Properties

Label 360.2.w.c.307.4
Level $360$
Weight $2$
Character 360.307
Analytic conductor $2.875$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,2,Mod(163,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 360.w (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.87461447277\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.4
Root \(0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 360.307
Dual form 360.2.w.c.163.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39680 + 0.221232i) q^{2} +(1.90211 + 0.618034i) q^{4} +(-1.17557 + 1.90211i) q^{5} +(-1.90211 + 1.90211i) q^{7} +(2.52015 + 1.28408i) q^{8} +(-2.06285 + 2.39680i) q^{10} +3.23607 q^{11} +(0.726543 + 0.726543i) q^{13} +(-3.07768 + 2.23607i) q^{14} +(3.23607 + 2.35114i) q^{16} +(1.00000 + 1.00000i) q^{17} -2.00000i q^{19} +(-3.41164 + 2.89149i) q^{20} +(4.52015 + 0.715921i) q^{22} +(-4.25325 - 4.25325i) q^{23} +(-2.23607 - 4.47214i) q^{25} +(0.854102 + 1.17557i) q^{26} +(-4.79360 + 2.44246i) q^{28} +6.15537 q^{29} -8.50651i q^{31} +(4.00000 + 4.00000i) q^{32} +(1.17557 + 1.61803i) q^{34} +(-1.38197 - 5.85410i) q^{35} +(-0.726543 + 0.726543i) q^{37} +(0.442463 - 2.79360i) q^{38} +(-5.40507 + 3.28408i) q^{40} -5.70820 q^{41} +(4.61803 - 4.61803i) q^{43} +(6.15537 + 2.00000i) q^{44} +(-5.00000 - 6.88191i) q^{46} +(-3.35520 + 3.35520i) q^{47} -0.236068i q^{49} +(-2.13397 - 6.74138i) q^{50} +(0.932938 + 1.83099i) q^{52} +(3.07768 + 3.07768i) q^{53} +(-3.80423 + 6.15537i) q^{55} +(-7.23607 + 2.35114i) q^{56} +(8.59783 + 1.36176i) q^{58} +0.472136i q^{59} +0.898056i q^{61} +(1.88191 - 11.8819i) q^{62} +(4.70228 + 6.47214i) q^{64} +(-2.23607 + 0.527864i) q^{65} +(-4.61803 - 4.61803i) q^{67} +(1.28408 + 2.52015i) q^{68} +(-0.635220 - 8.48276i) q^{70} -11.4127i q^{71} +(-4.70820 + 4.70820i) q^{73} +(-1.17557 + 0.854102i) q^{74} +(1.23607 - 3.80423i) q^{76} +(-6.15537 + 6.15537i) q^{77} +2.90617 q^{79} +(-8.27636 + 3.39144i) q^{80} +(-7.97323 - 1.26284i) q^{82} +(6.61803 - 6.61803i) q^{83} +(-3.07768 + 0.726543i) q^{85} +(7.47214 - 5.42882i) q^{86} +(8.15537 + 4.15537i) q^{88} -2.47214i q^{89} -2.76393 q^{91} +(-5.46151 - 10.7188i) q^{92} +(-5.42882 + 3.94427i) q^{94} +(3.80423 + 2.35114i) q^{95} +(4.23607 + 4.23607i) q^{97} +(0.0522257 - 0.329740i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 4 q^{8} - 10 q^{10} + 8 q^{11} + 8 q^{16} + 8 q^{17} + 12 q^{22} - 20 q^{26} - 20 q^{28} + 32 q^{32} - 20 q^{35} + 4 q^{38} - 20 q^{40} + 8 q^{41} + 28 q^{43} - 40 q^{46} + 10 q^{50} + 20 q^{52}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39680 + 0.221232i 0.987688 + 0.156434i
\(3\) 0 0
\(4\) 1.90211 + 0.618034i 0.951057 + 0.309017i
\(5\) −1.17557 + 1.90211i −0.525731 + 0.850651i
\(6\) 0 0
\(7\) −1.90211 + 1.90211i −0.718931 + 0.718931i −0.968386 0.249455i \(-0.919748\pi\)
0.249455 + 0.968386i \(0.419748\pi\)
\(8\) 2.52015 + 1.28408i 0.891007 + 0.453990i
\(9\) 0 0
\(10\) −2.06285 + 2.39680i −0.652330 + 0.757935i
\(11\) 3.23607 0.975711 0.487856 0.872924i \(-0.337779\pi\)
0.487856 + 0.872924i \(0.337779\pi\)
\(12\) 0 0
\(13\) 0.726543 + 0.726543i 0.201507 + 0.201507i 0.800645 0.599139i \(-0.204490\pi\)
−0.599139 + 0.800645i \(0.704490\pi\)
\(14\) −3.07768 + 2.23607i −0.822546 + 0.597614i
\(15\) 0 0
\(16\) 3.23607 + 2.35114i 0.809017 + 0.587785i
\(17\) 1.00000 + 1.00000i 0.242536 + 0.242536i 0.817898 0.575363i \(-0.195139\pi\)
−0.575363 + 0.817898i \(0.695139\pi\)
\(18\) 0 0
\(19\) 2.00000i 0.458831i −0.973329 0.229416i \(-0.926318\pi\)
0.973329 0.229416i \(-0.0736815\pi\)
\(20\) −3.41164 + 2.89149i −0.762866 + 0.646557i
\(21\) 0 0
\(22\) 4.52015 + 0.715921i 0.963699 + 0.152635i
\(23\) −4.25325 4.25325i −0.886865 0.886865i 0.107356 0.994221i \(-0.465762\pi\)
−0.994221 + 0.107356i \(0.965762\pi\)
\(24\) 0 0
\(25\) −2.23607 4.47214i −0.447214 0.894427i
\(26\) 0.854102 + 1.17557i 0.167503 + 0.230548i
\(27\) 0 0
\(28\) −4.79360 + 2.44246i −0.905906 + 0.461582i
\(29\) 6.15537 1.14302 0.571511 0.820594i \(-0.306357\pi\)
0.571511 + 0.820594i \(0.306357\pi\)
\(30\) 0 0
\(31\) 8.50651i 1.52781i −0.645326 0.763907i \(-0.723279\pi\)
0.645326 0.763907i \(-0.276721\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 0 0
\(34\) 1.17557 + 1.61803i 0.201609 + 0.277491i
\(35\) −1.38197 5.85410i −0.233595 0.989524i
\(36\) 0 0
\(37\) −0.726543 + 0.726543i −0.119443 + 0.119443i −0.764302 0.644859i \(-0.776916\pi\)
0.644859 + 0.764302i \(0.276916\pi\)
\(38\) 0.442463 2.79360i 0.0717771 0.453182i
\(39\) 0 0
\(40\) −5.40507 + 3.28408i −0.854617 + 0.519258i
\(41\) −5.70820 −0.891472 −0.445736 0.895165i \(-0.647058\pi\)
−0.445736 + 0.895165i \(0.647058\pi\)
\(42\) 0 0
\(43\) 4.61803 4.61803i 0.704244 0.704244i −0.261075 0.965319i \(-0.584077\pi\)
0.965319 + 0.261075i \(0.0840770\pi\)
\(44\) 6.15537 + 2.00000i 0.927957 + 0.301511i
\(45\) 0 0
\(46\) −5.00000 6.88191i −0.737210 1.01468i
\(47\) −3.35520 + 3.35520i −0.489406 + 0.489406i −0.908119 0.418713i \(-0.862481\pi\)
0.418713 + 0.908119i \(0.362481\pi\)
\(48\) 0 0
\(49\) 0.236068i 0.0337240i
\(50\) −2.13397 6.74138i −0.301788 0.953375i
\(51\) 0 0
\(52\) 0.932938 + 1.83099i 0.129375 + 0.253913i
\(53\) 3.07768 + 3.07768i 0.422752 + 0.422752i 0.886150 0.463398i \(-0.153370\pi\)
−0.463398 + 0.886150i \(0.653370\pi\)
\(54\) 0 0
\(55\) −3.80423 + 6.15537i −0.512962 + 0.829990i
\(56\) −7.23607 + 2.35114i −0.966960 + 0.314184i
\(57\) 0 0
\(58\) 8.59783 + 1.36176i 1.12895 + 0.178808i
\(59\) 0.472136i 0.0614669i 0.999528 + 0.0307334i \(0.00978430\pi\)
−0.999528 + 0.0307334i \(0.990216\pi\)
\(60\) 0 0
\(61\) 0.898056i 0.114984i 0.998346 + 0.0574921i \(0.0183104\pi\)
−0.998346 + 0.0574921i \(0.981690\pi\)
\(62\) 1.88191 11.8819i 0.239003 1.50900i
\(63\) 0 0
\(64\) 4.70228 + 6.47214i 0.587785 + 0.809017i
\(65\) −2.23607 + 0.527864i −0.277350 + 0.0654735i
\(66\) 0 0
\(67\) −4.61803 4.61803i −0.564183 0.564183i 0.366310 0.930493i \(-0.380621\pi\)
−0.930493 + 0.366310i \(0.880621\pi\)
\(68\) 1.28408 + 2.52015i 0.155717 + 0.305613i
\(69\) 0 0
\(70\) −0.635220 8.48276i −0.0759233 1.01388i
\(71\) 11.4127i 1.35444i −0.735783 0.677218i \(-0.763185\pi\)
0.735783 0.677218i \(-0.236815\pi\)
\(72\) 0 0
\(73\) −4.70820 + 4.70820i −0.551054 + 0.551054i −0.926745 0.375691i \(-0.877405\pi\)
0.375691 + 0.926745i \(0.377405\pi\)
\(74\) −1.17557 + 0.854102i −0.136657 + 0.0992873i
\(75\) 0 0
\(76\) 1.23607 3.80423i 0.141787 0.436375i
\(77\) −6.15537 + 6.15537i −0.701469 + 0.701469i
\(78\) 0 0
\(79\) 2.90617 0.326970 0.163485 0.986546i \(-0.447727\pi\)
0.163485 + 0.986546i \(0.447727\pi\)
\(80\) −8.27636 + 3.39144i −0.925325 + 0.379174i
\(81\) 0 0
\(82\) −7.97323 1.26284i −0.880496 0.139457i
\(83\) 6.61803 6.61803i 0.726424 0.726424i −0.243482 0.969905i \(-0.578290\pi\)
0.969905 + 0.243482i \(0.0782896\pi\)
\(84\) 0 0
\(85\) −3.07768 + 0.726543i −0.333822 + 0.0788046i
\(86\) 7.47214 5.42882i 0.805741 0.585405i
\(87\) 0 0
\(88\) 8.15537 + 4.15537i 0.869365 + 0.442964i
\(89\) 2.47214i 0.262046i −0.991379 0.131023i \(-0.958174\pi\)
0.991379 0.131023i \(-0.0418262\pi\)
\(90\) 0 0
\(91\) −2.76393 −0.289739
\(92\) −5.46151 10.7188i −0.569402 1.11751i
\(93\) 0 0
\(94\) −5.42882 + 3.94427i −0.559940 + 0.406821i
\(95\) 3.80423 + 2.35114i 0.390305 + 0.241222i
\(96\) 0 0
\(97\) 4.23607 + 4.23607i 0.430108 + 0.430108i 0.888665 0.458557i \(-0.151634\pi\)
−0.458557 + 0.888665i \(0.651634\pi\)
\(98\) 0.0522257 0.329740i 0.00527560 0.0333088i
\(99\) 0 0
\(100\) −1.48932 9.88847i −0.148932 0.988847i
\(101\) 2.90617i 0.289175i −0.989492 0.144587i \(-0.953815\pi\)
0.989492 0.144587i \(-0.0461855\pi\)
\(102\) 0 0
\(103\) −3.35520 3.35520i −0.330597 0.330597i 0.522216 0.852813i \(-0.325106\pi\)
−0.852813 + 0.522216i \(0.825106\pi\)
\(104\) 0.898056 + 2.76393i 0.0880616 + 0.271026i
\(105\) 0 0
\(106\) 3.61803 + 4.97980i 0.351415 + 0.483681i
\(107\) −0.909830 0.909830i −0.0879566 0.0879566i 0.661760 0.749716i \(-0.269810\pi\)
−0.749716 + 0.661760i \(0.769810\pi\)
\(108\) 0 0
\(109\) 14.6619 1.40435 0.702176 0.712003i \(-0.252212\pi\)
0.702176 + 0.712003i \(0.252212\pi\)
\(110\) −6.67551 + 7.75621i −0.636485 + 0.739526i
\(111\) 0 0
\(112\) −10.6275 + 1.68323i −1.00420 + 0.159050i
\(113\) −8.70820 + 8.70820i −0.819199 + 0.819199i −0.985992 0.166793i \(-0.946659\pi\)
0.166793 + 0.985992i \(0.446659\pi\)
\(114\) 0 0
\(115\) 13.0902 3.09017i 1.22066 0.288160i
\(116\) 11.7082 + 3.80423i 1.08708 + 0.353214i
\(117\) 0 0
\(118\) −0.104451 + 0.659481i −0.00961554 + 0.0607101i
\(119\) −3.80423 −0.348733
\(120\) 0 0
\(121\) −0.527864 −0.0479876
\(122\) −0.198678 + 1.25441i −0.0179875 + 0.113569i
\(123\) 0 0
\(124\) 5.25731 16.1803i 0.472120 1.45304i
\(125\) 11.1352 + 1.00406i 0.995959 + 0.0898056i
\(126\) 0 0
\(127\) 2.80017 2.80017i 0.248475 0.248475i −0.571870 0.820344i \(-0.693782\pi\)
0.820344 + 0.571870i \(0.193782\pi\)
\(128\) 5.13632 + 10.0806i 0.453990 + 0.891007i
\(129\) 0 0
\(130\) −3.24013 + 0.242632i −0.284178 + 0.0212803i
\(131\) −13.7082 −1.19769 −0.598846 0.800864i \(-0.704374\pi\)
−0.598846 + 0.800864i \(0.704374\pi\)
\(132\) 0 0
\(133\) 3.80423 + 3.80423i 0.329868 + 0.329868i
\(134\) −5.42882 7.47214i −0.468979 0.645494i
\(135\) 0 0
\(136\) 1.23607 + 3.80423i 0.105992 + 0.326210i
\(137\) 5.47214 + 5.47214i 0.467516 + 0.467516i 0.901109 0.433593i \(-0.142754\pi\)
−0.433593 + 0.901109i \(0.642754\pi\)
\(138\) 0 0
\(139\) 21.4164i 1.81652i 0.418411 + 0.908258i \(0.362587\pi\)
−0.418411 + 0.908258i \(0.637413\pi\)
\(140\) 0.989378 11.9893i 0.0836177 1.01328i
\(141\) 0 0
\(142\) 2.52485 15.9413i 0.211880 1.33776i
\(143\) 2.35114 + 2.35114i 0.196612 + 0.196612i
\(144\) 0 0
\(145\) −7.23607 + 11.7082i −0.600923 + 0.972313i
\(146\) −7.61803 + 5.53483i −0.630473 + 0.458065i
\(147\) 0 0
\(148\) −1.83099 + 0.932938i −0.150507 + 0.0766870i
\(149\) 12.8658 1.05400 0.527002 0.849864i \(-0.323316\pi\)
0.527002 + 0.849864i \(0.323316\pi\)
\(150\) 0 0
\(151\) 6.71040i 0.546084i −0.962002 0.273042i \(-0.911970\pi\)
0.962002 0.273042i \(-0.0880298\pi\)
\(152\) 2.56816 5.04029i 0.208305 0.408822i
\(153\) 0 0
\(154\) −9.95959 + 7.23607i −0.802567 + 0.583099i
\(155\) 16.1803 + 10.0000i 1.29964 + 0.803219i
\(156\) 0 0
\(157\) −13.9353 + 13.9353i −1.11216 + 1.11216i −0.119303 + 0.992858i \(0.538066\pi\)
−0.992858 + 0.119303i \(0.961934\pi\)
\(158\) 4.05934 + 0.642937i 0.322944 + 0.0511493i
\(159\) 0 0
\(160\) −12.3107 + 2.90617i −0.973249 + 0.229753i
\(161\) 16.1803 1.27519
\(162\) 0 0
\(163\) −13.8541 + 13.8541i −1.08514 + 1.08514i −0.0891157 + 0.996021i \(0.528404\pi\)
−0.996021 + 0.0891157i \(0.971596\pi\)
\(164\) −10.8576 3.52786i −0.847840 0.275480i
\(165\) 0 0
\(166\) 10.7082 7.77997i 0.831118 0.603842i
\(167\) −8.05748 + 8.05748i −0.623507 + 0.623507i −0.946426 0.322920i \(-0.895336\pi\)
0.322920 + 0.946426i \(0.395336\pi\)
\(168\) 0 0
\(169\) 11.9443i 0.918790i
\(170\) −4.45965 + 0.333955i −0.342040 + 0.0256132i
\(171\) 0 0
\(172\) 11.6381 5.92992i 0.887399 0.452152i
\(173\) −14.4904 14.4904i −1.10168 1.10168i −0.994208 0.107474i \(-0.965724\pi\)
−0.107474 0.994208i \(-0.534276\pi\)
\(174\) 0 0
\(175\) 12.7598 + 4.25325i 0.964547 + 0.321516i
\(176\) 10.4721 + 7.60845i 0.789367 + 0.573509i
\(177\) 0 0
\(178\) 0.546915 3.45309i 0.0409930 0.258820i
\(179\) 7.52786i 0.562659i 0.959611 + 0.281329i \(0.0907754\pi\)
−0.959611 + 0.281329i \(0.909225\pi\)
\(180\) 0 0
\(181\) 15.2169i 1.13106i −0.824726 0.565532i \(-0.808671\pi\)
0.824726 0.565532i \(-0.191329\pi\)
\(182\) −3.86067 0.611469i −0.286172 0.0453251i
\(183\) 0 0
\(184\) −5.25731 16.1803i −0.387574 1.19283i
\(185\) −0.527864 2.23607i −0.0388093 0.164399i
\(186\) 0 0
\(187\) 3.23607 + 3.23607i 0.236645 + 0.236645i
\(188\) −8.45559 + 4.30834i −0.616687 + 0.314218i
\(189\) 0 0
\(190\) 4.79360 + 4.12569i 0.347765 + 0.299309i
\(191\) 13.2088i 0.955755i −0.878427 0.477877i \(-0.841406\pi\)
0.878427 0.477877i \(-0.158594\pi\)
\(192\) 0 0
\(193\) 1.47214 1.47214i 0.105967 0.105967i −0.652136 0.758102i \(-0.726127\pi\)
0.758102 + 0.652136i \(0.226127\pi\)
\(194\) 4.97980 + 6.85410i 0.357529 + 0.492096i
\(195\) 0 0
\(196\) 0.145898 0.449028i 0.0104213 0.0320734i
\(197\) −9.23305 + 9.23305i −0.657828 + 0.657828i −0.954866 0.297038i \(-0.904001\pi\)
0.297038 + 0.954866i \(0.404001\pi\)
\(198\) 0 0
\(199\) −21.7153 −1.53936 −0.769678 0.638432i \(-0.779583\pi\)
−0.769678 + 0.638432i \(0.779583\pi\)
\(200\) 0.107356 14.1417i 0.00759122 0.999971i
\(201\) 0 0
\(202\) 0.642937 4.05934i 0.0452369 0.285615i
\(203\) −11.7082 + 11.7082i −0.821755 + 0.821755i
\(204\) 0 0
\(205\) 6.71040 10.8576i 0.468674 0.758331i
\(206\) −3.94427 5.42882i −0.274810 0.378244i
\(207\) 0 0
\(208\) 0.642937 + 4.05934i 0.0445797 + 0.281465i
\(209\) 6.47214i 0.447687i
\(210\) 0 0
\(211\) 2.29180 0.157774 0.0788869 0.996884i \(-0.474863\pi\)
0.0788869 + 0.996884i \(0.474863\pi\)
\(212\) 3.95199 + 7.75621i 0.271424 + 0.532699i
\(213\) 0 0
\(214\) −1.06957 1.47214i −0.0731143 0.100633i
\(215\) 3.35520 + 14.2128i 0.228823 + 0.969308i
\(216\) 0 0
\(217\) 16.1803 + 16.1803i 1.09839 + 1.09839i
\(218\) 20.4797 + 3.24367i 1.38706 + 0.219689i
\(219\) 0 0
\(220\) −11.0403 + 9.35706i −0.744336 + 0.630853i
\(221\) 1.45309i 0.0977451i
\(222\) 0 0
\(223\) 14.2128 + 14.2128i 0.951763 + 0.951763i 0.998889 0.0471263i \(-0.0150063\pi\)
−0.0471263 + 0.998889i \(0.515006\pi\)
\(224\) −15.2169 −1.01672
\(225\) 0 0
\(226\) −14.0902 + 10.2371i −0.937264 + 0.680962i
\(227\) 9.38197 + 9.38197i 0.622703 + 0.622703i 0.946222 0.323519i \(-0.104866\pi\)
−0.323519 + 0.946222i \(0.604866\pi\)
\(228\) 0 0
\(229\) 7.95148 0.525449 0.262724 0.964871i \(-0.415379\pi\)
0.262724 + 0.964871i \(0.415379\pi\)
\(230\) 18.9680 1.42040i 1.25071 0.0936581i
\(231\) 0 0
\(232\) 15.5124 + 7.90398i 1.01844 + 0.518922i
\(233\) −5.47214 + 5.47214i −0.358492 + 0.358492i −0.863257 0.504765i \(-0.831579\pi\)
0.504765 + 0.863257i \(0.331579\pi\)
\(234\) 0 0
\(235\) −2.43769 10.3262i −0.159018 0.673609i
\(236\) −0.291796 + 0.898056i −0.0189943 + 0.0584585i
\(237\) 0 0
\(238\) −5.31375 0.841616i −0.344439 0.0545538i
\(239\) 13.4208 0.868119 0.434059 0.900884i \(-0.357081\pi\)
0.434059 + 0.900884i \(0.357081\pi\)
\(240\) 0 0
\(241\) 11.2361 0.723779 0.361889 0.932221i \(-0.382132\pi\)
0.361889 + 0.932221i \(0.382132\pi\)
\(242\) −0.737322 0.116780i −0.0473968 0.00750692i
\(243\) 0 0
\(244\) −0.555029 + 1.70820i −0.0355321 + 0.109357i
\(245\) 0.449028 + 0.277515i 0.0286873 + 0.0177298i
\(246\) 0 0
\(247\) 1.45309 1.45309i 0.0924576 0.0924576i
\(248\) 10.9230 21.4377i 0.693613 1.36129i
\(249\) 0 0
\(250\) 15.3315 + 3.86592i 0.969649 + 0.244502i
\(251\) −0.180340 −0.0113830 −0.00569148 0.999984i \(-0.501812\pi\)
−0.00569148 + 0.999984i \(0.501812\pi\)
\(252\) 0 0
\(253\) −13.7638 13.7638i −0.865324 0.865324i
\(254\) 4.53077 3.29180i 0.284286 0.206546i
\(255\) 0 0
\(256\) 4.94427 + 15.2169i 0.309017 + 0.951057i
\(257\) −5.29180 5.29180i −0.330093 0.330093i 0.522529 0.852622i \(-0.324989\pi\)
−0.852622 + 0.522529i \(0.824989\pi\)
\(258\) 0 0
\(259\) 2.76393i 0.171742i
\(260\) −4.57949 0.377909i −0.284008 0.0234369i
\(261\) 0 0
\(262\) −19.1477 3.03269i −1.18295 0.187360i
\(263\) 7.50245 + 7.50245i 0.462621 + 0.462621i 0.899514 0.436893i \(-0.143921\pi\)
−0.436893 + 0.899514i \(0.643921\pi\)
\(264\) 0 0
\(265\) −9.47214 + 2.23607i −0.581869 + 0.137361i
\(266\) 4.47214 + 6.15537i 0.274204 + 0.377410i
\(267\) 0 0
\(268\) −5.92992 11.6381i −0.362228 0.710912i
\(269\) −20.4742 −1.24833 −0.624167 0.781291i \(-0.714562\pi\)
−0.624167 + 0.781291i \(0.714562\pi\)
\(270\) 0 0
\(271\) 17.2250i 1.04635i 0.852227 + 0.523173i \(0.175252\pi\)
−0.852227 + 0.523173i \(0.824748\pi\)
\(272\) 0.884927 + 5.58721i 0.0536566 + 0.338774i
\(273\) 0 0
\(274\) 6.43288 + 8.85410i 0.388625 + 0.534896i
\(275\) −7.23607 14.4721i −0.436351 0.872703i
\(276\) 0 0
\(277\) −9.23305 + 9.23305i −0.554760 + 0.554760i −0.927811 0.373051i \(-0.878312\pi\)
0.373051 + 0.927811i \(0.378312\pi\)
\(278\) −4.73799 + 29.9145i −0.284166 + 1.79415i
\(279\) 0 0
\(280\) 4.03437 16.5278i 0.241100 0.987722i
\(281\) 9.70820 0.579143 0.289571 0.957156i \(-0.406487\pi\)
0.289571 + 0.957156i \(0.406487\pi\)
\(282\) 0 0
\(283\) 13.3820 13.3820i 0.795475 0.795475i −0.186903 0.982378i \(-0.559845\pi\)
0.982378 + 0.186903i \(0.0598450\pi\)
\(284\) 7.05342 21.7082i 0.418544 1.28814i
\(285\) 0 0
\(286\) 2.76393 + 3.80423i 0.163435 + 0.224949i
\(287\) 10.8576 10.8576i 0.640907 0.640907i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) −12.6976 + 14.7532i −0.745628 + 0.866338i
\(291\) 0 0
\(292\) −11.8654 + 6.04571i −0.694368 + 0.353798i
\(293\) −3.07768 3.07768i −0.179800 0.179800i 0.611469 0.791269i \(-0.290579\pi\)
−0.791269 + 0.611469i \(0.790579\pi\)
\(294\) 0 0
\(295\) −0.898056 0.555029i −0.0522868 0.0323150i
\(296\) −2.76393 + 0.898056i −0.160650 + 0.0521984i
\(297\) 0 0
\(298\) 17.9709 + 2.84632i 1.04103 + 0.164883i
\(299\) 6.18034i 0.357418i
\(300\) 0 0
\(301\) 17.5680i 1.01261i
\(302\) 1.48455 9.37310i 0.0854264 0.539361i
\(303\) 0 0
\(304\) 4.70228 6.47214i 0.269694 0.371202i
\(305\) −1.70820 1.05573i −0.0978115 0.0604508i
\(306\) 0 0
\(307\) −13.5623 13.5623i −0.774042 0.774042i 0.204769 0.978810i \(-0.434356\pi\)
−0.978810 + 0.204769i \(0.934356\pi\)
\(308\) −15.5124 + 7.90398i −0.883903 + 0.450371i
\(309\) 0 0
\(310\) 20.3884 + 17.5476i 1.15798 + 0.996638i
\(311\) 20.8172i 1.18044i 0.807243 + 0.590219i \(0.200959\pi\)
−0.807243 + 0.590219i \(0.799041\pi\)
\(312\) 0 0
\(313\) −1.76393 + 1.76393i −0.0997033 + 0.0997033i −0.755199 0.655496i \(-0.772460\pi\)
0.655496 + 0.755199i \(0.272460\pi\)
\(314\) −22.5478 + 16.3820i −1.27245 + 0.924488i
\(315\) 0 0
\(316\) 5.52786 + 1.79611i 0.310967 + 0.101039i
\(317\) 3.97574 3.97574i 0.223300 0.223300i −0.586587 0.809886i \(-0.699529\pi\)
0.809886 + 0.586587i \(0.199529\pi\)
\(318\) 0 0
\(319\) 19.9192 1.11526
\(320\) −17.8386 + 1.33582i −0.997208 + 0.0746746i
\(321\) 0 0
\(322\) 22.6007 + 3.57960i 1.25949 + 0.199484i
\(323\) 2.00000 2.00000i 0.111283 0.111283i
\(324\) 0 0
\(325\) 1.62460 4.87380i 0.0901165 0.270350i
\(326\) −22.4164 + 16.2865i −1.24153 + 0.902024i
\(327\) 0 0
\(328\) −14.3855 7.32979i −0.794307 0.404720i
\(329\) 12.7639i 0.703698i
\(330\) 0 0
\(331\) −30.0689 −1.65274 −0.826368 0.563131i \(-0.809597\pi\)
−0.826368 + 0.563131i \(0.809597\pi\)
\(332\) 16.6784 8.49808i 0.915347 0.466393i
\(333\) 0 0
\(334\) −13.0373 + 9.47214i −0.713368 + 0.518292i
\(335\) 14.2128 3.35520i 0.776531 0.183314i
\(336\) 0 0
\(337\) −19.9443 19.9443i −1.08643 1.08643i −0.995893 0.0905410i \(-0.971140\pi\)
−0.0905410 0.995893i \(-0.528860\pi\)
\(338\) 2.64245 16.6838i 0.143730 0.907478i
\(339\) 0 0
\(340\) −6.30313 0.520147i −0.341835 0.0282089i
\(341\) 27.5276i 1.49071i
\(342\) 0 0
\(343\) −12.8658 12.8658i −0.694686 0.694686i
\(344\) 17.5680 5.70820i 0.947206 0.307766i
\(345\) 0 0
\(346\) −17.0344 23.4459i −0.915777 1.26046i
\(347\) −26.0344 26.0344i −1.39760 1.39760i −0.806862 0.590740i \(-0.798836\pi\)
−0.590740 0.806862i \(-0.701164\pi\)
\(348\) 0 0
\(349\) −16.6700 −0.892324 −0.446162 0.894952i \(-0.647209\pi\)
−0.446162 + 0.894952i \(0.647209\pi\)
\(350\) 16.8819 + 8.76382i 0.902376 + 0.468446i
\(351\) 0 0
\(352\) 12.9443 + 12.9443i 0.689932 + 0.689932i
\(353\) 22.4164 22.4164i 1.19311 1.19311i 0.216914 0.976191i \(-0.430401\pi\)
0.976191 0.216914i \(-0.0695992\pi\)
\(354\) 0 0
\(355\) 21.7082 + 13.4164i 1.15215 + 0.712069i
\(356\) 1.52786 4.70228i 0.0809766 0.249220i
\(357\) 0 0
\(358\) −1.66540 + 10.5149i −0.0880193 + 0.555732i
\(359\) −19.9192 −1.05129 −0.525647 0.850703i \(-0.676177\pi\)
−0.525647 + 0.850703i \(0.676177\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 3.36646 21.2550i 0.176937 1.11714i
\(363\) 0 0
\(364\) −5.25731 1.70820i −0.275558 0.0895342i
\(365\) −3.42071 14.4904i −0.179048 0.758460i
\(366\) 0 0
\(367\) 12.2047 12.2047i 0.637082 0.637082i −0.312753 0.949835i \(-0.601251\pi\)
0.949835 + 0.312753i \(0.101251\pi\)
\(368\) −3.76382 23.7638i −0.196203 1.23877i
\(369\) 0 0
\(370\) −0.242632 3.24013i −0.0126139 0.168446i
\(371\) −11.7082 −0.607860
\(372\) 0 0
\(373\) −22.4418 22.4418i −1.16199 1.16199i −0.984038 0.177956i \(-0.943052\pi\)
−0.177956 0.984038i \(-0.556948\pi\)
\(374\) 3.80423 + 5.23607i 0.196712 + 0.270751i
\(375\) 0 0
\(376\) −12.7639 + 4.14725i −0.658250 + 0.213878i
\(377\) 4.47214 + 4.47214i 0.230327 + 0.230327i
\(378\) 0 0
\(379\) 0.111456i 0.00572512i 0.999996 + 0.00286256i \(0.000911182\pi\)
−0.999996 + 0.00286256i \(0.999089\pi\)
\(380\) 5.78298 + 6.82328i 0.296661 + 0.350027i
\(381\) 0 0
\(382\) 2.92220 18.4501i 0.149513 0.943988i
\(383\) 1.00406 + 1.00406i 0.0513049 + 0.0513049i 0.732294 0.680989i \(-0.238450\pi\)
−0.680989 + 0.732294i \(0.738450\pi\)
\(384\) 0 0
\(385\) −4.47214 18.9443i −0.227921 0.965489i
\(386\) 2.38197 1.73060i 0.121239 0.0880852i
\(387\) 0 0
\(388\) 5.43945 + 10.6755i 0.276146 + 0.541967i
\(389\) 4.14725 0.210274 0.105137 0.994458i \(-0.466472\pi\)
0.105137 + 0.994458i \(0.466472\pi\)
\(390\) 0 0
\(391\) 8.50651i 0.430193i
\(392\) 0.303130 0.594926i 0.0153104 0.0300483i
\(393\) 0 0
\(394\) −14.9394 + 10.8541i −0.752636 + 0.546822i
\(395\) −3.41641 + 5.52786i −0.171898 + 0.278137i
\(396\) 0 0
\(397\) 24.4500 24.4500i 1.22711 1.22711i 0.262055 0.965053i \(-0.415600\pi\)
0.965053 0.262055i \(-0.0844002\pi\)
\(398\) −30.3320 4.80411i −1.52040 0.240808i
\(399\) 0 0
\(400\) 3.27855 19.7294i 0.163928 0.986472i
\(401\) −31.8885 −1.59244 −0.796219 0.605009i \(-0.793170\pi\)
−0.796219 + 0.605009i \(0.793170\pi\)
\(402\) 0 0
\(403\) 6.18034 6.18034i 0.307865 0.307865i
\(404\) 1.79611 5.52786i 0.0893599 0.275022i
\(405\) 0 0
\(406\) −18.9443 + 13.7638i −0.940188 + 0.683087i
\(407\) −2.35114 + 2.35114i −0.116542 + 0.116542i
\(408\) 0 0
\(409\) 21.5967i 1.06789i −0.845519 0.533945i \(-0.820709\pi\)
0.845519 0.533945i \(-0.179291\pi\)
\(410\) 11.7752 13.6814i 0.581533 0.675678i
\(411\) 0 0
\(412\) −4.30834 8.45559i −0.212257 0.416577i
\(413\) −0.898056 0.898056i −0.0441904 0.0441904i
\(414\) 0 0
\(415\) 4.80828 + 20.3682i 0.236029 + 0.999836i
\(416\) 5.81234i 0.284973i
\(417\) 0 0
\(418\) 1.43184 9.04029i 0.0700337 0.442175i
\(419\) 28.8328i 1.40858i 0.709915 + 0.704288i \(0.248733\pi\)
−0.709915 + 0.704288i \(0.751267\pi\)
\(420\) 0 0
\(421\) 28.4257i 1.38538i 0.721234 + 0.692692i \(0.243575\pi\)
−0.721234 + 0.692692i \(0.756425\pi\)
\(422\) 3.20119 + 0.507018i 0.155831 + 0.0246813i
\(423\) 0 0
\(424\) 3.80423 + 11.7082i 0.184750 + 0.568601i
\(425\) 2.23607 6.70820i 0.108465 0.325396i
\(426\) 0 0
\(427\) −1.70820 1.70820i −0.0826658 0.0826658i
\(428\) −1.16829 2.29291i −0.0564716 0.110832i
\(429\) 0 0
\(430\) 1.54222 + 20.5948i 0.0743722 + 0.993170i
\(431\) 19.0211i 0.916216i 0.888897 + 0.458108i \(0.151473\pi\)
−0.888897 + 0.458108i \(0.848527\pi\)
\(432\) 0 0
\(433\) 0.819660 0.819660i 0.0393904 0.0393904i −0.687137 0.726528i \(-0.741133\pi\)
0.726528 + 0.687137i \(0.241133\pi\)
\(434\) 19.0211 + 26.1803i 0.913043 + 1.25670i
\(435\) 0 0
\(436\) 27.8885 + 9.06154i 1.33562 + 0.433969i
\(437\) −8.50651 + 8.50651i −0.406921 + 0.406921i
\(438\) 0 0
\(439\) −35.1361 −1.67695 −0.838477 0.544937i \(-0.816554\pi\)
−0.838477 + 0.544937i \(0.816554\pi\)
\(440\) −17.4912 + 10.6275i −0.833860 + 0.506646i
\(441\) 0 0
\(442\) −0.321469 + 2.02967i −0.0152907 + 0.0965417i
\(443\) 1.09017 1.09017i 0.0517955 0.0517955i −0.680735 0.732530i \(-0.738339\pi\)
0.732530 + 0.680735i \(0.238339\pi\)
\(444\) 0 0
\(445\) 4.70228 + 2.90617i 0.222910 + 0.137766i
\(446\) 16.7082 + 22.9969i 0.791156 + 1.08893i
\(447\) 0 0
\(448\) −21.2550 3.36646i −1.00420 0.159050i
\(449\) 17.5967i 0.830442i −0.909721 0.415221i \(-0.863704\pi\)
0.909721 0.415221i \(-0.136296\pi\)
\(450\) 0 0
\(451\) −18.4721 −0.869819
\(452\) −21.9460 + 11.1820i −1.03225 + 0.525958i
\(453\) 0 0
\(454\) 11.0292 + 15.1803i 0.517624 + 0.712449i
\(455\) 3.24920 5.25731i 0.152325 0.246467i
\(456\) 0 0
\(457\) 9.65248 + 9.65248i 0.451524 + 0.451524i 0.895860 0.444336i \(-0.146560\pi\)
−0.444336 + 0.895860i \(0.646560\pi\)
\(458\) 11.1066 + 1.75912i 0.518979 + 0.0821983i
\(459\) 0 0
\(460\) 26.8088 + 2.21232i 1.24997 + 0.103150i
\(461\) 27.5276i 1.28209i 0.767503 + 0.641045i \(0.221499\pi\)
−0.767503 + 0.641045i \(0.778501\pi\)
\(462\) 0 0
\(463\) 2.45714 + 2.45714i 0.114193 + 0.114193i 0.761894 0.647701i \(-0.224270\pi\)
−0.647701 + 0.761894i \(0.724270\pi\)
\(464\) 19.9192 + 14.4721i 0.924725 + 0.671852i
\(465\) 0 0
\(466\) −8.85410 + 6.43288i −0.410158 + 0.297997i
\(467\) 18.3262 + 18.3262i 0.848037 + 0.848037i 0.989888 0.141851i \(-0.0453054\pi\)
−0.141851 + 0.989888i \(0.545305\pi\)
\(468\) 0 0
\(469\) 17.5680 0.811217
\(470\) −1.12048 14.9630i −0.0516841 0.690192i
\(471\) 0 0
\(472\) −0.606260 + 1.18985i −0.0279054 + 0.0547674i
\(473\) 14.9443 14.9443i 0.687138 0.687138i
\(474\) 0 0
\(475\) −8.94427 + 4.47214i −0.410391 + 0.205196i
\(476\) −7.23607 2.35114i −0.331665 0.107764i
\(477\) 0 0
\(478\) 18.7462 + 2.96911i 0.857431 + 0.135804i
\(479\) 4.70228 0.214853 0.107426 0.994213i \(-0.465739\pi\)
0.107426 + 0.994213i \(0.465739\pi\)
\(480\) 0 0
\(481\) −1.05573 −0.0481371
\(482\) 15.6946 + 2.48577i 0.714868 + 0.113224i
\(483\) 0 0
\(484\) −1.00406 0.326238i −0.0456390 0.0148290i
\(485\) −13.0373 + 3.07768i −0.591992 + 0.139750i
\(486\) 0 0
\(487\) −18.9151 + 18.9151i −0.857126 + 0.857126i −0.990999 0.133872i \(-0.957259\pi\)
0.133872 + 0.990999i \(0.457259\pi\)
\(488\) −1.15317 + 2.26323i −0.0522018 + 0.102452i
\(489\) 0 0
\(490\) 0.565808 + 0.486972i 0.0255606 + 0.0219992i
\(491\) 15.2361 0.687594 0.343797 0.939044i \(-0.388287\pi\)
0.343797 + 0.939044i \(0.388287\pi\)
\(492\) 0 0
\(493\) 6.15537 + 6.15537i 0.277224 + 0.277224i
\(494\) 2.35114 1.70820i 0.105783 0.0768557i
\(495\) 0 0
\(496\) 20.0000 27.5276i 0.898027 1.23603i
\(497\) 21.7082 + 21.7082i 0.973746 + 0.973746i
\(498\) 0 0
\(499\) 11.8885i 0.532204i 0.963945 + 0.266102i \(0.0857359\pi\)
−0.963945 + 0.266102i \(0.914264\pi\)
\(500\) 20.5598 + 8.79174i 0.919462 + 0.393179i
\(501\) 0 0
\(502\) −0.251899 0.0398969i −0.0112428 0.00178069i
\(503\) −16.5640 16.5640i −0.738552 0.738552i 0.233746 0.972298i \(-0.424902\pi\)
−0.972298 + 0.233746i \(0.924902\pi\)
\(504\) 0 0
\(505\) 5.52786 + 3.41641i 0.245987 + 0.152028i
\(506\) −16.1803 22.2703i −0.719304 0.990037i
\(507\) 0 0
\(508\) 7.05684 3.59564i 0.313097 0.159531i
\(509\) 10.8576 0.481257 0.240628 0.970617i \(-0.422646\pi\)
0.240628 + 0.970617i \(0.422646\pi\)
\(510\) 0 0
\(511\) 17.9111i 0.792339i
\(512\) 3.53971 + 22.3488i 0.156434 + 0.987688i
\(513\) 0 0
\(514\) −6.22088 8.56231i −0.274391 0.377667i
\(515\) 10.3262 2.43769i 0.455028 0.107418i
\(516\) 0 0
\(517\) −10.8576 + 10.8576i −0.477519 + 0.477519i
\(518\) 0.611469 3.86067i 0.0268664 0.169628i
\(519\) 0 0
\(520\) −6.31304 1.54099i −0.276845 0.0675770i
\(521\) 0.472136 0.0206847 0.0103423 0.999947i \(-0.496708\pi\)
0.0103423 + 0.999947i \(0.496708\pi\)
\(522\) 0 0
\(523\) 25.7426 25.7426i 1.12565 1.12565i 0.134770 0.990877i \(-0.456970\pi\)
0.990877 0.134770i \(-0.0430297\pi\)
\(524\) −26.0746 8.47214i −1.13907 0.370107i
\(525\) 0 0
\(526\) 8.81966 + 12.1392i 0.384555 + 0.529295i
\(527\) 8.50651 8.50651i 0.370549 0.370549i
\(528\) 0 0
\(529\) 13.1803i 0.573058i
\(530\) −13.7254 + 1.02781i −0.596193 + 0.0446451i
\(531\) 0 0
\(532\) 4.88493 + 9.58721i 0.211788 + 0.415658i
\(533\) −4.14725 4.14725i −0.179637 0.179637i
\(534\) 0 0
\(535\) 2.80017 0.661030i 0.121062 0.0285788i
\(536\) −5.70820 17.5680i −0.246557 0.758824i
\(537\) 0 0
\(538\) −28.5984 4.52955i −1.23297 0.195283i
\(539\) 0.763932i 0.0329049i
\(540\) 0 0
\(541\) 12.3107i 0.529280i 0.964347 + 0.264640i \(0.0852531\pi\)
−0.964347 + 0.264640i \(0.914747\pi\)
\(542\) −3.81072 + 24.0599i −0.163684 + 1.03346i
\(543\) 0 0
\(544\) 8.00000i 0.342997i
\(545\) −17.2361 + 27.8885i −0.738312 + 1.19461i
\(546\) 0 0
\(547\) 11.5623 + 11.5623i 0.494369 + 0.494369i 0.909679 0.415311i \(-0.136327\pi\)
−0.415311 + 0.909679i \(0.636327\pi\)
\(548\) 7.02666 + 13.7906i 0.300164 + 0.589105i
\(549\) 0 0
\(550\) −6.90566 21.8156i −0.294458 0.930219i
\(551\) 12.3107i 0.524455i
\(552\) 0 0
\(553\) −5.52786 + 5.52786i −0.235069 + 0.235069i
\(554\) −14.9394 + 10.8541i −0.634714 + 0.461147i
\(555\) 0 0
\(556\) −13.2361 + 40.7364i −0.561334 + 1.72761i
\(557\) 23.5519 23.5519i 0.997926 0.997926i −0.00207187 0.999998i \(-0.500659\pi\)
0.999998 + 0.00207187i \(0.000659497\pi\)
\(558\) 0 0
\(559\) 6.71040 0.283820
\(560\) 9.29168 22.1935i 0.392645 0.937845i
\(561\) 0 0
\(562\) 13.5604 + 2.14776i 0.572013 + 0.0905979i
\(563\) 4.32624 4.32624i 0.182329 0.182329i −0.610041 0.792370i \(-0.708847\pi\)
0.792370 + 0.610041i \(0.208847\pi\)
\(564\) 0 0
\(565\) −6.32688 26.8011i −0.266174 1.12753i
\(566\) 21.6525 15.7314i 0.910121 0.661242i
\(567\) 0 0
\(568\) 14.6548 28.7616i 0.614901 1.20681i
\(569\) 27.1246i 1.13712i 0.822641 + 0.568561i \(0.192500\pi\)
−0.822641 + 0.568561i \(0.807500\pi\)
\(570\) 0 0
\(571\) 22.6525 0.947977 0.473988 0.880531i \(-0.342814\pi\)
0.473988 + 0.880531i \(0.342814\pi\)
\(572\) 3.01905 + 5.92522i 0.126233 + 0.247746i
\(573\) 0 0
\(574\) 17.5680 12.7639i 0.733276 0.532756i
\(575\) −9.51057 + 28.5317i −0.396618 + 1.18985i
\(576\) 0 0
\(577\) 26.2361 + 26.2361i 1.09222 + 1.09222i 0.995291 + 0.0969307i \(0.0309025\pi\)
0.0969307 + 0.995291i \(0.469097\pi\)
\(578\) 3.31848 20.9520i 0.138030 0.871490i
\(579\) 0 0
\(580\) −20.9999 + 17.7982i −0.871973 + 0.739030i
\(581\) 25.1765i 1.04450i
\(582\) 0 0
\(583\) 9.95959 + 9.95959i 0.412484 + 0.412484i
\(584\) −17.9111 + 5.81966i −0.741165 + 0.240819i
\(585\) 0 0
\(586\) −3.61803 4.97980i −0.149460 0.205714i
\(587\) −17.0902 17.0902i −0.705387 0.705387i 0.260175 0.965562i \(-0.416220\pi\)
−0.965562 + 0.260175i \(0.916220\pi\)
\(588\) 0 0
\(589\) −17.0130 −0.701009
\(590\) −1.13162 0.973944i −0.0465879 0.0400967i
\(591\) 0 0
\(592\) −4.05934 + 0.642937i −0.166838 + 0.0264246i
\(593\) −20.4164 + 20.4164i −0.838401 + 0.838401i −0.988648 0.150247i \(-0.951993\pi\)
0.150247 + 0.988648i \(0.451993\pi\)
\(594\) 0 0
\(595\) 4.47214 7.23607i 0.183340 0.296650i
\(596\) 24.4721 + 7.95148i 1.00242 + 0.325705i
\(597\) 0 0
\(598\) 1.36729 8.63271i 0.0559125 0.353018i
\(599\) −6.49839 −0.265517 −0.132759 0.991148i \(-0.542383\pi\)
−0.132759 + 0.991148i \(0.542383\pi\)
\(600\) 0 0
\(601\) −17.7082 −0.722333 −0.361166 0.932501i \(-0.617621\pi\)
−0.361166 + 0.932501i \(0.617621\pi\)
\(602\) −3.88661 + 24.5391i −0.158406 + 1.00014i
\(603\) 0 0
\(604\) 4.14725 12.7639i 0.168749 0.519357i
\(605\) 0.620541 1.00406i 0.0252286 0.0408207i
\(606\) 0 0
\(607\) 32.6789 32.6789i 1.32640 1.32640i 0.417908 0.908489i \(-0.362763\pi\)
0.908489 0.417908i \(-0.137237\pi\)
\(608\) 8.00000 8.00000i 0.324443 0.324443i
\(609\) 0 0
\(610\) −2.15246 1.85255i −0.0871507 0.0750077i
\(611\) −4.87539 −0.197237
\(612\) 0 0
\(613\) 19.5357 + 19.5357i 0.789038 + 0.789038i 0.981337 0.192298i \(-0.0615941\pi\)
−0.192298 + 0.981337i \(0.561594\pi\)
\(614\) −15.9434 21.9443i −0.643425 0.885599i
\(615\) 0 0
\(616\) −23.4164 + 7.60845i −0.943474 + 0.306553i
\(617\) −4.88854 4.88854i −0.196805 0.196805i 0.601824 0.798629i \(-0.294441\pi\)
−0.798629 + 0.601824i \(0.794441\pi\)
\(618\) 0 0
\(619\) 35.3050i 1.41903i 0.704692 + 0.709513i \(0.251085\pi\)
−0.704692 + 0.709513i \(0.748915\pi\)
\(620\) 24.5965 + 29.0211i 0.987819 + 1.16552i
\(621\) 0 0
\(622\) −4.60543 + 29.0776i −0.184661 + 1.16590i
\(623\) 4.70228 + 4.70228i 0.188393 + 0.188393i
\(624\) 0 0
\(625\) −15.0000 + 20.0000i −0.600000 + 0.800000i
\(626\) −2.85410 + 2.07363i −0.114073 + 0.0828788i
\(627\) 0 0
\(628\) −35.1191 + 17.8941i −1.40140 + 0.714051i
\(629\) −1.45309 −0.0579383
\(630\) 0 0
\(631\) 22.6134i 0.900223i 0.892972 + 0.450112i \(0.148616\pi\)
−0.892972 + 0.450112i \(0.851384\pi\)
\(632\) 7.32398 + 3.73175i 0.291332 + 0.148441i
\(633\) 0 0
\(634\) 6.43288 4.67376i 0.255482 0.185619i
\(635\) 2.03444 + 8.61803i 0.0807344 + 0.341996i
\(636\) 0 0
\(637\) 0.171513 0.171513i 0.00679561 0.00679561i
\(638\) 27.8232 + 4.40676i 1.10153 + 0.174465i
\(639\) 0 0
\(640\) −25.2125 2.08059i −0.996612 0.0822425i
\(641\) 38.6525 1.52668 0.763341 0.645996i \(-0.223558\pi\)
0.763341 + 0.645996i \(0.223558\pi\)
\(642\) 0 0
\(643\) −11.5623 + 11.5623i −0.455973 + 0.455973i −0.897331 0.441358i \(-0.854497\pi\)
0.441358 + 0.897331i \(0.354497\pi\)
\(644\) 30.7768 + 10.0000i 1.21278 + 0.394055i
\(645\) 0 0
\(646\) 3.23607 2.35114i 0.127321 0.0925044i
\(647\) 20.0252 20.0252i 0.787271 0.787271i −0.193775 0.981046i \(-0.562073\pi\)
0.981046 + 0.193775i \(0.0620731\pi\)
\(648\) 0 0
\(649\) 1.52786i 0.0599739i
\(650\) 3.34748 6.44832i 0.131299 0.252924i
\(651\) 0 0
\(652\) −34.9144 + 17.7898i −1.36735 + 0.696701i
\(653\) 20.0907 + 20.0907i 0.786210 + 0.786210i 0.980871 0.194661i \(-0.0623606\pi\)
−0.194661 + 0.980871i \(0.562361\pi\)
\(654\) 0 0
\(655\) 16.1150 26.0746i 0.629664 1.01882i
\(656\) −18.4721 13.4208i −0.721216 0.523994i
\(657\) 0 0
\(658\) 2.82379 17.8287i 0.110083 0.695035i
\(659\) 18.0000i 0.701180i −0.936529 0.350590i \(-0.885981\pi\)
0.936529 0.350590i \(-0.114019\pi\)
\(660\) 0 0
\(661\) 3.80423i 0.147967i −0.997259 0.0739836i \(-0.976429\pi\)
0.997259 0.0739836i \(-0.0235713\pi\)
\(662\) −42.0003 6.65219i −1.63239 0.258545i
\(663\) 0 0
\(664\) 25.1765 8.18034i 0.977038 0.317459i
\(665\) −11.7082 + 2.76393i −0.454025 + 0.107181i
\(666\) 0 0
\(667\) −26.1803 26.1803i −1.01371 1.01371i
\(668\) −20.3060 + 10.3464i −0.785664 + 0.400316i
\(669\) 0 0
\(670\) 20.5948 1.54222i 0.795647 0.0595810i
\(671\) 2.90617i 0.112191i
\(672\) 0 0
\(673\) −17.2918 + 17.2918i −0.666550 + 0.666550i −0.956916 0.290366i \(-0.906223\pi\)
0.290366 + 0.956916i \(0.406223\pi\)
\(674\) −23.4459 32.2705i −0.903102 1.24301i
\(675\) 0 0
\(676\) 7.38197 22.7194i 0.283922 0.873821i
\(677\) 7.77997 7.77997i 0.299008 0.299008i −0.541617 0.840625i \(-0.682188\pi\)
0.840625 + 0.541617i \(0.182188\pi\)
\(678\) 0 0
\(679\) −16.1150 −0.618435
\(680\) −8.68915 2.12099i −0.333214 0.0813364i
\(681\) 0 0
\(682\) 6.08999 38.4507i 0.233198 1.47235i
\(683\) 22.7984 22.7984i 0.872356 0.872356i −0.120373 0.992729i \(-0.538409\pi\)
0.992729 + 0.120373i \(0.0384091\pi\)
\(684\) 0 0
\(685\) −16.8415 + 3.97574i −0.643481 + 0.151905i
\(686\) −15.1246 20.8172i −0.577460 0.794806i
\(687\) 0 0
\(688\) 25.8019 4.08662i 0.983689 0.155801i
\(689\) 4.47214i 0.170375i
\(690\) 0 0
\(691\) 9.12461 0.347117 0.173558 0.984824i \(-0.444473\pi\)
0.173558 + 0.984824i \(0.444473\pi\)
\(692\) −18.6068 36.5178i −0.707323 1.38820i
\(693\) 0 0
\(694\) −30.6053 42.1246i −1.16176 1.59903i
\(695\) −40.7364 25.1765i −1.54522 0.954999i
\(696\) 0 0
\(697\) −5.70820 5.70820i −0.216214 0.216214i
\(698\) −23.2847 3.68793i −0.881338 0.139590i
\(699\) 0 0
\(700\) 21.6419 + 15.9761i 0.817985 + 0.603841i
\(701\) 19.7072i 0.744330i 0.928167 + 0.372165i \(0.121384\pi\)
−0.928167 + 0.372165i \(0.878616\pi\)
\(702\) 0 0
\(703\) 1.45309 + 1.45309i 0.0548041 + 0.0548041i
\(704\) 15.2169 + 20.9443i 0.573509 + 0.789367i
\(705\) 0 0
\(706\) 36.2705 26.3521i 1.36506 0.991773i
\(707\) 5.52786 + 5.52786i 0.207897 + 0.207897i
\(708\) 0 0
\(709\) 3.24920 0.122026 0.0610131 0.998137i \(-0.480567\pi\)
0.0610131 + 0.998137i \(0.480567\pi\)
\(710\) 27.3539 + 23.5426i 1.02657 + 0.883539i
\(711\) 0 0
\(712\) 3.17442 6.23015i 0.118966 0.233485i
\(713\) −36.1803 + 36.1803i −1.35496 + 1.35496i
\(714\) 0 0
\(715\) −7.23607 + 1.70820i −0.270614 + 0.0638832i
\(716\) −4.65248 + 14.3188i −0.173871 + 0.535120i
\(717\) 0 0
\(718\) −27.8232 4.40676i −1.03835 0.164459i
\(719\) −4.01623 −0.149780 −0.0748900 0.997192i \(-0.523861\pi\)
−0.0748900 + 0.997192i \(0.523861\pi\)
\(720\) 0 0
\(721\) 12.7639 0.475354
\(722\) 20.9520 + 3.31848i 0.779754 + 0.123501i
\(723\) 0 0
\(724\) 9.40456 28.9443i 0.349518 1.07571i
\(725\) −13.7638 27.5276i −0.511175 1.02235i
\(726\) 0 0
\(727\) −9.51057 + 9.51057i −0.352727 + 0.352727i −0.861123 0.508396i \(-0.830239\pi\)
0.508396 + 0.861123i \(0.330239\pi\)
\(728\) −6.96552 3.54911i −0.258159 0.131539i
\(729\) 0 0
\(730\) −1.57233 20.9969i −0.0581945 0.777132i
\(731\) 9.23607 0.341608
\(732\) 0 0
\(733\) 19.1926 + 19.1926i 0.708896 + 0.708896i 0.966303 0.257407i \(-0.0828680\pi\)
−0.257407 + 0.966303i \(0.582868\pi\)
\(734\) 19.7477 14.3475i 0.728900 0.529577i
\(735\) 0 0
\(736\) 34.0260i 1.25422i
\(737\) −14.9443 14.9443i −0.550479 0.550479i
\(738\) 0 0
\(739\) 9.41641i 0.346388i −0.984888 0.173194i \(-0.944591\pi\)
0.984888 0.173194i \(-0.0554088\pi\)
\(740\) 0.377909 4.57949i 0.0138922 0.168345i
\(741\) 0 0
\(742\) −16.3540 2.59023i −0.600376 0.0950902i
\(743\) −4.80828 4.80828i −0.176399 0.176399i 0.613385 0.789784i \(-0.289807\pi\)
−0.789784 + 0.613385i \(0.789807\pi\)
\(744\) 0 0
\(745\) −15.1246 + 24.4721i −0.554123 + 0.896590i
\(746\) −26.3820 36.3117i −0.965912 1.32946i
\(747\) 0 0
\(748\) 4.15537 + 8.15537i 0.151935 + 0.298190i
\(749\) 3.46120 0.126469
\(750\) 0 0
\(751\) 11.4127i 0.416455i −0.978080 0.208227i \(-0.933231\pi\)
0.978080 0.208227i \(-0.0667694\pi\)
\(752\) −18.7462 + 2.96911i −0.683603 + 0.108272i
\(753\) 0 0
\(754\) 5.25731 + 7.23607i 0.191460 + 0.263522i
\(755\) 12.7639 + 7.88854i 0.464527 + 0.287094i
\(756\) 0 0
\(757\) 31.7154 31.7154i 1.15272 1.15272i 0.166709 0.986006i \(-0.446686\pi\)
0.986006 0.166709i \(-0.0533140\pi\)
\(758\) −0.0246576 + 0.155682i −0.000895606 + 0.00565463i
\(759\) 0 0
\(760\) 6.56816 + 10.8101i 0.238252 + 0.392125i
\(761\) −2.94427 −0.106730 −0.0533649 0.998575i \(-0.516995\pi\)
−0.0533649 + 0.998575i \(0.516995\pi\)
\(762\) 0 0
\(763\) −27.8885 + 27.8885i −1.00963 + 1.00963i
\(764\) 8.16348 25.1246i 0.295344 0.908977i
\(765\) 0 0
\(766\) 1.18034 + 1.62460i 0.0426474 + 0.0586991i
\(767\) −0.343027 + 0.343027i −0.0123860 + 0.0123860i
\(768\) 0 0
\(769\) 6.47214i 0.233391i −0.993168 0.116696i \(-0.962770\pi\)
0.993168 0.116696i \(-0.0372302\pi\)
\(770\) −2.05562 27.4508i −0.0740792 0.989257i
\(771\) 0 0
\(772\) 3.71000 1.89034i 0.133526 0.0680348i
\(773\) 31.5034 + 31.5034i 1.13310 + 1.13310i 0.989659 + 0.143439i \(0.0458159\pi\)
0.143439 + 0.989659i \(0.454184\pi\)
\(774\) 0 0
\(775\) −38.0423 + 19.0211i −1.36652 + 0.683259i
\(776\) 5.23607 + 16.1150i 0.187964 + 0.578493i
\(777\) 0 0
\(778\) 5.79289 + 0.917504i 0.207685 + 0.0328941i
\(779\) 11.4164i 0.409035i
\(780\) 0 0
\(781\) 36.9322i 1.32154i
\(782\) 1.88191 11.8819i 0.0672969 0.424896i
\(783\) 0 0
\(784\) 0.555029 0.763932i 0.0198225 0.0272833i
\(785\) −10.1246 42.8885i −0.361363 1.53076i
\(786\) 0 0
\(787\) 17.8541 + 17.8541i 0.636430 + 0.636430i 0.949673 0.313243i \(-0.101415\pi\)
−0.313243 + 0.949673i \(0.601415\pi\)
\(788\) −23.2686 + 11.8560i −0.828911 + 0.422351i
\(789\) 0 0
\(790\) −5.99499 + 6.96552i −0.213292 + 0.247822i
\(791\) 33.1280i 1.17790i
\(792\) 0 0
\(793\) −0.652476 + 0.652476i −0.0231701 + 0.0231701i
\(794\) 39.5609 28.7426i 1.40396 1.02004i
\(795\) 0 0
\(796\) −41.3050 13.4208i −1.46402 0.475687i
\(797\) −14.8334 + 14.8334i −0.525426 + 0.525426i −0.919205 0.393779i \(-0.871167\pi\)
0.393779 + 0.919205i \(0.371167\pi\)
\(798\) 0 0
\(799\) −6.71040 −0.237397
\(800\) 8.94427 26.8328i 0.316228 0.948683i
\(801\) 0 0
\(802\) −44.5420 7.05476i −1.57283 0.249112i
\(803\) −15.2361 + 15.2361i −0.537669 + 0.537669i
\(804\) 0 0
\(805\) −19.0211 + 30.7768i −0.670407 + 1.08474i
\(806\) 10.0000 7.26543i 0.352235 0.255914i
\(807\) 0 0
\(808\) 3.73175 7.32398i 0.131283 0.257657i
\(809\) 4.94427i 0.173831i 0.996216 + 0.0869157i \(0.0277011\pi\)
−0.996216 + 0.0869157i \(0.972299\pi\)
\(810\) 0 0
\(811\) 26.0689 0.915402 0.457701 0.889106i \(-0.348673\pi\)
0.457701 + 0.889106i \(0.348673\pi\)
\(812\) −29.5064 + 15.0343i −1.03547 + 0.527599i
\(813\) 0 0
\(814\) −3.80423 + 2.76393i −0.133338 + 0.0968758i
\(815\) −10.0656 42.6385i −0.352582 1.49356i
\(816\) 0 0
\(817\) −9.23607 9.23607i −0.323129 0.323129i
\(818\) 4.77789 30.1664i 0.167055 1.05474i
\(819\) 0 0
\(820\) 19.4743 16.5052i 0.680073 0.576387i
\(821\) 17.9111i 0.625101i 0.949901 + 0.312550i \(0.101183\pi\)
−0.949901 + 0.312550i \(0.898817\pi\)
\(822\) 0 0
\(823\) −13.8698 13.8698i −0.483472 0.483472i 0.422767 0.906238i \(-0.361059\pi\)
−0.906238 + 0.422767i \(0.861059\pi\)
\(824\) −4.14725 12.7639i −0.144476 0.444653i
\(825\) 0 0
\(826\) −1.05573 1.45309i −0.0367335 0.0505593i
\(827\) −8.14590 8.14590i −0.283261 0.283261i 0.551147 0.834408i \(-0.314190\pi\)
−0.834408 + 0.551147i \(0.814190\pi\)
\(828\) 0 0
\(829\) 54.5002 1.89287 0.946436 0.322892i \(-0.104655\pi\)
0.946436 + 0.322892i \(0.104655\pi\)
\(830\) 2.21013 + 29.5141i 0.0767146 + 1.02445i
\(831\) 0 0
\(832\) −1.28587 + 8.11869i −0.0445797 + 0.281465i
\(833\) 0.236068 0.236068i 0.00817927 0.00817927i
\(834\) 0 0
\(835\) −5.85410 24.7984i −0.202590 0.858183i
\(836\) 4.00000 12.3107i 0.138343 0.425776i
\(837\) 0 0
\(838\) −6.37873 + 40.2737i −0.220350 + 1.39123i
\(839\) −15.2169 −0.525346 −0.262673 0.964885i \(-0.584604\pi\)
−0.262673 + 0.964885i \(0.584604\pi\)
\(840\) 0 0
\(841\) 8.88854 0.306502
\(842\) −6.28867 + 39.7051i −0.216722 + 1.36833i
\(843\) 0 0
\(844\) 4.35926 + 1.41641i 0.150052 + 0.0487548i
\(845\) 22.7194 + 14.0413i 0.781570 + 0.483037i
\(846\) 0 0
\(847\) 1.00406 1.00406i 0.0344998 0.0344998i
\(848\) 2.72353 + 17.1957i 0.0935262 + 0.590501i
\(849\) 0 0
\(850\) 4.60741 8.87535i 0.158033 0.304422i
\(851\) 6.18034 0.211859
\(852\) 0 0
\(853\) 18.8496 + 18.8496i 0.645399 + 0.645399i 0.951877 0.306479i \(-0.0991509\pi\)
−0.306479 + 0.951877i \(0.599151\pi\)
\(854\) −2.00811 2.76393i −0.0687163 0.0945798i
\(855\) 0 0
\(856\) −1.12461 3.46120i −0.0384384 0.118301i
\(857\) −35.8328 35.8328i −1.22403 1.22403i −0.966188 0.257837i \(-0.916990\pi\)
−0.257837 0.966188i \(-0.583010\pi\)
\(858\) 0 0
\(859\) 16.4721i 0.562022i −0.959705 0.281011i \(-0.909330\pi\)
0.959705 0.281011i \(-0.0906697\pi\)
\(860\) −2.40206 + 29.1081i −0.0819095 + 0.992577i
\(861\) 0 0
\(862\) −4.20808 + 26.5688i −0.143328 + 0.904935i
\(863\) 35.5851 + 35.5851i 1.21133 + 1.21133i 0.970589 + 0.240743i \(0.0773909\pi\)
0.240743 + 0.970589i \(0.422609\pi\)
\(864\) 0 0
\(865\) 44.5967 10.5279i 1.51633 0.357958i
\(866\) 1.32624 0.963568i 0.0450674 0.0327434i
\(867\) 0 0
\(868\) 20.7768 + 40.7768i 0.705212 + 1.38406i
\(869\) 9.40456 0.319028
\(870\) 0 0
\(871\) 6.71040i 0.227373i
\(872\) 36.9501 + 18.8270i 1.25129 + 0.637563i
\(873\) 0 0
\(874\) −13.7638 + 10.0000i −0.465568 + 0.338255i
\(875\) −23.0902 + 19.2705i −0.780590 + 0.651462i
\(876\) 0 0
\(877\) −21.5438 + 21.5438i −0.727482 + 0.727482i −0.970118 0.242636i \(-0.921988\pi\)
0.242636 + 0.970118i \(0.421988\pi\)
\(878\) −49.0782 7.77322i −1.65631 0.262333i
\(879\) 0 0
\(880\) −26.7829 + 10.9749i −0.902850 + 0.369964i
\(881\) −6.87539 −0.231638 −0.115819 0.993270i \(-0.536949\pi\)
−0.115819 + 0.993270i \(0.536949\pi\)
\(882\) 0 0
\(883\) −2.79837 + 2.79837i −0.0941728 + 0.0941728i −0.752624 0.658451i \(-0.771212\pi\)
0.658451 + 0.752624i \(0.271212\pi\)
\(884\) −0.898056 + 2.76393i −0.0302049 + 0.0929611i
\(885\) 0 0
\(886\) 1.76393 1.28157i 0.0592605 0.0430552i
\(887\) −11.5187 + 11.5187i −0.386759 + 0.386759i −0.873530 0.486770i \(-0.838175\pi\)
0.486770 + 0.873530i \(0.338175\pi\)
\(888\) 0 0
\(889\) 10.6525i 0.357273i
\(890\) 5.92522 + 5.09964i 0.198614 + 0.170940i
\(891\) 0 0
\(892\) 18.2504 + 35.8185i 0.611069 + 1.19929i
\(893\) 6.71040 + 6.71040i 0.224555 + 0.224555i
\(894\) 0 0
\(895\) −14.3188 8.84953i −0.478626 0.295807i
\(896\) −28.9443 9.40456i −0.966960 0.314184i
\(897\) 0 0
\(898\) 3.89296 24.5792i 0.129910 0.820218i
\(899\) 52.3607i 1.74633i
\(900\) 0 0
\(901\) 6.15537i 0.205065i
\(902\) −25.8019 4.08662i −0.859110 0.136070i
\(903\) 0 0
\(904\) −33.1280 + 10.7639i −1.10182 + 0.358003i
\(905\) 28.9443 + 17.8885i 0.962140 + 0.594635i
\(906\) 0 0
\(907\) −7.67376 7.67376i −0.254803 0.254803i 0.568133 0.822936i \(-0.307666\pi\)
−0.822936 + 0.568133i \(0.807666\pi\)
\(908\) 12.0472 + 23.6439i 0.399800 + 0.784651i
\(909\) 0 0
\(910\) 5.70157 6.62460i 0.189005 0.219603i
\(911\) 10.3026i 0.341341i −0.985328 0.170671i \(-0.945407\pi\)
0.985328 0.170671i \(-0.0545934\pi\)
\(912\) 0 0
\(913\) 21.4164 21.4164i 0.708780 0.708780i
\(914\) 11.3472 + 15.6180i 0.375331 + 0.516599i
\(915\) 0 0
\(916\) 15.1246 + 4.91428i 0.499731 + 0.162373i
\(917\) 26.0746 26.0746i 0.861058 0.861058i
\(918\) 0 0
\(919\) 18.1231 0.597825 0.298913 0.954281i \(-0.403376\pi\)
0.298913 + 0.954281i \(0.403376\pi\)
\(920\) 36.9572 + 9.02113i 1.21844 + 0.297418i
\(921\) 0 0
\(922\) −6.08999 + 38.4507i −0.200563 + 1.26631i
\(923\) 8.29180 8.29180i 0.272928 0.272928i
\(924\) 0 0
\(925\) 4.87380 + 1.62460i 0.160249 + 0.0534165i
\(926\) 2.88854 + 3.97574i 0.0949234 + 0.130651i
\(927\) 0 0
\(928\) 24.6215 + 24.6215i 0.808239 + 0.808239i
\(929\) 36.6525i 1.20253i 0.799050 + 0.601264i \(0.205336\pi\)
−0.799050 + 0.601264i \(0.794664\pi\)
\(930\) 0 0
\(931\) −0.472136 −0.0154736
\(932\) −13.7906 + 7.02666i −0.451726 + 0.230166i
\(933\) 0 0
\(934\) 21.5438 + 29.6525i 0.704934 + 0.970259i
\(935\) −9.95959 + 2.35114i −0.325714 + 0.0768905i
\(936\) 0 0
\(937\) −42.3050 42.3050i −1.38204 1.38204i −0.840987 0.541056i \(-0.818025\pi\)
−0.541056 0.840987i \(-0.681975\pi\)
\(938\) 24.5391 + 3.88661i 0.801230 + 0.126902i
\(939\) 0 0
\(940\) 1.74520 21.1482i 0.0569220 0.689780i
\(941\) 37.6183i 1.22632i −0.789959 0.613160i \(-0.789898\pi\)
0.789959 0.613160i \(-0.210102\pi\)
\(942\) 0 0
\(943\) 24.2784 + 24.2784i 0.790615 + 0.790615i
\(944\) −1.11006 + 1.52786i −0.0361293 + 0.0497277i
\(945\) 0 0
\(946\) 24.1803 17.5680i 0.786171 0.571186i
\(947\) 2.14590 + 2.14590i 0.0697323 + 0.0697323i 0.741113 0.671381i \(-0.234298\pi\)
−0.671381 + 0.741113i \(0.734298\pi\)
\(948\) 0 0
\(949\) −6.84142 −0.222082
\(950\) −13.4828 + 4.26793i −0.437438 + 0.138470i
\(951\) 0 0
\(952\) −9.58721 4.88493i −0.310723 0.158321i
\(953\) 29.1803 29.1803i 0.945244 0.945244i −0.0533329 0.998577i \(-0.516984\pi\)
0.998577 + 0.0533329i \(0.0169844\pi\)
\(954\) 0 0
\(955\) 25.1246 + 15.5279i 0.813013 + 0.502470i
\(956\) 25.5279 + 8.29451i 0.825630 + 0.268263i
\(957\) 0 0
\(958\) 6.56816 + 1.04029i 0.212208 + 0.0336104i
\(959\) −20.8172 −0.672224
\(960\) 0 0
\(961\) −41.3607 −1.33422
\(962\) −1.47464 0.233561i −0.0475444 0.00753029i
\(963\) 0 0
\(964\) 21.3723 + 6.94427i 0.688355 + 0.223660i
\(965\) 1.06957 + 4.53077i 0.0344307 + 0.145851i
\(966\) 0 0
\(967\) 10.9637 10.9637i 0.352567 0.352567i −0.508497 0.861064i \(-0.669799\pi\)
0.861064 + 0.508497i \(0.169799\pi\)
\(968\) −1.33030 0.677819i −0.0427573 0.0217859i
\(969\) 0 0
\(970\) −18.8914 + 1.41466i −0.606566 + 0.0454219i
\(971\) 15.5967 0.500523 0.250262 0.968178i \(-0.419483\pi\)
0.250262 + 0.968178i \(0.419483\pi\)
\(972\) 0 0
\(973\) −40.7364 40.7364i −1.30595 1.30595i
\(974\) −30.6053 + 22.2361i −0.980658 + 0.712490i
\(975\) 0 0
\(976\) −2.11146 + 2.90617i −0.0675861 + 0.0930242i
\(977\) 23.7639 + 23.7639i 0.760276 + 0.760276i 0.976372 0.216096i \(-0.0693326\pi\)
−0.216096 + 0.976372i \(0.569333\pi\)
\(978\) 0 0
\(979\) 8.00000i 0.255681i
\(980\) 0.682589 + 0.805379i 0.0218045 + 0.0257269i
\(981\) 0 0
\(982\) 21.2818 + 3.37070i 0.679129 + 0.107563i
\(983\) 18.0171 + 18.0171i 0.574655 + 0.574655i 0.933426 0.358770i \(-0.116804\pi\)
−0.358770 + 0.933426i \(0.616804\pi\)
\(984\) 0 0
\(985\) −6.70820 28.4164i −0.213741 0.905422i
\(986\) 7.23607 + 9.95959i 0.230443 + 0.317178i
\(987\) 0 0
\(988\) 3.66199 1.86588i 0.116503 0.0593614i
\(989\) −39.2833 −1.24914
\(990\) 0 0
\(991\) 14.3188i 0.454853i 0.973795 + 0.227427i \(0.0730312\pi\)
−0.973795 + 0.227427i \(0.926969\pi\)
\(992\) 34.0260 34.0260i 1.08033 1.08033i
\(993\) 0 0
\(994\) 25.5195 + 35.1246i 0.809430 + 1.11409i
\(995\) 25.5279 41.3050i 0.809288 1.30945i
\(996\) 0 0
\(997\) −27.9112 + 27.9112i −0.883955 + 0.883955i −0.993934 0.109979i \(-0.964922\pi\)
0.109979 + 0.993934i \(0.464922\pi\)
\(998\) −2.63012 + 16.6059i −0.0832551 + 0.525652i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.2.w.c.307.4 8
3.2 odd 2 40.2.k.a.27.1 yes 8
4.3 odd 2 1440.2.bi.c.847.2 8
5.3 odd 4 inner 360.2.w.c.163.2 8
8.3 odd 2 inner 360.2.w.c.307.2 8
8.5 even 2 1440.2.bi.c.847.3 8
12.11 even 2 160.2.o.a.47.2 8
15.2 even 4 200.2.k.h.43.2 8
15.8 even 4 40.2.k.a.3.3 yes 8
15.14 odd 2 200.2.k.h.107.4 8
20.3 even 4 1440.2.bi.c.1423.3 8
24.5 odd 2 160.2.o.a.47.1 8
24.11 even 2 40.2.k.a.27.3 yes 8
40.3 even 4 inner 360.2.w.c.163.4 8
40.13 odd 4 1440.2.bi.c.1423.2 8
48.5 odd 4 1280.2.n.q.767.2 8
48.11 even 4 1280.2.n.m.767.4 8
48.29 odd 4 1280.2.n.m.767.3 8
48.35 even 4 1280.2.n.q.767.1 8
60.23 odd 4 160.2.o.a.143.1 8
60.47 odd 4 800.2.o.g.143.4 8
60.59 even 2 800.2.o.g.207.3 8
120.29 odd 2 800.2.o.g.207.4 8
120.53 even 4 160.2.o.a.143.2 8
120.59 even 2 200.2.k.h.107.2 8
120.77 even 4 800.2.o.g.143.3 8
120.83 odd 4 40.2.k.a.3.1 8
120.107 odd 4 200.2.k.h.43.4 8
240.53 even 4 1280.2.n.m.1023.4 8
240.83 odd 4 1280.2.n.m.1023.3 8
240.173 even 4 1280.2.n.q.1023.1 8
240.203 odd 4 1280.2.n.q.1023.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.k.a.3.1 8 120.83 odd 4
40.2.k.a.3.3 yes 8 15.8 even 4
40.2.k.a.27.1 yes 8 3.2 odd 2
40.2.k.a.27.3 yes 8 24.11 even 2
160.2.o.a.47.1 8 24.5 odd 2
160.2.o.a.47.2 8 12.11 even 2
160.2.o.a.143.1 8 60.23 odd 4
160.2.o.a.143.2 8 120.53 even 4
200.2.k.h.43.2 8 15.2 even 4
200.2.k.h.43.4 8 120.107 odd 4
200.2.k.h.107.2 8 120.59 even 2
200.2.k.h.107.4 8 15.14 odd 2
360.2.w.c.163.2 8 5.3 odd 4 inner
360.2.w.c.163.4 8 40.3 even 4 inner
360.2.w.c.307.2 8 8.3 odd 2 inner
360.2.w.c.307.4 8 1.1 even 1 trivial
800.2.o.g.143.3 8 120.77 even 4
800.2.o.g.143.4 8 60.47 odd 4
800.2.o.g.207.3 8 60.59 even 2
800.2.o.g.207.4 8 120.29 odd 2
1280.2.n.m.767.3 8 48.29 odd 4
1280.2.n.m.767.4 8 48.11 even 4
1280.2.n.m.1023.3 8 240.83 odd 4
1280.2.n.m.1023.4 8 240.53 even 4
1280.2.n.q.767.1 8 48.35 even 4
1280.2.n.q.767.2 8 48.5 odd 4
1280.2.n.q.1023.1 8 240.173 even 4
1280.2.n.q.1023.2 8 240.203 odd 4
1440.2.bi.c.847.2 8 4.3 odd 2
1440.2.bi.c.847.3 8 8.5 even 2
1440.2.bi.c.1423.2 8 40.13 odd 4
1440.2.bi.c.1423.3 8 20.3 even 4