Properties

Label 200.2.k.h.107.4
Level $200$
Weight $2$
Character 200.107
Analytic conductor $1.597$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,2,Mod(43,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59700804043\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 107.4
Root \(0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 200.107
Dual form 200.2.k.h.43.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39680 + 0.221232i) q^{2} +(-0.618034 + 0.618034i) q^{3} +(1.90211 + 0.618034i) q^{4} +(-1.00000 + 0.726543i) q^{6} +(1.90211 - 1.90211i) q^{7} +(2.52015 + 1.28408i) q^{8} +2.23607i q^{9} -3.23607 q^{11} +(-1.55754 + 0.793604i) q^{12} +(-0.726543 - 0.726543i) q^{13} +(3.07768 - 2.23607i) q^{14} +(3.23607 + 2.35114i) q^{16} +(1.00000 + 1.00000i) q^{17} +(-0.494689 + 3.12334i) q^{18} -2.00000i q^{19} +2.35114i q^{21} +(-4.52015 - 0.715921i) q^{22} +(-4.25325 - 4.25325i) q^{23} +(-2.35114 + 0.763932i) q^{24} +(-0.854102 - 1.17557i) q^{26} +(-3.23607 - 3.23607i) q^{27} +(4.79360 - 2.44246i) q^{28} -6.15537 q^{29} -8.50651i q^{31} +(4.00000 + 4.00000i) q^{32} +(2.00000 - 2.00000i) q^{33} +(1.17557 + 1.61803i) q^{34} +(-1.38197 + 4.25325i) q^{36} +(0.726543 - 0.726543i) q^{37} +(0.442463 - 2.79360i) q^{38} +0.898056 q^{39} +5.70820 q^{41} +(-0.520147 + 3.28408i) q^{42} +(-4.61803 + 4.61803i) q^{43} +(-6.15537 - 2.00000i) q^{44} +(-5.00000 - 6.88191i) q^{46} +(-3.35520 + 3.35520i) q^{47} +(-3.45309 + 0.546915i) q^{48} -0.236068i q^{49} -1.23607 q^{51} +(-0.932938 - 1.83099i) q^{52} +(3.07768 + 3.07768i) q^{53} +(-3.80423 - 5.23607i) q^{54} +(7.23607 - 2.35114i) q^{56} +(1.23607 + 1.23607i) q^{57} +(-8.59783 - 1.36176i) q^{58} -0.472136i q^{59} +0.898056i q^{61} +(1.88191 - 11.8819i) q^{62} +(4.25325 + 4.25325i) q^{63} +(4.70228 + 6.47214i) q^{64} +(3.23607 - 2.35114i) q^{66} +(4.61803 + 4.61803i) q^{67} +(1.28408 + 2.52015i) q^{68} +5.25731 q^{69} +11.4127i q^{71} +(-2.87129 + 5.63522i) q^{72} +(4.70820 - 4.70820i) q^{73} +(1.17557 - 0.854102i) q^{74} +(1.23607 - 3.80423i) q^{76} +(-6.15537 + 6.15537i) q^{77} +(1.25441 + 0.198678i) q^{78} +2.90617 q^{79} -2.70820 q^{81} +(7.97323 + 1.26284i) q^{82} +(6.61803 - 6.61803i) q^{83} +(-1.45309 + 4.47214i) q^{84} +(-7.47214 + 5.42882i) q^{86} +(3.80423 - 3.80423i) q^{87} +(-8.15537 - 4.15537i) q^{88} +2.47214i q^{89} -2.76393 q^{91} +(-5.46151 - 10.7188i) q^{92} +(5.25731 + 5.25731i) q^{93} +(-5.42882 + 3.94427i) q^{94} -4.94427 q^{96} +(-4.23607 - 4.23607i) q^{97} +(0.0522257 - 0.329740i) q^{98} -7.23607i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 4 q^{3} - 8 q^{6} - 4 q^{8} - 8 q^{11} - 12 q^{12} + 8 q^{16} + 8 q^{17} - 10 q^{18} - 12 q^{22} + 20 q^{26} - 8 q^{27} + 20 q^{28} + 32 q^{32} + 16 q^{33} - 20 q^{36} + 4 q^{38} - 8 q^{41}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39680 + 0.221232i 0.987688 + 0.156434i
\(3\) −0.618034 + 0.618034i −0.356822 + 0.356822i −0.862640 0.505818i \(-0.831191\pi\)
0.505818 + 0.862640i \(0.331191\pi\)
\(4\) 1.90211 + 0.618034i 0.951057 + 0.309017i
\(5\) 0 0
\(6\) −1.00000 + 0.726543i −0.408248 + 0.296610i
\(7\) 1.90211 1.90211i 0.718931 0.718931i −0.249455 0.968386i \(-0.580252\pi\)
0.968386 + 0.249455i \(0.0802515\pi\)
\(8\) 2.52015 + 1.28408i 0.891007 + 0.453990i
\(9\) 2.23607i 0.745356i
\(10\) 0 0
\(11\) −3.23607 −0.975711 −0.487856 0.872924i \(-0.662221\pi\)
−0.487856 + 0.872924i \(0.662221\pi\)
\(12\) −1.55754 + 0.793604i −0.449622 + 0.229094i
\(13\) −0.726543 0.726543i −0.201507 0.201507i 0.599139 0.800645i \(-0.295510\pi\)
−0.800645 + 0.599139i \(0.795510\pi\)
\(14\) 3.07768 2.23607i 0.822546 0.597614i
\(15\) 0 0
\(16\) 3.23607 + 2.35114i 0.809017 + 0.587785i
\(17\) 1.00000 + 1.00000i 0.242536 + 0.242536i 0.817898 0.575363i \(-0.195139\pi\)
−0.575363 + 0.817898i \(0.695139\pi\)
\(18\) −0.494689 + 3.12334i −0.116599 + 0.736179i
\(19\) 2.00000i 0.458831i −0.973329 0.229416i \(-0.926318\pi\)
0.973329 0.229416i \(-0.0736815\pi\)
\(20\) 0 0
\(21\) 2.35114i 0.513061i
\(22\) −4.52015 0.715921i −0.963699 0.152635i
\(23\) −4.25325 4.25325i −0.886865 0.886865i 0.107356 0.994221i \(-0.465762\pi\)
−0.994221 + 0.107356i \(0.965762\pi\)
\(24\) −2.35114 + 0.763932i −0.479925 + 0.155937i
\(25\) 0 0
\(26\) −0.854102 1.17557i −0.167503 0.230548i
\(27\) −3.23607 3.23607i −0.622782 0.622782i
\(28\) 4.79360 2.44246i 0.905906 0.461582i
\(29\) −6.15537 −1.14302 −0.571511 0.820594i \(-0.693643\pi\)
−0.571511 + 0.820594i \(0.693643\pi\)
\(30\) 0 0
\(31\) 8.50651i 1.52781i −0.645326 0.763907i \(-0.723279\pi\)
0.645326 0.763907i \(-0.276721\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 2.00000 2.00000i 0.348155 0.348155i
\(34\) 1.17557 + 1.61803i 0.201609 + 0.277491i
\(35\) 0 0
\(36\) −1.38197 + 4.25325i −0.230328 + 0.708876i
\(37\) 0.726543 0.726543i 0.119443 0.119443i −0.644859 0.764302i \(-0.723084\pi\)
0.764302 + 0.644859i \(0.223084\pi\)
\(38\) 0.442463 2.79360i 0.0717771 0.453182i
\(39\) 0.898056 0.143804
\(40\) 0 0
\(41\) 5.70820 0.891472 0.445736 0.895165i \(-0.352942\pi\)
0.445736 + 0.895165i \(0.352942\pi\)
\(42\) −0.520147 + 3.28408i −0.0802604 + 0.506744i
\(43\) −4.61803 + 4.61803i −0.704244 + 0.704244i −0.965319 0.261075i \(-0.915923\pi\)
0.261075 + 0.965319i \(0.415923\pi\)
\(44\) −6.15537 2.00000i −0.927957 0.301511i
\(45\) 0 0
\(46\) −5.00000 6.88191i −0.737210 1.01468i
\(47\) −3.35520 + 3.35520i −0.489406 + 0.489406i −0.908119 0.418713i \(-0.862481\pi\)
0.418713 + 0.908119i \(0.362481\pi\)
\(48\) −3.45309 + 0.546915i −0.498410 + 0.0789404i
\(49\) 0.236068i 0.0337240i
\(50\) 0 0
\(51\) −1.23607 −0.173084
\(52\) −0.932938 1.83099i −0.129375 0.253913i
\(53\) 3.07768 + 3.07768i 0.422752 + 0.422752i 0.886150 0.463398i \(-0.153370\pi\)
−0.463398 + 0.886150i \(0.653370\pi\)
\(54\) −3.80423 5.23607i −0.517690 0.712539i
\(55\) 0 0
\(56\) 7.23607 2.35114i 0.966960 0.314184i
\(57\) 1.23607 + 1.23607i 0.163721 + 0.163721i
\(58\) −8.59783 1.36176i −1.12895 0.178808i
\(59\) 0.472136i 0.0614669i −0.999528 0.0307334i \(-0.990216\pi\)
0.999528 0.0307334i \(-0.00978430\pi\)
\(60\) 0 0
\(61\) 0.898056i 0.114984i 0.998346 + 0.0574921i \(0.0183104\pi\)
−0.998346 + 0.0574921i \(0.981690\pi\)
\(62\) 1.88191 11.8819i 0.239003 1.50900i
\(63\) 4.25325 + 4.25325i 0.535860 + 0.535860i
\(64\) 4.70228 + 6.47214i 0.587785 + 0.809017i
\(65\) 0 0
\(66\) 3.23607 2.35114i 0.398332 0.289405i
\(67\) 4.61803 + 4.61803i 0.564183 + 0.564183i 0.930493 0.366310i \(-0.119379\pi\)
−0.366310 + 0.930493i \(0.619379\pi\)
\(68\) 1.28408 + 2.52015i 0.155717 + 0.305613i
\(69\) 5.25731 0.632906
\(70\) 0 0
\(71\) 11.4127i 1.35444i 0.735783 + 0.677218i \(0.236815\pi\)
−0.735783 + 0.677218i \(0.763185\pi\)
\(72\) −2.87129 + 5.63522i −0.338385 + 0.664117i
\(73\) 4.70820 4.70820i 0.551054 0.551054i −0.375691 0.926745i \(-0.622595\pi\)
0.926745 + 0.375691i \(0.122595\pi\)
\(74\) 1.17557 0.854102i 0.136657 0.0992873i
\(75\) 0 0
\(76\) 1.23607 3.80423i 0.141787 0.436375i
\(77\) −6.15537 + 6.15537i −0.701469 + 0.701469i
\(78\) 1.25441 + 0.198678i 0.142034 + 0.0224959i
\(79\) 2.90617 0.326970 0.163485 0.986546i \(-0.447727\pi\)
0.163485 + 0.986546i \(0.447727\pi\)
\(80\) 0 0
\(81\) −2.70820 −0.300912
\(82\) 7.97323 + 1.26284i 0.880496 + 0.139457i
\(83\) 6.61803 6.61803i 0.726424 0.726424i −0.243482 0.969905i \(-0.578290\pi\)
0.969905 + 0.243482i \(0.0782896\pi\)
\(84\) −1.45309 + 4.47214i −0.158545 + 0.487950i
\(85\) 0 0
\(86\) −7.47214 + 5.42882i −0.805741 + 0.585405i
\(87\) 3.80423 3.80423i 0.407856 0.407856i
\(88\) −8.15537 4.15537i −0.869365 0.442964i
\(89\) 2.47214i 0.262046i 0.991379 + 0.131023i \(0.0418262\pi\)
−0.991379 + 0.131023i \(0.958174\pi\)
\(90\) 0 0
\(91\) −2.76393 −0.289739
\(92\) −5.46151 10.7188i −0.569402 1.11751i
\(93\) 5.25731 + 5.25731i 0.545158 + 0.545158i
\(94\) −5.42882 + 3.94427i −0.559940 + 0.406821i
\(95\) 0 0
\(96\) −4.94427 −0.504623
\(97\) −4.23607 4.23607i −0.430108 0.430108i 0.458557 0.888665i \(-0.348366\pi\)
−0.888665 + 0.458557i \(0.848366\pi\)
\(98\) 0.0522257 0.329740i 0.00527560 0.0333088i
\(99\) 7.23607i 0.727252i
\(100\) 0 0
\(101\) 2.90617i 0.289175i 0.989492 + 0.144587i \(0.0461855\pi\)
−0.989492 + 0.144587i \(0.953815\pi\)
\(102\) −1.72654 0.273457i −0.170953 0.0270763i
\(103\) 3.35520 + 3.35520i 0.330597 + 0.330597i 0.852813 0.522216i \(-0.174894\pi\)
−0.522216 + 0.852813i \(0.674894\pi\)
\(104\) −0.898056 2.76393i −0.0880616 0.271026i
\(105\) 0 0
\(106\) 3.61803 + 4.97980i 0.351415 + 0.483681i
\(107\) −0.909830 0.909830i −0.0879566 0.0879566i 0.661760 0.749716i \(-0.269810\pi\)
−0.749716 + 0.661760i \(0.769810\pi\)
\(108\) −4.15537 8.15537i −0.399850 0.784751i
\(109\) 14.6619 1.40435 0.702176 0.712003i \(-0.252212\pi\)
0.702176 + 0.712003i \(0.252212\pi\)
\(110\) 0 0
\(111\) 0.898056i 0.0852397i
\(112\) 10.6275 1.68323i 1.00420 0.159050i
\(113\) −8.70820 + 8.70820i −0.819199 + 0.819199i −0.985992 0.166793i \(-0.946659\pi\)
0.166793 + 0.985992i \(0.446659\pi\)
\(114\) 1.45309 + 2.00000i 0.136094 + 0.187317i
\(115\) 0 0
\(116\) −11.7082 3.80423i −1.08708 0.353214i
\(117\) 1.62460 1.62460i 0.150194 0.150194i
\(118\) 0.104451 0.659481i 0.00961554 0.0607101i
\(119\) 3.80423 0.348733
\(120\) 0 0
\(121\) −0.527864 −0.0479876
\(122\) −0.198678 + 1.25441i −0.0179875 + 0.113569i
\(123\) −3.52786 + 3.52786i −0.318097 + 0.318097i
\(124\) 5.25731 16.1803i 0.472120 1.45304i
\(125\) 0 0
\(126\) 5.00000 + 6.88191i 0.445435 + 0.613089i
\(127\) −2.80017 + 2.80017i −0.248475 + 0.248475i −0.820344 0.571870i \(-0.806218\pi\)
0.571870 + 0.820344i \(0.306218\pi\)
\(128\) 5.13632 + 10.0806i 0.453990 + 0.891007i
\(129\) 5.70820i 0.502579i
\(130\) 0 0
\(131\) 13.7082 1.19769 0.598846 0.800864i \(-0.295626\pi\)
0.598846 + 0.800864i \(0.295626\pi\)
\(132\) 5.04029 2.56816i 0.438701 0.223529i
\(133\) −3.80423 3.80423i −0.329868 0.329868i
\(134\) 5.42882 + 7.47214i 0.468979 + 0.645494i
\(135\) 0 0
\(136\) 1.23607 + 3.80423i 0.105992 + 0.326210i
\(137\) 5.47214 + 5.47214i 0.467516 + 0.467516i 0.901109 0.433593i \(-0.142754\pi\)
−0.433593 + 0.901109i \(0.642754\pi\)
\(138\) 7.34342 + 1.16308i 0.625114 + 0.0990083i
\(139\) 21.4164i 1.81652i 0.418411 + 0.908258i \(0.362587\pi\)
−0.418411 + 0.908258i \(0.637413\pi\)
\(140\) 0 0
\(141\) 4.14725i 0.349262i
\(142\) −2.52485 + 15.9413i −0.211880 + 1.33776i
\(143\) 2.35114 + 2.35114i 0.196612 + 0.196612i
\(144\) −5.25731 + 7.23607i −0.438109 + 0.603006i
\(145\) 0 0
\(146\) 7.61803 5.53483i 0.630473 0.458065i
\(147\) 0.145898 + 0.145898i 0.0120335 + 0.0120335i
\(148\) 1.83099 0.932938i 0.150507 0.0766870i
\(149\) −12.8658 −1.05400 −0.527002 0.849864i \(-0.676684\pi\)
−0.527002 + 0.849864i \(0.676684\pi\)
\(150\) 0 0
\(151\) 6.71040i 0.546084i −0.962002 0.273042i \(-0.911970\pi\)
0.962002 0.273042i \(-0.0880298\pi\)
\(152\) 2.56816 5.04029i 0.208305 0.408822i
\(153\) −2.23607 + 2.23607i −0.180775 + 0.180775i
\(154\) −9.95959 + 7.23607i −0.802567 + 0.583099i
\(155\) 0 0
\(156\) 1.70820 + 0.555029i 0.136766 + 0.0444379i
\(157\) 13.9353 13.9353i 1.11216 1.11216i 0.119303 0.992858i \(-0.461934\pi\)
0.992858 0.119303i \(-0.0380659\pi\)
\(158\) 4.05934 + 0.642937i 0.322944 + 0.0511493i
\(159\) −3.80423 −0.301695
\(160\) 0 0
\(161\) −16.1803 −1.27519
\(162\) −3.78283 0.599141i −0.297207 0.0470729i
\(163\) 13.8541 13.8541i 1.08514 1.08514i 0.0891157 0.996021i \(-0.471596\pi\)
0.996021 0.0891157i \(-0.0284041\pi\)
\(164\) 10.8576 + 3.52786i 0.847840 + 0.275480i
\(165\) 0 0
\(166\) 10.7082 7.77997i 0.831118 0.603842i
\(167\) −8.05748 + 8.05748i −0.623507 + 0.623507i −0.946426 0.322920i \(-0.895336\pi\)
0.322920 + 0.946426i \(0.395336\pi\)
\(168\) −3.01905 + 5.92522i −0.232925 + 0.457141i
\(169\) 11.9443i 0.918790i
\(170\) 0 0
\(171\) 4.47214 0.341993
\(172\) −11.6381 + 5.92992i −0.887399 + 0.452152i
\(173\) −14.4904 14.4904i −1.10168 1.10168i −0.994208 0.107474i \(-0.965724\pi\)
−0.107474 0.994208i \(-0.534276\pi\)
\(174\) 6.15537 4.47214i 0.466637 0.339032i
\(175\) 0 0
\(176\) −10.4721 7.60845i −0.789367 0.573509i
\(177\) 0.291796 + 0.291796i 0.0219327 + 0.0219327i
\(178\) −0.546915 + 3.45309i −0.0409930 + 0.258820i
\(179\) 7.52786i 0.562659i −0.959611 0.281329i \(-0.909225\pi\)
0.959611 0.281329i \(-0.0907754\pi\)
\(180\) 0 0
\(181\) 15.2169i 1.13106i −0.824726 0.565532i \(-0.808671\pi\)
0.824726 0.565532i \(-0.191329\pi\)
\(182\) −3.86067 0.611469i −0.286172 0.0453251i
\(183\) −0.555029 0.555029i −0.0410289 0.0410289i
\(184\) −5.25731 16.1803i −0.387574 1.19283i
\(185\) 0 0
\(186\) 6.18034 + 8.50651i 0.453165 + 0.623727i
\(187\) −3.23607 3.23607i −0.236645 0.236645i
\(188\) −8.45559 + 4.30834i −0.616687 + 0.314218i
\(189\) −12.3107 −0.895474
\(190\) 0 0
\(191\) 13.2088i 0.955755i 0.878427 + 0.477877i \(0.158594\pi\)
−0.878427 + 0.477877i \(0.841406\pi\)
\(192\) −6.90617 1.09383i −0.498410 0.0789404i
\(193\) −1.47214 + 1.47214i −0.105967 + 0.105967i −0.758102 0.652136i \(-0.773873\pi\)
0.652136 + 0.758102i \(0.273873\pi\)
\(194\) −4.97980 6.85410i −0.357529 0.492096i
\(195\) 0 0
\(196\) 0.145898 0.449028i 0.0104213 0.0320734i
\(197\) −9.23305 + 9.23305i −0.657828 + 0.657828i −0.954866 0.297038i \(-0.904001\pi\)
0.297038 + 0.954866i \(0.404001\pi\)
\(198\) 1.60085 10.1074i 0.113767 0.718299i
\(199\) −21.7153 −1.53936 −0.769678 0.638432i \(-0.779583\pi\)
−0.769678 + 0.638432i \(0.779583\pi\)
\(200\) 0 0
\(201\) −5.70820 −0.402626
\(202\) −0.642937 + 4.05934i −0.0452369 + 0.285615i
\(203\) −11.7082 + 11.7082i −0.821755 + 0.821755i
\(204\) −2.35114 0.763932i −0.164613 0.0534859i
\(205\) 0 0
\(206\) 3.94427 + 5.42882i 0.274810 + 0.378244i
\(207\) 9.51057 9.51057i 0.661030 0.661030i
\(208\) −0.642937 4.05934i −0.0445797 0.281465i
\(209\) 6.47214i 0.447687i
\(210\) 0 0
\(211\) 2.29180 0.157774 0.0788869 0.996884i \(-0.474863\pi\)
0.0788869 + 0.996884i \(0.474863\pi\)
\(212\) 3.95199 + 7.75621i 0.271424 + 0.532699i
\(213\) −7.05342 7.05342i −0.483293 0.483293i
\(214\) −1.06957 1.47214i −0.0731143 0.100633i
\(215\) 0 0
\(216\) −4.00000 12.3107i −0.272166 0.837639i
\(217\) −16.1803 16.1803i −1.09839 1.09839i
\(218\) 20.4797 + 3.24367i 1.38706 + 0.219689i
\(219\) 5.81966i 0.393256i
\(220\) 0 0
\(221\) 1.45309i 0.0977451i
\(222\) −0.198678 + 1.25441i −0.0133344 + 0.0841903i
\(223\) −14.2128 14.2128i −0.951763 0.951763i 0.0471263 0.998889i \(-0.484994\pi\)
−0.998889 + 0.0471263i \(0.984994\pi\)
\(224\) 15.2169 1.01672
\(225\) 0 0
\(226\) −14.0902 + 10.2371i −0.937264 + 0.680962i
\(227\) 9.38197 + 9.38197i 0.622703 + 0.622703i 0.946222 0.323519i \(-0.104866\pi\)
−0.323519 + 0.946222i \(0.604866\pi\)
\(228\) 1.58721 + 3.11507i 0.105115 + 0.206301i
\(229\) 7.95148 0.525449 0.262724 0.964871i \(-0.415379\pi\)
0.262724 + 0.964871i \(0.415379\pi\)
\(230\) 0 0
\(231\) 7.60845i 0.500599i
\(232\) −15.5124 7.90398i −1.01844 0.518922i
\(233\) −5.47214 + 5.47214i −0.358492 + 0.358492i −0.863257 0.504765i \(-0.831579\pi\)
0.504765 + 0.863257i \(0.331579\pi\)
\(234\) 2.62866 1.90983i 0.171841 0.124849i
\(235\) 0 0
\(236\) 0.291796 0.898056i 0.0189943 0.0584585i
\(237\) −1.79611 + 1.79611i −0.116670 + 0.116670i
\(238\) 5.31375 + 0.841616i 0.344439 + 0.0545538i
\(239\) −13.4208 −0.868119 −0.434059 0.900884i \(-0.642919\pi\)
−0.434059 + 0.900884i \(0.642919\pi\)
\(240\) 0 0
\(241\) 11.2361 0.723779 0.361889 0.932221i \(-0.382132\pi\)
0.361889 + 0.932221i \(0.382132\pi\)
\(242\) −0.737322 0.116780i −0.0473968 0.00750692i
\(243\) 11.3820 11.3820i 0.730153 0.730153i
\(244\) −0.555029 + 1.70820i −0.0355321 + 0.109357i
\(245\) 0 0
\(246\) −5.70820 + 4.14725i −0.363942 + 0.264419i
\(247\) −1.45309 + 1.45309i −0.0924576 + 0.0924576i
\(248\) 10.9230 21.4377i 0.693613 1.36129i
\(249\) 8.18034i 0.518408i
\(250\) 0 0
\(251\) 0.180340 0.0113830 0.00569148 0.999984i \(-0.498188\pi\)
0.00569148 + 0.999984i \(0.498188\pi\)
\(252\) 5.46151 + 10.7188i 0.344043 + 0.675223i
\(253\) 13.7638 + 13.7638i 0.865324 + 0.865324i
\(254\) −4.53077 + 3.29180i −0.284286 + 0.206546i
\(255\) 0 0
\(256\) 4.94427 + 15.2169i 0.309017 + 0.951057i
\(257\) −5.29180 5.29180i −0.330093 0.330093i 0.522529 0.852622i \(-0.324989\pi\)
−0.852622 + 0.522529i \(0.824989\pi\)
\(258\) 1.26284 7.97323i 0.0786207 0.496392i
\(259\) 2.76393i 0.171742i
\(260\) 0 0
\(261\) 13.7638i 0.851959i
\(262\) 19.1477 + 3.03269i 1.18295 + 0.187360i
\(263\) 7.50245 + 7.50245i 0.462621 + 0.462621i 0.899514 0.436893i \(-0.143921\pi\)
−0.436893 + 0.899514i \(0.643921\pi\)
\(264\) 7.60845 2.47214i 0.468268 0.152149i
\(265\) 0 0
\(266\) −4.47214 6.15537i −0.274204 0.377410i
\(267\) −1.52786 1.52786i −0.0935038 0.0935038i
\(268\) 5.92992 + 11.6381i 0.362228 + 0.710912i
\(269\) 20.4742 1.24833 0.624167 0.781291i \(-0.285438\pi\)
0.624167 + 0.781291i \(0.285438\pi\)
\(270\) 0 0
\(271\) 17.2250i 1.04635i 0.852227 + 0.523173i \(0.175252\pi\)
−0.852227 + 0.523173i \(0.824748\pi\)
\(272\) 0.884927 + 5.58721i 0.0536566 + 0.338774i
\(273\) 1.70820 1.70820i 0.103385 0.103385i
\(274\) 6.43288 + 8.85410i 0.388625 + 0.534896i
\(275\) 0 0
\(276\) 10.0000 + 3.24920i 0.601929 + 0.195579i
\(277\) 9.23305 9.23305i 0.554760 0.554760i −0.373051 0.927811i \(-0.621688\pi\)
0.927811 + 0.373051i \(0.121688\pi\)
\(278\) −4.73799 + 29.9145i −0.284166 + 1.79415i
\(279\) 19.0211 1.13877
\(280\) 0 0
\(281\) −9.70820 −0.579143 −0.289571 0.957156i \(-0.593513\pi\)
−0.289571 + 0.957156i \(0.593513\pi\)
\(282\) 0.917504 5.79289i 0.0546366 0.344962i
\(283\) −13.3820 + 13.3820i −0.795475 + 0.795475i −0.982378 0.186903i \(-0.940155\pi\)
0.186903 + 0.982378i \(0.440155\pi\)
\(284\) −7.05342 + 21.7082i −0.418544 + 1.28814i
\(285\) 0 0
\(286\) 2.76393 + 3.80423i 0.163435 + 0.224949i
\(287\) 10.8576 10.8576i 0.640907 0.640907i
\(288\) −8.94427 + 8.94427i −0.527046 + 0.527046i
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 5.23607 0.306944
\(292\) 11.8654 6.04571i 0.694368 0.353798i
\(293\) −3.07768 3.07768i −0.179800 0.179800i 0.611469 0.791269i \(-0.290579\pi\)
−0.791269 + 0.611469i \(0.790579\pi\)
\(294\) 0.171513 + 0.236068i 0.0100029 + 0.0137678i
\(295\) 0 0
\(296\) 2.76393 0.898056i 0.160650 0.0521984i
\(297\) 10.4721 + 10.4721i 0.607655 + 0.607655i
\(298\) −17.9709 2.84632i −1.04103 0.164883i
\(299\) 6.18034i 0.357418i
\(300\) 0 0
\(301\) 17.5680i 1.01261i
\(302\) 1.48455 9.37310i 0.0854264 0.539361i
\(303\) −1.79611 1.79611i −0.103184 0.103184i
\(304\) 4.70228 6.47214i 0.269694 0.371202i
\(305\) 0 0
\(306\) −3.61803 + 2.62866i −0.206829 + 0.150270i
\(307\) 13.5623 + 13.5623i 0.774042 + 0.774042i 0.978810 0.204769i \(-0.0656442\pi\)
−0.204769 + 0.978810i \(0.565644\pi\)
\(308\) −15.5124 + 7.90398i −0.883903 + 0.450371i
\(309\) −4.14725 −0.235929
\(310\) 0 0
\(311\) 20.8172i 1.18044i −0.807243 0.590219i \(-0.799041\pi\)
0.807243 0.590219i \(-0.200959\pi\)
\(312\) 2.26323 + 1.15317i 0.128130 + 0.0652857i
\(313\) 1.76393 1.76393i 0.0997033 0.0997033i −0.655496 0.755199i \(-0.727540\pi\)
0.755199 + 0.655496i \(0.227540\pi\)
\(314\) 22.5478 16.3820i 1.27245 0.924488i
\(315\) 0 0
\(316\) 5.52786 + 1.79611i 0.310967 + 0.101039i
\(317\) 3.97574 3.97574i 0.223300 0.223300i −0.586587 0.809886i \(-0.699529\pi\)
0.809886 + 0.586587i \(0.199529\pi\)
\(318\) −5.31375 0.841616i −0.297980 0.0471955i
\(319\) 19.9192 1.11526
\(320\) 0 0
\(321\) 1.12461 0.0627697
\(322\) −22.6007 3.57960i −1.25949 0.199484i
\(323\) 2.00000 2.00000i 0.111283 0.111283i
\(324\) −5.15131 1.67376i −0.286184 0.0929868i
\(325\) 0 0
\(326\) 22.4164 16.2865i 1.24153 0.902024i
\(327\) −9.06154 + 9.06154i −0.501104 + 0.501104i
\(328\) 14.3855 + 7.32979i 0.794307 + 0.404720i
\(329\) 12.7639i 0.703698i
\(330\) 0 0
\(331\) −30.0689 −1.65274 −0.826368 0.563131i \(-0.809597\pi\)
−0.826368 + 0.563131i \(0.809597\pi\)
\(332\) 16.6784 8.49808i 0.915347 0.466393i
\(333\) 1.62460 + 1.62460i 0.0890274 + 0.0890274i
\(334\) −13.0373 + 9.47214i −0.713368 + 0.518292i
\(335\) 0 0
\(336\) −5.52786 + 7.60845i −0.301570 + 0.415075i
\(337\) 19.9443 + 19.9443i 1.08643 + 1.08643i 0.995893 + 0.0905410i \(0.0288596\pi\)
0.0905410 + 0.995893i \(0.471140\pi\)
\(338\) 2.64245 16.6838i 0.143730 0.907478i
\(339\) 10.7639i 0.584617i
\(340\) 0 0
\(341\) 27.5276i 1.49071i
\(342\) 6.24669 + 0.989378i 0.337782 + 0.0534995i
\(343\) 12.8658 + 12.8658i 0.694686 + 0.694686i
\(344\) −17.5680 + 5.70820i −0.947206 + 0.307766i
\(345\) 0 0
\(346\) −17.0344 23.4459i −0.915777 1.26046i
\(347\) −26.0344 26.0344i −1.39760 1.39760i −0.806862 0.590740i \(-0.798836\pi\)
−0.590740 0.806862i \(-0.701164\pi\)
\(348\) 9.58721 4.88493i 0.513928 0.261860i
\(349\) −16.6700 −0.892324 −0.446162 0.894952i \(-0.647209\pi\)
−0.446162 + 0.894952i \(0.647209\pi\)
\(350\) 0 0
\(351\) 4.70228i 0.250989i
\(352\) −12.9443 12.9443i −0.689932 0.689932i
\(353\) 22.4164 22.4164i 1.19311 1.19311i 0.216914 0.976191i \(-0.430401\pi\)
0.976191 0.216914i \(-0.0695992\pi\)
\(354\) 0.343027 + 0.472136i 0.0182317 + 0.0250937i
\(355\) 0 0
\(356\) −1.52786 + 4.70228i −0.0809766 + 0.249220i
\(357\) −2.35114 + 2.35114i −0.124436 + 0.124436i
\(358\) 1.66540 10.5149i 0.0880193 0.555732i
\(359\) 19.9192 1.05129 0.525647 0.850703i \(-0.323823\pi\)
0.525647 + 0.850703i \(0.323823\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 3.36646 21.2550i 0.176937 1.11714i
\(363\) 0.326238 0.326238i 0.0171231 0.0171231i
\(364\) −5.25731 1.70820i −0.275558 0.0895342i
\(365\) 0 0
\(366\) −0.652476 0.898056i −0.0341055 0.0469421i
\(367\) −12.2047 + 12.2047i −0.637082 + 0.637082i −0.949835 0.312753i \(-0.898749\pi\)
0.312753 + 0.949835i \(0.398749\pi\)
\(368\) −3.76382 23.7638i −0.196203 1.23877i
\(369\) 12.7639i 0.664464i
\(370\) 0 0
\(371\) 11.7082 0.607860
\(372\) 6.75080 + 13.2492i 0.350013 + 0.686939i
\(373\) 22.4418 + 22.4418i 1.16199 + 1.16199i 0.984038 + 0.177956i \(0.0569485\pi\)
0.177956 + 0.984038i \(0.443052\pi\)
\(374\) −3.80423 5.23607i −0.196712 0.270751i
\(375\) 0 0
\(376\) −12.7639 + 4.14725i −0.658250 + 0.213878i
\(377\) 4.47214 + 4.47214i 0.230327 + 0.230327i
\(378\) −17.1957 2.72353i −0.884449 0.140083i
\(379\) 0.111456i 0.00572512i 0.999996 + 0.00286256i \(0.000911182\pi\)
−0.999996 + 0.00286256i \(0.999089\pi\)
\(380\) 0 0
\(381\) 3.46120i 0.177323i
\(382\) −2.92220 + 18.4501i −0.149513 + 0.943988i
\(383\) 1.00406 + 1.00406i 0.0513049 + 0.0513049i 0.732294 0.680989i \(-0.238450\pi\)
−0.680989 + 0.732294i \(0.738450\pi\)
\(384\) −9.40456 3.05573i −0.479925 0.155937i
\(385\) 0 0
\(386\) −2.38197 + 1.73060i −0.121239 + 0.0880852i
\(387\) −10.3262 10.3262i −0.524912 0.524912i
\(388\) −5.43945 10.6755i −0.276146 0.541967i
\(389\) −4.14725 −0.210274 −0.105137 0.994458i \(-0.533528\pi\)
−0.105137 + 0.994458i \(0.533528\pi\)
\(390\) 0 0
\(391\) 8.50651i 0.430193i
\(392\) 0.303130 0.594926i 0.0153104 0.0300483i
\(393\) −8.47214 + 8.47214i −0.427363 + 0.427363i
\(394\) −14.9394 + 10.8541i −0.752636 + 0.546822i
\(395\) 0 0
\(396\) 4.47214 13.7638i 0.224733 0.691658i
\(397\) −24.4500 + 24.4500i −1.22711 + 1.22711i −0.262055 + 0.965053i \(0.584400\pi\)
−0.965053 + 0.262055i \(0.915600\pi\)
\(398\) −30.3320 4.80411i −1.52040 0.240808i
\(399\) 4.70228 0.235409
\(400\) 0 0
\(401\) 31.8885 1.59244 0.796219 0.605009i \(-0.206830\pi\)
0.796219 + 0.605009i \(0.206830\pi\)
\(402\) −7.97323 1.26284i −0.397669 0.0629845i
\(403\) −6.18034 + 6.18034i −0.307865 + 0.307865i
\(404\) −1.79611 + 5.52786i −0.0893599 + 0.275022i
\(405\) 0 0
\(406\) −18.9443 + 13.7638i −0.940188 + 0.683087i
\(407\) −2.35114 + 2.35114i −0.116542 + 0.116542i
\(408\) −3.11507 1.58721i −0.154219 0.0785786i
\(409\) 21.5967i 1.06789i −0.845519 0.533945i \(-0.820709\pi\)
0.845519 0.533945i \(-0.179291\pi\)
\(410\) 0 0
\(411\) −6.76393 −0.333640
\(412\) 4.30834 + 8.45559i 0.212257 + 0.416577i
\(413\) −0.898056 0.898056i −0.0441904 0.0441904i
\(414\) 15.3884 11.1803i 0.756299 0.549484i
\(415\) 0 0
\(416\) 5.81234i 0.284973i
\(417\) −13.2361 13.2361i −0.648173 0.648173i
\(418\) −1.43184 + 9.04029i −0.0700337 + 0.442175i
\(419\) 28.8328i 1.40858i −0.709915 0.704288i \(-0.751267\pi\)
0.709915 0.704288i \(-0.248733\pi\)
\(420\) 0 0
\(421\) 28.4257i 1.38538i 0.721234 + 0.692692i \(0.243575\pi\)
−0.721234 + 0.692692i \(0.756425\pi\)
\(422\) 3.20119 + 0.507018i 0.155831 + 0.0246813i
\(423\) −7.50245 7.50245i −0.364782 0.364782i
\(424\) 3.80423 + 11.7082i 0.184750 + 0.568601i
\(425\) 0 0
\(426\) −8.29180 11.4127i −0.401739 0.552946i
\(427\) 1.70820 + 1.70820i 0.0826658 + 0.0826658i
\(428\) −1.16829 2.29291i −0.0564716 0.110832i
\(429\) −2.90617 −0.140311
\(430\) 0 0
\(431\) 19.0211i 0.916216i −0.888897 0.458108i \(-0.848527\pi\)
0.888897 0.458108i \(-0.151473\pi\)
\(432\) −2.86368 18.0806i −0.137779 0.869903i
\(433\) −0.819660 + 0.819660i −0.0393904 + 0.0393904i −0.726528 0.687137i \(-0.758867\pi\)
0.687137 + 0.726528i \(0.258867\pi\)
\(434\) −19.0211 26.1803i −0.913043 1.25670i
\(435\) 0 0
\(436\) 27.8885 + 9.06154i 1.33562 + 0.433969i
\(437\) −8.50651 + 8.50651i −0.406921 + 0.406921i
\(438\) −1.28749 + 8.12891i −0.0615188 + 0.388415i
\(439\) −35.1361 −1.67695 −0.838477 0.544937i \(-0.816554\pi\)
−0.838477 + 0.544937i \(0.816554\pi\)
\(440\) 0 0
\(441\) 0.527864 0.0251364
\(442\) 0.321469 2.02967i 0.0152907 0.0965417i
\(443\) 1.09017 1.09017i 0.0517955 0.0517955i −0.680735 0.732530i \(-0.738339\pi\)
0.732530 + 0.680735i \(0.238339\pi\)
\(444\) −0.555029 + 1.70820i −0.0263405 + 0.0810678i
\(445\) 0 0
\(446\) −16.7082 22.9969i −0.791156 1.08893i
\(447\) 7.95148 7.95148i 0.376092 0.376092i
\(448\) 21.2550 + 3.36646i 1.00420 + 0.159050i
\(449\) 17.5967i 0.830442i 0.909721 + 0.415221i \(0.136296\pi\)
−0.909721 + 0.415221i \(0.863704\pi\)
\(450\) 0 0
\(451\) −18.4721 −0.869819
\(452\) −21.9460 + 11.1820i −1.03225 + 0.525958i
\(453\) 4.14725 + 4.14725i 0.194855 + 0.194855i
\(454\) 11.0292 + 15.1803i 0.517624 + 0.712449i
\(455\) 0 0
\(456\) 1.52786 + 4.70228i 0.0715488 + 0.220205i
\(457\) −9.65248 9.65248i −0.451524 0.451524i 0.444336 0.895860i \(-0.353440\pi\)
−0.895860 + 0.444336i \(0.853440\pi\)
\(458\) 11.1066 + 1.75912i 0.518979 + 0.0821983i
\(459\) 6.47214i 0.302093i
\(460\) 0 0
\(461\) 27.5276i 1.28209i −0.767503 0.641045i \(-0.778501\pi\)
0.767503 0.641045i \(-0.221499\pi\)
\(462\) 1.68323 10.6275i 0.0783110 0.494436i
\(463\) −2.45714 2.45714i −0.114193 0.114193i 0.647701 0.761894i \(-0.275730\pi\)
−0.761894 + 0.647701i \(0.775730\pi\)
\(464\) −19.9192 14.4721i −0.924725 0.671852i
\(465\) 0 0
\(466\) −8.85410 + 6.43288i −0.410158 + 0.297997i
\(467\) 18.3262 + 18.3262i 0.848037 + 0.848037i 0.989888 0.141851i \(-0.0453054\pi\)
−0.141851 + 0.989888i \(0.545305\pi\)
\(468\) 4.09423 2.08611i 0.189256 0.0964306i
\(469\) 17.5680 0.811217
\(470\) 0 0
\(471\) 17.2250i 0.793687i
\(472\) 0.606260 1.18985i 0.0279054 0.0547674i
\(473\) 14.9443 14.9443i 0.687138 0.687138i
\(474\) −2.90617 + 2.11146i −0.133485 + 0.0969824i
\(475\) 0 0
\(476\) 7.23607 + 2.35114i 0.331665 + 0.107764i
\(477\) −6.88191 + 6.88191i −0.315101 + 0.315101i
\(478\) −18.7462 2.96911i −0.857431 0.135804i
\(479\) −4.70228 −0.214853 −0.107426 0.994213i \(-0.534261\pi\)
−0.107426 + 0.994213i \(0.534261\pi\)
\(480\) 0 0
\(481\) −1.05573 −0.0481371
\(482\) 15.6946 + 2.48577i 0.714868 + 0.113224i
\(483\) 10.0000 10.0000i 0.455016 0.455016i
\(484\) −1.00406 0.326238i −0.0456390 0.0148290i
\(485\) 0 0
\(486\) 18.4164 13.3803i 0.835385 0.606943i
\(487\) 18.9151 18.9151i 0.857126 0.857126i −0.133872 0.990999i \(-0.542741\pi\)
0.990999 + 0.133872i \(0.0427412\pi\)
\(488\) −1.15317 + 2.26323i −0.0522018 + 0.102452i
\(489\) 17.1246i 0.774402i
\(490\) 0 0
\(491\) −15.2361 −0.687594 −0.343797 0.939044i \(-0.611713\pi\)
−0.343797 + 0.939044i \(0.611713\pi\)
\(492\) −8.89074 + 4.53006i −0.400825 + 0.204231i
\(493\) −6.15537 6.15537i −0.277224 0.277224i
\(494\) −2.35114 + 1.70820i −0.105783 + 0.0768557i
\(495\) 0 0
\(496\) 20.0000 27.5276i 0.898027 1.23603i
\(497\) 21.7082 + 21.7082i 0.973746 + 0.973746i
\(498\) −1.80975 + 11.4263i −0.0810969 + 0.512026i
\(499\) 11.8885i 0.532204i 0.963945 + 0.266102i \(0.0857359\pi\)
−0.963945 + 0.266102i \(0.914264\pi\)
\(500\) 0 0
\(501\) 9.95959i 0.444962i
\(502\) 0.251899 + 0.0398969i 0.0112428 + 0.00178069i
\(503\) −16.5640 16.5640i −0.738552 0.738552i 0.233746 0.972298i \(-0.424902\pi\)
−0.972298 + 0.233746i \(0.924902\pi\)
\(504\) 5.25731 + 16.1803i 0.234179 + 0.720730i
\(505\) 0 0
\(506\) 16.1803 + 22.2703i 0.719304 + 0.990037i
\(507\) 7.38197 + 7.38197i 0.327845 + 0.327845i
\(508\) −7.05684 + 3.59564i −0.313097 + 0.159531i
\(509\) −10.8576 −0.481257 −0.240628 0.970617i \(-0.577354\pi\)
−0.240628 + 0.970617i \(0.577354\pi\)
\(510\) 0 0
\(511\) 17.9111i 0.792339i
\(512\) 3.53971 + 22.3488i 0.156434 + 0.987688i
\(513\) −6.47214 + 6.47214i −0.285752 + 0.285752i
\(514\) −6.22088 8.56231i −0.274391 0.377667i
\(515\) 0 0
\(516\) 3.52786 10.8576i 0.155306 0.477981i
\(517\) 10.8576 10.8576i 0.477519 0.477519i
\(518\) 0.611469 3.86067i 0.0268664 0.169628i
\(519\) 17.9111 0.786209
\(520\) 0 0
\(521\) −0.472136 −0.0206847 −0.0103423 0.999947i \(-0.503292\pi\)
−0.0103423 + 0.999947i \(0.503292\pi\)
\(522\) 3.04499 19.2253i 0.133276 0.841470i
\(523\) −25.7426 + 25.7426i −1.12565 + 1.12565i −0.134770 + 0.990877i \(0.543030\pi\)
−0.990877 + 0.134770i \(0.956970\pi\)
\(524\) 26.0746 + 8.47214i 1.13907 + 0.370107i
\(525\) 0 0
\(526\) 8.81966 + 12.1392i 0.384555 + 0.529295i
\(527\) 8.50651 8.50651i 0.370549 0.370549i
\(528\) 11.1744 1.76985i 0.486304 0.0770230i
\(529\) 13.1803i 0.573058i
\(530\) 0 0
\(531\) 1.05573 0.0458147
\(532\) −4.88493 9.58721i −0.211788 0.415658i
\(533\) −4.14725 4.14725i −0.179637 0.179637i
\(534\) −1.79611 2.47214i −0.0777254 0.106980i
\(535\) 0 0
\(536\) 5.70820 + 17.5680i 0.246557 + 0.758824i
\(537\) 4.65248 + 4.65248i 0.200769 + 0.200769i
\(538\) 28.5984 + 4.52955i 1.23297 + 0.195283i
\(539\) 0.763932i 0.0329049i
\(540\) 0 0
\(541\) 12.3107i 0.529280i 0.964347 + 0.264640i \(0.0852531\pi\)
−0.964347 + 0.264640i \(0.914747\pi\)
\(542\) −3.81072 + 24.0599i −0.163684 + 1.03346i
\(543\) 9.40456 + 9.40456i 0.403588 + 0.403588i
\(544\) 8.00000i 0.342997i
\(545\) 0 0
\(546\) 2.76393 2.00811i 0.118285 0.0859394i
\(547\) −11.5623 11.5623i −0.494369 0.494369i 0.415311 0.909679i \(-0.363673\pi\)
−0.909679 + 0.415311i \(0.863673\pi\)
\(548\) 7.02666 + 13.7906i 0.300164 + 0.589105i
\(549\) −2.00811 −0.0857042
\(550\) 0 0
\(551\) 12.3107i 0.524455i
\(552\) 13.2492 + 6.75080i 0.563923 + 0.287333i
\(553\) 5.52786 5.52786i 0.235069 0.235069i
\(554\) 14.9394 10.8541i 0.634714 0.461147i
\(555\) 0 0
\(556\) −13.2361 + 40.7364i −0.561334 + 1.72761i
\(557\) 23.5519 23.5519i 0.997926 0.997926i −0.00207187 0.999998i \(-0.500659\pi\)
0.999998 + 0.00207187i \(0.000659497\pi\)
\(558\) 26.5688 + 4.20808i 1.12475 + 0.178142i
\(559\) 6.71040 0.283820
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) −13.5604 2.14776i −0.572013 0.0905979i
\(563\) 4.32624 4.32624i 0.182329 0.182329i −0.610041 0.792370i \(-0.708847\pi\)
0.792370 + 0.610041i \(0.208847\pi\)
\(564\) 2.56314 7.88854i 0.107928 0.332168i
\(565\) 0 0
\(566\) −21.6525 + 15.7314i −0.910121 + 0.661242i
\(567\) −5.15131 + 5.15131i −0.216335 + 0.216335i
\(568\) −14.6548 + 28.7616i −0.614901 + 1.20681i
\(569\) 27.1246i 1.13712i −0.822641 0.568561i \(-0.807500\pi\)
0.822641 0.568561i \(-0.192500\pi\)
\(570\) 0 0
\(571\) 22.6525 0.947977 0.473988 0.880531i \(-0.342814\pi\)
0.473988 + 0.880531i \(0.342814\pi\)
\(572\) 3.01905 + 5.92522i 0.126233 + 0.247746i
\(573\) −8.16348 8.16348i −0.341034 0.341034i
\(574\) 17.5680 12.7639i 0.733276 0.532756i
\(575\) 0 0
\(576\) −14.4721 + 10.5146i −0.603006 + 0.438109i
\(577\) −26.2361 26.2361i −1.09222 1.09222i −0.995291 0.0969307i \(-0.969097\pi\)
−0.0969307 0.995291i \(-0.530903\pi\)
\(578\) 3.31848 20.9520i 0.138030 0.871490i
\(579\) 1.81966i 0.0756225i
\(580\) 0 0
\(581\) 25.1765i 1.04450i
\(582\) 7.31375 + 1.15838i 0.303165 + 0.0480166i
\(583\) −9.95959 9.95959i −0.412484 0.412484i
\(584\) 17.9111 5.81966i 0.741165 0.240819i
\(585\) 0 0
\(586\) −3.61803 4.97980i −0.149460 0.205714i
\(587\) −17.0902 17.0902i −0.705387 0.705387i 0.260175 0.965562i \(-0.416220\pi\)
−0.965562 + 0.260175i \(0.916220\pi\)
\(588\) 0.187345 + 0.367684i 0.00772596 + 0.0151631i
\(589\) −17.0130 −0.701009
\(590\) 0 0
\(591\) 11.4127i 0.469455i
\(592\) 4.05934 0.642937i 0.166838 0.0264246i
\(593\) −20.4164 + 20.4164i −0.838401 + 0.838401i −0.988648 0.150247i \(-0.951993\pi\)
0.150247 + 0.988648i \(0.451993\pi\)
\(594\) 12.3107 + 16.9443i 0.505116 + 0.695232i
\(595\) 0 0
\(596\) −24.4721 7.95148i −1.00242 0.325705i
\(597\) 13.4208 13.4208i 0.549276 0.549276i
\(598\) −1.36729 + 8.63271i −0.0559125 + 0.353018i
\(599\) 6.49839 0.265517 0.132759 0.991148i \(-0.457617\pi\)
0.132759 + 0.991148i \(0.457617\pi\)
\(600\) 0 0
\(601\) −17.7082 −0.722333 −0.361166 0.932501i \(-0.617621\pi\)
−0.361166 + 0.932501i \(0.617621\pi\)
\(602\) −3.88661 + 24.5391i −0.158406 + 1.00014i
\(603\) −10.3262 + 10.3262i −0.420517 + 0.420517i
\(604\) 4.14725 12.7639i 0.168749 0.519357i
\(605\) 0 0
\(606\) −2.11146 2.90617i −0.0857720 0.118055i
\(607\) −32.6789 + 32.6789i −1.32640 + 1.32640i −0.417908 + 0.908489i \(0.637237\pi\)
−0.908489 + 0.417908i \(0.862763\pi\)
\(608\) 8.00000 8.00000i 0.324443 0.324443i
\(609\) 14.4721i 0.586441i
\(610\) 0 0
\(611\) 4.87539 0.197237
\(612\) −5.63522 + 2.87129i −0.227790 + 0.116065i
\(613\) −19.5357 19.5357i −0.789038 0.789038i 0.192298 0.981337i \(-0.438406\pi\)
−0.981337 + 0.192298i \(0.938406\pi\)
\(614\) 15.9434 + 21.9443i 0.643425 + 0.885599i
\(615\) 0 0
\(616\) −23.4164 + 7.60845i −0.943474 + 0.306553i
\(617\) −4.88854 4.88854i −0.196805 0.196805i 0.601824 0.798629i \(-0.294441\pi\)
−0.798629 + 0.601824i \(0.794441\pi\)
\(618\) −5.79289 0.917504i −0.233024 0.0369074i
\(619\) 35.3050i 1.41903i 0.704692 + 0.709513i \(0.251085\pi\)
−0.704692 + 0.709513i \(0.748915\pi\)
\(620\) 0 0
\(621\) 27.5276i 1.10465i
\(622\) 4.60543 29.0776i 0.184661 1.16590i
\(623\) 4.70228 + 4.70228i 0.188393 + 0.188393i
\(624\) 2.90617 + 2.11146i 0.116340 + 0.0845259i
\(625\) 0 0
\(626\) 2.85410 2.07363i 0.114073 0.0828788i
\(627\) −4.00000 4.00000i −0.159745 0.159745i
\(628\) 35.1191 17.8941i 1.40140 0.714051i
\(629\) 1.45309 0.0579383
\(630\) 0 0
\(631\) 22.6134i 0.900223i 0.892972 + 0.450112i \(0.148616\pi\)
−0.892972 + 0.450112i \(0.851384\pi\)
\(632\) 7.32398 + 3.73175i 0.291332 + 0.148441i
\(633\) −1.41641 + 1.41641i −0.0562972 + 0.0562972i
\(634\) 6.43288 4.67376i 0.255482 0.185619i
\(635\) 0 0
\(636\) −7.23607 2.35114i −0.286929 0.0932288i
\(637\) −0.171513 + 0.171513i −0.00679561 + 0.00679561i
\(638\) 27.8232 + 4.40676i 1.10153 + 0.174465i
\(639\) −25.5195 −1.00954
\(640\) 0 0
\(641\) −38.6525 −1.52668 −0.763341 0.645996i \(-0.776442\pi\)
−0.763341 + 0.645996i \(0.776442\pi\)
\(642\) 1.57086 + 0.248800i 0.0619969 + 0.00981935i
\(643\) 11.5623 11.5623i 0.455973 0.455973i −0.441358 0.897331i \(-0.645503\pi\)
0.897331 + 0.441358i \(0.145503\pi\)
\(644\) −30.7768 10.0000i −1.21278 0.394055i
\(645\) 0 0
\(646\) 3.23607 2.35114i 0.127321 0.0925044i
\(647\) 20.0252 20.0252i 0.787271 0.787271i −0.193775 0.981046i \(-0.562073\pi\)
0.981046 + 0.193775i \(0.0620731\pi\)
\(648\) −6.82507 3.47755i −0.268114 0.136611i
\(649\) 1.52786i 0.0599739i
\(650\) 0 0
\(651\) 20.0000 0.783862
\(652\) 34.9144 17.7898i 1.36735 0.696701i
\(653\) 20.0907 + 20.0907i 0.786210 + 0.786210i 0.980871 0.194661i \(-0.0623606\pi\)
−0.194661 + 0.980871i \(0.562361\pi\)
\(654\) −14.6619 + 10.6525i −0.573325 + 0.416545i
\(655\) 0 0
\(656\) 18.4721 + 13.4208i 0.721216 + 0.523994i
\(657\) 10.5279 + 10.5279i 0.410731 + 0.410731i
\(658\) −2.82379 + 17.8287i −0.110083 + 0.695035i
\(659\) 18.0000i 0.701180i 0.936529 + 0.350590i \(0.114019\pi\)
−0.936529 + 0.350590i \(0.885981\pi\)
\(660\) 0 0
\(661\) 3.80423i 0.147967i −0.997259 0.0739836i \(-0.976429\pi\)
0.997259 0.0739836i \(-0.0235713\pi\)
\(662\) −42.0003 6.65219i −1.63239 0.258545i
\(663\) 0.898056 + 0.898056i 0.0348776 + 0.0348776i
\(664\) 25.1765 8.18034i 0.977038 0.317459i
\(665\) 0 0
\(666\) 1.90983 + 2.62866i 0.0740044 + 0.101858i
\(667\) 26.1803 + 26.1803i 1.01371 + 1.01371i
\(668\) −20.3060 + 10.3464i −0.785664 + 0.400316i
\(669\) 17.5680 0.679220
\(670\) 0 0
\(671\) 2.90617i 0.112191i
\(672\) −9.40456 + 9.40456i −0.362789 + 0.362789i
\(673\) 17.2918 17.2918i 0.666550 0.666550i −0.290366 0.956916i \(-0.593777\pi\)
0.956916 + 0.290366i \(0.0937770\pi\)
\(674\) 23.4459 + 32.2705i 0.903102 + 1.24301i
\(675\) 0 0
\(676\) 7.38197 22.7194i 0.283922 0.873821i
\(677\) 7.77997 7.77997i 0.299008 0.299008i −0.541617 0.840625i \(-0.682188\pi\)
0.840625 + 0.541617i \(0.182188\pi\)
\(678\) 2.38132 15.0351i 0.0914542 0.577419i
\(679\) −16.1150 −0.618435
\(680\) 0 0
\(681\) −11.5967 −0.444388
\(682\) −6.08999 + 38.4507i −0.233198 + 1.47235i
\(683\) 22.7984 22.7984i 0.872356 0.872356i −0.120373 0.992729i \(-0.538409\pi\)
0.992729 + 0.120373i \(0.0384091\pi\)
\(684\) 8.50651 + 2.76393i 0.325254 + 0.105682i
\(685\) 0 0
\(686\) 15.1246 + 20.8172i 0.577460 + 0.794806i
\(687\) −4.91428 + 4.91428i −0.187492 + 0.187492i
\(688\) −25.8019 + 4.08662i −0.983689 + 0.155801i
\(689\) 4.47214i 0.170375i
\(690\) 0 0
\(691\) 9.12461 0.347117 0.173558 0.984824i \(-0.444473\pi\)
0.173558 + 0.984824i \(0.444473\pi\)
\(692\) −18.6068 36.5178i −0.707323 1.38820i
\(693\) −13.7638 13.7638i −0.522844 0.522844i
\(694\) −30.6053 42.1246i −1.16176 1.59903i
\(695\) 0 0
\(696\) 14.4721 4.70228i 0.548565 0.178240i
\(697\) 5.70820 + 5.70820i 0.216214 + 0.216214i
\(698\) −23.2847 3.68793i −0.881338 0.139590i
\(699\) 6.76393i 0.255835i
\(700\) 0 0
\(701\) 19.7072i 0.744330i −0.928167 0.372165i \(-0.878616\pi\)
0.928167 0.372165i \(-0.121384\pi\)
\(702\) −1.04029 + 6.56816i −0.0392634 + 0.247899i
\(703\) −1.45309 1.45309i −0.0548041 0.0548041i
\(704\) −15.2169 20.9443i −0.573509 0.789367i
\(705\) 0 0
\(706\) 36.2705 26.3521i 1.36506 0.991773i
\(707\) 5.52786 + 5.52786i 0.207897 + 0.207897i
\(708\) 0.374689 + 0.735369i 0.0140817 + 0.0276369i
\(709\) 3.24920 0.122026 0.0610131 0.998137i \(-0.480567\pi\)
0.0610131 + 0.998137i \(0.480567\pi\)
\(710\) 0 0
\(711\) 6.49839i 0.243709i
\(712\) −3.17442 + 6.23015i −0.118966 + 0.233485i
\(713\) −36.1803 + 36.1803i −1.35496 + 1.35496i
\(714\) −3.80423 + 2.76393i −0.142370 + 0.103438i
\(715\) 0 0
\(716\) 4.65248 14.3188i 0.173871 0.535120i
\(717\) 8.29451 8.29451i 0.309764 0.309764i
\(718\) 27.8232 + 4.40676i 1.03835 + 0.164459i
\(719\) 4.01623 0.149780 0.0748900 0.997192i \(-0.476139\pi\)
0.0748900 + 0.997192i \(0.476139\pi\)
\(720\) 0 0
\(721\) 12.7639 0.475354
\(722\) 20.9520 + 3.31848i 0.779754 + 0.123501i
\(723\) −6.94427 + 6.94427i −0.258260 + 0.258260i
\(724\) 9.40456 28.9443i 0.349518 1.07571i
\(725\) 0 0
\(726\) 0.527864 0.383516i 0.0195909 0.0142336i
\(727\) 9.51057 9.51057i 0.352727 0.352727i −0.508396 0.861123i \(-0.669761\pi\)
0.861123 + 0.508396i \(0.169761\pi\)
\(728\) −6.96552 3.54911i −0.258159 0.131539i
\(729\) 5.94427i 0.220158i
\(730\) 0 0
\(731\) −9.23607 −0.341608
\(732\) −0.712701 1.39875i −0.0263422 0.0516995i
\(733\) −19.1926 19.1926i −0.708896 0.708896i 0.257407 0.966303i \(-0.417132\pi\)
−0.966303 + 0.257407i \(0.917132\pi\)
\(734\) −19.7477 + 14.3475i −0.728900 + 0.529577i
\(735\) 0 0
\(736\) 34.0260i 1.25422i
\(737\) −14.9443 14.9443i −0.550479 0.550479i
\(738\) −2.82379 + 17.8287i −0.103945 + 0.656283i
\(739\) 9.41641i 0.346388i −0.984888 0.173194i \(-0.944591\pi\)
0.984888 0.173194i \(-0.0554088\pi\)
\(740\) 0 0
\(741\) 1.79611i 0.0659818i
\(742\) 16.3540 + 2.59023i 0.600376 + 0.0950902i
\(743\) −4.80828 4.80828i −0.176399 0.176399i 0.613385 0.789784i \(-0.289807\pi\)
−0.789784 + 0.613385i \(0.789807\pi\)
\(744\) 6.49839 + 20.0000i 0.238243 + 0.733236i
\(745\) 0 0
\(746\) 26.3820 + 36.3117i 0.965912 + 1.32946i
\(747\) 14.7984 + 14.7984i 0.541444 + 0.541444i
\(748\) −4.15537 8.15537i −0.151935 0.298190i
\(749\) −3.46120 −0.126469
\(750\) 0 0
\(751\) 11.4127i 0.416455i −0.978080 0.208227i \(-0.933231\pi\)
0.978080 0.208227i \(-0.0667694\pi\)
\(752\) −18.7462 + 2.96911i −0.683603 + 0.108272i
\(753\) −0.111456 + 0.111456i −0.00406169 + 0.00406169i
\(754\) 5.25731 + 7.23607i 0.191460 + 0.263522i
\(755\) 0 0
\(756\) −23.4164 7.60845i −0.851647 0.276717i
\(757\) −31.7154 + 31.7154i −1.15272 + 1.15272i −0.166709 + 0.986006i \(0.553314\pi\)
−0.986006 + 0.166709i \(0.946686\pi\)
\(758\) −0.0246576 + 0.155682i −0.000895606 + 0.00565463i
\(759\) −17.0130 −0.617533
\(760\) 0 0
\(761\) 2.94427 0.106730 0.0533649 0.998575i \(-0.483005\pi\)
0.0533649 + 0.998575i \(0.483005\pi\)
\(762\) 0.765727 4.83461i 0.0277394 0.175139i
\(763\) 27.8885 27.8885i 1.00963 1.00963i
\(764\) −8.16348 + 25.1246i −0.295344 + 0.908977i
\(765\) 0 0
\(766\) 1.18034 + 1.62460i 0.0426474 + 0.0586991i
\(767\) −0.343027 + 0.343027i −0.0123860 + 0.0123860i
\(768\) −12.4603 6.34884i −0.449622 0.229094i
\(769\) 6.47214i 0.233391i −0.993168 0.116696i \(-0.962770\pi\)
0.993168 0.116696i \(-0.0372302\pi\)
\(770\) 0 0
\(771\) 6.54102 0.235569
\(772\) −3.71000 + 1.89034i −0.133526 + 0.0680348i
\(773\) 31.5034 + 31.5034i 1.13310 + 1.13310i 0.989659 + 0.143439i \(0.0458159\pi\)
0.143439 + 0.989659i \(0.454184\pi\)
\(774\) −12.1392 16.7082i −0.436335 0.600564i
\(775\) 0 0
\(776\) −5.23607 16.1150i −0.187964 0.578493i
\(777\) 1.70820 + 1.70820i 0.0612815 + 0.0612815i
\(778\) −5.79289 0.917504i −0.207685 0.0328941i
\(779\) 11.4164i 0.409035i
\(780\) 0 0
\(781\) 36.9322i 1.32154i
\(782\) 1.88191 11.8819i 0.0672969 0.424896i
\(783\) 19.9192 + 19.9192i 0.711854 + 0.711854i
\(784\) 0.555029 0.763932i 0.0198225 0.0272833i
\(785\) 0 0
\(786\) −13.7082 + 9.95959i −0.488955 + 0.355247i
\(787\) −17.8541 17.8541i −0.636430 0.636430i 0.313243 0.949673i \(-0.398585\pi\)
−0.949673 + 0.313243i \(0.898585\pi\)
\(788\) −23.2686 + 11.8560i −0.828911 + 0.422351i
\(789\) −9.27354 −0.330147
\(790\) 0 0
\(791\) 33.1280i 1.17790i
\(792\) 9.29168 18.2360i 0.330166 0.647986i
\(793\) 0.652476 0.652476i 0.0231701 0.0231701i
\(794\) −39.5609 + 28.7426i −1.40396 + 1.02004i
\(795\) 0 0
\(796\) −41.3050 13.4208i −1.46402 0.475687i
\(797\) −14.8334 + 14.8334i −0.525426 + 0.525426i −0.919205 0.393779i \(-0.871167\pi\)
0.393779 + 0.919205i \(0.371167\pi\)
\(798\) 6.56816 + 1.04029i 0.232510 + 0.0368260i
\(799\) −6.71040 −0.237397
\(800\) 0 0
\(801\) −5.52786 −0.195317
\(802\) 44.5420 + 7.05476i 1.57283 + 0.249112i
\(803\) −15.2361 + 15.2361i −0.537669 + 0.537669i
\(804\) −10.8576 3.52786i −0.382920 0.124418i
\(805\) 0 0
\(806\) −10.0000 + 7.26543i −0.352235 + 0.255914i
\(807\) −12.6538 + 12.6538i −0.445433 + 0.445433i
\(808\) −3.73175 + 7.32398i −0.131283 + 0.257657i
\(809\) 4.94427i 0.173831i −0.996216 0.0869157i \(-0.972299\pi\)
0.996216 0.0869157i \(-0.0277011\pi\)
\(810\) 0 0
\(811\) 26.0689 0.915402 0.457701 0.889106i \(-0.348673\pi\)
0.457701 + 0.889106i \(0.348673\pi\)
\(812\) −29.5064 + 15.0343i −1.03547 + 0.527599i
\(813\) −10.6456 10.6456i −0.373359 0.373359i
\(814\) −3.80423 + 2.76393i −0.133338 + 0.0968758i
\(815\) 0 0
\(816\) −4.00000 2.90617i −0.140028 0.101736i
\(817\) 9.23607 + 9.23607i 0.323129 + 0.323129i
\(818\) 4.77789 30.1664i 0.167055 1.05474i
\(819\) 6.18034i 0.215959i
\(820\) 0 0
\(821\) 17.9111i 0.625101i −0.949901 0.312550i \(-0.898817\pi\)
0.949901 0.312550i \(-0.101183\pi\)
\(822\) −9.44788 1.49640i −0.329532 0.0521928i
\(823\) 13.8698 + 13.8698i 0.483472 + 0.483472i 0.906238 0.422767i \(-0.138941\pi\)
−0.422767 + 0.906238i \(0.638941\pi\)
\(824\) 4.14725 + 12.7639i 0.144476 + 0.444653i
\(825\) 0 0
\(826\) −1.05573 1.45309i −0.0367335 0.0505593i
\(827\) −8.14590 8.14590i −0.283261 0.283261i 0.551147 0.834408i \(-0.314190\pi\)
−0.834408 + 0.551147i \(0.814190\pi\)
\(828\) 23.9680 12.2123i 0.832946 0.424407i
\(829\) 54.5002 1.89287 0.946436 0.322892i \(-0.104655\pi\)
0.946436 + 0.322892i \(0.104655\pi\)
\(830\) 0 0
\(831\) 11.4127i 0.395901i
\(832\) 1.28587 8.11869i 0.0445797 0.281465i
\(833\) 0.236068 0.236068i 0.00817927 0.00817927i
\(834\) −15.5599 21.4164i −0.538796 0.741590i
\(835\) 0 0
\(836\) −4.00000 + 12.3107i −0.138343 + 0.425776i
\(837\) −27.5276 + 27.5276i −0.951494 + 0.951494i
\(838\) 6.37873 40.2737i 0.220350 1.39123i
\(839\) 15.2169 0.525346 0.262673 0.964885i \(-0.415396\pi\)
0.262673 + 0.964885i \(0.415396\pi\)
\(840\) 0 0
\(841\) 8.88854 0.306502
\(842\) −6.28867 + 39.7051i −0.216722 + 1.36833i
\(843\) 6.00000 6.00000i 0.206651 0.206651i
\(844\) 4.35926 + 1.41641i 0.150052 + 0.0487548i
\(845\) 0 0
\(846\) −8.81966 12.1392i −0.303226 0.417355i
\(847\) −1.00406 + 1.00406i −0.0344998 + 0.0344998i
\(848\) 2.72353 + 17.1957i 0.0935262 + 0.590501i
\(849\) 16.5410i 0.567686i
\(850\) 0 0
\(851\) −6.18034 −0.211859
\(852\) −9.05715 17.7757i −0.310293 0.608984i
\(853\) −18.8496 18.8496i −0.645399 0.645399i 0.306479 0.951877i \(-0.400849\pi\)
−0.951877 + 0.306479i \(0.900849\pi\)
\(854\) 2.00811 + 2.76393i 0.0687163 + 0.0945798i
\(855\) 0 0
\(856\) −1.12461 3.46120i −0.0384384 0.118301i
\(857\) −35.8328 35.8328i −1.22403 1.22403i −0.966188 0.257837i \(-0.916990\pi\)
−0.257837 0.966188i \(-0.583010\pi\)
\(858\) −4.05934 0.642937i −0.138584 0.0219495i
\(859\) 16.4721i 0.562022i −0.959705 0.281011i \(-0.909330\pi\)
0.959705 0.281011i \(-0.0906697\pi\)
\(860\) 0 0
\(861\) 13.4208i 0.457379i
\(862\) 4.20808 26.5688i 0.143328 0.904935i
\(863\) 35.5851 + 35.5851i 1.21133 + 1.21133i 0.970589 + 0.240743i \(0.0773909\pi\)
0.240743 + 0.970589i \(0.422609\pi\)
\(864\) 25.8885i 0.880746i
\(865\) 0 0
\(866\) −1.32624 + 0.963568i −0.0450674 + 0.0327434i
\(867\) 9.27051 + 9.27051i 0.314843 + 0.314843i
\(868\) −20.7768 40.7768i −0.705212 1.38406i
\(869\) −9.40456 −0.319028
\(870\) 0 0
\(871\) 6.71040i 0.227373i
\(872\) 36.9501 + 18.8270i 1.25129 + 0.637563i
\(873\) 9.47214 9.47214i 0.320583 0.320583i
\(874\) −13.7638 + 10.0000i −0.465568 + 0.338255i
\(875\) 0 0
\(876\) −3.59675 + 11.0697i −0.121523 + 0.374009i
\(877\) 21.5438 21.5438i 0.727482 0.727482i −0.242636 0.970118i \(-0.578012\pi\)
0.970118 + 0.242636i \(0.0780119\pi\)
\(878\) −49.0782 7.77322i −1.65631 0.262333i
\(879\) 3.80423 0.128313
\(880\) 0 0
\(881\) 6.87539 0.231638 0.115819 0.993270i \(-0.463051\pi\)
0.115819 + 0.993270i \(0.463051\pi\)
\(882\) 0.737322 + 0.116780i 0.0248269 + 0.00393220i
\(883\) 2.79837 2.79837i 0.0941728 0.0941728i −0.658451 0.752624i \(-0.728788\pi\)
0.752624 + 0.658451i \(0.228788\pi\)
\(884\) 0.898056 2.76393i 0.0302049 0.0929611i
\(885\) 0 0
\(886\) 1.76393 1.28157i 0.0592605 0.0430552i
\(887\) −11.5187 + 11.5187i −0.386759 + 0.386759i −0.873530 0.486770i \(-0.838175\pi\)
0.486770 + 0.873530i \(0.338175\pi\)
\(888\) −1.15317 + 2.26323i −0.0386980 + 0.0759491i
\(889\) 10.6525i 0.357273i
\(890\) 0 0
\(891\) 8.76393 0.293603
\(892\) −18.2504 35.8185i −0.611069 1.19929i
\(893\) 6.71040 + 6.71040i 0.224555 + 0.224555i
\(894\) 12.8658 9.34752i 0.430295 0.312628i
\(895\) 0 0
\(896\) 28.9443 + 9.40456i 0.966960 + 0.314184i
\(897\) −3.81966 3.81966i −0.127535 0.127535i
\(898\) −3.89296 + 24.5792i −0.129910 + 0.820218i
\(899\) 52.3607i 1.74633i
\(900\) 0 0
\(901\) 6.15537i 0.205065i
\(902\) −25.8019 4.08662i −0.859110 0.136070i
\(903\) −10.8576 10.8576i −0.361320 0.361320i
\(904\) −33.1280 + 10.7639i −1.10182 + 0.358003i
\(905\) 0 0
\(906\) 4.87539 + 6.71040i 0.161974 + 0.222938i
\(907\) 7.67376 + 7.67376i 0.254803 + 0.254803i 0.822936 0.568133i \(-0.192334\pi\)
−0.568133 + 0.822936i \(0.692334\pi\)
\(908\) 12.0472 + 23.6439i 0.399800 + 0.784651i
\(909\) −6.49839 −0.215538
\(910\) 0 0
\(911\) 10.3026i 0.341341i 0.985328 + 0.170671i \(0.0545934\pi\)
−0.985328 + 0.170671i \(0.945407\pi\)
\(912\) 1.09383 + 6.90617i 0.0362203 + 0.228686i
\(913\) −21.4164 + 21.4164i −0.708780 + 0.708780i
\(914\) −11.3472 15.6180i −0.375331 0.516599i
\(915\) 0 0
\(916\) 15.1246 + 4.91428i 0.499731 + 0.162373i
\(917\) 26.0746 26.0746i 0.861058 0.861058i
\(918\) 1.43184 9.04029i 0.0472578 0.298374i
\(919\) 18.1231 0.597825 0.298913 0.954281i \(-0.403376\pi\)
0.298913 + 0.954281i \(0.403376\pi\)
\(920\) 0 0
\(921\) −16.7639 −0.552390
\(922\) 6.08999 38.4507i 0.200563 1.26631i
\(923\) 8.29180 8.29180i 0.272928 0.272928i
\(924\) 4.70228 14.4721i 0.154694 0.476098i
\(925\) 0 0
\(926\) −2.88854 3.97574i −0.0949234 0.130651i
\(927\) −7.50245 + 7.50245i −0.246413 + 0.246413i
\(928\) −24.6215 24.6215i −0.808239 0.808239i
\(929\) 36.6525i 1.20253i −0.799050 0.601264i \(-0.794664\pi\)
0.799050 0.601264i \(-0.205336\pi\)
\(930\) 0 0
\(931\) −0.472136 −0.0154736
\(932\) −13.7906 + 7.02666i −0.451726 + 0.230166i
\(933\) 12.8658 + 12.8658i 0.421206 + 0.421206i
\(934\) 21.5438 + 29.6525i 0.704934 + 0.970259i
\(935\) 0 0
\(936\) 6.18034 2.00811i 0.202011 0.0656373i
\(937\) 42.3050 + 42.3050i 1.38204 + 1.38204i 0.840987 + 0.541056i \(0.181975\pi\)
0.541056 + 0.840987i \(0.318025\pi\)
\(938\) 24.5391 + 3.88661i 0.801230 + 0.126902i
\(939\) 2.18034i 0.0711527i
\(940\) 0 0
\(941\) 37.6183i 1.22632i 0.789959 + 0.613160i \(0.210102\pi\)
−0.789959 + 0.613160i \(0.789898\pi\)
\(942\) −3.81072 + 24.0599i −0.124160 + 0.783915i
\(943\) −24.2784 24.2784i −0.790615 0.790615i
\(944\) 1.11006 1.52786i 0.0361293 0.0497277i
\(945\) 0 0
\(946\) 24.1803 17.5680i 0.786171 0.571186i
\(947\) 2.14590 + 2.14590i 0.0697323 + 0.0697323i 0.741113 0.671381i \(-0.234298\pi\)
−0.671381 + 0.741113i \(0.734298\pi\)
\(948\) −4.52647 + 2.30635i −0.147013 + 0.0749068i
\(949\) −6.84142 −0.222082
\(950\) 0 0
\(951\) 4.91428i 0.159357i
\(952\) 9.58721 + 4.88493i 0.310723 + 0.158321i
\(953\) 29.1803 29.1803i 0.945244 0.945244i −0.0533329 0.998577i \(-0.516984\pi\)
0.998577 + 0.0533329i \(0.0169844\pi\)
\(954\) −11.1352 + 8.09017i −0.360514 + 0.261929i
\(955\) 0 0
\(956\) −25.5279 8.29451i −0.825630 0.268263i
\(957\) −12.3107 + 12.3107i −0.397950 + 0.397950i
\(958\) −6.56816 1.04029i −0.212208 0.0336104i
\(959\) 20.8172 0.672224
\(960\) 0 0
\(961\) −41.3607 −1.33422
\(962\) −1.47464 0.233561i −0.0475444 0.00753029i
\(963\) 2.03444 2.03444i 0.0655590 0.0655590i
\(964\) 21.3723 + 6.94427i 0.688355 + 0.223660i
\(965\) 0 0
\(966\) 16.1803 11.7557i 0.520594 0.378234i
\(967\) −10.9637 + 10.9637i −0.352567 + 0.352567i −0.861064 0.508497i \(-0.830201\pi\)
0.508497 + 0.861064i \(0.330201\pi\)
\(968\) −1.33030 0.677819i −0.0427573 0.0217859i
\(969\) 2.47214i 0.0794164i
\(970\) 0 0
\(971\) −15.5967 −0.500523 −0.250262 0.968178i \(-0.580517\pi\)
−0.250262 + 0.968178i \(0.580517\pi\)
\(972\) 28.6842 14.6153i 0.920047 0.468787i
\(973\) 40.7364 + 40.7364i 1.30595 + 1.30595i
\(974\) 30.6053 22.2361i 0.980658 0.712490i
\(975\) 0 0
\(976\) −2.11146 + 2.90617i −0.0675861 + 0.0930242i
\(977\) 23.7639 + 23.7639i 0.760276 + 0.760276i 0.976372 0.216096i \(-0.0693326\pi\)
−0.216096 + 0.976372i \(0.569333\pi\)
\(978\) −3.78851 + 23.9197i −0.121143 + 0.764868i
\(979\) 8.00000i 0.255681i
\(980\) 0 0
\(981\) 32.7849i 1.04674i
\(982\) −21.2818 3.37070i −0.679129 0.107563i
\(983\) 18.0171 + 18.0171i 0.574655 + 0.574655i 0.933426 0.358770i \(-0.116804\pi\)
−0.358770 + 0.933426i \(0.616804\pi\)
\(984\) −13.4208 + 4.36068i −0.427839 + 0.139013i
\(985\) 0 0
\(986\) −7.23607 9.95959i −0.230443 0.317178i
\(987\) −7.88854 7.88854i −0.251095 0.251095i
\(988\) −3.66199 + 1.86588i −0.116503 + 0.0593614i
\(989\) 39.2833 1.24914
\(990\) 0 0
\(991\) 14.3188i 0.454853i 0.973795 + 0.227427i \(0.0730312\pi\)
−0.973795 + 0.227427i \(0.926969\pi\)
\(992\) 34.0260 34.0260i 1.08033 1.08033i
\(993\) 18.5836 18.5836i 0.589732 0.589732i
\(994\) 25.5195 + 35.1246i 0.809430 + 1.11409i
\(995\) 0 0
\(996\) −5.05573 + 15.5599i −0.160197 + 0.493035i
\(997\) 27.9112 27.9112i 0.883955 0.883955i −0.109979 0.993934i \(-0.535078\pi\)
0.993934 + 0.109979i \(0.0350783\pi\)
\(998\) −2.63012 + 16.6059i −0.0832551 + 0.525652i
\(999\) −4.70228 −0.148774
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.2.k.h.107.4 8
4.3 odd 2 800.2.o.g.207.3 8
5.2 odd 4 40.2.k.a.3.3 yes 8
5.3 odd 4 inner 200.2.k.h.43.2 8
5.4 even 2 40.2.k.a.27.1 yes 8
8.3 odd 2 inner 200.2.k.h.107.2 8
8.5 even 2 800.2.o.g.207.4 8
15.2 even 4 360.2.w.c.163.2 8
15.14 odd 2 360.2.w.c.307.4 8
20.3 even 4 800.2.o.g.143.4 8
20.7 even 4 160.2.o.a.143.1 8
20.19 odd 2 160.2.o.a.47.2 8
40.3 even 4 inner 200.2.k.h.43.4 8
40.13 odd 4 800.2.o.g.143.3 8
40.19 odd 2 40.2.k.a.27.3 yes 8
40.27 even 4 40.2.k.a.3.1 8
40.29 even 2 160.2.o.a.47.1 8
40.37 odd 4 160.2.o.a.143.2 8
60.47 odd 4 1440.2.bi.c.1423.3 8
60.59 even 2 1440.2.bi.c.847.2 8
80.19 odd 4 1280.2.n.q.767.1 8
80.27 even 4 1280.2.n.q.1023.2 8
80.29 even 4 1280.2.n.m.767.3 8
80.37 odd 4 1280.2.n.m.1023.4 8
80.59 odd 4 1280.2.n.m.767.4 8
80.67 even 4 1280.2.n.m.1023.3 8
80.69 even 4 1280.2.n.q.767.2 8
80.77 odd 4 1280.2.n.q.1023.1 8
120.29 odd 2 1440.2.bi.c.847.3 8
120.59 even 2 360.2.w.c.307.2 8
120.77 even 4 1440.2.bi.c.1423.2 8
120.107 odd 4 360.2.w.c.163.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.k.a.3.1 8 40.27 even 4
40.2.k.a.3.3 yes 8 5.2 odd 4
40.2.k.a.27.1 yes 8 5.4 even 2
40.2.k.a.27.3 yes 8 40.19 odd 2
160.2.o.a.47.1 8 40.29 even 2
160.2.o.a.47.2 8 20.19 odd 2
160.2.o.a.143.1 8 20.7 even 4
160.2.o.a.143.2 8 40.37 odd 4
200.2.k.h.43.2 8 5.3 odd 4 inner
200.2.k.h.43.4 8 40.3 even 4 inner
200.2.k.h.107.2 8 8.3 odd 2 inner
200.2.k.h.107.4 8 1.1 even 1 trivial
360.2.w.c.163.2 8 15.2 even 4
360.2.w.c.163.4 8 120.107 odd 4
360.2.w.c.307.2 8 120.59 even 2
360.2.w.c.307.4 8 15.14 odd 2
800.2.o.g.143.3 8 40.13 odd 4
800.2.o.g.143.4 8 20.3 even 4
800.2.o.g.207.3 8 4.3 odd 2
800.2.o.g.207.4 8 8.5 even 2
1280.2.n.m.767.3 8 80.29 even 4
1280.2.n.m.767.4 8 80.59 odd 4
1280.2.n.m.1023.3 8 80.67 even 4
1280.2.n.m.1023.4 8 80.37 odd 4
1280.2.n.q.767.1 8 80.19 odd 4
1280.2.n.q.767.2 8 80.69 even 4
1280.2.n.q.1023.1 8 80.77 odd 4
1280.2.n.q.1023.2 8 80.27 even 4
1440.2.bi.c.847.2 8 60.59 even 2
1440.2.bi.c.847.3 8 120.29 odd 2
1440.2.bi.c.1423.2 8 120.77 even 4
1440.2.bi.c.1423.3 8 60.47 odd 4