)
−0.872938 + 0.487832i \(0.837788\pi\)
\(198\) 0 0
\(199\) −3543.25 −1.26218 −0.631091 0.775709i \(-0.717393\pi\)
−0.631091 + 0.775709i \(0.717393\pi\)
\(200\) 0 0
\(201\) −185.813 −0.0652052
\(202\) 0 0
\(203\) 2255.23i 0.779735i
\(204\) 0 0
\(205\) 2189.81i 0.746065i
\(206\) 0 0
\(207\) −541.592 −0.181851
\(208\) 0 0
\(209\) 995.143 0.329356
\(210\) 0 0
\(211\) − 152.205i − 0.0496598i −0.999692 0.0248299i \(-0.992096\pi\)
0.999692 0.0248299i \(-0.00790441\pi\)
\(212\) 0 0
\(213\) 9154.80i 2.94496i
\(214\) 0 0
\(215\) 1543.82 0.489710
\(216\) 0 0
\(217\) 4406.54 1.37851
\(218\) 0 0
\(219\) 1220.51i 0.376596i
\(220\) 0 0
\(221\) − 349.446i − 0.106363i
\(222\) 0 0
\(223\) 2065.40 0.620222 0.310111 0.950700i \(-0.399634\pi\)
0.310111 + 0.950700i \(0.399634\pi\)
\(224\) 0 0
\(225\) 1618.89 0.479670
\(226\) 0 0
\(227\) 2940.45i 0.859757i 0.902887 + 0.429878i \(0.141444\pi\)
−0.902887 + 0.429878i \(0.858556\pi\)
\(228\) 0 0
\(229\) − 4949.77i − 1.42834i −0.699971 0.714171i \(-0.746804\pi\)
0.699971 0.714171i \(-0.253196\pi\)
\(230\) 0 0
\(231\) −7704.25 −2.19438
\(232\) 0 0
\(233\) 5193.31 1.46019 0.730096 0.683344i \(-0.239475\pi\)
0.730096 + 0.683344i \(0.239475\pi\)
\(234\) 0 0
\(235\) 485.540i 0.134779i
\(236\) 0 0
\(237\) − 9328.62i − 2.55679i
\(238\) 0 0
\(239\) 2066.30 0.559238 0.279619 0.960111i \(-0.409792\pi\)
0.279619 + 0.960111i \(0.409792\pi\)
\(240\) 0 0
\(241\) −2309.08 −0.617181 −0.308591 0.951195i \(-0.599857\pi\)
−0.308591 + 0.951195i \(0.599857\pi\)
\(242\) 0 0
\(243\) 6671.42i 1.76120i
\(244\) 0 0
\(245\) − 611.384i − 0.159428i
\(246\) 0 0
\(247\) −643.457 −0.165758
\(248\) 0 0
\(249\) 527.041 0.134136
\(250\) 0 0
\(251\) − 3802.60i − 0.956246i −0.878293 0.478123i \(-0.841317\pi\)
0.878293 0.478123i \(-0.158683\pi\)
\(252\) 0 0
\(253\) − 311.857i − 0.0774951i
\(254\) 0 0
\(255\) −694.182 −0.170476
\(256\) 0 0
\(257\) 6168.56 1.49721 0.748607 0.663013i \(-0.230723\pi\)
0.748607 + 0.663013i \(0.230723\pi\)
\(258\) 0 0
\(259\) − 2824.05i − 0.677521i
\(260\) 0 0
\(261\) 6770.36i 1.60565i
\(262\) 0 0
\(263\) 1636.11 0.383599 0.191800 0.981434i \(-0.438568\pi\)
0.191800 + 0.981434i \(0.438568\pi\)
\(264\) 0 0
\(265\) 772.511 0.179075
\(266\) 0 0
\(267\) − 8810.79i − 2.01952i
\(268\) 0 0
\(269\) 2262.24i 0.512756i 0.966577 + 0.256378i \(0.0825292\pi\)
−0.966577 + 0.256378i \(0.917471\pi\)
\(270\) 0 0
\(271\) −41.6380 −0.00933332 −0.00466666 0.999989i \(-0.501485\pi\)
−0.00466666 + 0.999989i \(0.501485\pi\)
\(272\) 0 0
\(273\) 4981.55 1.10438
\(274\) 0 0
\(275\) 932.178i 0.204409i
\(276\) 0 0
\(277\) 2139.00i 0.463971i 0.972719 + 0.231986i \(0.0745223\pi\)
−0.972719 + 0.231986i \(0.925478\pi\)
\(278\) 0 0
\(279\) 13228.7 2.83865
\(280\) 0 0
\(281\) −1493.53 −0.317069 −0.158534 0.987353i \(-0.550677\pi\)
−0.158534 + 0.987353i \(0.550677\pi\)
\(282\) 0 0
\(283\) − 1090.20i − 0.228995i −0.993424 0.114498i \(-0.963474\pi\)
0.993424 0.114498i \(-0.0365259\pi\)
\(284\) 0 0
\(285\) 1278.24i 0.265672i
\(286\) 0 0
\(287\) 9446.98 1.94299
\(288\) 0 0
\(289\) −4702.92 −0.957241
\(290\) 0 0
\(291\) 2854.38i 0.575005i
\(292\) 0 0
\(293\) 4067.51i 0.811011i 0.914093 + 0.405506i \(0.132905\pi\)
−0.914093 + 0.405506i \(0.867095\pi\)
\(294\) 0 0
\(295\) 2720.44 0.536916
\(296\) 0 0
\(297\) −13485.1 −2.63463
\(298\) 0 0
\(299\) 201.646i 0.0390016i
\(300\) 0 0
\(301\) − 6660.13i − 1.27536i
\(302\) 0 0
\(303\) −17180.1 −3.25732
\(304\) 0 0
\(305\) −1873.01 −0.351633
\(306\) 0 0
\(307\) 6736.05i 1.25227i 0.779715 + 0.626135i \(0.215364\pi\)
−0.779715 + 0.626135i \(0.784636\pi\)
\(308\) 0 0
\(309\) − 19963.5i − 3.67535i
\(310\) 0 0
\(311\) −3274.35 −0.597014 −0.298507 0.954407i \(-0.596489\pi\)
−0.298507 + 0.954407i \(0.596489\pi\)
\(312\) 0 0
\(313\) −9357.60 −1.68985 −0.844925 0.534885i \(-0.820355\pi\)
−0.844925 + 0.534885i \(0.820355\pi\)
\(314\) 0 0
\(315\) − 6983.96i − 1.24921i
\(316\) 0 0
\(317\) 9064.68i 1.60607i 0.595934 + 0.803033i \(0.296782\pi\)
−0.595934 + 0.803033i \(0.703218\pi\)
\(318\) 0 0
\(319\) −3898.47 −0.684239
\(320\) 0 0
\(321\) 644.222 0.112015
\(322\) 0 0
\(323\) − 386.825i − 0.0666362i
\(324\) 0 0
\(325\) − 602.744i − 0.102874i
\(326\) 0 0
\(327\) −13977.1 −2.36371
\(328\) 0 0
\(329\) 2094.65 0.351008
\(330\) 0 0
\(331\) 280.089i 0.0465108i 0.999730 + 0.0232554i \(0.00740310\pi\)
−0.999730 + 0.0232554i \(0.992597\pi\)
\(332\) 0 0
\(333\) − 8477.98i − 1.39517i
\(334\) 0 0
\(335\) 96.9908 0.0158184
\(336\) 0 0
\(337\) −5748.75 −0.929242 −0.464621 0.885510i \(-0.653809\pi\)
−0.464621 + 0.885510i \(0.653809\pi\)
\(338\) 0 0
\(339\) 4389.65i 0.703284i
\(340\) 0 0
\(341\) 7617.30i 1.20968i
\(342\) 0 0
\(343\) 4761.06 0.749484
\(344\) 0 0
\(345\) 400.573 0.0625106
\(346\) 0 0
\(347\) 2911.52i 0.450428i 0.974309 + 0.225214i \(0.0723081\pi\)
−0.974309 + 0.225214i \(0.927692\pi\)
\(348\) 0 0
\(349\) 5665.17i 0.868910i 0.900693 + 0.434455i \(0.143059\pi\)
−0.900693 + 0.434455i \(0.856941\pi\)
\(350\) 0 0
\(351\) 8719.42 1.32595
\(352\) 0 0
\(353\) −9428.18 −1.42156 −0.710781 0.703414i \(-0.751658\pi\)
−0.710781 + 0.703414i \(0.751658\pi\)
\(354\) 0 0
\(355\) − 4778.63i − 0.714432i
\(356\) 0 0
\(357\) 2994.74i 0.443973i
\(358\) 0 0
\(359\) −4573.16 −0.672318 −0.336159 0.941805i \(-0.609128\pi\)
−0.336159 + 0.941805i \(0.609128\pi\)
\(360\) 0 0
\(361\) 6146.71 0.896153
\(362\) 0 0
\(363\) − 568.300i − 0.0821709i
\(364\) 0 0
\(365\) − 637.083i − 0.0913601i
\(366\) 0 0
\(367\) 2717.97 0.386585 0.193293 0.981141i \(-0.438083\pi\)
0.193293 + 0.981141i \(0.438083\pi\)
\(368\) 0 0
\(369\) 28360.5 4.00105
\(370\) 0 0
\(371\) − 3332.65i − 0.466369i
\(372\) 0 0
\(373\) − 5627.51i − 0.781183i −0.920564 0.390592i \(-0.872270\pi\)
0.920564 0.390592i \(-0.127730\pi\)
\(374\) 0 0
\(375\) −1197.36 −0.164884
\(376\) 0 0
\(377\) 2520.74 0.344363
\(378\) 0 0
\(379\) − 8066.74i − 1.09330i −0.837361 0.546650i \(-0.815903\pi\)
0.837361 0.546650i \(-0.184097\pi\)
\(380\) 0 0
\(381\) − 1998.97i − 0.268794i
\(382\) 0 0
\(383\) −10607.8 −1.41523 −0.707613 0.706600i \(-0.750228\pi\)
−0.707613 + 0.706600i \(0.750228\pi\)
\(384\) 0 0
\(385\) 4021.47 0.532345
\(386\) 0 0
\(387\) − 19994.1i − 2.62625i
\(388\) 0 0
\(389\) − 8992.58i − 1.17209i −0.810280 0.586044i \(-0.800685\pi\)
0.810280 0.586044i \(-0.199315\pi\)
\(390\) 0 0
\(391\) −121.223 −0.0156790
\(392\) 0 0
\(393\) −17095.3 −2.19426
\(394\) 0 0
\(395\) 4869.36i 0.620263i
\(396\) 0 0
\(397\) 8977.17i 1.13489i 0.823411 + 0.567445i \(0.192068\pi\)
−0.823411 + 0.567445i \(0.807932\pi\)
\(398\) 0 0
\(399\) 5514.40 0.691893
\(400\) 0 0
\(401\) −3165.72 −0.394236 −0.197118 0.980380i \(-0.563158\pi\)
−0.197118 + 0.980380i \(0.563158\pi\)
\(402\) 0 0
\(403\) − 4925.33i − 0.608804i
\(404\) 0 0
\(405\) − 8579.33i − 1.05262i
\(406\) 0 0
\(407\) 4881.75 0.594543
\(408\) 0 0
\(409\) −5417.61 −0.654972 −0.327486 0.944856i \(-0.606202\pi\)
−0.327486 + 0.944856i \(0.606202\pi\)
\(410\) 0 0
\(411\) 22803.5i 2.73678i
\(412\) 0 0
\(413\) − 11736.1i − 1.39830i
\(414\) 0 0
\(415\) −275.105 −0.0325407
\(416\) 0 0
\(417\) 27381.5 3.21554
\(418\) 0 0
\(419\) − 6198.14i − 0.722670i −0.932436 0.361335i \(-0.882321\pi\)
0.932436 0.361335i \(-0.117679\pi\)
\(420\) 0 0
\(421\) 4344.57i 0.502949i 0.967864 + 0.251474i \(0.0809154\pi\)
−0.967864 + 0.251474i \(0.919085\pi\)
\(422\) 0 0
\(423\) 6288.27 0.722804
\(424\) 0 0
\(425\) 362.349 0.0413565
\(426\) 0 0
\(427\) 8080.25i 0.915763i
\(428\) 0 0
\(429\) 8611.27i 0.969128i
\(430\) 0 0
\(431\) −4750.74 −0.530940 −0.265470 0.964119i \(-0.585527\pi\)
−0.265470 + 0.964119i \(0.585527\pi\)
\(432\) 0 0
\(433\) 4210.26 0.467280 0.233640 0.972323i \(-0.424936\pi\)
0.233640 + 0.972323i \(0.424936\pi\)
\(434\) 0 0
\(435\) − 5007.50i − 0.551934i
\(436\) 0 0
\(437\) 223.215i 0.0244344i
\(438\) 0 0
\(439\) 5776.50 0.628012 0.314006 0.949421i \(-0.398329\pi\)
0.314006 + 0.949421i \(0.398329\pi\)
\(440\) 0 0
\(441\) −7918.08 −0.854992
\(442\) 0 0
\(443\) 11981.6i 1.28502i 0.766278 + 0.642510i \(0.222107\pi\)
−0.766278 + 0.642510i \(0.777893\pi\)
\(444\) 0 0
\(445\) 4599.06i 0.489924i
\(446\) 0 0
\(447\) 8600.84 0.910080
\(448\) 0 0
\(449\) −5567.58 −0.585190 −0.292595 0.956236i \(-0.594519\pi\)
−0.292595 + 0.956236i \(0.594519\pi\)
\(450\) 0 0
\(451\) 16330.4i 1.70503i
\(452\) 0 0
\(453\) 32868.3i 3.40902i
\(454\) 0 0
\(455\) −2600.27 −0.267918
\(456\) 0 0
\(457\) −7283.56 −0.745538 −0.372769 0.927924i \(-0.621592\pi\)
−0.372769 + 0.927924i \(0.621592\pi\)
\(458\) 0 0
\(459\) 5241.82i 0.533044i
\(460\) 0 0
\(461\) 11901.1i 1.20236i 0.799113 + 0.601181i \(0.205303\pi\)
−0.799113 + 0.601181i \(0.794697\pi\)
\(462\) 0 0
\(463\) −4915.73 −0.493419 −0.246710 0.969089i \(-0.579349\pi\)
−0.246710 + 0.969089i \(0.579349\pi\)
\(464\) 0 0
\(465\) −9784.27 −0.975773
\(466\) 0 0
\(467\) − 3110.15i − 0.308181i −0.988057 0.154091i \(-0.950755\pi\)
0.988057 0.154091i \(-0.0492447\pi\)
\(468\) 0 0
\(469\) − 418.424i − 0.0411962i
\(470\) 0 0
\(471\) 5473.09 0.535428
\(472\) 0 0
\(473\) 11512.9 1.11916
\(474\) 0 0
\(475\) − 667.217i − 0.0644505i
\(476\) 0 0
\(477\) − 10004.8i − 0.960358i
\(478\) 0 0
\(479\) −6590.43 −0.628652 −0.314326 0.949315i \(-0.601779\pi\)
−0.314326 + 0.949315i \(0.601779\pi\)
\(480\) 0 0
\(481\) −3156.52 −0.299221
\(482\) 0 0
\(483\) − 1728.10i − 0.162797i
\(484\) 0 0
\(485\) − 1489.93i − 0.139493i
\(486\) 0 0
\(487\) −3139.99 −0.292169 −0.146085 0.989272i \(-0.546667\pi\)
−0.146085 + 0.989272i \(0.546667\pi\)
\(488\) 0 0
\(489\) 2269.83 0.209909
\(490\) 0 0
\(491\) − 12057.6i − 1.10825i −0.832433 0.554126i \(-0.813053\pi\)
0.832433 0.554126i \(-0.186947\pi\)
\(492\) 0 0
\(493\) 1515.38i 0.138437i
\(494\) 0 0
\(495\) 12072.7 1.09622
\(496\) 0 0
\(497\) −20615.3 −1.86061
\(498\) 0 0
\(499\) 8458.64i 0.758839i 0.925225 + 0.379420i \(0.123876\pi\)
−0.925225 + 0.379420i \(0.876124\pi\)
\(500\) 0 0
\(501\) − 13874.7i − 1.23727i
\(502\) 0 0
\(503\) −16896.2 −1.49774 −0.748869 0.662718i \(-0.769403\pi\)
−0.748869 + 0.662718i \(0.769403\pi\)
\(504\) 0 0
\(505\) 8967.65 0.790208
\(506\) 0 0
\(507\) 15476.8i 1.35572i
\(508\) 0 0
\(509\) − 6849.13i − 0.596429i −0.954499 0.298214i \(-0.903609\pi\)
0.954499 0.298214i \(-0.0963910\pi\)
\(510\) 0 0
\(511\) −2748.41 −0.237931
\(512\) 0 0
\(513\) 9652.10 0.830703
\(514\) 0 0
\(515\) 10420.6i 0.891620i
\(516\) 0 0
\(517\) 3620.88i 0.308019i
\(518\) 0 0
\(519\) 24232.1 2.04947
\(520\) 0 0
\(521\) 11044.1 0.928696 0.464348 0.885653i \(-0.346289\pi\)
0.464348 + 0.885653i \(0.346289\pi\)
\(522\) 0 0
\(523\) 3115.75i 0.260502i 0.991481 + 0.130251i \(0.0415782\pi\)
−0.991481 + 0.130251i \(0.958422\pi\)
\(524\) 0 0
\(525\) 5165.49i 0.429410i
\(526\) 0 0
\(527\) 2960.94 0.244745
\(528\) 0 0
\(529\) −12097.0 −0.994251
\(530\) 0 0
\(531\) − 35232.6i − 2.87941i
\(532\) 0 0
\(533\) − 10559.2i − 0.858103i
\(534\) 0 0
\(535\) −336.271 −0.0271743
\(536\) 0 0
\(537\) 1355.64 0.108939
\(538\) 0 0
\(539\) − 4559.35i − 0.364350i
\(540\) 0 0
\(541\) − 14840.6i − 1.17938i −0.807629 0.589691i \(-0.799249\pi\)
0.807629 0.589691i \(-0.200751\pi\)
\(542\) 0 0
\(543\) 33121.8 2.61767
\(544\) 0 0
\(545\) 7295.76 0.573424
\(546\) 0 0
\(547\) 12622.8i 0.986679i 0.869837 + 0.493340i \(0.164224\pi\)
−0.869837 + 0.493340i \(0.835776\pi\)
\(548\) 0 0
\(549\) 24257.5i 1.88576i
\(550\) 0 0
\(551\) 2790.37 0.215742
\(552\) 0 0
\(553\) 21006.7 1.61536
\(554\) 0 0
\(555\) 6270.50i 0.479582i
\(556\) 0 0
\(557\) − 13382.1i − 1.01798i −0.860771 0.508992i \(-0.830018\pi\)
0.860771 0.508992i \(-0.169982\pi\)
\(558\) 0 0
\(559\) −7444.23 −0.563251
\(560\) 0 0
\(561\) −5176.80 −0.389599
\(562\) 0 0
\(563\) − 153.895i − 0.0115203i −0.999983 0.00576014i \(-0.998166\pi\)
0.999983 0.00576014i \(-0.00183352\pi\)
\(564\) 0 0
\(565\) − 2291.31i − 0.170613i
\(566\) 0 0
\(567\) −37011.7 −2.74135
\(568\) 0 0
\(569\) −5395.71 −0.397539 −0.198770 0.980046i \(-0.563695\pi\)
−0.198770 + 0.980046i \(0.563695\pi\)
\(570\) 0 0
\(571\) − 22390.5i − 1.64100i −0.571646 0.820500i \(-0.693695\pi\)
0.571646 0.820500i \(-0.306305\pi\)
\(572\) 0 0
\(573\) 13573.2i 0.989578i
\(574\) 0 0
\(575\) −209.091 −0.0151647
\(576\) 0 0
\(577\) −1935.38 −0.139638 −0.0698188 0.997560i \(-0.522242\pi\)
−0.0698188 + 0.997560i \(0.522242\pi\)
\(578\) 0 0
\(579\) − 25682.2i − 1.84338i
\(580\) 0 0
\(581\) 1186.82i 0.0847461i
\(582\) 0 0
\(583\) 5760.94 0.409252
\(584\) 0 0
\(585\) −7806.18 −0.551702
\(586\) 0 0
\(587\) − 7905.44i − 0.555865i −0.960601 0.277932i \(-0.910351\pi\)
0.960601 0.277932i \(-0.0896491\pi\)
\(588\) 0 0
\(589\) − 5452.17i − 0.381414i
\(590\) 0 0
\(591\) −25841.4 −1.79860
\(592\) 0 0
\(593\) −11141.6 −0.771552 −0.385776 0.922592i \(-0.626066\pi\)
−0.385776 + 0.922592i \(0.626066\pi\)
\(594\) 0 0
\(595\) − 1563.19i − 0.107705i
\(596\) 0 0
\(597\) − 33940.4i − 2.32678i
\(598\) 0 0
\(599\) −278.847 −0.0190207 −0.00951033 0.999955i \(-0.503027\pi\)
−0.00951033 + 0.999955i \(0.503027\pi\)
\(600\) 0 0
\(601\) 18890.7 1.28214 0.641071 0.767482i \(-0.278490\pi\)
0.641071 + 0.767482i \(0.278490\pi\)
\(602\) 0 0
\(603\) − 1256.14i − 0.0848321i
\(604\) 0 0
\(605\) 296.642i 0.0199342i
\(606\) 0 0
\(607\) −5398.05 −0.360956 −0.180478 0.983579i \(-0.557764\pi\)
−0.180478 + 0.983579i \(0.557764\pi\)
\(608\) 0 0
\(609\) −21602.6 −1.43741
\(610\) 0 0
\(611\) − 2341.25i − 0.155019i
\(612\) 0 0
\(613\) 14412.8i 0.949635i 0.880084 + 0.474817i \(0.157486\pi\)
−0.880084 + 0.474817i \(0.842514\pi\)
\(614\) 0 0
\(615\) −20976.0 −1.37534
\(616\) 0 0
\(617\) 13226.3 0.863001 0.431500 0.902113i \(-0.357984\pi\)
0.431500 + 0.902113i \(0.357984\pi\)
\(618\) 0 0
\(619\) 14179.4i 0.920705i 0.887736 + 0.460352i \(0.152277\pi\)
−0.887736 + 0.460352i \(0.847723\pi\)
\(620\) 0 0
\(621\) − 3024.76i − 0.195458i
\(622\) 0 0
\(623\) 19840.6 1.27592
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 9532.38i 0.607156i
\(628\) 0 0
\(629\) − 1897.60i − 0.120290i
\(630\) 0 0
\(631\) −1533.79 −0.0967657 −0.0483828 0.998829i \(-0.515407\pi\)
−0.0483828 + 0.998829i \(0.515407\pi\)
\(632\) 0 0
\(633\) 1457.96 0.0915459
\(634\) 0 0
\(635\) 1043.42i 0.0652079i
\(636\) 0 0
\(637\) 2948.06i 0.183370i
\(638\) 0 0
\(639\) −61888.4 −3.83140
\(640\) 0 0
\(641\) −26682.6 −1.64415 −0.822074 0.569381i \(-0.807183\pi\)
−0.822074 + 0.569381i \(0.807183\pi\)
\(642\) 0 0
\(643\) − 16498.3i − 1.01186i −0.862574 0.505931i \(-0.831149\pi\)
0.862574 0.505931i \(-0.168851\pi\)
\(644\) 0 0
\(645\) 14788.1i 0.902762i
\(646\) 0 0
\(647\) 20127.5 1.22302 0.611510 0.791236i \(-0.290562\pi\)
0.611510 + 0.791236i \(0.290562\pi\)
\(648\) 0 0
\(649\) 20287.5 1.22705
\(650\) 0 0
\(651\) 42209.9i 2.54122i
\(652\) 0 0
\(653\) − 21447.4i − 1.28530i −0.766160 0.642650i \(-0.777835\pi\)
0.766160 0.642650i \(-0.222165\pi\)
\(654\) 0 0
\(655\) 8923.43 0.532316
\(656\) 0 0
\(657\) −8250.91 −0.489953
\(658\) 0 0
\(659\) − 19402.5i − 1.14691i −0.819237 0.573455i \(-0.805603\pi\)
0.819237 0.573455i \(-0.194397\pi\)
\(660\) 0 0
\(661\) 9326.38i 0.548796i 0.961616 + 0.274398i \(0.0884786\pi\)
−0.961616 + 0.274398i \(0.911521\pi\)
\(662\) 0 0
\(663\) 3347.31 0.196076
\(664\) 0 0
\(665\) −2878.41 −0.167850
\(666\) 0 0
\(667\) − 874.443i − 0.0507625i
\(668\) 0 0
\(669\) 19784.3i 1.14336i
\(670\) 0 0
\(671\) −13967.8 −0.803608
\(672\) 0 0
\(673\) −15027.4 −0.860718 −0.430359 0.902658i \(-0.641613\pi\)
−0.430359 + 0.902658i \(0.641613\pi\)
\(674\) 0 0
\(675\) 9041.38i 0.515560i
\(676\) 0 0
\(677\) − 9717.31i − 0.551649i −0.961208 0.275825i \(-0.911049\pi\)
0.961208 0.275825i \(-0.0889509\pi\)
\(678\) 0 0
\(679\) −6427.63 −0.363284
\(680\) 0 0
\(681\) −28166.3 −1.58493
\(682\) 0 0
\(683\) 11473.9i 0.642804i 0.946943 + 0.321402i \(0.104154\pi\)
−0.946943 + 0.321402i \(0.895846\pi\)
\(684\) 0 0
\(685\) − 11903.0i − 0.663927i
\(686\) 0 0
\(687\) 47413.4 2.63309
\(688\) 0 0
\(689\) −3725.01 −0.205967
\(690\) 0 0
\(691\) − 28412.6i − 1.56421i −0.623149 0.782103i \(-0.714147\pi\)
0.623149 0.782103i \(-0.285853\pi\)
\(692\) 0 0
\(693\) − 52082.3i − 2.85490i
\(694\) 0 0
\(695\) −14292.6 −0.780071
\(696\) 0 0
\(697\) 6347.82 0.344965
\(698\) 0 0
\(699\) 49746.2i 2.69181i
\(700\) 0 0
\(701\) 12291.3i 0.662250i 0.943587 + 0.331125i \(0.107428\pi\)
−0.943587 + 0.331125i \(0.892572\pi\)
\(702\) 0 0
\(703\) −3494.17 −0.187461
\(704\) 0 0
\(705\) −4650.94 −0.248461
\(706\) 0 0
\(707\) − 38686.9i − 2.05795i
\(708\) 0 0
\(709\) 12774.2i 0.676650i 0.941029 + 0.338325i \(0.109860\pi\)
−0.941029 + 0.338325i \(0.890140\pi\)
\(710\) 0 0
\(711\) 63063.4 3.32639
\(712\) 0 0
\(713\) −1708.59 −0.0897438
\(714\) 0 0
\(715\) − 4494.91i − 0.235105i
\(716\) 0 0
\(717\) 19792.9i 1.03093i
\(718\) 0 0
\(719\) 15748.6 0.816861 0.408430 0.912790i \(-0.366076\pi\)
0.408430 + 0.912790i \(0.366076\pi\)
\(720\) 0 0
\(721\) 44954.8 2.32206
\(722\) 0 0
\(723\) − 22118.4i − 1.13775i
\(724\) 0 0
\(725\) 2613.82i 0.133896i
\(726\) 0 0
\(727\) −9536.44 −0.486502 −0.243251 0.969963i \(-0.578214\pi\)
−0.243251 + 0.969963i \(0.578214\pi\)
\(728\) 0 0
\(729\) −17576.5 −0.892980
\(730\) 0 0
\(731\) − 4475.22i − 0.226432i
\(732\) 0 0
\(733\) 34913.5i 1.75929i 0.475631 + 0.879645i \(0.342220\pi\)
−0.475631 + 0.879645i \(0.657780\pi\)
\(734\) 0 0
\(735\) 5856.38 0.293899
\(736\) 0 0
\(737\) 723.301 0.0361508
\(738\) 0 0
\(739\) 19324.3i 0.961918i 0.876743 + 0.480959i \(0.159711\pi\)
−0.876743 + 0.480959i \(0.840289\pi\)
\(740\) 0 0
\(741\) − 6163.61i − 0.305568i
\(742\) 0 0
\(743\) 7053.57 0.348278 0.174139 0.984721i \(-0.444286\pi\)
0.174139 + 0.984721i \(0.444286\pi\)
\(744\) 0 0
\(745\) −4489.47 −0.220781
\(746\) 0 0
\(747\) 3562.91i 0.174511i
\(748\) 0 0
\(749\) 1450.69i 0.0707705i
\(750\) 0 0
\(751\) 36810.6 1.78860 0.894299 0.447471i \(-0.147675\pi\)
0.894299 + 0.447471i \(0.147675\pi\)
\(752\) 0 0
\(753\) 36424.7 1.76280
\(754\) 0 0
\(755\) − 17156.6i − 0.827010i
\(756\) 0 0
\(757\) 28515.3i 1.36910i 0.728967 + 0.684549i \(0.240001\pi\)
−0.728967 + 0.684549i \(0.759999\pi\)
\(758\) 0 0
\(759\) 2987.24 0.142859
\(760\) 0 0
\(761\) 1517.92 0.0723057 0.0361528 0.999346i \(-0.488490\pi\)
0.0361528 + 0.999346i \(0.488490\pi\)
\(762\) 0 0
\(763\) − 31474.3i − 1.49338i
\(764\) 0 0
\(765\) − 4692.81i − 0.221790i
\(766\) 0 0
\(767\) −13117.8 −0.617545
\(768\) 0 0
\(769\) −10413.9 −0.488341 −0.244171 0.969732i \(-0.578516\pi\)
−0.244171 + 0.969732i \(0.578516\pi\)
\(770\) 0 0
\(771\) 59088.0i 2.76006i
\(772\) 0 0
\(773\) − 32909.8i − 1.53129i −0.643266 0.765643i \(-0.722421\pi\)
0.643266 0.765643i \(-0.277579\pi\)
\(774\) 0 0
\(775\) 5107.19 0.236717
\(776\) 0 0
\(777\) 27051.3 1.24898
\(778\) 0 0
\(779\) − 11688.6i − 0.537599i
\(780\) 0 0
\(781\) − 35636.2i − 1.63273i
\(782\) 0 0
\(783\) −37812.1 −1.72579
\(784\) 0 0
\(785\) −2856.84 −0.129892
\(786\) 0 0
\(787\) 35511.6i 1.60845i 0.594324 + 0.804226i \(0.297420\pi\)
−0.594324 + 0.804226i \(0.702580\pi\)
\(788\) 0 0
\(789\) 15672.1i 0.707150i
\(790\) 0 0
\(791\) −9884.85 −0.444330
\(792\) 0 0
\(793\) 9031.54 0.404438
\(794\) 0 0
\(795\) 7399.81i 0.330118i
\(796\) 0 0
\(797\) 22692.3i 1.00853i 0.863548 + 0.504267i \(0.168237\pi\)
−0.863548 + 0.504267i \(0.831763\pi\)
\(798\) 0 0
\(799\) 1407.48 0.0623193
\(800\) 0 0
\(801\) 59562.8 2.62740
\(802\) 0 0
\(803\) − 4751.00i − 0.208791i
\(804\) 0 0
\(805\) 902.032i 0.0394937i
\(806\) 0 0
\(807\) −21669.8 −0.945246
\(808\) 0 0
\(809\) −22716.0 −0.987209 −0.493604 0.869687i \(-0.664321\pi\)
−0.493604 + 0.869687i \(0.664321\pi\)
\(810\) 0 0
\(811\) 17237.0i 0.746327i 0.927766 + 0.373164i \(0.121727\pi\)
−0.927766 + 0.373164i \(0.878273\pi\)
\(812\) 0 0
\(813\) − 398.847i − 0.0172056i
\(814\) 0 0
\(815\) −1184.81 −0.0509227
\(816\) 0 0
\(817\) −8240.51 −0.352875
\(818\) 0 0
\(819\) 33676.3i 1.43681i
\(820\) 0 0
\(821\) − 15695.7i − 0.667217i −0.942712 0.333609i \(-0.891734\pi\)
0.942712 0.333609i \(-0.108266\pi\)
\(822\) 0 0
\(823\) −16856.0 −0.713927 −0.356963 0.934118i \(-0.616188\pi\)
−0.356963 + 0.934118i \(0.616188\pi\)
\(824\) 0 0
\(825\) −8929.24 −0.376820
\(826\) 0 0
\(827\) 3712.67i 0.156109i 0.996949 + 0.0780544i \(0.0248708\pi\)
−0.996949 + 0.0780544i \(0.975129\pi\)
\(828\) 0 0
\(829\) − 22469.6i − 0.941376i −0.882300 0.470688i \(-0.844006\pi\)
0.882300 0.470688i \(-0.155994\pi\)
\(830\) 0 0
\(831\) −20489.3 −0.855313
\(832\) 0 0
\(833\) −1772.27 −0.0737163
\(834\) 0 0
\(835\) 7242.30i 0.300156i
\(836\) 0 0
\(837\) 73881.8i 3.05105i
\(838\) 0 0
\(839\) 31935.2 1.31409 0.657046 0.753850i \(-0.271806\pi\)
0.657046 + 0.753850i \(0.271806\pi\)
\(840\) 0 0
\(841\) 13457.7 0.551795
\(842\) 0 0
\(843\) − 14306.3i − 0.584504i
\(844\) 0 0
\(845\) − 8078.60i − 0.328890i
\(846\) 0 0
\(847\) 1279.73 0.0519150
\(848\) 0 0
\(849\) 10442.9 0.422144
\(850\) 0 0
\(851\) 1095.00i 0.0441081i
\(852\) 0 0
\(853\) − 14782.2i − 0.593355i −0.954978 0.296678i \(-0.904121\pi\)
0.954978 0.296678i \(-0.0958787\pi\)
\(854\) 0 0
\(855\) −8641.18 −0.345640
\(856\) 0 0
\(857\) −7222.91 −0.287900 −0.143950 0.989585i \(-0.545980\pi\)
−0.143950 + 0.989585i \(0.545980\pi\)
\(858\) 0 0
\(859\) 4646.96i 0.184578i 0.995732 + 0.0922889i \(0.0294183\pi\)
−0.995732 + 0.0922889i \(0.970582\pi\)
\(860\) 0 0
\(861\) 90491.7i 3.58182i
\(862\) 0 0
\(863\) −8122.19 −0.320374 −0.160187 0.987087i \(-0.551210\pi\)
−0.160187 + 0.987087i \(0.551210\pi\)
\(864\) 0 0
\(865\) −12648.7 −0.497189
\(866\) 0 0
\(867\) − 45048.9i − 1.76464i
\(868\) 0 0
\(869\) 36312.8i 1.41752i
\(870\) 0 0
\(871\) −467.685 −0.0181939
\(872\) 0 0
\(873\) −19296.2 −0.748083
\(874\) 0 0
\(875\) − 2696.28i − 0.104173i
\(876\) 0 0
\(877\) − 31986.1i − 1.23158i −0.787910 0.615790i \(-0.788837\pi\)
0.787910 0.615790i \(-0.211163\pi\)
\(878\) 0 0
\(879\) −38962.3 −1.49507
\(880\) 0 0
\(881\) −29450.6 −1.12624 −0.563118 0.826376i \(-0.690398\pi\)
−0.563118 + 0.826376i \(0.690398\pi\)
\(882\) 0 0
\(883\) 46156.5i 1.75911i 0.475801 + 0.879553i \(0.342158\pi\)
−0.475801 + 0.879553i \(0.657842\pi\)
\(884\) 0 0
\(885\) 26058.8i 0.989783i
\(886\) 0 0
\(887\) −41051.2 −1.55396 −0.776982 0.629523i \(-0.783250\pi\)
−0.776982 + 0.629523i \(0.783250\pi\)
\(888\) 0 0
\(889\) 4501.39 0.169822
\(890\) 0 0
\(891\) − 63979.7i − 2.40561i
\(892\) 0 0
\(893\) − 2591.69i − 0.0971192i
\(894\) 0 0
\(895\) −707.620 −0.0264281
\(896\) 0 0
\(897\) −1931.54 −0.0718979
\(898\) 0 0
\(899\) 21358.8i 0.792389i
\(900\) 0 0
\(901\) − 2239.35i − 0.0828008i
\(902\) 0 0
\(903\) 63796.7 2.35108
\(904\) 0 0
\(905\) −17288.9 −0.635031
\(906\) 0 0
\(907\) − 27915.8i − 1.02197i −0.859588 0.510987i \(-0.829280\pi\)
0.859588 0.510987i \(-0.170720\pi\)
\(908\) 0 0
\(909\) − 116141.i − 4.23778i
\(910\) 0 0
\(911\) 6557.22 0.238475 0.119237 0.992866i \(-0.461955\pi\)
0.119237 + 0.992866i \(0.461955\pi\)
\(912\) 0 0
\(913\) −2051.57 −0.0743671
\(914\) 0 0
\(915\) − 17941.3i − 0.648221i
\(916\) 0 0
\(917\) − 38496.2i − 1.38632i
\(918\) 0 0
\(919\) 11493.0 0.412534 0.206267 0.978496i \(-0.433869\pi\)
0.206267 + 0.978496i \(0.433869\pi\)
\(920\) 0 0
\(921\) −64524.0 −2.30851
\(922\) 0 0
\(923\) 23042.3i 0.821719i
\(924\) 0 0
\(925\) − 3273.08i − 0.116344i
\(926\) 0 0
\(927\) 134957. 4.78164
\(928\) 0 0
\(929\) 56597.2 1.99881 0.999405 0.0345020i \(-0.0109845\pi\)
0.999405 + 0.0345020i \(0.0109845\pi\)
\(930\) 0 0
\(931\) 3263.40i 0.114880i
\(932\) 0 0
\(933\) − 31364.7i − 1.10057i
\(934\) 0 0
\(935\) 2702.19 0.0945145
\(936\) 0 0
\(937\) −37901.5 −1.32144 −0.660720 0.750633i \(-0.729749\pi\)
−0.660720 + 0.750633i \(0.729749\pi\)
\(938\) 0 0
\(939\) − 89635.5i − 3.11517i
\(940\) 0 0
\(941\) 4449.85i 0.154156i 0.997025 + 0.0770781i \(0.0245591\pi\)
−0.997025 + 0.0770781i \(0.975441\pi\)
\(942\) 0 0
\(943\) −3662.97 −0.126493
\(944\) 0 0
\(945\) 39005.0 1.34268
\(946\) 0 0
\(947\) 225.160i 0.00772620i 0.999993 + 0.00386310i \(0.00122967\pi\)
−0.999993 + 0.00386310i \(0.998770\pi\)
\(948\) 0 0
\(949\) 3071.98i 0.105080i
\(950\) 0 0
\(951\) −86829.7 −2.96072
\(952\) 0 0
\(953\) 4845.81 0.164713 0.0823563 0.996603i \(-0.473755\pi\)
0.0823563 + 0.996603i \(0.473755\pi\)
\(954\) 0 0
\(955\) − 7084.94i − 0.240066i
\(956\) 0 0
\(957\) − 37343.1i − 1.26137i
\(958\) 0 0
\(959\) −51350.2 −1.72908
\(960\) 0 0
\(961\) 11942.5 0.400876
\(962\) 0 0
\(963\) 4355.07i 0.145732i
\(964\) 0 0
\(965\) 13405.6i 0.447194i
\(966\) 0 0
\(967\) −40394.8 −1.34334 −0.671670 0.740851i \(-0.734423\pi\)
−0.671670 + 0.740851i \(0.734423\pi\)
\(968\) 0 0
\(969\) 3705.36 0.122841
\(970\) 0 0
\(971\) 29066.2i 0.960637i 0.877094 + 0.480318i \(0.159479\pi\)
−0.877094 + 0.480318i \(0.840521\pi\)
\(972\) 0 0
\(973\) 61659.1i 2.03155i
\(974\) 0 0
\(975\) 5773.62 0.189645
\(976\) 0 0
\(977\) 42580.5 1.39434 0.697170 0.716906i \(-0.254442\pi\)
0.697170 + 0.716906i \(0.254442\pi\)
\(978\) 0 0
\(979\) 34297.1i 1.11965i
\(980\) 0 0
\(981\) − 94488.0i − 3.07520i
\(982\) 0 0
\(983\) 40586.0 1.31688 0.658440 0.752633i \(-0.271217\pi\)
0.658440 + 0.752633i \(0.271217\pi\)
\(984\) 0 0
\(985\) 13488.7 0.436330
\(986\) 0 0
\(987\) 20064.4i 0.647070i
\(988\) 0 0
\(989\) 2582.40i 0.0830288i
\(990\) 0 0
\(991\) 50370.4 1.61460 0.807299 0.590142i \(-0.200928\pi\)
0.807299 + 0.590142i \(0.200928\pi\)
\(992\) 0 0
\(993\) −2682.95 −0.0857409
\(994\) 0 0
\(995\) 17716.2i 0.564465i
\(996\) 0 0
\(997\) − 22467.5i − 0.713694i −0.934163 0.356847i \(-0.883852\pi\)
0.934163 0.356847i \(-0.116148\pi\)
\(998\) 0 0
\(999\) 47349.1 1.49956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.4.d.a.81.12 12
3.2 odd 2 1440.4.k.c.721.8 12
4.3 odd 2 40.4.d.a.21.10 yes 12
5.2 odd 4 800.4.f.c.49.11 12
5.3 odd 4 800.4.f.b.49.2 12
5.4 even 2 800.4.d.d.401.1 12
8.3 odd 2 40.4.d.a.21.9 12
8.5 even 2 inner 160.4.d.a.81.1 12
12.11 even 2 360.4.k.c.181.3 12
16.3 odd 4 1280.4.a.bc.1.6 6
16.5 even 4 1280.4.a.bd.1.6 6
16.11 odd 4 1280.4.a.bb.1.1 6
16.13 even 4 1280.4.a.ba.1.1 6
20.3 even 4 200.4.f.c.149.9 12
20.7 even 4 200.4.f.b.149.4 12
20.19 odd 2 200.4.d.b.101.3 12
24.5 odd 2 1440.4.k.c.721.2 12
24.11 even 2 360.4.k.c.181.4 12
40.3 even 4 200.4.f.b.149.3 12
40.13 odd 4 800.4.f.c.49.12 12
40.19 odd 2 200.4.d.b.101.4 12
40.27 even 4 200.4.f.c.149.10 12
40.29 even 2 800.4.d.d.401.12 12
40.37 odd 4 800.4.f.b.49.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.d.a.21.9 12 8.3 odd 2
40.4.d.a.21.10 yes 12 4.3 odd 2
160.4.d.a.81.1 12 8.5 even 2 inner
160.4.d.a.81.12 12 1.1 even 1 trivial
200.4.d.b.101.3 12 20.19 odd 2
200.4.d.b.101.4 12 40.19 odd 2
200.4.f.b.149.3 12 40.3 even 4
200.4.f.b.149.4 12 20.7 even 4
200.4.f.c.149.9 12 20.3 even 4
200.4.f.c.149.10 12 40.27 even 4
360.4.k.c.181.3 12 12.11 even 2
360.4.k.c.181.4 12 24.11 even 2
800.4.d.d.401.1 12 5.4 even 2
800.4.d.d.401.12 12 40.29 even 2
800.4.f.b.49.1 12 40.37 odd 4
800.4.f.b.49.2 12 5.3 odd 4
800.4.f.c.49.11 12 5.2 odd 4
800.4.f.c.49.12 12 40.13 odd 4
1280.4.a.ba.1.1 6 16.13 even 4
1280.4.a.bb.1.1 6 16.11 odd 4
1280.4.a.bc.1.6 6 16.3 odd 4
1280.4.a.bd.1.6 6 16.5 even 4
1440.4.k.c.721.2 12 24.5 odd 2
1440.4.k.c.721.8 12 3.2 odd 2