Properties

Label 200.4.f.c.149.10
Level $200$
Weight $4$
Character 200.149
Analytic conductor $11.800$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,4,Mod(149,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.149");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8003820011\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{11} + 7x^{10} - 12x^{9} + 21x^{8} - 68x^{6} + 336x^{4} - 768x^{3} + 1792x^{2} - 4096x + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{15} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.10
Root \(1.98839 + 0.215211i\) of defining polynomial
Character \(\chi\) \(=\) 200.149
Dual form 200.4.f.c.149.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.77318 + 2.20360i) q^{2} +9.57890 q^{3} +(-1.71169 + 7.81474i) q^{4} +(16.9851 + 21.1081i) q^{6} +21.5703i q^{7} +(-20.2557 + 10.0850i) q^{8} +64.7554 q^{9} -37.2871i q^{11} +(-16.3961 + 74.8566i) q^{12} -24.1097 q^{13} +(-47.5322 + 38.2479i) q^{14} +(-58.1402 - 26.7528i) q^{16} -14.4940i q^{17} +(114.823 + 142.695i) q^{18} -26.6887i q^{19} +206.620i q^{21} +(82.1658 - 66.1166i) q^{22} +8.36366i q^{23} +(-194.027 + 96.6035i) q^{24} +(-42.7508 - 53.1282i) q^{26} +361.655 q^{27} +(-168.566 - 36.9216i) q^{28} -104.553i q^{29} +204.288 q^{31} +(-44.1404 - 175.555i) q^{32} -357.170i q^{33} +(31.9389 - 25.7004i) q^{34} +(-110.841 + 506.046i) q^{36} +130.923 q^{37} +(58.8111 - 47.3237i) q^{38} -230.945 q^{39} -437.963 q^{41} +(-455.307 + 366.373i) q^{42} +308.764 q^{43} +(291.389 + 63.8240i) q^{44} +(-18.4301 + 14.8302i) q^{46} +97.1081i q^{47} +(-556.920 - 256.263i) q^{48} -122.277 q^{49} -138.836i q^{51} +(41.2684 - 188.411i) q^{52} -154.502 q^{53} +(641.279 + 796.943i) q^{54} +(-217.537 - 436.920i) q^{56} -255.648i q^{57} +(230.392 - 185.390i) q^{58} -544.088i q^{59} +374.601i q^{61} +(362.238 + 450.168i) q^{62} +1396.79i q^{63} +(308.584 - 408.558i) q^{64} +(787.058 - 633.325i) q^{66} -19.3982 q^{67} +(113.267 + 24.8092i) q^{68} +80.1147i q^{69} -955.725 q^{71} +(-1311.66 + 653.060i) q^{72} -127.417i q^{73} +(232.150 + 288.502i) q^{74} +(208.565 + 45.6828i) q^{76} +804.293 q^{77} +(-409.506 - 508.910i) q^{78} -973.871 q^{79} +1715.87 q^{81} +(-776.586 - 965.094i) q^{82} -55.0210 q^{83} +(-1614.68 - 353.669i) q^{84} +(547.493 + 680.392i) q^{86} -1001.50i q^{87} +(376.041 + 755.275i) q^{88} +919.812 q^{89} -520.054i q^{91} +(-65.3598 - 14.3160i) q^{92} +1956.85 q^{93} +(-213.987 + 172.190i) q^{94} +(-422.816 - 1681.63i) q^{96} +297.986i q^{97} +(-216.818 - 269.449i) q^{98} -2414.54i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 12 q^{3} - 16 q^{4} - 36 q^{6} - 24 q^{8} + 108 q^{9} - 164 q^{12} - 68 q^{14} - 56 q^{16} + 450 q^{18} + 492 q^{22} - 360 q^{24} - 308 q^{26} + 432 q^{27} + 628 q^{28} - 264 q^{31} + 856 q^{32}+ \cdots + 638 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.77318 + 2.20360i 0.626913 + 0.779090i
\(3\) 9.57890 1.84346 0.921730 0.387831i \(-0.126776\pi\)
0.921730 + 0.387831i \(0.126776\pi\)
\(4\) −1.71169 + 7.81474i −0.213961 + 0.976842i
\(5\) 0 0
\(6\) 16.9851 + 21.1081i 1.15569 + 1.43622i
\(7\) 21.5703i 1.16469i 0.812943 + 0.582343i \(0.197864\pi\)
−0.812943 + 0.582343i \(0.802136\pi\)
\(8\) −20.2557 + 10.0850i −0.895183 + 0.445699i
\(9\) 64.7554 2.39835
\(10\) 0 0
\(11\) 37.2871i 1.02204i −0.859568 0.511022i \(-0.829267\pi\)
0.859568 0.511022i \(-0.170733\pi\)
\(12\) −16.3961 + 74.8566i −0.394429 + 1.80077i
\(13\) −24.1097 −0.514372 −0.257186 0.966362i \(-0.582795\pi\)
−0.257186 + 0.966362i \(0.582795\pi\)
\(14\) −47.5322 + 38.2479i −0.907394 + 0.730156i
\(15\) 0 0
\(16\) −58.1402 26.7528i −0.908441 0.418013i
\(17\) 14.4940i 0.206783i −0.994641 0.103391i \(-0.967031\pi\)
0.994641 0.103391i \(-0.0329694\pi\)
\(18\) 114.823 + 142.695i 1.50355 + 1.86853i
\(19\) 26.6887i 0.322253i −0.986934 0.161126i \(-0.948487\pi\)
0.986934 0.161126i \(-0.0515127\pi\)
\(20\) 0 0
\(21\) 206.620i 2.14705i
\(22\) 82.1658 66.1166i 0.796264 0.640732i
\(23\) 8.36366i 0.0758236i 0.999281 + 0.0379118i \(0.0120706\pi\)
−0.999281 + 0.0379118i \(0.987929\pi\)
\(24\) −194.027 + 96.6035i −1.65023 + 0.821630i
\(25\) 0 0
\(26\) −42.7508 53.1282i −0.322466 0.400742i
\(27\) 361.655 2.57780
\(28\) −168.566 36.9216i −1.13771 0.249198i
\(29\) 104.553i 0.669481i −0.942310 0.334741i \(-0.891351\pi\)
0.942310 0.334741i \(-0.108649\pi\)
\(30\) 0 0
\(31\) 204.288 1.18359 0.591793 0.806090i \(-0.298420\pi\)
0.591793 + 0.806090i \(0.298420\pi\)
\(32\) −44.1404 175.555i −0.243843 0.969815i
\(33\) 357.170i 1.88410i
\(34\) 31.9389 25.7004i 0.161102 0.129635i
\(35\) 0 0
\(36\) −110.841 + 506.046i −0.513154 + 2.34281i
\(37\) 130.923 0.581720 0.290860 0.956766i \(-0.406059\pi\)
0.290860 + 0.956766i \(0.406059\pi\)
\(38\) 58.8111 47.3237i 0.251064 0.202024i
\(39\) −230.945 −0.948225
\(40\) 0 0
\(41\) −437.963 −1.66825 −0.834126 0.551574i \(-0.814027\pi\)
−0.834126 + 0.551574i \(0.814027\pi\)
\(42\) −455.307 + 366.373i −1.67275 + 1.34601i
\(43\) 308.764 1.09503 0.547513 0.836797i \(-0.315575\pi\)
0.547513 + 0.836797i \(0.315575\pi\)
\(44\) 291.389 + 63.8240i 0.998376 + 0.218678i
\(45\) 0 0
\(46\) −18.4301 + 14.8302i −0.0590734 + 0.0475348i
\(47\) 97.1081i 0.301376i 0.988581 + 0.150688i \(0.0481489\pi\)
−0.988581 + 0.150688i \(0.951851\pi\)
\(48\) −556.920 256.263i −1.67468 0.770591i
\(49\) −122.277 −0.356492
\(50\) 0 0
\(51\) 138.836i 0.381196i
\(52\) 41.2684 188.411i 0.110056 0.502461i
\(53\) −154.502 −0.400425 −0.200212 0.979753i \(-0.564163\pi\)
−0.200212 + 0.979753i \(0.564163\pi\)
\(54\) 641.279 + 796.943i 1.61606 + 2.00834i
\(55\) 0 0
\(56\) −217.537 436.920i −0.519100 1.04261i
\(57\) 255.648i 0.594060i
\(58\) 230.392 185.390i 0.521586 0.419706i
\(59\) 544.088i 1.20058i −0.799782 0.600290i \(-0.795052\pi\)
0.799782 0.600290i \(-0.204948\pi\)
\(60\) 0 0
\(61\) 374.601i 0.786275i 0.919480 + 0.393137i \(0.128610\pi\)
−0.919480 + 0.393137i \(0.871390\pi\)
\(62\) 362.238 + 450.168i 0.742005 + 0.922120i
\(63\) 1396.79i 2.79332i
\(64\) 308.584 408.558i 0.602704 0.797965i
\(65\) 0 0
\(66\) 787.058 633.325i 1.46788 1.18116i
\(67\) −19.3982 −0.0353711 −0.0176855 0.999844i \(-0.505630\pi\)
−0.0176855 + 0.999844i \(0.505630\pi\)
\(68\) 113.267 + 24.8092i 0.201994 + 0.0442435i
\(69\) 80.1147i 0.139778i
\(70\) 0 0
\(71\) −955.725 −1.59752 −0.798759 0.601651i \(-0.794510\pi\)
−0.798759 + 0.601651i \(0.794510\pi\)
\(72\) −1311.66 + 653.060i −2.14696 + 1.06894i
\(73\) 127.417i 0.204287i −0.994770 0.102144i \(-0.967430\pi\)
0.994770 0.102144i \(-0.0325702\pi\)
\(74\) 232.150 + 288.502i 0.364687 + 0.453212i
\(75\) 0 0
\(76\) 208.565 + 45.6828i 0.314790 + 0.0689496i
\(77\) 804.293 1.19036
\(78\) −409.506 508.910i −0.594454 0.738753i
\(79\) −973.871 −1.38695 −0.693475 0.720481i \(-0.743921\pi\)
−0.693475 + 0.720481i \(0.743921\pi\)
\(80\) 0 0
\(81\) 1715.87 2.35373
\(82\) −776.586 965.094i −1.04585 1.29972i
\(83\) −55.0210 −0.0727631 −0.0363816 0.999338i \(-0.511583\pi\)
−0.0363816 + 0.999338i \(0.511583\pi\)
\(84\) −1614.68 353.669i −2.09733 0.459386i
\(85\) 0 0
\(86\) 547.493 + 680.392i 0.686485 + 0.853123i
\(87\) 1001.50i 1.23416i
\(88\) 376.041 + 755.275i 0.455525 + 0.914916i
\(89\) 919.812 1.09550 0.547752 0.836641i \(-0.315484\pi\)
0.547752 + 0.836641i \(0.315484\pi\)
\(90\) 0 0
\(91\) 520.054i 0.599082i
\(92\) −65.3598 14.3160i −0.0740677 0.0162233i
\(93\) 1956.85 2.18189
\(94\) −213.987 + 172.190i −0.234799 + 0.188936i
\(95\) 0 0
\(96\) −422.816 1681.63i −0.449516 1.78782i
\(97\) 297.986i 0.311916i 0.987764 + 0.155958i \(0.0498465\pi\)
−0.987764 + 0.155958i \(0.950154\pi\)
\(98\) −216.818 269.449i −0.223489 0.277739i
\(99\) 2414.54i 2.45122i
\(100\) 0 0
\(101\) 1793.53i 1.76696i −0.468469 0.883480i \(-0.655194\pi\)
0.468469 0.883480i \(-0.344806\pi\)
\(102\) 305.939 246.181i 0.296986 0.238976i
\(103\) 2084.11i 1.99372i −0.0791611 0.996862i \(-0.525224\pi\)
0.0791611 0.996862i \(-0.474776\pi\)
\(104\) 488.359 243.147i 0.460457 0.229255i
\(105\) 0 0
\(106\) −273.960 340.461i −0.251031 0.311967i
\(107\) 67.2542 0.0607637 0.0303818 0.999538i \(-0.490328\pi\)
0.0303818 + 0.999538i \(0.490328\pi\)
\(108\) −619.042 + 2826.24i −0.551550 + 2.51810i
\(109\) 1459.15i 1.28222i 0.767451 + 0.641108i \(0.221525\pi\)
−0.767451 + 0.641108i \(0.778475\pi\)
\(110\) 0 0
\(111\) 1254.10 1.07238
\(112\) 577.066 1254.10i 0.486854 1.05805i
\(113\) 458.263i 0.381502i −0.981638 0.190751i \(-0.938908\pi\)
0.981638 0.190751i \(-0.0610923\pi\)
\(114\) 563.346 453.309i 0.462826 0.372424i
\(115\) 0 0
\(116\) 817.052 + 178.962i 0.653978 + 0.143243i
\(117\) −1561.24 −1.23364
\(118\) 1198.95 964.764i 0.935360 0.752659i
\(119\) 312.639 0.240837
\(120\) 0 0
\(121\) −59.3283 −0.0445743
\(122\) −825.471 + 664.234i −0.612579 + 0.492926i
\(123\) −4195.21 −3.07536
\(124\) −349.678 + 1596.46i −0.253242 + 1.15618i
\(125\) 0 0
\(126\) −3077.97 + 2476.76i −2.17625 + 1.75117i
\(127\) 208.685i 0.145809i 0.997339 + 0.0729047i \(0.0232269\pi\)
−0.997339 + 0.0729047i \(0.976773\pi\)
\(128\) 1447.47 44.4492i 0.999529 0.0306937i
\(129\) 2957.62 2.01864
\(130\) 0 0
\(131\) 1784.69i 1.19030i 0.803616 + 0.595148i \(0.202906\pi\)
−0.803616 + 0.595148i \(0.797094\pi\)
\(132\) 2791.19 + 611.364i 1.84047 + 0.403124i
\(133\) 575.682 0.375323
\(134\) −34.3963 42.7457i −0.0221746 0.0275572i
\(135\) 0 0
\(136\) 146.172 + 293.585i 0.0921629 + 0.185108i
\(137\) 2380.60i 1.48459i 0.670075 + 0.742293i \(0.266262\pi\)
−0.670075 + 0.742293i \(0.733738\pi\)
\(138\) −176.541 + 142.057i −0.108899 + 0.0876285i
\(139\) 2858.52i 1.74429i 0.489245 + 0.872146i \(0.337272\pi\)
−0.489245 + 0.872146i \(0.662728\pi\)
\(140\) 0 0
\(141\) 930.189i 0.555575i
\(142\) −1694.67 2106.04i −1.00150 1.24461i
\(143\) 898.983i 0.525711i
\(144\) −3764.89 1732.39i −2.17876 1.00254i
\(145\) 0 0
\(146\) 280.775 225.932i 0.159158 0.128070i
\(147\) −1171.28 −0.657179
\(148\) −224.100 + 1023.13i −0.124466 + 0.568248i
\(149\) 897.894i 0.493680i −0.969056 0.246840i \(-0.920608\pi\)
0.969056 0.246840i \(-0.0793922\pi\)
\(150\) 0 0
\(151\) −3431.32 −1.84925 −0.924625 0.380878i \(-0.875622\pi\)
−0.924625 + 0.380878i \(0.875622\pi\)
\(152\) 269.156 + 540.597i 0.143628 + 0.288475i
\(153\) 938.563i 0.495937i
\(154\) 1426.15 + 1772.34i 0.746251 + 0.927397i
\(155\) 0 0
\(156\) 395.306 1804.77i 0.202884 0.926266i
\(157\) −571.369 −0.290447 −0.145224 0.989399i \(-0.546390\pi\)
−0.145224 + 0.989399i \(0.546390\pi\)
\(158\) −1726.85 2146.02i −0.869496 1.08056i
\(159\) −1479.96 −0.738167
\(160\) 0 0
\(161\) −180.406 −0.0883106
\(162\) 3042.53 + 3781.08i 1.47558 + 1.83376i
\(163\) −236.962 −0.113867 −0.0569333 0.998378i \(-0.518132\pi\)
−0.0569333 + 0.998378i \(0.518132\pi\)
\(164\) 749.657 3422.57i 0.356941 1.62962i
\(165\) 0 0
\(166\) −97.5619 121.244i −0.0456161 0.0566890i
\(167\) 1448.46i 0.671169i 0.942010 + 0.335585i \(0.108934\pi\)
−0.942010 + 0.335585i \(0.891066\pi\)
\(168\) −2083.76 4185.22i −0.956940 1.92200i
\(169\) −1615.72 −0.735421
\(170\) 0 0
\(171\) 1728.24i 0.772874i
\(172\) −528.509 + 2412.91i −0.234293 + 1.06967i
\(173\) 2529.74 1.11175 0.555875 0.831266i \(-0.312383\pi\)
0.555875 + 0.831266i \(0.312383\pi\)
\(174\) 2206.91 1775.84i 0.961523 0.773712i
\(175\) 0 0
\(176\) −997.536 + 2167.88i −0.427228 + 0.928467i
\(177\) 5211.77i 2.21322i
\(178\) 1630.99 + 2026.90i 0.686785 + 0.853496i
\(179\) 141.524i 0.0590949i 0.999563 + 0.0295475i \(0.00940662\pi\)
−0.999563 + 0.0295475i \(0.990593\pi\)
\(180\) 0 0
\(181\) 3457.79i 1.41997i 0.704215 + 0.709987i \(0.251299\pi\)
−0.704215 + 0.709987i \(0.748701\pi\)
\(182\) 1145.99 922.147i 0.466739 0.375572i
\(183\) 3588.27i 1.44947i
\(184\) −84.3477 169.411i −0.0337945 0.0678760i
\(185\) 0 0
\(186\) 3469.85 + 4312.12i 1.36786 + 1.69989i
\(187\) −540.438 −0.211341
\(188\) −758.874 166.219i −0.294397 0.0644828i
\(189\) 7801.01i 3.00233i
\(190\) 0 0
\(191\) −1416.99 −0.536804 −0.268402 0.963307i \(-0.586496\pi\)
−0.268402 + 0.963307i \(0.586496\pi\)
\(192\) 2955.90 3913.54i 1.11106 1.47102i
\(193\) 2681.12i 0.999955i 0.866038 + 0.499978i \(0.166658\pi\)
−0.866038 + 0.499978i \(0.833342\pi\)
\(194\) −656.641 + 528.381i −0.243011 + 0.195544i
\(195\) 0 0
\(196\) 209.300 955.560i 0.0762755 0.348236i
\(197\) 2697.74 0.975664 0.487832 0.872938i \(-0.337788\pi\)
0.487832 + 0.872938i \(0.337788\pi\)
\(198\) 5320.68 4281.41i 1.90972 1.53670i
\(199\) −3543.25 −1.26218 −0.631091 0.775709i \(-0.717393\pi\)
−0.631091 + 0.775709i \(0.717393\pi\)
\(200\) 0 0
\(201\) −185.813 −0.0652052
\(202\) 3952.22 3180.25i 1.37662 1.10773i
\(203\) 2255.23 0.779735
\(204\) 1084.97 + 237.645i 0.372368 + 0.0815611i
\(205\) 0 0
\(206\) 4592.54 3695.50i 1.55329 1.24989i
\(207\) 541.592i 0.181851i
\(208\) 1401.75 + 645.004i 0.467277 + 0.215014i
\(209\) −995.143 −0.329356
\(210\) 0 0
\(211\) 152.205i 0.0496598i −0.999692 0.0248299i \(-0.992096\pi\)
0.999692 0.0248299i \(-0.00790441\pi\)
\(212\) 264.460 1207.39i 0.0856754 0.391152i
\(213\) −9154.80 −2.94496
\(214\) 119.254 + 148.201i 0.0380935 + 0.0473403i
\(215\) 0 0
\(216\) −7325.57 + 3647.30i −2.30760 + 1.14892i
\(217\) 4406.54i 1.37851i
\(218\) −3215.39 + 2587.34i −0.998961 + 0.803837i
\(219\) 1220.51i 0.376596i
\(220\) 0 0
\(221\) 349.446i 0.106363i
\(222\) 2223.74 + 2763.53i 0.672287 + 0.835478i
\(223\) 2065.40i 0.620222i 0.950700 + 0.310111i \(0.100366\pi\)
−0.950700 + 0.310111i \(0.899634\pi\)
\(224\) 3786.77 952.120i 1.12953 0.284001i
\(225\) 0 0
\(226\) 1009.83 812.580i 0.297224 0.239168i
\(227\) −2940.45 −0.859757 −0.429878 0.902887i \(-0.641444\pi\)
−0.429878 + 0.902887i \(0.641444\pi\)
\(228\) 1997.82 + 437.591i 0.580303 + 0.127106i
\(229\) 4949.77i 1.42834i −0.699971 0.714171i \(-0.746804\pi\)
0.699971 0.714171i \(-0.253196\pi\)
\(230\) 0 0
\(231\) 7704.25 2.19438
\(232\) 1054.42 + 2117.79i 0.298387 + 0.599308i
\(233\) 5193.31i 1.46019i −0.683344 0.730096i \(-0.739475\pi\)
0.683344 0.730096i \(-0.260525\pi\)
\(234\) −2768.35 3440.34i −0.773387 0.961119i
\(235\) 0 0
\(236\) 4251.90 + 931.311i 1.17278 + 0.256878i
\(237\) −9328.62 −2.55679
\(238\) 554.364 + 688.930i 0.150983 + 0.187633i
\(239\) 2066.30 0.559238 0.279619 0.960111i \(-0.409792\pi\)
0.279619 + 0.960111i \(0.409792\pi\)
\(240\) 0 0
\(241\) −2309.08 −0.617181 −0.308591 0.951195i \(-0.599857\pi\)
−0.308591 + 0.951195i \(0.599857\pi\)
\(242\) −105.200 130.736i −0.0279442 0.0347273i
\(243\) 6671.42 1.76120
\(244\) −2927.41 641.202i −0.768066 0.168232i
\(245\) 0 0
\(246\) −7438.84 9244.55i −1.92798 2.39598i
\(247\) 643.457i 0.165758i
\(248\) −4137.99 + 2060.25i −1.05953 + 0.527524i
\(249\) −527.041 −0.134136
\(250\) 0 0
\(251\) 3802.60i 0.956246i −0.878293 0.478123i \(-0.841317\pi\)
0.878293 0.478123i \(-0.158683\pi\)
\(252\) −10915.6 2390.88i −2.72863 0.597663i
\(253\) 311.857 0.0774951
\(254\) −459.858 + 370.035i −0.113599 + 0.0914097i
\(255\) 0 0
\(256\) 2664.57 + 3110.83i 0.650530 + 0.759480i
\(257\) 6168.56i 1.49721i 0.663013 + 0.748607i \(0.269277\pi\)
−0.663013 + 0.748607i \(0.730723\pi\)
\(258\) 5244.39 + 6517.41i 1.26551 + 1.57270i
\(259\) 2824.05i 0.677521i
\(260\) 0 0
\(261\) 6770.36i 1.60565i
\(262\) −3932.73 + 3164.56i −0.927347 + 0.746211i
\(263\) 1636.11i 0.383599i 0.981434 + 0.191800i \(0.0614324\pi\)
−0.981434 + 0.191800i \(0.938568\pi\)
\(264\) 3602.07 + 7234.71i 0.839742 + 1.68661i
\(265\) 0 0
\(266\) 1020.79 + 1268.57i 0.235295 + 0.292410i
\(267\) 8810.79 2.01952
\(268\) 33.2036 151.591i 0.00756804 0.0345520i
\(269\) 2262.24i 0.512756i 0.966577 + 0.256378i \(0.0825292\pi\)
−0.966577 + 0.256378i \(0.917471\pi\)
\(270\) 0 0
\(271\) 41.6380 0.00933332 0.00466666 0.999989i \(-0.498515\pi\)
0.00466666 + 0.999989i \(0.498515\pi\)
\(272\) −387.755 + 842.683i −0.0864378 + 0.187850i
\(273\) 4981.55i 1.10438i
\(274\) −5245.88 + 4221.22i −1.15663 + 0.930706i
\(275\) 0 0
\(276\) −626.075 137.132i −0.136541 0.0299071i
\(277\) 2139.00 0.463971 0.231986 0.972719i \(-0.425478\pi\)
0.231986 + 0.972719i \(0.425478\pi\)
\(278\) −6299.03 + 5068.66i −1.35896 + 1.09352i
\(279\) 13228.7 2.83865
\(280\) 0 0
\(281\) −1493.53 −0.317069 −0.158534 0.987353i \(-0.550677\pi\)
−0.158534 + 0.987353i \(0.550677\pi\)
\(282\) −2049.76 + 1649.39i −0.432843 + 0.348297i
\(283\) −1090.20 −0.228995 −0.114498 0.993424i \(-0.536526\pi\)
−0.114498 + 0.993424i \(0.536526\pi\)
\(284\) 1635.91 7468.74i 0.341807 1.56052i
\(285\) 0 0
\(286\) −1981.00 + 1594.05i −0.409576 + 0.329575i
\(287\) 9446.98i 1.94299i
\(288\) −2858.33 11368.1i −0.584822 2.32595i
\(289\) 4702.92 0.957241
\(290\) 0 0
\(291\) 2854.38i 0.575005i
\(292\) 995.727 + 218.098i 0.199557 + 0.0437096i
\(293\) −4067.51 −0.811011 −0.405506 0.914093i \(-0.632905\pi\)
−0.405506 + 0.914093i \(0.632905\pi\)
\(294\) −2076.88 2581.02i −0.411994 0.512001i
\(295\) 0 0
\(296\) −2651.94 + 1320.36i −0.520746 + 0.259272i
\(297\) 13485.1i 2.63463i
\(298\) 1978.60 1592.12i 0.384621 0.309494i
\(299\) 201.646i 0.0390016i
\(300\) 0 0
\(301\) 6660.13i 1.27536i
\(302\) −6084.33 7561.25i −1.15932 1.44073i
\(303\) 17180.1i 3.25732i
\(304\) −713.998 + 1551.69i −0.134706 + 0.292748i
\(305\) 0 0
\(306\) 2068.22 1664.24i 0.386379 0.310909i
\(307\) −6736.05 −1.25227 −0.626135 0.779715i \(-0.715364\pi\)
−0.626135 + 0.779715i \(0.715364\pi\)
\(308\) −1376.70 + 6285.34i −0.254691 + 1.16279i
\(309\) 19963.5i 3.67535i
\(310\) 0 0
\(311\) 3274.35 0.597014 0.298507 0.954407i \(-0.403511\pi\)
0.298507 + 0.954407i \(0.403511\pi\)
\(312\) 4677.95 2329.09i 0.848835 0.422624i
\(313\) 9357.60i 1.68985i 0.534885 + 0.844925i \(0.320355\pi\)
−0.534885 + 0.844925i \(0.679645\pi\)
\(314\) −1013.14 1259.07i −0.182085 0.226284i
\(315\) 0 0
\(316\) 1666.97 7610.55i 0.296754 1.35483i
\(317\) 9064.68 1.60607 0.803033 0.595934i \(-0.203218\pi\)
0.803033 + 0.595934i \(0.203218\pi\)
\(318\) −2624.23 3261.24i −0.462766 0.575098i
\(319\) −3898.47 −0.684239
\(320\) 0 0
\(321\) 644.222 0.112015
\(322\) −319.892 397.543i −0.0553630 0.0688019i
\(323\) −386.825 −0.0666362
\(324\) −2937.03 + 13409.0i −0.503606 + 2.29922i
\(325\) 0 0
\(326\) −420.175 522.168i −0.0713844 0.0887123i
\(327\) 13977.1i 2.36371i
\(328\) 8871.23 4416.87i 1.49339 0.743539i
\(329\) −2094.65 −0.351008
\(330\) 0 0
\(331\) 280.089i 0.0465108i 0.999730 + 0.0232554i \(0.00740310\pi\)
−0.999730 + 0.0232554i \(0.992597\pi\)
\(332\) 94.1789 429.975i 0.0155685 0.0710781i
\(333\) 8477.98 1.39517
\(334\) −3191.83 + 2568.38i −0.522901 + 0.420764i
\(335\) 0 0
\(336\) 5527.66 12012.9i 0.897496 1.95047i
\(337\) 5748.75i 0.929242i −0.885510 0.464621i \(-0.846191\pi\)
0.885510 0.464621i \(-0.153809\pi\)
\(338\) −2864.96 3560.40i −0.461045 0.572959i
\(339\) 4389.65i 0.703284i
\(340\) 0 0
\(341\) 7617.30i 1.20968i
\(342\) 3808.34 3064.47i 0.602138 0.484525i
\(343\) 4761.06i 0.749484i
\(344\) −6254.23 + 3113.90i −0.980248 + 0.488052i
\(345\) 0 0
\(346\) 4485.68 + 5574.53i 0.696969 + 0.866152i
\(347\) −2911.52 −0.450428 −0.225214 0.974309i \(-0.572308\pi\)
−0.225214 + 0.974309i \(0.572308\pi\)
\(348\) 7826.46 + 1714.26i 1.20558 + 0.264063i
\(349\) 5665.17i 0.868910i 0.900693 + 0.434455i \(0.143059\pi\)
−0.900693 + 0.434455i \(0.856941\pi\)
\(350\) 0 0
\(351\) −8719.42 −1.32595
\(352\) −6545.95 + 1645.87i −0.991193 + 0.249219i
\(353\) 9428.18i 1.42156i 0.703414 + 0.710781i \(0.251658\pi\)
−0.703414 + 0.710781i \(0.748342\pi\)
\(354\) 11484.6 9241.38i 1.72430 1.38750i
\(355\) 0 0
\(356\) −1574.43 + 7188.09i −0.234396 + 1.07013i
\(357\) 2994.74 0.443973
\(358\) −311.862 + 250.947i −0.0460403 + 0.0370474i
\(359\) −4573.16 −0.672318 −0.336159 0.941805i \(-0.609128\pi\)
−0.336159 + 0.941805i \(0.609128\pi\)
\(360\) 0 0
\(361\) 6146.71 0.896153
\(362\) −7619.57 + 6131.26i −1.10629 + 0.890199i
\(363\) −568.300 −0.0821709
\(364\) 4064.08 + 890.172i 0.585208 + 0.128180i
\(365\) 0 0
\(366\) −7907.10 + 6362.63i −1.12926 + 0.908689i
\(367\) 2717.97i 0.386585i −0.981141 0.193293i \(-0.938083\pi\)
0.981141 0.193293i \(-0.0619166\pi\)
\(368\) 223.751 486.265i 0.0316952 0.0688813i
\(369\) −28360.5 −4.00105
\(370\) 0 0
\(371\) 3332.65i 0.466369i
\(372\) −3349.53 + 15292.3i −0.466841 + 2.13137i
\(373\) 5627.51 0.781183 0.390592 0.920564i \(-0.372270\pi\)
0.390592 + 0.920564i \(0.372270\pi\)
\(374\) −958.292 1190.91i −0.132492 0.164654i
\(375\) 0 0
\(376\) −979.338 1966.99i −0.134323 0.269786i
\(377\) 2520.74i 0.344363i
\(378\) −17190.3 + 13832.6i −2.33908 + 1.88220i
\(379\) 8066.74i 1.09330i 0.837361 + 0.546650i \(0.184097\pi\)
−0.837361 + 0.546650i \(0.815903\pi\)
\(380\) 0 0
\(381\) 1998.97i 0.268794i
\(382\) −2512.57 3122.47i −0.336529 0.418219i
\(383\) 10607.8i 1.41523i −0.706600 0.707613i \(-0.749772\pi\)
0.706600 0.707613i \(-0.250228\pi\)
\(384\) 13865.2 425.775i 1.84259 0.0565826i
\(385\) 0 0
\(386\) −5908.11 + 4754.10i −0.779055 + 0.626884i
\(387\) 19994.1 2.62625
\(388\) −2328.68 510.059i −0.304693 0.0667380i
\(389\) 8992.58i 1.17209i −0.810280 0.586044i \(-0.800685\pi\)
0.810280 0.586044i \(-0.199315\pi\)
\(390\) 0 0
\(391\) 121.223 0.0156790
\(392\) 2476.80 1233.16i 0.319125 0.158888i
\(393\) 17095.3i 2.19426i
\(394\) 4783.56 + 5944.73i 0.611656 + 0.760130i
\(395\) 0 0
\(396\) 18869.0 + 4132.95i 2.39445 + 0.524466i
\(397\) 8977.17 1.13489 0.567445 0.823411i \(-0.307932\pi\)
0.567445 + 0.823411i \(0.307932\pi\)
\(398\) −6282.81 7807.90i −0.791278 0.983353i
\(399\) 5514.40 0.691893
\(400\) 0 0
\(401\) −3165.72 −0.394236 −0.197118 0.980380i \(-0.563158\pi\)
−0.197118 + 0.980380i \(0.563158\pi\)
\(402\) −329.479 409.457i −0.0408779 0.0508007i
\(403\) −4925.33 −0.608804
\(404\) 14016.0 + 3069.97i 1.72604 + 0.378061i
\(405\) 0 0
\(406\) 3998.92 + 4969.62i 0.488826 + 0.607483i
\(407\) 4881.75i 0.594543i
\(408\) 1400.17 + 2812.22i 0.169899 + 0.341240i
\(409\) 5417.61 0.654972 0.327486 0.944856i \(-0.393798\pi\)
0.327486 + 0.944856i \(0.393798\pi\)
\(410\) 0 0
\(411\) 22803.5i 2.73678i
\(412\) 16286.8 + 3567.35i 1.94755 + 0.426580i
\(413\) 11736.1 1.39830
\(414\) −1193.45 + 960.338i −0.141679 + 0.114005i
\(415\) 0 0
\(416\) 1064.21 + 4232.59i 0.125426 + 0.498846i
\(417\) 27381.5i 3.21554i
\(418\) −1764.56 2192.90i −0.206478 0.256598i
\(419\) 6198.14i 0.722670i 0.932436 + 0.361335i \(0.117679\pi\)
−0.932436 + 0.361335i \(0.882321\pi\)
\(420\) 0 0
\(421\) 4344.57i 0.502949i −0.967864 0.251474i \(-0.919085\pi\)
0.967864 0.251474i \(-0.0809154\pi\)
\(422\) 335.398 269.886i 0.0386894 0.0311323i
\(423\) 6288.27i 0.722804i
\(424\) 3129.54 1558.16i 0.358453 0.178469i
\(425\) 0 0
\(426\) −16233.1 20173.5i −1.84623 2.29439i
\(427\) −8080.25 −0.915763
\(428\) −115.118 + 525.574i −0.0130011 + 0.0593565i
\(429\) 8611.27i 0.969128i
\(430\) 0 0
\(431\) 4750.74 0.530940 0.265470 0.964119i \(-0.414473\pi\)
0.265470 + 0.964119i \(0.414473\pi\)
\(432\) −21026.7 9675.31i −2.34178 1.07755i
\(433\) 4210.26i 0.467280i −0.972323 0.233640i \(-0.924936\pi\)
0.972323 0.233640i \(-0.0750638\pi\)
\(434\) −9710.25 + 7813.58i −1.07398 + 0.864202i
\(435\) 0 0
\(436\) −11402.9 2497.62i −1.25252 0.274345i
\(437\) 223.215 0.0244344
\(438\) 2689.52 2164.18i 0.293402 0.236093i
\(439\) 5776.50 0.628012 0.314006 0.949421i \(-0.398329\pi\)
0.314006 + 0.949421i \(0.398329\pi\)
\(440\) 0 0
\(441\) −7918.08 −0.854992
\(442\) −770.038 + 619.629i −0.0828665 + 0.0666804i
\(443\) 11981.6 1.28502 0.642510 0.766278i \(-0.277893\pi\)
0.642510 + 0.766278i \(0.277893\pi\)
\(444\) −2146.63 + 9800.46i −0.229447 + 1.04754i
\(445\) 0 0
\(446\) −4551.32 + 3662.32i −0.483209 + 0.388825i
\(447\) 8600.84i 0.910080i
\(448\) 8812.71 + 6656.25i 0.929378 + 0.701961i
\(449\) 5567.58 0.585190 0.292595 0.956236i \(-0.405481\pi\)
0.292595 + 0.956236i \(0.405481\pi\)
\(450\) 0 0
\(451\) 16330.4i 1.70503i
\(452\) 3581.20 + 784.404i 0.372667 + 0.0816267i
\(453\) −32868.3 −3.40902
\(454\) −5213.94 6479.58i −0.538992 0.669828i
\(455\) 0 0
\(456\) 2578.22 + 5178.33i 0.264772 + 0.531792i
\(457\) 7283.56i 0.745538i −0.927924 0.372769i \(-0.878408\pi\)
0.927924 0.372769i \(-0.121592\pi\)
\(458\) 10907.3 8776.82i 1.11281 0.895445i
\(459\) 5241.82i 0.533044i
\(460\) 0 0
\(461\) 11901.1i 1.20236i −0.799113 0.601181i \(-0.794697\pi\)
0.799113 0.601181i \(-0.205303\pi\)
\(462\) 13661.0 + 16977.1i 1.37569 + 1.70962i
\(463\) 4915.73i 0.493419i −0.969089 0.246710i \(-0.920651\pi\)
0.969089 0.246710i \(-0.0793494\pi\)
\(464\) −2797.08 + 6078.72i −0.279852 + 0.608184i
\(465\) 0 0
\(466\) 11444.0 9208.65i 1.13762 0.915413i
\(467\) 3110.15 0.308181 0.154091 0.988057i \(-0.450755\pi\)
0.154091 + 0.988057i \(0.450755\pi\)
\(468\) 2672.35 12200.7i 0.263952 1.20508i
\(469\) 418.424i 0.0411962i
\(470\) 0 0
\(471\) −5473.09 −0.535428
\(472\) 5487.14 + 11020.9i 0.535098 + 1.07474i
\(473\) 11512.9i 1.11916i
\(474\) −16541.3 20556.5i −1.60288 1.99197i
\(475\) 0 0
\(476\) −535.141 + 2443.19i −0.0515297 + 0.235259i
\(477\) −10004.8 −0.960358
\(478\) 3663.92 + 4553.30i 0.350594 + 0.435697i
\(479\) −6590.43 −0.628652 −0.314326 0.949315i \(-0.601779\pi\)
−0.314326 + 0.949315i \(0.601779\pi\)
\(480\) 0 0
\(481\) −3156.52 −0.299221
\(482\) −4094.40 5088.28i −0.386919 0.480840i
\(483\) −1728.10 −0.162797
\(484\) 101.552 463.635i 0.00953717 0.0435420i
\(485\) 0 0
\(486\) 11829.6 + 14701.1i 1.10412 + 1.37213i
\(487\) 3139.99i 0.292169i 0.989272 + 0.146085i \(0.0466672\pi\)
−0.989272 + 0.146085i \(0.953333\pi\)
\(488\) −3777.86 7587.80i −0.350442 0.703860i
\(489\) −2269.83 −0.209909
\(490\) 0 0
\(491\) 12057.6i 1.10825i −0.832433 0.554126i \(-0.813053\pi\)
0.832433 0.554126i \(-0.186947\pi\)
\(492\) 7180.90 32784.4i 0.658008 3.00414i
\(493\) −1515.38 −0.138437
\(494\) −1417.92 + 1140.96i −0.129140 + 0.103916i
\(495\) 0 0
\(496\) −11877.3 5465.28i −1.07522 0.494754i
\(497\) 20615.3i 1.86061i
\(498\) −934.536 1161.39i −0.0840915 0.104504i
\(499\) 8458.64i 0.758839i −0.925225 0.379420i \(-0.876124\pi\)
0.925225 0.379420i \(-0.123876\pi\)
\(500\) 0 0
\(501\) 13874.7i 1.23727i
\(502\) 8379.40 6742.67i 0.745001 0.599483i
\(503\) 16896.2i 1.49774i −0.662718 0.748869i \(-0.730597\pi\)
0.662718 0.748869i \(-0.269403\pi\)
\(504\) −14086.7 28293.0i −1.24498 2.50053i
\(505\) 0 0
\(506\) 552.977 + 687.207i 0.0485826 + 0.0603756i
\(507\) −15476.8 −1.35572
\(508\) −1630.82 357.204i −0.142433 0.0311976i
\(509\) 6849.13i 0.596429i −0.954499 0.298214i \(-0.903609\pi\)
0.954499 0.298214i \(-0.0963910\pi\)
\(510\) 0 0
\(511\) 2748.41 0.237931
\(512\) −2130.27 + 11387.7i −0.183878 + 0.982949i
\(513\) 9652.10i 0.830703i
\(514\) −13593.0 + 10937.9i −1.16646 + 0.938623i
\(515\) 0 0
\(516\) −5062.54 + 23113.0i −0.431910 + 1.97189i
\(517\) 3620.88 0.308019
\(518\) −6223.07 + 5007.54i −0.527849 + 0.424746i
\(519\) 24232.1 2.04947
\(520\) 0 0
\(521\) 11044.1 0.928696 0.464348 0.885653i \(-0.346289\pi\)
0.464348 + 0.885653i \(0.346289\pi\)
\(522\) 14919.1 12005.0i 1.25094 1.00660i
\(523\) 3115.75 0.260502 0.130251 0.991481i \(-0.458422\pi\)
0.130251 + 0.991481i \(0.458422\pi\)
\(524\) −13946.8 3054.83i −1.16273 0.254677i
\(525\) 0 0
\(526\) −3605.32 + 2901.10i −0.298858 + 0.240483i
\(527\) 2960.94i 0.244745i
\(528\) −9555.30 + 20765.9i −0.787578 + 1.71159i
\(529\) 12097.0 0.994251
\(530\) 0 0
\(531\) 35232.6i 2.87941i
\(532\) −985.390 + 4498.80i −0.0803046 + 0.366631i
\(533\) 10559.2 0.858103
\(534\) 15623.1 + 19415.4i 1.26606 + 1.57339i
\(535\) 0 0
\(536\) 392.923 195.631i 0.0316636 0.0157649i
\(537\) 1355.64i 0.108939i
\(538\) −4985.07 + 4011.36i −0.399483 + 0.321453i
\(539\) 4559.35i 0.364350i
\(540\) 0 0
\(541\) 14840.6i 1.17938i 0.807629 + 0.589691i \(0.200751\pi\)
−0.807629 + 0.589691i \(0.799249\pi\)
\(542\) 73.8316 + 91.7535i 0.00585118 + 0.00727150i
\(543\) 33121.8i 2.61767i
\(544\) −2544.49 + 639.769i −0.200541 + 0.0504226i
\(545\) 0 0
\(546\) 10977.3 8833.16i 0.860414 0.692352i
\(547\) −12622.8 −0.986679 −0.493340 0.869837i \(-0.664224\pi\)
−0.493340 + 0.869837i \(0.664224\pi\)
\(548\) −18603.8 4074.85i −1.45021 0.317644i
\(549\) 24257.5i 1.88576i
\(550\) 0 0
\(551\) −2790.37 −0.215742
\(552\) −807.958 1622.78i −0.0622989 0.125127i
\(553\) 21006.7i 1.61536i
\(554\) 3792.83 + 4713.50i 0.290870 + 0.361475i
\(555\) 0 0
\(556\) −22338.6 4892.91i −1.70390 0.373211i
\(557\) −13382.1 −1.01798 −0.508992 0.860771i \(-0.669982\pi\)
−0.508992 + 0.860771i \(0.669982\pi\)
\(558\) 23456.9 + 29150.8i 1.77959 + 2.21156i
\(559\) −7444.23 −0.563251
\(560\) 0 0
\(561\) −5176.80 −0.389599
\(562\) −2648.28 3291.13i −0.198774 0.247025i
\(563\) −153.895 −0.0115203 −0.00576014 0.999983i \(-0.501834\pi\)
−0.00576014 + 0.999983i \(0.501834\pi\)
\(564\) −7269.18 1592.20i −0.542709 0.118872i
\(565\) 0 0
\(566\) −1933.12 2402.37i −0.143560 0.178408i
\(567\) 37011.7i 2.74135i
\(568\) 19358.9 9638.52i 1.43007 0.712013i
\(569\) 5395.71 0.397539 0.198770 0.980046i \(-0.436305\pi\)
0.198770 + 0.980046i \(0.436305\pi\)
\(570\) 0 0
\(571\) 22390.5i 1.64100i −0.571646 0.820500i \(-0.693695\pi\)
0.571646 0.820500i \(-0.306305\pi\)
\(572\) −7025.31 1538.78i −0.513537 0.112482i
\(573\) −13573.2 −0.989578
\(574\) 20817.4 16751.2i 1.51376 1.21808i
\(575\) 0 0
\(576\) 19982.5 26456.3i 1.44549 1.91380i
\(577\) 1935.38i 0.139638i −0.997560 0.0698188i \(-0.977758\pi\)
0.997560 0.0698188i \(-0.0222421\pi\)
\(578\) 8339.12 + 10363.4i 0.600106 + 0.745777i
\(579\) 25682.2i 1.84338i
\(580\) 0 0
\(581\) 1186.82i 0.0847461i
\(582\) −6289.90 + 5061.31i −0.447981 + 0.360478i
\(583\) 5760.94i 0.409252i
\(584\) 1285.00 + 2580.91i 0.0910508 + 0.182875i
\(585\) 0 0
\(586\) −7212.41 8963.15i −0.508433 0.631851i
\(587\) 7905.44 0.555865 0.277932 0.960601i \(-0.410351\pi\)
0.277932 + 0.960601i \(0.410351\pi\)
\(588\) 2004.86 9153.22i 0.140611 0.641960i
\(589\) 5452.17i 0.381414i
\(590\) 0 0
\(591\) 25841.4 1.79860
\(592\) −7611.90 3502.57i −0.528458 0.243166i
\(593\) 11141.6i 0.771552i 0.922592 + 0.385776i \(0.126066\pi\)
−0.922592 + 0.385776i \(0.873934\pi\)
\(594\) 29715.7 23911.4i 2.05261 1.65168i
\(595\) 0 0
\(596\) 7016.81 + 1536.92i 0.482248 + 0.105629i
\(597\) −33940.4 −2.32678
\(598\) 444.346 357.553i 0.0303857 0.0244506i
\(599\) −278.847 −0.0190207 −0.00951033 0.999955i \(-0.503027\pi\)
−0.00951033 + 0.999955i \(0.503027\pi\)
\(600\) 0 0
\(601\) 18890.7 1.28214 0.641071 0.767482i \(-0.278490\pi\)
0.641071 + 0.767482i \(0.278490\pi\)
\(602\) −14676.2 + 11809.6i −0.993620 + 0.799539i
\(603\) −1256.14 −0.0848321
\(604\) 5873.36 26814.9i 0.395668 1.80643i
\(605\) 0 0
\(606\) 37857.9 30463.3i 2.53774 2.04206i
\(607\) 5398.05i 0.360956i 0.983579 + 0.180478i \(0.0577644\pi\)
−0.983579 + 0.180478i \(0.942236\pi\)
\(608\) −4685.34 + 1178.05i −0.312525 + 0.0785792i
\(609\) 21602.6 1.43741
\(610\) 0 0
\(611\) 2341.25i 0.155019i
\(612\) 7334.62 + 1606.53i 0.484452 + 0.106111i
\(613\) −14412.8 −0.949635 −0.474817 0.880084i \(-0.657486\pi\)
−0.474817 + 0.880084i \(0.657486\pi\)
\(614\) −11944.2 14843.5i −0.785063 0.975630i
\(615\) 0 0
\(616\) −16291.5 + 8111.32i −1.06559 + 0.530543i
\(617\) 13226.3i 0.863001i 0.902113 + 0.431500i \(0.142016\pi\)
−0.902113 + 0.431500i \(0.857984\pi\)
\(618\) 43991.5 35398.8i 2.86343 2.30412i
\(619\) 14179.4i 0.920705i −0.887736 0.460352i \(-0.847723\pi\)
0.887736 0.460352i \(-0.152277\pi\)
\(620\) 0 0
\(621\) 3024.76i 0.195458i
\(622\) 5806.00 + 7215.35i 0.374275 + 0.465127i
\(623\) 19840.6i 1.27592i
\(624\) 13427.2 + 6178.43i 0.861407 + 0.396371i
\(625\) 0 0
\(626\) −20620.4 + 16592.7i −1.31654 + 1.05939i
\(627\) −9532.38 −0.607156
\(628\) 978.007 4465.10i 0.0621444 0.283721i
\(629\) 1897.60i 0.120290i
\(630\) 0 0
\(631\) 1533.79 0.0967657 0.0483828 0.998829i \(-0.484593\pi\)
0.0483828 + 0.998829i \(0.484593\pi\)
\(632\) 19726.4 9821.52i 1.24157 0.618163i
\(633\) 1457.96i 0.0915459i
\(634\) 16073.3 + 19974.9i 1.00686 + 1.25127i
\(635\) 0 0
\(636\) 2533.24 11565.5i 0.157939 0.721073i
\(637\) 2948.06 0.183370
\(638\) −6912.67 8590.66i −0.428958 0.533084i
\(639\) −61888.4 −3.83140
\(640\) 0 0
\(641\) −26682.6 −1.64415 −0.822074 0.569381i \(-0.807183\pi\)
−0.822074 + 0.569381i \(0.807183\pi\)
\(642\) 1142.32 + 1419.61i 0.0702239 + 0.0872701i
\(643\) −16498.3 −1.01186 −0.505931 0.862574i \(-0.668851\pi\)
−0.505931 + 0.862574i \(0.668851\pi\)
\(644\) 308.800 1409.83i 0.0188951 0.0862655i
\(645\) 0 0
\(646\) −685.909 852.406i −0.0417751 0.0519156i
\(647\) 20127.5i 1.22302i −0.791236 0.611510i \(-0.790562\pi\)
0.791236 0.611510i \(-0.209438\pi\)
\(648\) −34756.0 + 17304.6i −2.10701 + 1.04905i
\(649\) −20287.5 −1.22705
\(650\) 0 0
\(651\) 42209.9i 2.54122i
\(652\) 405.605 1851.79i 0.0243631 0.111230i
\(653\) 21447.4 1.28530 0.642650 0.766160i \(-0.277835\pi\)
0.642650 + 0.766160i \(0.277835\pi\)
\(654\) −30799.9 + 24783.8i −1.84155 + 1.48184i
\(655\) 0 0
\(656\) 25463.3 + 11716.7i 1.51551 + 0.697351i
\(657\) 8250.91i 0.489953i
\(658\) −3714.18 4615.76i −0.220051 0.273467i
\(659\) 19402.5i 1.14691i 0.819237 + 0.573455i \(0.194397\pi\)
−0.819237 + 0.573455i \(0.805603\pi\)
\(660\) 0 0
\(661\) 9326.38i 0.548796i −0.961616 0.274398i \(-0.911521\pi\)
0.961616 0.274398i \(-0.0884786\pi\)
\(662\) −617.204 + 496.647i −0.0362361 + 0.0291582i
\(663\) 3347.31i 0.196076i
\(664\) 1114.49 554.888i 0.0651363 0.0324305i
\(665\) 0 0
\(666\) 15033.0 + 18682.1i 0.874648 + 1.08696i
\(667\) 874.443 0.0507625
\(668\) −11319.3 2479.32i −0.655626 0.143604i
\(669\) 19784.3i 1.14336i
\(670\) 0 0
\(671\) 13967.8 0.803608
\(672\) 36273.1 9120.27i 2.08224 0.523545i
\(673\) 15027.4i 0.860718i 0.902658 + 0.430359i \(0.141613\pi\)
−0.902658 + 0.430359i \(0.858387\pi\)
\(674\) 12667.9 10193.6i 0.723963 0.582553i
\(675\) 0 0
\(676\) 2765.61 12626.4i 0.157352 0.718390i
\(677\) −9717.31 −0.551649 −0.275825 0.961208i \(-0.588951\pi\)
−0.275825 + 0.961208i \(0.588951\pi\)
\(678\) 9673.03 7783.63i 0.547921 0.440898i
\(679\) −6427.63 −0.363284
\(680\) 0 0
\(681\) −28166.3 −1.58493
\(682\) 16785.5 13506.8i 0.942447 0.758362i
\(683\) 11473.9 0.642804 0.321402 0.946943i \(-0.395846\pi\)
0.321402 + 0.946943i \(0.395846\pi\)
\(684\) 13505.7 + 2958.21i 0.754976 + 0.165365i
\(685\) 0 0
\(686\) −10491.5 + 8442.20i −0.583916 + 0.469861i
\(687\) 47413.4i 2.63309i
\(688\) −17951.6 8260.32i −0.994766 0.457735i
\(689\) 3725.01 0.205967
\(690\) 0 0
\(691\) 28412.6i 1.56421i −0.623149 0.782103i \(-0.714147\pi\)
0.623149 0.782103i \(-0.285853\pi\)
\(692\) −4330.13 + 19769.3i −0.237871 + 1.08600i
\(693\) 52082.3 2.85490
\(694\) −5162.64 6415.82i −0.282379 0.350924i
\(695\) 0 0
\(696\) 10100.2 + 20286.1i 0.550066 + 1.10480i
\(697\) 6347.82i 0.344965i
\(698\) −12483.8 + 10045.3i −0.676959 + 0.544731i
\(699\) 49746.2i 2.69181i
\(700\) 0 0
\(701\) 12291.3i 0.662250i −0.943587 0.331125i \(-0.892572\pi\)
0.943587 0.331125i \(-0.107428\pi\)
\(702\) −15461.1 19214.1i −0.831254 1.03303i
\(703\) 3494.17i 0.187461i
\(704\) −15233.9 11506.2i −0.815555 0.615990i
\(705\) 0 0
\(706\) −20775.9 + 16717.8i −1.10752 + 0.891195i
\(707\) 38686.9 2.05795
\(708\) 40728.6 + 8920.94i 2.16197 + 0.473544i
\(709\) 12774.2i 0.676650i 0.941029 + 0.338325i \(0.109860\pi\)
−0.941029 + 0.338325i \(0.890140\pi\)
\(710\) 0 0
\(711\) −63063.4 −3.32639
\(712\) −18631.4 + 9276.33i −0.980676 + 0.488266i
\(713\) 1708.59i 0.0897438i
\(714\) 5310.20 + 6599.20i 0.278332 + 0.345895i
\(715\) 0 0
\(716\) −1105.97 242.245i −0.0577264 0.0126440i
\(717\) 19792.9 1.03093
\(718\) −8109.02 10077.4i −0.421485 0.523796i
\(719\) 15748.6 0.816861 0.408430 0.912790i \(-0.366076\pi\)
0.408430 + 0.912790i \(0.366076\pi\)
\(720\) 0 0
\(721\) 44954.8 2.32206
\(722\) 10899.2 + 13544.9i 0.561810 + 0.698184i
\(723\) −22118.4 −1.13775
\(724\) −27021.7 5918.66i −1.38709 0.303820i
\(725\) 0 0
\(726\) −1007.70 1252.31i −0.0515140 0.0640185i
\(727\) 9536.44i 0.486502i 0.969963 + 0.243251i \(0.0782138\pi\)
−0.969963 + 0.243251i \(0.921786\pi\)
\(728\) 5244.76 + 10534.0i 0.267010 + 0.536288i
\(729\) 17576.5 0.892980
\(730\) 0 0
\(731\) 4475.22i 0.226432i
\(732\) −28041.4 6142.01i −1.41590 0.310130i
\(733\) −34913.5 −1.75929 −0.879645 0.475631i \(-0.842220\pi\)
−0.879645 + 0.475631i \(0.842220\pi\)
\(734\) 5989.31 4819.43i 0.301184 0.242355i
\(735\) 0 0
\(736\) 1468.28 369.175i 0.0735348 0.0184891i
\(737\) 723.301i 0.0361508i
\(738\) −50288.1 62495.1i −2.50831 3.11718i
\(739\) 19324.3i 0.961918i −0.876743 0.480959i \(-0.840289\pi\)
0.876743 0.480959i \(-0.159711\pi\)
\(740\) 0 0
\(741\) 6163.61i 0.305568i
\(742\) 7343.83 5909.38i 0.363343 0.292372i
\(743\) 7053.57i 0.348278i 0.984721 + 0.174139i \(0.0557142\pi\)
−0.984721 + 0.174139i \(0.944286\pi\)
\(744\) −39637.4 + 19734.9i −1.95319 + 0.972469i
\(745\) 0 0
\(746\) 9978.56 + 12400.8i 0.489733 + 0.608612i
\(747\) −3562.91 −0.174511
\(748\) 925.063 4223.38i 0.0452188 0.206447i
\(749\) 1450.69i 0.0707705i
\(750\) 0 0
\(751\) −36810.6 −1.78860 −0.894299 0.447471i \(-0.852325\pi\)
−0.894299 + 0.447471i \(0.852325\pi\)
\(752\) 2597.92 5645.89i 0.125979 0.273782i
\(753\) 36424.7i 1.76280i
\(754\) −5554.70 + 4469.72i −0.268289 + 0.215885i
\(755\) 0 0
\(756\) −60962.8 13352.9i −2.93280 0.642382i
\(757\) 28515.3 1.36910 0.684549 0.728967i \(-0.259999\pi\)
0.684549 + 0.728967i \(0.259999\pi\)
\(758\) −17775.9 + 14303.8i −0.851779 + 0.685403i
\(759\) 2987.24 0.142859
\(760\) 0 0
\(761\) 1517.92 0.0723057 0.0361528 0.999346i \(-0.488490\pi\)
0.0361528 + 0.999346i \(0.488490\pi\)
\(762\) −4404.93 + 3544.53i −0.209415 + 0.168510i
\(763\) −31474.3 −1.49338
\(764\) 2425.44 11073.4i 0.114855 0.524373i
\(765\) 0 0
\(766\) 23375.3 18809.4i 1.10259 0.887223i
\(767\) 13117.8i 0.617545i
\(768\) 25523.7 + 29798.4i 1.19923 + 1.40007i
\(769\) 10413.9 0.488341 0.244171 0.969732i \(-0.421484\pi\)
0.244171 + 0.969732i \(0.421484\pi\)
\(770\) 0 0
\(771\) 59088.0i 2.76006i
\(772\) −20952.3 4589.25i −0.976798 0.213952i
\(773\) 32909.8 1.53129 0.765643 0.643266i \(-0.222421\pi\)
0.765643 + 0.643266i \(0.222421\pi\)
\(774\) 35453.2 + 44059.1i 1.64643 + 2.04609i
\(775\) 0 0
\(776\) −3005.19 6035.90i −0.139021 0.279222i
\(777\) 27051.3i 1.24898i
\(778\) 19816.0 15945.4i 0.913161 0.734796i
\(779\) 11688.6i 0.537599i
\(780\) 0 0
\(781\) 35636.2i 1.63273i
\(782\) 214.949 + 267.126i 0.00982936 + 0.0122153i
\(783\) 37812.1i 1.72579i
\(784\) 7109.20 + 3271.25i 0.323852 + 0.149018i
\(785\) 0 0
\(786\) −37671.2 + 30313.0i −1.70953 + 1.37561i
\(787\) −35511.6 −1.60845 −0.804226 0.594324i \(-0.797420\pi\)
−0.804226 + 0.594324i \(0.797420\pi\)
\(788\) −4617.69 + 21082.1i −0.208754 + 0.953070i
\(789\) 15672.1i 0.707150i
\(790\) 0 0
\(791\) 9884.85 0.444330
\(792\) 24350.7 + 48908.2i 1.09251 + 2.19429i
\(793\) 9031.54i 0.404438i
\(794\) 15918.1 + 19782.1i 0.711477 + 0.884181i
\(795\) 0 0
\(796\) 6064.95 27689.6i 0.270058 1.23295i
\(797\) 22692.3 1.00853 0.504267 0.863548i \(-0.331763\pi\)
0.504267 + 0.863548i \(0.331763\pi\)
\(798\) 9778.01 + 12151.5i 0.433757 + 0.539047i
\(799\) 1407.48 0.0623193
\(800\) 0 0
\(801\) 59562.8 2.62740
\(802\) −5613.39 6975.98i −0.247152 0.307145i
\(803\) −4751.00 −0.208791
\(804\) 318.055 1452.08i 0.0139514 0.0636952i
\(805\) 0 0
\(806\) −8733.47 10853.4i −0.381667 0.474313i
\(807\) 21669.8i 0.945246i
\(808\) 18087.8 + 36329.2i 0.787533 + 1.58175i
\(809\) 22716.0 0.987209 0.493604 0.869687i \(-0.335679\pi\)
0.493604 + 0.869687i \(0.335679\pi\)
\(810\) 0 0
\(811\) 17237.0i 0.746327i 0.927766 + 0.373164i \(0.121727\pi\)
−0.927766 + 0.373164i \(0.878273\pi\)
\(812\) −3860.26 + 17624.0i −0.166833 + 0.761678i
\(813\) 398.847 0.0172056
\(814\) 10757.4 8656.20i 0.463203 0.372727i
\(815\) 0 0
\(816\) −3714.26 + 8071.98i −0.159345 + 0.346294i
\(817\) 8240.51i 0.352875i
\(818\) 9606.38 + 11938.2i 0.410610 + 0.510282i
\(819\) 33676.3i 1.43681i
\(820\) 0 0
\(821\) 15695.7i 0.667217i 0.942712 + 0.333609i \(0.108266\pi\)
−0.942712 + 0.333609i \(0.891734\pi\)
\(822\) −50249.8 + 40434.7i −2.13219 + 1.71572i
\(823\) 16856.0i 0.713927i −0.934118 0.356963i \(-0.883812\pi\)
0.934118 0.356963i \(-0.116188\pi\)
\(824\) 21018.3 + 42215.1i 0.888602 + 1.78475i
\(825\) 0 0
\(826\) 20810.2 + 25861.7i 0.876611 + 1.08940i
\(827\) −3712.67 −0.156109 −0.0780544 0.996949i \(-0.524871\pi\)
−0.0780544 + 0.996949i \(0.524871\pi\)
\(828\) −4232.40 927.038i −0.177640 0.0389092i
\(829\) 22469.6i 0.941376i −0.882300 0.470688i \(-0.844006\pi\)
0.882300 0.470688i \(-0.155994\pi\)
\(830\) 0 0
\(831\) 20489.3 0.855313
\(832\) −7439.89 + 9850.23i −0.310014 + 0.410451i
\(833\) 1772.27i 0.0737163i
\(834\) −60337.8 + 48552.2i −2.50519 + 2.01586i
\(835\) 0 0
\(836\) 1703.38 7776.78i 0.0704696 0.321729i
\(837\) 73881.8 3.05105
\(838\) −13658.2 + 10990.4i −0.563025 + 0.453051i
\(839\) 31935.2 1.31409 0.657046 0.753850i \(-0.271806\pi\)
0.657046 + 0.753850i \(0.271806\pi\)
\(840\) 0 0
\(841\) 13457.7 0.551795
\(842\) 9573.69 7703.69i 0.391842 0.315305i
\(843\) −14306.3 −0.584504
\(844\) 1189.44 + 260.528i 0.0485098 + 0.0106253i
\(845\) 0 0
\(846\) −13856.8 + 11150.2i −0.563129 + 0.453135i
\(847\) 1279.73i 0.0519150i
\(848\) 8982.79 + 4133.37i 0.363762 + 0.167383i
\(849\) −10442.9 −0.422144
\(850\) 0 0
\(851\) 1095.00i 0.0441081i
\(852\) 15670.2 71542.4i 0.630108 2.87676i
\(853\) 14782.2 0.593355 0.296678 0.954978i \(-0.404121\pi\)
0.296678 + 0.954978i \(0.404121\pi\)
\(854\) −14327.7 17805.6i −0.574103 0.713461i
\(855\) 0 0
\(856\) −1362.28 + 678.261i −0.0543946 + 0.0270823i
\(857\) 7222.91i 0.287900i −0.989585 0.143950i \(-0.954020\pi\)
0.989585 0.143950i \(-0.0459804\pi\)
\(858\) −18975.8 + 15269.3i −0.755038 + 0.607559i
\(859\) 4646.96i 0.184578i −0.995732 0.0922889i \(-0.970582\pi\)
0.995732 0.0922889i \(-0.0294183\pi\)
\(860\) 0 0
\(861\) 90491.7i 3.58182i
\(862\) 8423.90 + 10468.7i 0.332853 + 0.413650i
\(863\) 8122.19i 0.320374i −0.987087 0.160187i \(-0.948790\pi\)
0.987087 0.160187i \(-0.0512097\pi\)
\(864\) −15963.6 63490.5i −0.628580 2.49999i
\(865\) 0 0
\(866\) 9277.73 7465.54i 0.364053 0.292944i
\(867\) 45048.9 1.76464
\(868\) −34436.0 7542.64i −1.34658 0.294947i
\(869\) 36312.8i 1.41752i
\(870\) 0 0
\(871\) 467.685 0.0181939
\(872\) −14715.6 29556.1i −0.571483 1.14782i
\(873\) 19296.2i 0.748083i
\(874\) 395.799 + 491.876i 0.0153182 + 0.0190366i
\(875\) 0 0
\(876\) 9537.98 + 2089.14i 0.367875 + 0.0805770i
\(877\) −31986.1 −1.23158 −0.615790 0.787910i \(-0.711163\pi\)
−0.615790 + 0.787910i \(0.711163\pi\)
\(878\) 10242.8 + 12729.1i 0.393709 + 0.489278i
\(879\) −38962.3 −1.49507
\(880\) 0 0
\(881\) −29450.6 −1.12624 −0.563118 0.826376i \(-0.690398\pi\)
−0.563118 + 0.826376i \(0.690398\pi\)
\(882\) −14040.1 17448.3i −0.536005 0.666115i
\(883\) 46156.5 1.75911 0.879553 0.475801i \(-0.157842\pi\)
0.879553 + 0.475801i \(0.157842\pi\)
\(884\) −2730.83 598.143i −0.103900 0.0227576i
\(885\) 0 0
\(886\) 21245.5 + 26402.7i 0.805595 + 1.00115i
\(887\) 41051.2i 1.55396i 0.629523 + 0.776982i \(0.283250\pi\)
−0.629523 + 0.776982i \(0.716750\pi\)
\(888\) −25402.6 + 12647.6i −0.959974 + 0.477958i
\(889\) −4501.39 −0.169822
\(890\) 0 0
\(891\) 63979.7i 2.40561i
\(892\) −16140.6 3535.33i −0.605859 0.132704i
\(893\) 2591.69 0.0971192
\(894\) 18952.8 15250.8i 0.709034 0.570541i
\(895\) 0 0
\(896\) 958.782 + 31222.4i 0.0357485 + 1.16414i
\(897\) 1931.54i 0.0718979i
\(898\) 9872.31 + 12268.7i 0.366863 + 0.455916i
\(899\) 21358.8i 0.792389i
\(900\) 0 0
\(901\) 2239.35i 0.0828008i
\(902\) −35985.6 + 28956.6i −1.32837 + 1.06890i
\(903\) 63796.7i 2.35108i
\(904\) 4621.59 + 9282.42i 0.170035 + 0.341514i
\(905\) 0 0
\(906\) −58281.3 72428.5i −2.13716 2.65593i
\(907\) 27915.8 1.02197 0.510987 0.859588i \(-0.329280\pi\)
0.510987 + 0.859588i \(0.329280\pi\)
\(908\) 5033.15 22978.9i 0.183955 0.839847i
\(909\) 116141.i 4.23778i
\(910\) 0 0
\(911\) −6557.22 −0.238475 −0.119237 0.992866i \(-0.538045\pi\)
−0.119237 + 0.992866i \(0.538045\pi\)
\(912\) −6839.31 + 14863.4i −0.248325 + 0.539669i
\(913\) 2051.57i 0.0743671i
\(914\) 16050.0 12915.0i 0.580841 0.467387i
\(915\) 0 0
\(916\) 38681.2 + 8472.48i 1.39526 + 0.305610i
\(917\) −38496.2 −1.38632
\(918\) 11550.9 9294.67i 0.415289 0.334172i
\(919\) 11493.0 0.412534 0.206267 0.978496i \(-0.433869\pi\)
0.206267 + 0.978496i \(0.433869\pi\)
\(920\) 0 0
\(921\) −64524.0 −2.30851
\(922\) 26225.2 21102.7i 0.936748 0.753776i
\(923\) 23042.3 0.821719
\(924\) −13187.3 + 60206.7i −0.469513 + 2.14356i
\(925\) 0 0
\(926\) 10832.3 8716.45i 0.384418 0.309331i
\(927\) 134957.i 4.78164i
\(928\) −18354.8 + 4615.00i −0.649273 + 0.163249i
\(929\) −56597.2 −1.99881 −0.999405 0.0345020i \(-0.989015\pi\)
−0.999405 + 0.0345020i \(0.989015\pi\)
\(930\) 0 0
\(931\) 3263.40i 0.114880i
\(932\) 40584.3 + 8889.34i 1.42638 + 0.312425i
\(933\) 31364.7 1.10057
\(934\) 5514.84 + 6853.52i 0.193203 + 0.240101i
\(935\) 0 0
\(936\) 31623.9 15745.1i 1.10434 0.549834i
\(937\) 37901.5i 1.32144i −0.750633 0.660720i \(-0.770251\pi\)
0.750633 0.660720i \(-0.229749\pi\)
\(938\) 922.037 741.939i 0.0320955 0.0258264i
\(939\) 89635.5i 3.11517i
\(940\) 0 0
\(941\) 4449.85i 0.154156i −0.997025 0.0770781i \(-0.975441\pi\)
0.997025 0.0770781i \(-0.0245591\pi\)
\(942\) −9704.75 12060.5i −0.335666 0.417146i
\(943\) 3662.97i 0.126493i
\(944\) −14555.9 + 31633.4i −0.501858 + 1.09066i
\(945\) 0 0
\(946\) 25369.9 20414.4i 0.871929 0.701618i
\(947\) −225.160 −0.00772620 −0.00386310 0.999993i \(-0.501230\pi\)
−0.00386310 + 0.999993i \(0.501230\pi\)
\(948\) 15967.7 72900.7i 0.547054 2.49758i
\(949\) 3071.98i 0.105080i
\(950\) 0 0
\(951\) 86829.7 2.96072
\(952\) −6332.71 + 3152.97i −0.215593 + 0.107341i
\(953\) 4845.81i 0.164713i −0.996603 0.0823563i \(-0.973755\pi\)
0.996603 0.0823563i \(-0.0262445\pi\)
\(954\) −17740.4 22046.7i −0.602060 0.748205i
\(955\) 0 0
\(956\) −3536.87 + 16147.6i −0.119655 + 0.546288i
\(957\) −37343.1 −1.26137
\(958\) −11686.0 14522.7i −0.394110 0.489777i
\(959\) −51350.2 −1.72908
\(960\) 0 0
\(961\) 11942.5 0.400876
\(962\) −5597.07 6955.71i −0.187585 0.233120i
\(963\) 4355.07 0.145732
\(964\) 3952.43 18044.8i 0.132053 0.602889i
\(965\) 0 0
\(966\) −3064.22 3808.03i −0.102060 0.126834i
\(967\) 40394.8i 1.34334i 0.740851 + 0.671670i \(0.234423\pi\)
−0.740851 + 0.671670i \(0.765577\pi\)
\(968\) 1201.74 598.328i 0.0399021 0.0198667i
\(969\) −3705.36 −0.122841
\(970\) 0 0
\(971\) 29066.2i 0.960637i 0.877094 + 0.480318i \(0.159479\pi\)
−0.877094 + 0.480318i \(0.840521\pi\)
\(972\) −11419.4 + 52135.4i −0.376829 + 1.72042i
\(973\) −61659.1 −2.03155
\(974\) −6919.28 + 5567.75i −0.227626 + 0.183165i
\(975\) 0 0
\(976\) 10021.6 21779.4i 0.328673 0.714284i
\(977\) 42580.5i 1.39434i 0.716906 + 0.697170i \(0.245558\pi\)
−0.716906 + 0.697170i \(0.754442\pi\)
\(978\) −4024.81 5001.80i −0.131594 0.163538i
\(979\) 34297.1i 1.11965i
\(980\) 0 0
\(981\) 94488.0i 3.07520i
\(982\) 26570.1 21380.2i 0.863427 0.694777i
\(983\) 40586.0i 1.31688i 0.752633 + 0.658440i \(0.228783\pi\)
−0.752633 + 0.658440i \(0.771217\pi\)
\(984\) 84976.7 42308.8i 2.75301 1.37068i
\(985\) 0 0
\(986\) −2687.04 3339.30i −0.0867879 0.107855i
\(987\) −20064.4 −0.647070
\(988\) −5028.45 1101.40i −0.161919 0.0354658i
\(989\) 2582.40i 0.0830288i
\(990\) 0 0
\(991\) −50370.4 −1.61460 −0.807299 0.590142i \(-0.799072\pi\)
−0.807299 + 0.590142i \(0.799072\pi\)
\(992\) −9017.34 35863.8i −0.288610 1.14786i
\(993\) 2682.95i 0.0857409i
\(994\) 45427.8 36554.5i 1.44958 1.16644i
\(995\) 0 0
\(996\) 902.131 4118.69i 0.0286999 0.131030i
\(997\) −22467.5 −0.713694 −0.356847 0.934163i \(-0.616148\pi\)
−0.356847 + 0.934163i \(0.616148\pi\)
\(998\) 18639.5 14998.7i 0.591204 0.475726i
\(999\) 47349.1 1.49956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.4.f.c.149.10 12
4.3 odd 2 800.4.f.b.49.1 12
5.2 odd 4 200.4.d.b.101.4 12
5.3 odd 4 40.4.d.a.21.9 12
5.4 even 2 200.4.f.b.149.3 12
8.3 odd 2 800.4.f.c.49.11 12
8.5 even 2 200.4.f.b.149.4 12
15.8 even 4 360.4.k.c.181.4 12
20.3 even 4 160.4.d.a.81.1 12
20.7 even 4 800.4.d.d.401.12 12
20.19 odd 2 800.4.f.c.49.12 12
40.3 even 4 160.4.d.a.81.12 12
40.13 odd 4 40.4.d.a.21.10 yes 12
40.19 odd 2 800.4.f.b.49.2 12
40.27 even 4 800.4.d.d.401.1 12
40.29 even 2 inner 200.4.f.c.149.9 12
40.37 odd 4 200.4.d.b.101.3 12
60.23 odd 4 1440.4.k.c.721.2 12
80.3 even 4 1280.4.a.bd.1.6 6
80.13 odd 4 1280.4.a.bb.1.1 6
80.43 even 4 1280.4.a.ba.1.1 6
80.53 odd 4 1280.4.a.bc.1.6 6
120.53 even 4 360.4.k.c.181.3 12
120.83 odd 4 1440.4.k.c.721.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.d.a.21.9 12 5.3 odd 4
40.4.d.a.21.10 yes 12 40.13 odd 4
160.4.d.a.81.1 12 20.3 even 4
160.4.d.a.81.12 12 40.3 even 4
200.4.d.b.101.3 12 40.37 odd 4
200.4.d.b.101.4 12 5.2 odd 4
200.4.f.b.149.3 12 5.4 even 2
200.4.f.b.149.4 12 8.5 even 2
200.4.f.c.149.9 12 40.29 even 2 inner
200.4.f.c.149.10 12 1.1 even 1 trivial
360.4.k.c.181.3 12 120.53 even 4
360.4.k.c.181.4 12 15.8 even 4
800.4.d.d.401.1 12 40.27 even 4
800.4.d.d.401.12 12 20.7 even 4
800.4.f.b.49.1 12 4.3 odd 2
800.4.f.b.49.2 12 40.19 odd 2
800.4.f.c.49.11 12 8.3 odd 2
800.4.f.c.49.12 12 20.19 odd 2
1280.4.a.ba.1.1 6 80.43 even 4
1280.4.a.bb.1.1 6 80.13 odd 4
1280.4.a.bc.1.6 6 80.53 odd 4
1280.4.a.bd.1.6 6 80.3 even 4
1440.4.k.c.721.2 12 60.23 odd 4
1440.4.k.c.721.8 12 120.83 odd 4