Properties

Label 800.2.o.g.207.4
Level $800$
Weight $2$
Character 800.207
Analytic conductor $6.388$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(143,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.143");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.o (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 207.4
Root \(-0.587785 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 800.207
Dual form 800.2.o.g.143.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.618034 - 0.618034i) q^{3} +(1.90211 - 1.90211i) q^{7} +2.23607i q^{9} +3.23607 q^{11} +(0.726543 + 0.726543i) q^{13} +(1.00000 + 1.00000i) q^{17} +2.00000i q^{19} -2.35114i q^{21} +(-4.25325 - 4.25325i) q^{23} +(3.23607 + 3.23607i) q^{27} +6.15537 q^{29} -8.50651i q^{31} +(2.00000 - 2.00000i) q^{33} +(-0.726543 + 0.726543i) q^{37} +0.898056 q^{39} +5.70820 q^{41} +(4.61803 - 4.61803i) q^{43} +(-3.35520 + 3.35520i) q^{47} -0.236068i q^{49} +1.23607 q^{51} +(-3.07768 - 3.07768i) q^{53} +(1.23607 + 1.23607i) q^{57} +0.472136i q^{59} -0.898056i q^{61} +(4.25325 + 4.25325i) q^{63} +(-4.61803 - 4.61803i) q^{67} -5.25731 q^{69} +11.4127i q^{71} +(4.70820 - 4.70820i) q^{73} +(6.15537 - 6.15537i) q^{77} +2.90617 q^{79} -2.70820 q^{81} +(-6.61803 + 6.61803i) q^{83} +(3.80423 - 3.80423i) q^{87} +2.47214i q^{89} +2.76393 q^{91} +(-5.25731 - 5.25731i) q^{93} +(-4.23607 - 4.23607i) q^{97} +7.23607i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 8 q^{11} + 8 q^{17} + 8 q^{27} + 16 q^{33} - 8 q^{41} + 28 q^{43} - 8 q^{51} - 8 q^{57} - 28 q^{67} - 16 q^{73} + 32 q^{81} - 44 q^{83} + 40 q^{91} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.618034 0.618034i 0.356822 0.356822i −0.505818 0.862640i \(-0.668809\pi\)
0.862640 + 0.505818i \(0.168809\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.90211 1.90211i 0.718931 0.718931i −0.249455 0.968386i \(-0.580252\pi\)
0.968386 + 0.249455i \(0.0802515\pi\)
\(8\) 0 0
\(9\) 2.23607i 0.745356i
\(10\) 0 0
\(11\) 3.23607 0.975711 0.487856 0.872924i \(-0.337779\pi\)
0.487856 + 0.872924i \(0.337779\pi\)
\(12\) 0 0
\(13\) 0.726543 + 0.726543i 0.201507 + 0.201507i 0.800645 0.599139i \(-0.204490\pi\)
−0.599139 + 0.800645i \(0.704490\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 + 1.00000i 0.242536 + 0.242536i 0.817898 0.575363i \(-0.195139\pi\)
−0.575363 + 0.817898i \(0.695139\pi\)
\(18\) 0 0
\(19\) 2.00000i 0.458831i 0.973329 + 0.229416i \(0.0736815\pi\)
−0.973329 + 0.229416i \(0.926318\pi\)
\(20\) 0 0
\(21\) 2.35114i 0.513061i
\(22\) 0 0
\(23\) −4.25325 4.25325i −0.886865 0.886865i 0.107356 0.994221i \(-0.465762\pi\)
−0.994221 + 0.107356i \(0.965762\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.23607 + 3.23607i 0.622782 + 0.622782i
\(28\) 0 0
\(29\) 6.15537 1.14302 0.571511 0.820594i \(-0.306357\pi\)
0.571511 + 0.820594i \(0.306357\pi\)
\(30\) 0 0
\(31\) 8.50651i 1.52781i −0.645326 0.763907i \(-0.723279\pi\)
0.645326 0.763907i \(-0.276721\pi\)
\(32\) 0 0
\(33\) 2.00000 2.00000i 0.348155 0.348155i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.726543 + 0.726543i −0.119443 + 0.119443i −0.764302 0.644859i \(-0.776916\pi\)
0.644859 + 0.764302i \(0.276916\pi\)
\(38\) 0 0
\(39\) 0.898056 0.143804
\(40\) 0 0
\(41\) 5.70820 0.891472 0.445736 0.895165i \(-0.352942\pi\)
0.445736 + 0.895165i \(0.352942\pi\)
\(42\) 0 0
\(43\) 4.61803 4.61803i 0.704244 0.704244i −0.261075 0.965319i \(-0.584077\pi\)
0.965319 + 0.261075i \(0.0840770\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.35520 + 3.35520i −0.489406 + 0.489406i −0.908119 0.418713i \(-0.862481\pi\)
0.418713 + 0.908119i \(0.362481\pi\)
\(48\) 0 0
\(49\) 0.236068i 0.0337240i
\(50\) 0 0
\(51\) 1.23607 0.173084
\(52\) 0 0
\(53\) −3.07768 3.07768i −0.422752 0.422752i 0.463398 0.886150i \(-0.346630\pi\)
−0.886150 + 0.463398i \(0.846630\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.23607 + 1.23607i 0.163721 + 0.163721i
\(58\) 0 0
\(59\) 0.472136i 0.0614669i 0.999528 + 0.0307334i \(0.00978430\pi\)
−0.999528 + 0.0307334i \(0.990216\pi\)
\(60\) 0 0
\(61\) 0.898056i 0.114984i −0.998346 0.0574921i \(-0.981690\pi\)
0.998346 0.0574921i \(-0.0183104\pi\)
\(62\) 0 0
\(63\) 4.25325 + 4.25325i 0.535860 + 0.535860i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.61803 4.61803i −0.564183 0.564183i 0.366310 0.930493i \(-0.380621\pi\)
−0.930493 + 0.366310i \(0.880621\pi\)
\(68\) 0 0
\(69\) −5.25731 −0.632906
\(70\) 0 0
\(71\) 11.4127i 1.35444i 0.735783 + 0.677218i \(0.236815\pi\)
−0.735783 + 0.677218i \(0.763185\pi\)
\(72\) 0 0
\(73\) 4.70820 4.70820i 0.551054 0.551054i −0.375691 0.926745i \(-0.622595\pi\)
0.926745 + 0.375691i \(0.122595\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.15537 6.15537i 0.701469 0.701469i
\(78\) 0 0
\(79\) 2.90617 0.326970 0.163485 0.986546i \(-0.447727\pi\)
0.163485 + 0.986546i \(0.447727\pi\)
\(80\) 0 0
\(81\) −2.70820 −0.300912
\(82\) 0 0
\(83\) −6.61803 + 6.61803i −0.726424 + 0.726424i −0.969905 0.243482i \(-0.921710\pi\)
0.243482 + 0.969905i \(0.421710\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.80423 3.80423i 0.407856 0.407856i
\(88\) 0 0
\(89\) 2.47214i 0.262046i 0.991379 + 0.131023i \(0.0418262\pi\)
−0.991379 + 0.131023i \(0.958174\pi\)
\(90\) 0 0
\(91\) 2.76393 0.289739
\(92\) 0 0
\(93\) −5.25731 5.25731i −0.545158 0.545158i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −4.23607 4.23607i −0.430108 0.430108i 0.458557 0.888665i \(-0.348366\pi\)
−0.888665 + 0.458557i \(0.848366\pi\)
\(98\) 0 0
\(99\) 7.23607i 0.727252i
\(100\) 0 0
\(101\) 2.90617i 0.289175i −0.989492 0.144587i \(-0.953815\pi\)
0.989492 0.144587i \(-0.0461855\pi\)
\(102\) 0 0
\(103\) 3.35520 + 3.35520i 0.330597 + 0.330597i 0.852813 0.522216i \(-0.174894\pi\)
−0.522216 + 0.852813i \(0.674894\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.909830 + 0.909830i 0.0879566 + 0.0879566i 0.749716 0.661760i \(-0.230190\pi\)
−0.661760 + 0.749716i \(0.730190\pi\)
\(108\) 0 0
\(109\) −14.6619 −1.40435 −0.702176 0.712003i \(-0.747788\pi\)
−0.702176 + 0.712003i \(0.747788\pi\)
\(110\) 0 0
\(111\) 0.898056i 0.0852397i
\(112\) 0 0
\(113\) −8.70820 + 8.70820i −0.819199 + 0.819199i −0.985992 0.166793i \(-0.946659\pi\)
0.166793 + 0.985992i \(0.446659\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.62460 + 1.62460i −0.150194 + 0.150194i
\(118\) 0 0
\(119\) 3.80423 0.348733
\(120\) 0 0
\(121\) −0.527864 −0.0479876
\(122\) 0 0
\(123\) 3.52786 3.52786i 0.318097 0.318097i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2.80017 + 2.80017i −0.248475 + 0.248475i −0.820344 0.571870i \(-0.806218\pi\)
0.571870 + 0.820344i \(0.306218\pi\)
\(128\) 0 0
\(129\) 5.70820i 0.502579i
\(130\) 0 0
\(131\) −13.7082 −1.19769 −0.598846 0.800864i \(-0.704374\pi\)
−0.598846 + 0.800864i \(0.704374\pi\)
\(132\) 0 0
\(133\) 3.80423 + 3.80423i 0.329868 + 0.329868i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.47214 + 5.47214i 0.467516 + 0.467516i 0.901109 0.433593i \(-0.142754\pi\)
−0.433593 + 0.901109i \(0.642754\pi\)
\(138\) 0 0
\(139\) 21.4164i 1.81652i −0.418411 0.908258i \(-0.637413\pi\)
0.418411 0.908258i \(-0.362587\pi\)
\(140\) 0 0
\(141\) 4.14725i 0.349262i
\(142\) 0 0
\(143\) 2.35114 + 2.35114i 0.196612 + 0.196612i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −0.145898 0.145898i −0.0120335 0.0120335i
\(148\) 0 0
\(149\) 12.8658 1.05400 0.527002 0.849864i \(-0.323316\pi\)
0.527002 + 0.849864i \(0.323316\pi\)
\(150\) 0 0
\(151\) 6.71040i 0.546084i −0.962002 0.273042i \(-0.911970\pi\)
0.962002 0.273042i \(-0.0880298\pi\)
\(152\) 0 0
\(153\) −2.23607 + 2.23607i −0.180775 + 0.180775i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13.9353 + 13.9353i −1.11216 + 1.11216i −0.119303 + 0.992858i \(0.538066\pi\)
−0.992858 + 0.119303i \(0.961934\pi\)
\(158\) 0 0
\(159\) −3.80423 −0.301695
\(160\) 0 0
\(161\) −16.1803 −1.27519
\(162\) 0 0
\(163\) −13.8541 + 13.8541i −1.08514 + 1.08514i −0.0891157 + 0.996021i \(0.528404\pi\)
−0.996021 + 0.0891157i \(0.971596\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.05748 + 8.05748i −0.623507 + 0.623507i −0.946426 0.322920i \(-0.895336\pi\)
0.322920 + 0.946426i \(0.395336\pi\)
\(168\) 0 0
\(169\) 11.9443i 0.918790i
\(170\) 0 0
\(171\) −4.47214 −0.341993
\(172\) 0 0
\(173\) 14.4904 + 14.4904i 1.10168 + 1.10168i 0.994208 + 0.107474i \(0.0342762\pi\)
0.107474 + 0.994208i \(0.465724\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.291796 + 0.291796i 0.0219327 + 0.0219327i
\(178\) 0 0
\(179\) 7.52786i 0.562659i 0.959611 + 0.281329i \(0.0907754\pi\)
−0.959611 + 0.281329i \(0.909225\pi\)
\(180\) 0 0
\(181\) 15.2169i 1.13106i 0.824726 + 0.565532i \(0.191329\pi\)
−0.824726 + 0.565532i \(0.808671\pi\)
\(182\) 0 0
\(183\) −0.555029 0.555029i −0.0410289 0.0410289i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.23607 + 3.23607i 0.236645 + 0.236645i
\(188\) 0 0
\(189\) 12.3107 0.895474
\(190\) 0 0
\(191\) 13.2088i 0.955755i 0.878427 + 0.477877i \(0.158594\pi\)
−0.878427 + 0.477877i \(0.841406\pi\)
\(192\) 0 0
\(193\) −1.47214 + 1.47214i −0.105967 + 0.105967i −0.758102 0.652136i \(-0.773873\pi\)
0.652136 + 0.758102i \(0.273873\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.23305 9.23305i 0.657828 0.657828i −0.297038 0.954866i \(-0.595999\pi\)
0.954866 + 0.297038i \(0.0959988\pi\)
\(198\) 0 0
\(199\) −21.7153 −1.53936 −0.769678 0.638432i \(-0.779583\pi\)
−0.769678 + 0.638432i \(0.779583\pi\)
\(200\) 0 0
\(201\) −5.70820 −0.402626
\(202\) 0 0
\(203\) 11.7082 11.7082i 0.821755 0.821755i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 9.51057 9.51057i 0.661030 0.661030i
\(208\) 0 0
\(209\) 6.47214i 0.447687i
\(210\) 0 0
\(211\) −2.29180 −0.157774 −0.0788869 0.996884i \(-0.525137\pi\)
−0.0788869 + 0.996884i \(0.525137\pi\)
\(212\) 0 0
\(213\) 7.05342 + 7.05342i 0.483293 + 0.483293i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −16.1803 16.1803i −1.09839 1.09839i
\(218\) 0 0
\(219\) 5.81966i 0.393256i
\(220\) 0 0
\(221\) 1.45309i 0.0977451i
\(222\) 0 0
\(223\) −14.2128 14.2128i −0.951763 0.951763i 0.0471263 0.998889i \(-0.484994\pi\)
−0.998889 + 0.0471263i \(0.984994\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.38197 9.38197i −0.622703 0.622703i 0.323519 0.946222i \(-0.395134\pi\)
−0.946222 + 0.323519i \(0.895134\pi\)
\(228\) 0 0
\(229\) −7.95148 −0.525449 −0.262724 0.964871i \(-0.584621\pi\)
−0.262724 + 0.964871i \(0.584621\pi\)
\(230\) 0 0
\(231\) 7.60845i 0.500599i
\(232\) 0 0
\(233\) −5.47214 + 5.47214i −0.358492 + 0.358492i −0.863257 0.504765i \(-0.831579\pi\)
0.504765 + 0.863257i \(0.331579\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.79611 1.79611i 0.116670 0.116670i
\(238\) 0 0
\(239\) −13.4208 −0.868119 −0.434059 0.900884i \(-0.642919\pi\)
−0.434059 + 0.900884i \(0.642919\pi\)
\(240\) 0 0
\(241\) 11.2361 0.723779 0.361889 0.932221i \(-0.382132\pi\)
0.361889 + 0.932221i \(0.382132\pi\)
\(242\) 0 0
\(243\) −11.3820 + 11.3820i −0.730153 + 0.730153i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.45309 + 1.45309i −0.0924576 + 0.0924576i
\(248\) 0 0
\(249\) 8.18034i 0.518408i
\(250\) 0 0
\(251\) −0.180340 −0.0113830 −0.00569148 0.999984i \(-0.501812\pi\)
−0.00569148 + 0.999984i \(0.501812\pi\)
\(252\) 0 0
\(253\) −13.7638 13.7638i −0.865324 0.865324i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.29180 5.29180i −0.330093 0.330093i 0.522529 0.852622i \(-0.324989\pi\)
−0.852622 + 0.522529i \(0.824989\pi\)
\(258\) 0 0
\(259\) 2.76393i 0.171742i
\(260\) 0 0
\(261\) 13.7638i 0.851959i
\(262\) 0 0
\(263\) 7.50245 + 7.50245i 0.462621 + 0.462621i 0.899514 0.436893i \(-0.143921\pi\)
−0.436893 + 0.899514i \(0.643921\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.52786 + 1.52786i 0.0935038 + 0.0935038i
\(268\) 0 0
\(269\) −20.4742 −1.24833 −0.624167 0.781291i \(-0.714562\pi\)
−0.624167 + 0.781291i \(0.714562\pi\)
\(270\) 0 0
\(271\) 17.2250i 1.04635i 0.852227 + 0.523173i \(0.175252\pi\)
−0.852227 + 0.523173i \(0.824748\pi\)
\(272\) 0 0
\(273\) 1.70820 1.70820i 0.103385 0.103385i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −9.23305 + 9.23305i −0.554760 + 0.554760i −0.927811 0.373051i \(-0.878312\pi\)
0.373051 + 0.927811i \(0.378312\pi\)
\(278\) 0 0
\(279\) 19.0211 1.13877
\(280\) 0 0
\(281\) −9.70820 −0.579143 −0.289571 0.957156i \(-0.593513\pi\)
−0.289571 + 0.957156i \(0.593513\pi\)
\(282\) 0 0
\(283\) 13.3820 13.3820i 0.795475 0.795475i −0.186903 0.982378i \(-0.559845\pi\)
0.982378 + 0.186903i \(0.0598450\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.8576 10.8576i 0.640907 0.640907i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) −5.23607 −0.306944
\(292\) 0 0
\(293\) 3.07768 + 3.07768i 0.179800 + 0.179800i 0.791269 0.611469i \(-0.209421\pi\)
−0.611469 + 0.791269i \(0.709421\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 10.4721 + 10.4721i 0.607655 + 0.607655i
\(298\) 0 0
\(299\) 6.18034i 0.357418i
\(300\) 0 0
\(301\) 17.5680i 1.01261i
\(302\) 0 0
\(303\) −1.79611 1.79611i −0.103184 0.103184i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −13.5623 13.5623i −0.774042 0.774042i 0.204769 0.978810i \(-0.434356\pi\)
−0.978810 + 0.204769i \(0.934356\pi\)
\(308\) 0 0
\(309\) 4.14725 0.235929
\(310\) 0 0
\(311\) 20.8172i 1.18044i −0.807243 0.590219i \(-0.799041\pi\)
0.807243 0.590219i \(-0.200959\pi\)
\(312\) 0 0
\(313\) 1.76393 1.76393i 0.0997033 0.0997033i −0.655496 0.755199i \(-0.727540\pi\)
0.755199 + 0.655496i \(0.227540\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.97574 + 3.97574i −0.223300 + 0.223300i −0.809886 0.586587i \(-0.800471\pi\)
0.586587 + 0.809886i \(0.300471\pi\)
\(318\) 0 0
\(319\) 19.9192 1.11526
\(320\) 0 0
\(321\) 1.12461 0.0627697
\(322\) 0 0
\(323\) −2.00000 + 2.00000i −0.111283 + 0.111283i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −9.06154 + 9.06154i −0.501104 + 0.501104i
\(328\) 0 0
\(329\) 12.7639i 0.703698i
\(330\) 0 0
\(331\) 30.0689 1.65274 0.826368 0.563131i \(-0.190403\pi\)
0.826368 + 0.563131i \(0.190403\pi\)
\(332\) 0 0
\(333\) −1.62460 1.62460i −0.0890274 0.0890274i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 19.9443 + 19.9443i 1.08643 + 1.08643i 0.995893 + 0.0905410i \(0.0288596\pi\)
0.0905410 + 0.995893i \(0.471140\pi\)
\(338\) 0 0
\(339\) 10.7639i 0.584617i
\(340\) 0 0
\(341\) 27.5276i 1.49071i
\(342\) 0 0
\(343\) 12.8658 + 12.8658i 0.694686 + 0.694686i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 26.0344 + 26.0344i 1.39760 + 1.39760i 0.806862 + 0.590740i \(0.201164\pi\)
0.590740 + 0.806862i \(0.298836\pi\)
\(348\) 0 0
\(349\) 16.6700 0.892324 0.446162 0.894952i \(-0.352791\pi\)
0.446162 + 0.894952i \(0.352791\pi\)
\(350\) 0 0
\(351\) 4.70228i 0.250989i
\(352\) 0 0
\(353\) 22.4164 22.4164i 1.19311 1.19311i 0.216914 0.976191i \(-0.430401\pi\)
0.976191 0.216914i \(-0.0695992\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.35114 2.35114i 0.124436 0.124436i
\(358\) 0 0
\(359\) 19.9192 1.05129 0.525647 0.850703i \(-0.323823\pi\)
0.525647 + 0.850703i \(0.323823\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 0 0
\(363\) −0.326238 + 0.326238i −0.0171231 + 0.0171231i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −12.2047 + 12.2047i −0.637082 + 0.637082i −0.949835 0.312753i \(-0.898749\pi\)
0.312753 + 0.949835i \(0.398749\pi\)
\(368\) 0 0
\(369\) 12.7639i 0.664464i
\(370\) 0 0
\(371\) −11.7082 −0.607860
\(372\) 0 0
\(373\) −22.4418 22.4418i −1.16199 1.16199i −0.984038 0.177956i \(-0.943052\pi\)
−0.177956 0.984038i \(-0.556948\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.47214 + 4.47214i 0.230327 + 0.230327i
\(378\) 0 0
\(379\) 0.111456i 0.00572512i −0.999996 0.00286256i \(-0.999089\pi\)
0.999996 0.00286256i \(-0.000911182\pi\)
\(380\) 0 0
\(381\) 3.46120i 0.177323i
\(382\) 0 0
\(383\) 1.00406 + 1.00406i 0.0513049 + 0.0513049i 0.732294 0.680989i \(-0.238450\pi\)
−0.680989 + 0.732294i \(0.738450\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 10.3262 + 10.3262i 0.524912 + 0.524912i
\(388\) 0 0
\(389\) 4.14725 0.210274 0.105137 0.994458i \(-0.466472\pi\)
0.105137 + 0.994458i \(0.466472\pi\)
\(390\) 0 0
\(391\) 8.50651i 0.430193i
\(392\) 0 0
\(393\) −8.47214 + 8.47214i −0.427363 + 0.427363i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 24.4500 24.4500i 1.22711 1.22711i 0.262055 0.965053i \(-0.415600\pi\)
0.965053 0.262055i \(-0.0844002\pi\)
\(398\) 0 0
\(399\) 4.70228 0.235409
\(400\) 0 0
\(401\) 31.8885 1.59244 0.796219 0.605009i \(-0.206830\pi\)
0.796219 + 0.605009i \(0.206830\pi\)
\(402\) 0 0
\(403\) 6.18034 6.18034i 0.307865 0.307865i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.35114 + 2.35114i −0.116542 + 0.116542i
\(408\) 0 0
\(409\) 21.5967i 1.06789i −0.845519 0.533945i \(-0.820709\pi\)
0.845519 0.533945i \(-0.179291\pi\)
\(410\) 0 0
\(411\) 6.76393 0.333640
\(412\) 0 0
\(413\) 0.898056 + 0.898056i 0.0441904 + 0.0441904i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −13.2361 13.2361i −0.648173 0.648173i
\(418\) 0 0
\(419\) 28.8328i 1.40858i 0.709915 + 0.704288i \(0.248733\pi\)
−0.709915 + 0.704288i \(0.751267\pi\)
\(420\) 0 0
\(421\) 28.4257i 1.38538i −0.721234 0.692692i \(-0.756425\pi\)
0.721234 0.692692i \(-0.243575\pi\)
\(422\) 0 0
\(423\) −7.50245 7.50245i −0.364782 0.364782i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.70820 1.70820i −0.0826658 0.0826658i
\(428\) 0 0
\(429\) 2.90617 0.140311
\(430\) 0 0
\(431\) 19.0211i 0.916216i −0.888897 0.458108i \(-0.848527\pi\)
0.888897 0.458108i \(-0.151473\pi\)
\(432\) 0 0
\(433\) −0.819660 + 0.819660i −0.0393904 + 0.0393904i −0.726528 0.687137i \(-0.758867\pi\)
0.687137 + 0.726528i \(0.258867\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.50651 8.50651i 0.406921 0.406921i
\(438\) 0 0
\(439\) −35.1361 −1.67695 −0.838477 0.544937i \(-0.816554\pi\)
−0.838477 + 0.544937i \(0.816554\pi\)
\(440\) 0 0
\(441\) 0.527864 0.0251364
\(442\) 0 0
\(443\) −1.09017 + 1.09017i −0.0517955 + 0.0517955i −0.732530 0.680735i \(-0.761661\pi\)
0.680735 + 0.732530i \(0.261661\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 7.95148 7.95148i 0.376092 0.376092i
\(448\) 0 0
\(449\) 17.5967i 0.830442i 0.909721 + 0.415221i \(0.136296\pi\)
−0.909721 + 0.415221i \(0.863704\pi\)
\(450\) 0 0
\(451\) 18.4721 0.869819
\(452\) 0 0
\(453\) −4.14725 4.14725i −0.194855 0.194855i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9.65248 9.65248i −0.451524 0.451524i 0.444336 0.895860i \(-0.353440\pi\)
−0.895860 + 0.444336i \(0.853440\pi\)
\(458\) 0 0
\(459\) 6.47214i 0.302093i
\(460\) 0 0
\(461\) 27.5276i 1.28209i 0.767503 + 0.641045i \(0.221499\pi\)
−0.767503 + 0.641045i \(0.778501\pi\)
\(462\) 0 0
\(463\) −2.45714 2.45714i −0.114193 0.114193i 0.647701 0.761894i \(-0.275730\pi\)
−0.761894 + 0.647701i \(0.775730\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.3262 18.3262i −0.848037 0.848037i 0.141851 0.989888i \(-0.454695\pi\)
−0.989888 + 0.141851i \(0.954695\pi\)
\(468\) 0 0
\(469\) −17.5680 −0.811217
\(470\) 0 0
\(471\) 17.2250i 0.793687i
\(472\) 0 0
\(473\) 14.9443 14.9443i 0.687138 0.687138i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.88191 6.88191i 0.315101 0.315101i
\(478\) 0 0
\(479\) −4.70228 −0.214853 −0.107426 0.994213i \(-0.534261\pi\)
−0.107426 + 0.994213i \(0.534261\pi\)
\(480\) 0 0
\(481\) −1.05573 −0.0481371
\(482\) 0 0
\(483\) −10.0000 + 10.0000i −0.455016 + 0.455016i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.9151 18.9151i 0.857126 0.857126i −0.133872 0.990999i \(-0.542741\pi\)
0.990999 + 0.133872i \(0.0427412\pi\)
\(488\) 0 0
\(489\) 17.1246i 0.774402i
\(490\) 0 0
\(491\) 15.2361 0.687594 0.343797 0.939044i \(-0.388287\pi\)
0.343797 + 0.939044i \(0.388287\pi\)
\(492\) 0 0
\(493\) 6.15537 + 6.15537i 0.277224 + 0.277224i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 21.7082 + 21.7082i 0.973746 + 0.973746i
\(498\) 0 0
\(499\) 11.8885i 0.532204i −0.963945 0.266102i \(-0.914264\pi\)
0.963945 0.266102i \(-0.0857359\pi\)
\(500\) 0 0
\(501\) 9.95959i 0.444962i
\(502\) 0 0
\(503\) −16.5640 16.5640i −0.738552 0.738552i 0.233746 0.972298i \(-0.424902\pi\)
−0.972298 + 0.233746i \(0.924902\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −7.38197 7.38197i −0.327845 0.327845i
\(508\) 0 0
\(509\) 10.8576 0.481257 0.240628 0.970617i \(-0.422646\pi\)
0.240628 + 0.970617i \(0.422646\pi\)
\(510\) 0 0
\(511\) 17.9111i 0.792339i
\(512\) 0 0
\(513\) −6.47214 + 6.47214i −0.285752 + 0.285752i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −10.8576 + 10.8576i −0.477519 + 0.477519i
\(518\) 0 0
\(519\) 17.9111 0.786209
\(520\) 0 0
\(521\) −0.472136 −0.0206847 −0.0103423 0.999947i \(-0.503292\pi\)
−0.0103423 + 0.999947i \(0.503292\pi\)
\(522\) 0 0
\(523\) 25.7426 25.7426i 1.12565 1.12565i 0.134770 0.990877i \(-0.456970\pi\)
0.990877 0.134770i \(-0.0430297\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.50651 8.50651i 0.370549 0.370549i
\(528\) 0 0
\(529\) 13.1803i 0.573058i
\(530\) 0 0
\(531\) −1.05573 −0.0458147
\(532\) 0 0
\(533\) 4.14725 + 4.14725i 0.179637 + 0.179637i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4.65248 + 4.65248i 0.200769 + 0.200769i
\(538\) 0 0
\(539\) 0.763932i 0.0329049i
\(540\) 0 0
\(541\) 12.3107i 0.529280i −0.964347 0.264640i \(-0.914747\pi\)
0.964347 0.264640i \(-0.0852531\pi\)
\(542\) 0 0
\(543\) 9.40456 + 9.40456i 0.403588 + 0.403588i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 11.5623 + 11.5623i 0.494369 + 0.494369i 0.909679 0.415311i \(-0.136327\pi\)
−0.415311 + 0.909679i \(0.636327\pi\)
\(548\) 0 0
\(549\) 2.00811 0.0857042
\(550\) 0 0
\(551\) 12.3107i 0.524455i
\(552\) 0 0
\(553\) 5.52786 5.52786i 0.235069 0.235069i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −23.5519 + 23.5519i −0.997926 + 0.997926i −0.999998 0.00207187i \(-0.999341\pi\)
0.00207187 + 0.999998i \(0.499341\pi\)
\(558\) 0 0
\(559\) 6.71040 0.283820
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) −4.32624 + 4.32624i −0.182329 + 0.182329i −0.792370 0.610041i \(-0.791153\pi\)
0.610041 + 0.792370i \(0.291153\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −5.15131 + 5.15131i −0.216335 + 0.216335i
\(568\) 0 0
\(569\) 27.1246i 1.13712i −0.822641 0.568561i \(-0.807500\pi\)
0.822641 0.568561i \(-0.192500\pi\)
\(570\) 0 0
\(571\) −22.6525 −0.947977 −0.473988 0.880531i \(-0.657186\pi\)
−0.473988 + 0.880531i \(0.657186\pi\)
\(572\) 0 0
\(573\) 8.16348 + 8.16348i 0.341034 + 0.341034i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −26.2361 26.2361i −1.09222 1.09222i −0.995291 0.0969307i \(-0.969097\pi\)
−0.0969307 0.995291i \(-0.530903\pi\)
\(578\) 0 0
\(579\) 1.81966i 0.0756225i
\(580\) 0 0
\(581\) 25.1765i 1.04450i
\(582\) 0 0
\(583\) −9.95959 9.95959i −0.412484 0.412484i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.0902 + 17.0902i 0.705387 + 0.705387i 0.965562 0.260175i \(-0.0837802\pi\)
−0.260175 + 0.965562i \(0.583780\pi\)
\(588\) 0 0
\(589\) 17.0130 0.701009
\(590\) 0 0
\(591\) 11.4127i 0.469455i
\(592\) 0 0
\(593\) −20.4164 + 20.4164i −0.838401 + 0.838401i −0.988648 0.150247i \(-0.951993\pi\)
0.150247 + 0.988648i \(0.451993\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −13.4208 + 13.4208i −0.549276 + 0.549276i
\(598\) 0 0
\(599\) 6.49839 0.265517 0.132759 0.991148i \(-0.457617\pi\)
0.132759 + 0.991148i \(0.457617\pi\)
\(600\) 0 0
\(601\) −17.7082 −0.722333 −0.361166 0.932501i \(-0.617621\pi\)
−0.361166 + 0.932501i \(0.617621\pi\)
\(602\) 0 0
\(603\) 10.3262 10.3262i 0.420517 0.420517i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −32.6789 + 32.6789i −1.32640 + 1.32640i −0.417908 + 0.908489i \(0.637237\pi\)
−0.908489 + 0.417908i \(0.862763\pi\)
\(608\) 0 0
\(609\) 14.4721i 0.586441i
\(610\) 0 0
\(611\) −4.87539 −0.197237
\(612\) 0 0
\(613\) 19.5357 + 19.5357i 0.789038 + 0.789038i 0.981337 0.192298i \(-0.0615941\pi\)
−0.192298 + 0.981337i \(0.561594\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4.88854 4.88854i −0.196805 0.196805i 0.601824 0.798629i \(-0.294441\pi\)
−0.798629 + 0.601824i \(0.794441\pi\)
\(618\) 0 0
\(619\) 35.3050i 1.41903i −0.704692 0.709513i \(-0.748915\pi\)
0.704692 0.709513i \(-0.251085\pi\)
\(620\) 0 0
\(621\) 27.5276i 1.10465i
\(622\) 0 0
\(623\) 4.70228 + 4.70228i 0.188393 + 0.188393i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 4.00000 + 4.00000i 0.159745 + 0.159745i
\(628\) 0 0
\(629\) −1.45309 −0.0579383
\(630\) 0 0
\(631\) 22.6134i 0.900223i 0.892972 + 0.450112i \(0.148616\pi\)
−0.892972 + 0.450112i \(0.851384\pi\)
\(632\) 0 0
\(633\) −1.41641 + 1.41641i −0.0562972 + 0.0562972i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.171513 0.171513i 0.00679561 0.00679561i
\(638\) 0 0
\(639\) −25.5195 −1.00954
\(640\) 0 0
\(641\) −38.6525 −1.52668 −0.763341 0.645996i \(-0.776442\pi\)
−0.763341 + 0.645996i \(0.776442\pi\)
\(642\) 0 0
\(643\) −11.5623 + 11.5623i −0.455973 + 0.455973i −0.897331 0.441358i \(-0.854497\pi\)
0.441358 + 0.897331i \(0.354497\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.0252 20.0252i 0.787271 0.787271i −0.193775 0.981046i \(-0.562073\pi\)
0.981046 + 0.193775i \(0.0620731\pi\)
\(648\) 0 0
\(649\) 1.52786i 0.0599739i
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 0 0
\(653\) −20.0907 20.0907i −0.786210 0.786210i 0.194661 0.980871i \(-0.437639\pi\)
−0.980871 + 0.194661i \(0.937639\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10.5279 + 10.5279i 0.410731 + 0.410731i
\(658\) 0 0
\(659\) 18.0000i 0.701180i −0.936529 0.350590i \(-0.885981\pi\)
0.936529 0.350590i \(-0.114019\pi\)
\(660\) 0 0
\(661\) 3.80423i 0.147967i 0.997259 + 0.0739836i \(0.0235713\pi\)
−0.997259 + 0.0739836i \(0.976429\pi\)
\(662\) 0 0
\(663\) 0.898056 + 0.898056i 0.0348776 + 0.0348776i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −26.1803 26.1803i −1.01371 1.01371i
\(668\) 0 0
\(669\) −17.5680 −0.679220
\(670\) 0 0
\(671\) 2.90617i 0.112191i
\(672\) 0 0
\(673\) 17.2918 17.2918i 0.666550 0.666550i −0.290366 0.956916i \(-0.593777\pi\)
0.956916 + 0.290366i \(0.0937770\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7.77997 + 7.77997i −0.299008 + 0.299008i −0.840625 0.541617i \(-0.817812\pi\)
0.541617 + 0.840625i \(0.317812\pi\)
\(678\) 0 0
\(679\) −16.1150 −0.618435
\(680\) 0 0
\(681\) −11.5967 −0.444388
\(682\) 0 0
\(683\) −22.7984 + 22.7984i −0.872356 + 0.872356i −0.992729 0.120373i \(-0.961591\pi\)
0.120373 + 0.992729i \(0.461591\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −4.91428 + 4.91428i −0.187492 + 0.187492i
\(688\) 0 0
\(689\) 4.47214i 0.170375i
\(690\) 0 0
\(691\) −9.12461 −0.347117 −0.173558 0.984824i \(-0.555527\pi\)
−0.173558 + 0.984824i \(0.555527\pi\)
\(692\) 0 0
\(693\) 13.7638 + 13.7638i 0.522844 + 0.522844i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5.70820 + 5.70820i 0.216214 + 0.216214i
\(698\) 0 0
\(699\) 6.76393i 0.255835i
\(700\) 0 0
\(701\) 19.7072i 0.744330i 0.928167 + 0.372165i \(0.121384\pi\)
−0.928167 + 0.372165i \(0.878616\pi\)
\(702\) 0 0
\(703\) −1.45309 1.45309i −0.0548041 0.0548041i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.52786 5.52786i −0.207897 0.207897i
\(708\) 0 0
\(709\) −3.24920 −0.122026 −0.0610131 0.998137i \(-0.519433\pi\)
−0.0610131 + 0.998137i \(0.519433\pi\)
\(710\) 0 0
\(711\) 6.49839i 0.243709i
\(712\) 0 0
\(713\) −36.1803 + 36.1803i −1.35496 + 1.35496i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −8.29451 + 8.29451i −0.309764 + 0.309764i
\(718\) 0 0
\(719\) 4.01623 0.149780 0.0748900 0.997192i \(-0.476139\pi\)
0.0748900 + 0.997192i \(0.476139\pi\)
\(720\) 0 0
\(721\) 12.7639 0.475354
\(722\) 0 0
\(723\) 6.94427 6.94427i 0.258260 0.258260i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 9.51057 9.51057i 0.352727 0.352727i −0.508396 0.861123i \(-0.669761\pi\)
0.861123 + 0.508396i \(0.169761\pi\)
\(728\) 0 0
\(729\) 5.94427i 0.220158i
\(730\) 0 0
\(731\) 9.23607 0.341608
\(732\) 0 0
\(733\) 19.1926 + 19.1926i 0.708896 + 0.708896i 0.966303 0.257407i \(-0.0828680\pi\)
−0.257407 + 0.966303i \(0.582868\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14.9443 14.9443i −0.550479 0.550479i
\(738\) 0 0
\(739\) 9.41641i 0.346388i 0.984888 + 0.173194i \(0.0554088\pi\)
−0.984888 + 0.173194i \(0.944591\pi\)
\(740\) 0 0
\(741\) 1.79611i 0.0659818i
\(742\) 0 0
\(743\) −4.80828 4.80828i −0.176399 0.176399i 0.613385 0.789784i \(-0.289807\pi\)
−0.789784 + 0.613385i \(0.789807\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −14.7984 14.7984i −0.541444 0.541444i
\(748\) 0 0
\(749\) 3.46120 0.126469
\(750\) 0 0
\(751\) 11.4127i 0.416455i −0.978080 0.208227i \(-0.933231\pi\)
0.978080 0.208227i \(-0.0667694\pi\)
\(752\) 0 0
\(753\) −0.111456 + 0.111456i −0.00406169 + 0.00406169i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 31.7154 31.7154i 1.15272 1.15272i 0.166709 0.986006i \(-0.446686\pi\)
0.986006 0.166709i \(-0.0533140\pi\)
\(758\) 0 0
\(759\) −17.0130 −0.617533
\(760\) 0 0
\(761\) 2.94427 0.106730 0.0533649 0.998575i \(-0.483005\pi\)
0.0533649 + 0.998575i \(0.483005\pi\)
\(762\) 0 0
\(763\) −27.8885 + 27.8885i −1.00963 + 1.00963i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.343027 + 0.343027i −0.0123860 + 0.0123860i
\(768\) 0 0
\(769\) 6.47214i 0.233391i −0.993168 0.116696i \(-0.962770\pi\)
0.993168 0.116696i \(-0.0372302\pi\)
\(770\) 0 0
\(771\) −6.54102 −0.235569
\(772\) 0 0
\(773\) −31.5034 31.5034i −1.13310 1.13310i −0.989659 0.143439i \(-0.954184\pi\)
−0.143439 0.989659i \(-0.545816\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.70820 + 1.70820i 0.0612815 + 0.0612815i
\(778\) 0 0
\(779\) 11.4164i 0.409035i
\(780\) 0 0
\(781\) 36.9322i 1.32154i
\(782\) 0 0
\(783\) 19.9192 + 19.9192i 0.711854 + 0.711854i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 17.8541 + 17.8541i 0.636430 + 0.636430i 0.949673 0.313243i \(-0.101415\pi\)
−0.313243 + 0.949673i \(0.601415\pi\)
\(788\) 0 0
\(789\) 9.27354 0.330147
\(790\) 0 0
\(791\) 33.1280i 1.17790i
\(792\) 0 0
\(793\) 0.652476 0.652476i 0.0231701 0.0231701i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14.8334 14.8334i 0.525426 0.525426i −0.393779 0.919205i \(-0.628833\pi\)
0.919205 + 0.393779i \(0.128833\pi\)
\(798\) 0 0
\(799\) −6.71040 −0.237397
\(800\) 0 0
\(801\) −5.52786 −0.195317
\(802\) 0 0
\(803\) 15.2361 15.2361i 0.537669 0.537669i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −12.6538 + 12.6538i −0.445433 + 0.445433i
\(808\) 0 0
\(809\) 4.94427i 0.173831i −0.996216 0.0869157i \(-0.972299\pi\)
0.996216 0.0869157i \(-0.0277011\pi\)
\(810\) 0 0
\(811\) −26.0689 −0.915402 −0.457701 0.889106i \(-0.651327\pi\)
−0.457701 + 0.889106i \(0.651327\pi\)
\(812\) 0 0
\(813\) 10.6456 + 10.6456i 0.373359 + 0.373359i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 9.23607 + 9.23607i 0.323129 + 0.323129i
\(818\) 0 0
\(819\) 6.18034i 0.215959i
\(820\) 0 0
\(821\) 17.9111i 0.625101i 0.949901 + 0.312550i \(0.101183\pi\)
−0.949901 + 0.312550i \(0.898817\pi\)
\(822\) 0 0
\(823\) 13.8698 + 13.8698i 0.483472 + 0.483472i 0.906238 0.422767i \(-0.138941\pi\)
−0.422767 + 0.906238i \(0.638941\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.14590 + 8.14590i 0.283261 + 0.283261i 0.834408 0.551147i \(-0.185810\pi\)
−0.551147 + 0.834408i \(0.685810\pi\)
\(828\) 0 0
\(829\) −54.5002 −1.89287 −0.946436 0.322892i \(-0.895345\pi\)
−0.946436 + 0.322892i \(0.895345\pi\)
\(830\) 0 0
\(831\) 11.4127i 0.395901i
\(832\) 0 0
\(833\) 0.236068 0.236068i 0.00817927 0.00817927i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 27.5276 27.5276i 0.951494 0.951494i
\(838\) 0 0
\(839\) 15.2169 0.525346 0.262673 0.964885i \(-0.415396\pi\)
0.262673 + 0.964885i \(0.415396\pi\)
\(840\) 0 0
\(841\) 8.88854 0.306502
\(842\) 0 0
\(843\) −6.00000 + 6.00000i −0.206651 + 0.206651i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1.00406 + 1.00406i −0.0344998 + 0.0344998i
\(848\) 0 0
\(849\) 16.5410i 0.567686i
\(850\) 0 0
\(851\) 6.18034 0.211859
\(852\) 0 0
\(853\) 18.8496 + 18.8496i 0.645399 + 0.645399i 0.951877 0.306479i \(-0.0991509\pi\)
−0.306479 + 0.951877i \(0.599151\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −35.8328 35.8328i −1.22403 1.22403i −0.966188 0.257837i \(-0.916990\pi\)
−0.257837 0.966188i \(-0.583010\pi\)
\(858\) 0 0
\(859\) 16.4721i 0.562022i 0.959705 + 0.281011i \(0.0906697\pi\)
−0.959705 + 0.281011i \(0.909330\pi\)
\(860\) 0 0
\(861\) 13.4208i 0.457379i
\(862\) 0 0
\(863\) 35.5851 + 35.5851i 1.21133 + 1.21133i 0.970589 + 0.240743i \(0.0773909\pi\)
0.240743 + 0.970589i \(0.422609\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −9.27051 9.27051i −0.314843 0.314843i
\(868\) 0 0
\(869\) 9.40456 0.319028
\(870\) 0 0
\(871\) 6.71040i 0.227373i
\(872\) 0 0
\(873\) 9.47214 9.47214i 0.320583 0.320583i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −21.5438 + 21.5438i −0.727482 + 0.727482i −0.970118 0.242636i \(-0.921988\pi\)
0.242636 + 0.970118i \(0.421988\pi\)
\(878\) 0 0
\(879\) 3.80423 0.128313
\(880\) 0 0
\(881\) 6.87539 0.231638 0.115819 0.993270i \(-0.463051\pi\)
0.115819 + 0.993270i \(0.463051\pi\)
\(882\) 0 0
\(883\) −2.79837 + 2.79837i −0.0941728 + 0.0941728i −0.752624 0.658451i \(-0.771212\pi\)
0.658451 + 0.752624i \(0.271212\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11.5187 + 11.5187i −0.386759 + 0.386759i −0.873530 0.486770i \(-0.838175\pi\)
0.486770 + 0.873530i \(0.338175\pi\)
\(888\) 0 0
\(889\) 10.6525i 0.357273i
\(890\) 0 0
\(891\) −8.76393 −0.293603
\(892\) 0 0
\(893\) −6.71040 6.71040i −0.224555 0.224555i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −3.81966 3.81966i −0.127535 0.127535i
\(898\) 0 0
\(899\) 52.3607i 1.74633i
\(900\) 0 0
\(901\) 6.15537i 0.205065i
\(902\) 0 0
\(903\) −10.8576 10.8576i −0.361320 0.361320i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −7.67376 7.67376i −0.254803 0.254803i 0.568133 0.822936i \(-0.307666\pi\)
−0.822936 + 0.568133i \(0.807666\pi\)
\(908\) 0 0
\(909\) 6.49839 0.215538
\(910\) 0 0
\(911\) 10.3026i 0.341341i 0.985328 + 0.170671i \(0.0545934\pi\)
−0.985328 + 0.170671i \(0.945407\pi\)
\(912\) 0 0
\(913\) −21.4164 + 21.4164i −0.708780 + 0.708780i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −26.0746 + 26.0746i −0.861058 + 0.861058i
\(918\) 0 0
\(919\) 18.1231 0.597825 0.298913 0.954281i \(-0.403376\pi\)
0.298913 + 0.954281i \(0.403376\pi\)
\(920\) 0 0
\(921\) −16.7639 −0.552390
\(922\) 0 0
\(923\) −8.29180 + 8.29180i −0.272928 + 0.272928i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −7.50245 + 7.50245i −0.246413 + 0.246413i
\(928\) 0 0
\(929\) 36.6525i 1.20253i −0.799050 0.601264i \(-0.794664\pi\)
0.799050 0.601264i \(-0.205336\pi\)
\(930\) 0 0
\(931\) 0.472136 0.0154736
\(932\) 0 0
\(933\) −12.8658 12.8658i −0.421206 0.421206i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 42.3050 + 42.3050i 1.38204 + 1.38204i 0.840987 + 0.541056i \(0.181975\pi\)
0.541056 + 0.840987i \(0.318025\pi\)
\(938\) 0 0
\(939\) 2.18034i 0.0711527i
\(940\) 0 0
\(941\) 37.6183i 1.22632i −0.789959 0.613160i \(-0.789898\pi\)
0.789959 0.613160i \(-0.210102\pi\)
\(942\) 0 0
\(943\) −24.2784 24.2784i −0.790615 0.790615i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.14590 2.14590i −0.0697323 0.0697323i 0.671381 0.741113i \(-0.265702\pi\)
−0.741113 + 0.671381i \(0.765702\pi\)
\(948\) 0 0
\(949\) 6.84142 0.222082
\(950\) 0 0
\(951\) 4.91428i 0.159357i
\(952\) 0 0
\(953\) 29.1803 29.1803i 0.945244 0.945244i −0.0533329 0.998577i \(-0.516984\pi\)
0.998577 + 0.0533329i \(0.0169844\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 12.3107 12.3107i 0.397950 0.397950i
\(958\) 0 0
\(959\) 20.8172 0.672224
\(960\) 0 0
\(961\) −41.3607 −1.33422
\(962\) 0 0
\(963\) −2.03444 + 2.03444i −0.0655590 + 0.0655590i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −10.9637 + 10.9637i −0.352567 + 0.352567i −0.861064 0.508497i \(-0.830201\pi\)
0.508497 + 0.861064i \(0.330201\pi\)
\(968\) 0 0
\(969\) 2.47214i 0.0794164i
\(970\) 0 0
\(971\) 15.5967 0.500523 0.250262 0.968178i \(-0.419483\pi\)
0.250262 + 0.968178i \(0.419483\pi\)
\(972\) 0 0
\(973\) −40.7364 40.7364i −1.30595 1.30595i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23.7639 + 23.7639i 0.760276 + 0.760276i 0.976372 0.216096i \(-0.0693326\pi\)
−0.216096 + 0.976372i \(0.569333\pi\)
\(978\) 0 0
\(979\) 8.00000i 0.255681i
\(980\) 0 0
\(981\) 32.7849i 1.04674i
\(982\) 0 0
\(983\) 18.0171 + 18.0171i 0.574655 + 0.574655i 0.933426 0.358770i \(-0.116804\pi\)
−0.358770 + 0.933426i \(0.616804\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 7.88854 + 7.88854i 0.251095 + 0.251095i
\(988\) 0 0
\(989\) −39.2833 −1.24914
\(990\) 0 0
\(991\) 14.3188i 0.454853i 0.973795 + 0.227427i \(0.0730312\pi\)
−0.973795 + 0.227427i \(0.926969\pi\)
\(992\) 0 0
\(993\) 18.5836 18.5836i 0.589732 0.589732i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −27.9112 + 27.9112i −0.883955 + 0.883955i −0.993934 0.109979i \(-0.964922\pi\)
0.109979 + 0.993934i \(0.464922\pi\)
\(998\) 0 0
\(999\) −4.70228 −0.148774
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.o.g.207.4 8
4.3 odd 2 200.2.k.h.107.2 8
5.2 odd 4 160.2.o.a.143.2 8
5.3 odd 4 inner 800.2.o.g.143.3 8
5.4 even 2 160.2.o.a.47.1 8
8.3 odd 2 inner 800.2.o.g.207.3 8
8.5 even 2 200.2.k.h.107.4 8
15.2 even 4 1440.2.bi.c.1423.2 8
15.14 odd 2 1440.2.bi.c.847.3 8
20.3 even 4 200.2.k.h.43.4 8
20.7 even 4 40.2.k.a.3.1 8
20.19 odd 2 40.2.k.a.27.3 yes 8
40.3 even 4 inner 800.2.o.g.143.4 8
40.13 odd 4 200.2.k.h.43.2 8
40.19 odd 2 160.2.o.a.47.2 8
40.27 even 4 160.2.o.a.143.1 8
40.29 even 2 40.2.k.a.27.1 yes 8
40.37 odd 4 40.2.k.a.3.3 yes 8
60.47 odd 4 360.2.w.c.163.4 8
60.59 even 2 360.2.w.c.307.2 8
80.19 odd 4 1280.2.n.m.767.4 8
80.27 even 4 1280.2.n.m.1023.3 8
80.29 even 4 1280.2.n.q.767.2 8
80.37 odd 4 1280.2.n.q.1023.1 8
80.59 odd 4 1280.2.n.q.767.1 8
80.67 even 4 1280.2.n.q.1023.2 8
80.69 even 4 1280.2.n.m.767.3 8
80.77 odd 4 1280.2.n.m.1023.4 8
120.29 odd 2 360.2.w.c.307.4 8
120.59 even 2 1440.2.bi.c.847.2 8
120.77 even 4 360.2.w.c.163.2 8
120.107 odd 4 1440.2.bi.c.1423.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.k.a.3.1 8 20.7 even 4
40.2.k.a.3.3 yes 8 40.37 odd 4
40.2.k.a.27.1 yes 8 40.29 even 2
40.2.k.a.27.3 yes 8 20.19 odd 2
160.2.o.a.47.1 8 5.4 even 2
160.2.o.a.47.2 8 40.19 odd 2
160.2.o.a.143.1 8 40.27 even 4
160.2.o.a.143.2 8 5.2 odd 4
200.2.k.h.43.2 8 40.13 odd 4
200.2.k.h.43.4 8 20.3 even 4
200.2.k.h.107.2 8 4.3 odd 2
200.2.k.h.107.4 8 8.5 even 2
360.2.w.c.163.2 8 120.77 even 4
360.2.w.c.163.4 8 60.47 odd 4
360.2.w.c.307.2 8 60.59 even 2
360.2.w.c.307.4 8 120.29 odd 2
800.2.o.g.143.3 8 5.3 odd 4 inner
800.2.o.g.143.4 8 40.3 even 4 inner
800.2.o.g.207.3 8 8.3 odd 2 inner
800.2.o.g.207.4 8 1.1 even 1 trivial
1280.2.n.m.767.3 8 80.69 even 4
1280.2.n.m.767.4 8 80.19 odd 4
1280.2.n.m.1023.3 8 80.27 even 4
1280.2.n.m.1023.4 8 80.77 odd 4
1280.2.n.q.767.1 8 80.59 odd 4
1280.2.n.q.767.2 8 80.29 even 4
1280.2.n.q.1023.1 8 80.37 odd 4
1280.2.n.q.1023.2 8 80.67 even 4
1440.2.bi.c.847.2 8 120.59 even 2
1440.2.bi.c.847.3 8 15.14 odd 2
1440.2.bi.c.1423.2 8 15.2 even 4
1440.2.bi.c.1423.3 8 120.107 odd 4