Properties

Label 200.2.k.h.43.2
Level $200$
Weight $2$
Character 200.43
Analytic conductor $1.597$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,2,Mod(43,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59700804043\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.2
Root \(-0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 200.43
Dual form 200.2.k.h.107.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.221232 - 1.39680i) q^{2} +(-0.618034 - 0.618034i) q^{3} +(-1.90211 - 0.618034i) q^{4} +(-1.00000 + 0.726543i) q^{6} +(-1.90211 - 1.90211i) q^{7} +(-1.28408 + 2.52015i) q^{8} -2.23607i q^{9} -3.23607 q^{11} +(0.793604 + 1.55754i) q^{12} +(0.726543 - 0.726543i) q^{13} +(-3.07768 + 2.23607i) q^{14} +(3.23607 + 2.35114i) q^{16} +(1.00000 - 1.00000i) q^{17} +(-3.12334 - 0.494689i) q^{18} +2.00000i q^{19} +2.35114i q^{21} +(-0.715921 + 4.52015i) q^{22} +(4.25325 - 4.25325i) q^{23} +(2.35114 - 0.763932i) q^{24} +(-0.854102 - 1.17557i) q^{26} +(-3.23607 + 3.23607i) q^{27} +(2.44246 + 4.79360i) q^{28} +6.15537 q^{29} -8.50651i q^{31} +(4.00000 - 4.00000i) q^{32} +(2.00000 + 2.00000i) q^{33} +(-1.17557 - 1.61803i) q^{34} +(-1.38197 + 4.25325i) q^{36} +(-0.726543 - 0.726543i) q^{37} +(2.79360 + 0.442463i) q^{38} -0.898056 q^{39} +5.70820 q^{41} +(3.28408 + 0.520147i) q^{42} +(-4.61803 - 4.61803i) q^{43} +(6.15537 + 2.00000i) q^{44} +(-5.00000 - 6.88191i) q^{46} +(3.35520 + 3.35520i) q^{47} +(-0.546915 - 3.45309i) q^{48} +0.236068i q^{49} -1.23607 q^{51} +(-1.83099 + 0.932938i) q^{52} +(-3.07768 + 3.07768i) q^{53} +(3.80423 + 5.23607i) q^{54} +(7.23607 - 2.35114i) q^{56} +(1.23607 - 1.23607i) q^{57} +(1.36176 - 8.59783i) q^{58} +0.472136i q^{59} +0.898056i q^{61} +(-11.8819 - 1.88191i) q^{62} +(-4.25325 + 4.25325i) q^{63} +(-4.70228 - 6.47214i) q^{64} +(3.23607 - 2.35114i) q^{66} +(4.61803 - 4.61803i) q^{67} +(-2.52015 + 1.28408i) q^{68} -5.25731 q^{69} +11.4127i q^{71} +(5.63522 + 2.87129i) q^{72} +(4.70820 + 4.70820i) q^{73} +(-1.17557 + 0.854102i) q^{74} +(1.23607 - 3.80423i) q^{76} +(6.15537 + 6.15537i) q^{77} +(-0.198678 + 1.25441i) q^{78} -2.90617 q^{79} -2.70820 q^{81} +(1.26284 - 7.97323i) q^{82} +(6.61803 + 6.61803i) q^{83} +(1.45309 - 4.47214i) q^{84} +(-7.47214 + 5.42882i) q^{86} +(-3.80423 - 3.80423i) q^{87} +(4.15537 - 8.15537i) q^{88} -2.47214i q^{89} -2.76393 q^{91} +(-10.7188 + 5.46151i) q^{92} +(-5.25731 + 5.25731i) q^{93} +(5.42882 - 3.94427i) q^{94} -4.94427 q^{96} +(-4.23607 + 4.23607i) q^{97} +(0.329740 + 0.0522257i) q^{98} +7.23607i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 4 q^{3} - 8 q^{6} - 4 q^{8} - 8 q^{11} - 12 q^{12} + 8 q^{16} + 8 q^{17} - 10 q^{18} - 12 q^{22} + 20 q^{26} - 8 q^{27} + 20 q^{28} + 32 q^{32} + 16 q^{33} - 20 q^{36} + 4 q^{38} - 8 q^{41}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.221232 1.39680i 0.156434 0.987688i
\(3\) −0.618034 0.618034i −0.356822 0.356822i 0.505818 0.862640i \(-0.331191\pi\)
−0.862640 + 0.505818i \(0.831191\pi\)
\(4\) −1.90211 0.618034i −0.951057 0.309017i
\(5\) 0 0
\(6\) −1.00000 + 0.726543i −0.408248 + 0.296610i
\(7\) −1.90211 1.90211i −0.718931 0.718931i 0.249455 0.968386i \(-0.419748\pi\)
−0.968386 + 0.249455i \(0.919748\pi\)
\(8\) −1.28408 + 2.52015i −0.453990 + 0.891007i
\(9\) 2.23607i 0.745356i
\(10\) 0 0
\(11\) −3.23607 −0.975711 −0.487856 0.872924i \(-0.662221\pi\)
−0.487856 + 0.872924i \(0.662221\pi\)
\(12\) 0.793604 + 1.55754i 0.229094 + 0.449622i
\(13\) 0.726543 0.726543i 0.201507 0.201507i −0.599139 0.800645i \(-0.704490\pi\)
0.800645 + 0.599139i \(0.204490\pi\)
\(14\) −3.07768 + 2.23607i −0.822546 + 0.597614i
\(15\) 0 0
\(16\) 3.23607 + 2.35114i 0.809017 + 0.587785i
\(17\) 1.00000 1.00000i 0.242536 0.242536i −0.575363 0.817898i \(-0.695139\pi\)
0.817898 + 0.575363i \(0.195139\pi\)
\(18\) −3.12334 0.494689i −0.736179 0.116599i
\(19\) 2.00000i 0.458831i 0.973329 + 0.229416i \(0.0736815\pi\)
−0.973329 + 0.229416i \(0.926318\pi\)
\(20\) 0 0
\(21\) 2.35114i 0.513061i
\(22\) −0.715921 + 4.52015i −0.152635 + 0.963699i
\(23\) 4.25325 4.25325i 0.886865 0.886865i −0.107356 0.994221i \(-0.534238\pi\)
0.994221 + 0.107356i \(0.0342384\pi\)
\(24\) 2.35114 0.763932i 0.479925 0.155937i
\(25\) 0 0
\(26\) −0.854102 1.17557i −0.167503 0.230548i
\(27\) −3.23607 + 3.23607i −0.622782 + 0.622782i
\(28\) 2.44246 + 4.79360i 0.461582 + 0.905906i
\(29\) 6.15537 1.14302 0.571511 0.820594i \(-0.306357\pi\)
0.571511 + 0.820594i \(0.306357\pi\)
\(30\) 0 0
\(31\) 8.50651i 1.52781i −0.645326 0.763907i \(-0.723279\pi\)
0.645326 0.763907i \(-0.276721\pi\)
\(32\) 4.00000 4.00000i 0.707107 0.707107i
\(33\) 2.00000 + 2.00000i 0.348155 + 0.348155i
\(34\) −1.17557 1.61803i −0.201609 0.277491i
\(35\) 0 0
\(36\) −1.38197 + 4.25325i −0.230328 + 0.708876i
\(37\) −0.726543 0.726543i −0.119443 0.119443i 0.644859 0.764302i \(-0.276916\pi\)
−0.764302 + 0.644859i \(0.776916\pi\)
\(38\) 2.79360 + 0.442463i 0.453182 + 0.0717771i
\(39\) −0.898056 −0.143804
\(40\) 0 0
\(41\) 5.70820 0.891472 0.445736 0.895165i \(-0.352942\pi\)
0.445736 + 0.895165i \(0.352942\pi\)
\(42\) 3.28408 + 0.520147i 0.506744 + 0.0802604i
\(43\) −4.61803 4.61803i −0.704244 0.704244i 0.261075 0.965319i \(-0.415923\pi\)
−0.965319 + 0.261075i \(0.915923\pi\)
\(44\) 6.15537 + 2.00000i 0.927957 + 0.301511i
\(45\) 0 0
\(46\) −5.00000 6.88191i −0.737210 1.01468i
\(47\) 3.35520 + 3.35520i 0.489406 + 0.489406i 0.908119 0.418713i \(-0.137519\pi\)
−0.418713 + 0.908119i \(0.637519\pi\)
\(48\) −0.546915 3.45309i −0.0789404 0.498410i
\(49\) 0.236068i 0.0337240i
\(50\) 0 0
\(51\) −1.23607 −0.173084
\(52\) −1.83099 + 0.932938i −0.253913 + 0.129375i
\(53\) −3.07768 + 3.07768i −0.422752 + 0.422752i −0.886150 0.463398i \(-0.846630\pi\)
0.463398 + 0.886150i \(0.346630\pi\)
\(54\) 3.80423 + 5.23607i 0.517690 + 0.712539i
\(55\) 0 0
\(56\) 7.23607 2.35114i 0.966960 0.314184i
\(57\) 1.23607 1.23607i 0.163721 0.163721i
\(58\) 1.36176 8.59783i 0.178808 1.12895i
\(59\) 0.472136i 0.0614669i 0.999528 + 0.0307334i \(0.00978430\pi\)
−0.999528 + 0.0307334i \(0.990216\pi\)
\(60\) 0 0
\(61\) 0.898056i 0.114984i 0.998346 + 0.0574921i \(0.0183104\pi\)
−0.998346 + 0.0574921i \(0.981690\pi\)
\(62\) −11.8819 1.88191i −1.50900 0.239003i
\(63\) −4.25325 + 4.25325i −0.535860 + 0.535860i
\(64\) −4.70228 6.47214i −0.587785 0.809017i
\(65\) 0 0
\(66\) 3.23607 2.35114i 0.398332 0.289405i
\(67\) 4.61803 4.61803i 0.564183 0.564183i −0.366310 0.930493i \(-0.619379\pi\)
0.930493 + 0.366310i \(0.119379\pi\)
\(68\) −2.52015 + 1.28408i −0.305613 + 0.155717i
\(69\) −5.25731 −0.632906
\(70\) 0 0
\(71\) 11.4127i 1.35444i 0.735783 + 0.677218i \(0.236815\pi\)
−0.735783 + 0.677218i \(0.763185\pi\)
\(72\) 5.63522 + 2.87129i 0.664117 + 0.338385i
\(73\) 4.70820 + 4.70820i 0.551054 + 0.551054i 0.926745 0.375691i \(-0.122595\pi\)
−0.375691 + 0.926745i \(0.622595\pi\)
\(74\) −1.17557 + 0.854102i −0.136657 + 0.0992873i
\(75\) 0 0
\(76\) 1.23607 3.80423i 0.141787 0.436375i
\(77\) 6.15537 + 6.15537i 0.701469 + 0.701469i
\(78\) −0.198678 + 1.25441i −0.0224959 + 0.142034i
\(79\) −2.90617 −0.326970 −0.163485 0.986546i \(-0.552273\pi\)
−0.163485 + 0.986546i \(0.552273\pi\)
\(80\) 0 0
\(81\) −2.70820 −0.300912
\(82\) 1.26284 7.97323i 0.139457 0.880496i
\(83\) 6.61803 + 6.61803i 0.726424 + 0.726424i 0.969905 0.243482i \(-0.0782896\pi\)
−0.243482 + 0.969905i \(0.578290\pi\)
\(84\) 1.45309 4.47214i 0.158545 0.487950i
\(85\) 0 0
\(86\) −7.47214 + 5.42882i −0.805741 + 0.585405i
\(87\) −3.80423 3.80423i −0.407856 0.407856i
\(88\) 4.15537 8.15537i 0.442964 0.869365i
\(89\) 2.47214i 0.262046i −0.991379 0.131023i \(-0.958174\pi\)
0.991379 0.131023i \(-0.0418262\pi\)
\(90\) 0 0
\(91\) −2.76393 −0.289739
\(92\) −10.7188 + 5.46151i −1.11751 + 0.569402i
\(93\) −5.25731 + 5.25731i −0.545158 + 0.545158i
\(94\) 5.42882 3.94427i 0.559940 0.406821i
\(95\) 0 0
\(96\) −4.94427 −0.504623
\(97\) −4.23607 + 4.23607i −0.430108 + 0.430108i −0.888665 0.458557i \(-0.848366\pi\)
0.458557 + 0.888665i \(0.348366\pi\)
\(98\) 0.329740 + 0.0522257i 0.0333088 + 0.00527560i
\(99\) 7.23607i 0.727252i
\(100\) 0 0
\(101\) 2.90617i 0.289175i 0.989492 + 0.144587i \(0.0461855\pi\)
−0.989492 + 0.144587i \(0.953815\pi\)
\(102\) −0.273457 + 1.72654i −0.0270763 + 0.170953i
\(103\) −3.35520 + 3.35520i −0.330597 + 0.330597i −0.852813 0.522216i \(-0.825106\pi\)
0.522216 + 0.852813i \(0.325106\pi\)
\(104\) 0.898056 + 2.76393i 0.0880616 + 0.271026i
\(105\) 0 0
\(106\) 3.61803 + 4.97980i 0.351415 + 0.483681i
\(107\) −0.909830 + 0.909830i −0.0879566 + 0.0879566i −0.749716 0.661760i \(-0.769810\pi\)
0.661760 + 0.749716i \(0.269810\pi\)
\(108\) 8.15537 4.15537i 0.784751 0.399850i
\(109\) −14.6619 −1.40435 −0.702176 0.712003i \(-0.747788\pi\)
−0.702176 + 0.712003i \(0.747788\pi\)
\(110\) 0 0
\(111\) 0.898056i 0.0852397i
\(112\) −1.68323 10.6275i −0.159050 1.00420i
\(113\) −8.70820 8.70820i −0.819199 0.819199i 0.166793 0.985992i \(-0.446659\pi\)
−0.985992 + 0.166793i \(0.946659\pi\)
\(114\) −1.45309 2.00000i −0.136094 0.187317i
\(115\) 0 0
\(116\) −11.7082 3.80423i −1.08708 0.353214i
\(117\) −1.62460 1.62460i −0.150194 0.150194i
\(118\) 0.659481 + 0.104451i 0.0607101 + 0.00961554i
\(119\) −3.80423 −0.348733
\(120\) 0 0
\(121\) −0.527864 −0.0479876
\(122\) 1.25441 + 0.198678i 0.113569 + 0.0179875i
\(123\) −3.52786 3.52786i −0.318097 0.318097i
\(124\) −5.25731 + 16.1803i −0.472120 + 1.45304i
\(125\) 0 0
\(126\) 5.00000 + 6.88191i 0.445435 + 0.613089i
\(127\) 2.80017 + 2.80017i 0.248475 + 0.248475i 0.820344 0.571870i \(-0.193782\pi\)
−0.571870 + 0.820344i \(0.693782\pi\)
\(128\) −10.0806 + 5.13632i −0.891007 + 0.453990i
\(129\) 5.70820i 0.502579i
\(130\) 0 0
\(131\) 13.7082 1.19769 0.598846 0.800864i \(-0.295626\pi\)
0.598846 + 0.800864i \(0.295626\pi\)
\(132\) −2.56816 5.04029i −0.223529 0.438701i
\(133\) 3.80423 3.80423i 0.329868 0.329868i
\(134\) −5.42882 7.47214i −0.468979 0.645494i
\(135\) 0 0
\(136\) 1.23607 + 3.80423i 0.105992 + 0.326210i
\(137\) 5.47214 5.47214i 0.467516 0.467516i −0.433593 0.901109i \(-0.642754\pi\)
0.901109 + 0.433593i \(0.142754\pi\)
\(138\) −1.16308 + 7.34342i −0.0990083 + 0.625114i
\(139\) 21.4164i 1.81652i −0.418411 0.908258i \(-0.637413\pi\)
0.418411 0.908258i \(-0.362587\pi\)
\(140\) 0 0
\(141\) 4.14725i 0.349262i
\(142\) 15.9413 + 2.52485i 1.33776 + 0.211880i
\(143\) −2.35114 + 2.35114i −0.196612 + 0.196612i
\(144\) 5.25731 7.23607i 0.438109 0.603006i
\(145\) 0 0
\(146\) 7.61803 5.53483i 0.630473 0.458065i
\(147\) 0.145898 0.145898i 0.0120335 0.0120335i
\(148\) 0.932938 + 1.83099i 0.0766870 + 0.150507i
\(149\) 12.8658 1.05400 0.527002 0.849864i \(-0.323316\pi\)
0.527002 + 0.849864i \(0.323316\pi\)
\(150\) 0 0
\(151\) 6.71040i 0.546084i −0.962002 0.273042i \(-0.911970\pi\)
0.962002 0.273042i \(-0.0880298\pi\)
\(152\) −5.04029 2.56816i −0.408822 0.208305i
\(153\) −2.23607 2.23607i −0.180775 0.180775i
\(154\) 9.95959 7.23607i 0.802567 0.583099i
\(155\) 0 0
\(156\) 1.70820 + 0.555029i 0.136766 + 0.0444379i
\(157\) −13.9353 13.9353i −1.11216 1.11216i −0.992858 0.119303i \(-0.961934\pi\)
−0.119303 0.992858i \(-0.538066\pi\)
\(158\) −0.642937 + 4.05934i −0.0511493 + 0.322944i
\(159\) 3.80423 0.301695
\(160\) 0 0
\(161\) −16.1803 −1.27519
\(162\) −0.599141 + 3.78283i −0.0470729 + 0.297207i
\(163\) 13.8541 + 13.8541i 1.08514 + 1.08514i 0.996021 + 0.0891157i \(0.0284041\pi\)
0.0891157 + 0.996021i \(0.471596\pi\)
\(164\) −10.8576 3.52786i −0.847840 0.275480i
\(165\) 0 0
\(166\) 10.7082 7.77997i 0.831118 0.603842i
\(167\) 8.05748 + 8.05748i 0.623507 + 0.623507i 0.946426 0.322920i \(-0.104664\pi\)
−0.322920 + 0.946426i \(0.604664\pi\)
\(168\) −5.92522 3.01905i −0.457141 0.232925i
\(169\) 11.9443i 0.918790i
\(170\) 0 0
\(171\) 4.47214 0.341993
\(172\) 5.92992 + 11.6381i 0.452152 + 0.887399i
\(173\) 14.4904 14.4904i 1.10168 1.10168i 0.107474 0.994208i \(-0.465724\pi\)
0.994208 0.107474i \(-0.0342762\pi\)
\(174\) −6.15537 + 4.47214i −0.466637 + 0.339032i
\(175\) 0 0
\(176\) −10.4721 7.60845i −0.789367 0.573509i
\(177\) 0.291796 0.291796i 0.0219327 0.0219327i
\(178\) −3.45309 0.546915i −0.258820 0.0409930i
\(179\) 7.52786i 0.562659i 0.959611 + 0.281329i \(0.0907754\pi\)
−0.959611 + 0.281329i \(0.909225\pi\)
\(180\) 0 0
\(181\) 15.2169i 1.13106i −0.824726 0.565532i \(-0.808671\pi\)
0.824726 0.565532i \(-0.191329\pi\)
\(182\) −0.611469 + 3.86067i −0.0453251 + 0.286172i
\(183\) 0.555029 0.555029i 0.0410289 0.0410289i
\(184\) 5.25731 + 16.1803i 0.387574 + 1.19283i
\(185\) 0 0
\(186\) 6.18034 + 8.50651i 0.453165 + 0.623727i
\(187\) −3.23607 + 3.23607i −0.236645 + 0.236645i
\(188\) −4.30834 8.45559i −0.314218 0.616687i
\(189\) 12.3107 0.895474
\(190\) 0 0
\(191\) 13.2088i 0.955755i 0.878427 + 0.477877i \(0.158594\pi\)
−0.878427 + 0.477877i \(0.841406\pi\)
\(192\) −1.09383 + 6.90617i −0.0789404 + 0.498410i
\(193\) −1.47214 1.47214i −0.105967 0.105967i 0.652136 0.758102i \(-0.273873\pi\)
−0.758102 + 0.652136i \(0.773873\pi\)
\(194\) 4.97980 + 6.85410i 0.357529 + 0.492096i
\(195\) 0 0
\(196\) 0.145898 0.449028i 0.0104213 0.0320734i
\(197\) 9.23305 + 9.23305i 0.657828 + 0.657828i 0.954866 0.297038i \(-0.0959988\pi\)
−0.297038 + 0.954866i \(0.595999\pi\)
\(198\) 10.1074 + 1.60085i 0.718299 + 0.113767i
\(199\) 21.7153 1.53936 0.769678 0.638432i \(-0.220417\pi\)
0.769678 + 0.638432i \(0.220417\pi\)
\(200\) 0 0
\(201\) −5.70820 −0.402626
\(202\) 4.05934 + 0.642937i 0.285615 + 0.0452369i
\(203\) −11.7082 11.7082i −0.821755 0.821755i
\(204\) 2.35114 + 0.763932i 0.164613 + 0.0534859i
\(205\) 0 0
\(206\) 3.94427 + 5.42882i 0.274810 + 0.378244i
\(207\) −9.51057 9.51057i −0.661030 0.661030i
\(208\) 4.05934 0.642937i 0.281465 0.0445797i
\(209\) 6.47214i 0.447687i
\(210\) 0 0
\(211\) 2.29180 0.157774 0.0788869 0.996884i \(-0.474863\pi\)
0.0788869 + 0.996884i \(0.474863\pi\)
\(212\) 7.75621 3.95199i 0.532699 0.271424i
\(213\) 7.05342 7.05342i 0.483293 0.483293i
\(214\) 1.06957 + 1.47214i 0.0731143 + 0.100633i
\(215\) 0 0
\(216\) −4.00000 12.3107i −0.272166 0.837639i
\(217\) −16.1803 + 16.1803i −1.09839 + 1.09839i
\(218\) −3.24367 + 20.4797i −0.219689 + 1.38706i
\(219\) 5.81966i 0.393256i
\(220\) 0 0
\(221\) 1.45309i 0.0977451i
\(222\) 1.25441 + 0.198678i 0.0841903 + 0.0133344i
\(223\) 14.2128 14.2128i 0.951763 0.951763i −0.0471263 0.998889i \(-0.515006\pi\)
0.998889 + 0.0471263i \(0.0150063\pi\)
\(224\) −15.2169 −1.01672
\(225\) 0 0
\(226\) −14.0902 + 10.2371i −0.937264 + 0.680962i
\(227\) 9.38197 9.38197i 0.622703 0.622703i −0.323519 0.946222i \(-0.604866\pi\)
0.946222 + 0.323519i \(0.104866\pi\)
\(228\) −3.11507 + 1.58721i −0.206301 + 0.105115i
\(229\) −7.95148 −0.525449 −0.262724 0.964871i \(-0.584621\pi\)
−0.262724 + 0.964871i \(0.584621\pi\)
\(230\) 0 0
\(231\) 7.60845i 0.500599i
\(232\) −7.90398 + 15.5124i −0.518922 + 1.01844i
\(233\) −5.47214 5.47214i −0.358492 0.358492i 0.504765 0.863257i \(-0.331579\pi\)
−0.863257 + 0.504765i \(0.831579\pi\)
\(234\) −2.62866 + 1.90983i −0.171841 + 0.124849i
\(235\) 0 0
\(236\) 0.291796 0.898056i 0.0189943 0.0584585i
\(237\) 1.79611 + 1.79611i 0.116670 + 0.116670i
\(238\) −0.841616 + 5.31375i −0.0545538 + 0.344439i
\(239\) 13.4208 0.868119 0.434059 0.900884i \(-0.357081\pi\)
0.434059 + 0.900884i \(0.357081\pi\)
\(240\) 0 0
\(241\) 11.2361 0.723779 0.361889 0.932221i \(-0.382132\pi\)
0.361889 + 0.932221i \(0.382132\pi\)
\(242\) −0.116780 + 0.737322i −0.00750692 + 0.0473968i
\(243\) 11.3820 + 11.3820i 0.730153 + 0.730153i
\(244\) 0.555029 1.70820i 0.0355321 0.109357i
\(245\) 0 0
\(246\) −5.70820 + 4.14725i −0.363942 + 0.264419i
\(247\) 1.45309 + 1.45309i 0.0924576 + 0.0924576i
\(248\) 21.4377 + 10.9230i 1.36129 + 0.693613i
\(249\) 8.18034i 0.518408i
\(250\) 0 0
\(251\) 0.180340 0.0113830 0.00569148 0.999984i \(-0.498188\pi\)
0.00569148 + 0.999984i \(0.498188\pi\)
\(252\) 10.7188 5.46151i 0.675223 0.344043i
\(253\) −13.7638 + 13.7638i −0.865324 + 0.865324i
\(254\) 4.53077 3.29180i 0.284286 0.206546i
\(255\) 0 0
\(256\) 4.94427 + 15.2169i 0.309017 + 0.951057i
\(257\) −5.29180 + 5.29180i −0.330093 + 0.330093i −0.852622 0.522529i \(-0.824989\pi\)
0.522529 + 0.852622i \(0.324989\pi\)
\(258\) 7.97323 + 1.26284i 0.496392 + 0.0786207i
\(259\) 2.76393i 0.171742i
\(260\) 0 0
\(261\) 13.7638i 0.851959i
\(262\) 3.03269 19.1477i 0.187360 1.18295i
\(263\) −7.50245 + 7.50245i −0.462621 + 0.462621i −0.899514 0.436893i \(-0.856079\pi\)
0.436893 + 0.899514i \(0.356079\pi\)
\(264\) −7.60845 + 2.47214i −0.468268 + 0.152149i
\(265\) 0 0
\(266\) −4.47214 6.15537i −0.274204 0.377410i
\(267\) −1.52786 + 1.52786i −0.0935038 + 0.0935038i
\(268\) −11.6381 + 5.92992i −0.710912 + 0.362228i
\(269\) −20.4742 −1.24833 −0.624167 0.781291i \(-0.714562\pi\)
−0.624167 + 0.781291i \(0.714562\pi\)
\(270\) 0 0
\(271\) 17.2250i 1.04635i 0.852227 + 0.523173i \(0.175252\pi\)
−0.852227 + 0.523173i \(0.824748\pi\)
\(272\) 5.58721 0.884927i 0.338774 0.0536566i
\(273\) 1.70820 + 1.70820i 0.103385 + 0.103385i
\(274\) −6.43288 8.85410i −0.388625 0.534896i
\(275\) 0 0
\(276\) 10.0000 + 3.24920i 0.601929 + 0.195579i
\(277\) −9.23305 9.23305i −0.554760 0.554760i 0.373051 0.927811i \(-0.378312\pi\)
−0.927811 + 0.373051i \(0.878312\pi\)
\(278\) −29.9145 4.73799i −1.79415 0.284166i
\(279\) −19.0211 −1.13877
\(280\) 0 0
\(281\) −9.70820 −0.579143 −0.289571 0.957156i \(-0.593513\pi\)
−0.289571 + 0.957156i \(0.593513\pi\)
\(282\) −5.79289 0.917504i −0.344962 0.0546366i
\(283\) −13.3820 13.3820i −0.795475 0.795475i 0.186903 0.982378i \(-0.440155\pi\)
−0.982378 + 0.186903i \(0.940155\pi\)
\(284\) 7.05342 21.7082i 0.418544 1.28814i
\(285\) 0 0
\(286\) 2.76393 + 3.80423i 0.163435 + 0.224949i
\(287\) −10.8576 10.8576i −0.640907 0.640907i
\(288\) −8.94427 8.94427i −0.527046 0.527046i
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 5.23607 0.306944
\(292\) −6.04571 11.8654i −0.353798 0.694368i
\(293\) 3.07768 3.07768i 0.179800 0.179800i −0.611469 0.791269i \(-0.709421\pi\)
0.791269 + 0.611469i \(0.209421\pi\)
\(294\) −0.171513 0.236068i −0.0100029 0.0137678i
\(295\) 0 0
\(296\) 2.76393 0.898056i 0.160650 0.0521984i
\(297\) 10.4721 10.4721i 0.607655 0.607655i
\(298\) 2.84632 17.9709i 0.164883 1.04103i
\(299\) 6.18034i 0.357418i
\(300\) 0 0
\(301\) 17.5680i 1.01261i
\(302\) −9.37310 1.48455i −0.539361 0.0854264i
\(303\) 1.79611 1.79611i 0.103184 0.103184i
\(304\) −4.70228 + 6.47214i −0.269694 + 0.371202i
\(305\) 0 0
\(306\) −3.61803 + 2.62866i −0.206829 + 0.150270i
\(307\) 13.5623 13.5623i 0.774042 0.774042i −0.204769 0.978810i \(-0.565644\pi\)
0.978810 + 0.204769i \(0.0656442\pi\)
\(308\) −7.90398 15.5124i −0.450371 0.883903i
\(309\) 4.14725 0.235929
\(310\) 0 0
\(311\) 20.8172i 1.18044i −0.807243 0.590219i \(-0.799041\pi\)
0.807243 0.590219i \(-0.200959\pi\)
\(312\) 1.15317 2.26323i 0.0652857 0.128130i
\(313\) 1.76393 + 1.76393i 0.0997033 + 0.0997033i 0.755199 0.655496i \(-0.227540\pi\)
−0.655496 + 0.755199i \(0.727540\pi\)
\(314\) −22.5478 + 16.3820i −1.27245 + 0.924488i
\(315\) 0 0
\(316\) 5.52786 + 1.79611i 0.310967 + 0.101039i
\(317\) −3.97574 3.97574i −0.223300 0.223300i 0.586587 0.809886i \(-0.300471\pi\)
−0.809886 + 0.586587i \(0.800471\pi\)
\(318\) 0.841616 5.31375i 0.0471955 0.297980i
\(319\) −19.9192 −1.11526
\(320\) 0 0
\(321\) 1.12461 0.0627697
\(322\) −3.57960 + 22.6007i −0.199484 + 1.25949i
\(323\) 2.00000 + 2.00000i 0.111283 + 0.111283i
\(324\) 5.15131 + 1.67376i 0.286184 + 0.0929868i
\(325\) 0 0
\(326\) 22.4164 16.2865i 1.24153 0.902024i
\(327\) 9.06154 + 9.06154i 0.501104 + 0.501104i
\(328\) −7.32979 + 14.3855i −0.404720 + 0.794307i
\(329\) 12.7639i 0.703698i
\(330\) 0 0
\(331\) −30.0689 −1.65274 −0.826368 0.563131i \(-0.809597\pi\)
−0.826368 + 0.563131i \(0.809597\pi\)
\(332\) −8.49808 16.6784i −0.466393 0.915347i
\(333\) −1.62460 + 1.62460i −0.0890274 + 0.0890274i
\(334\) 13.0373 9.47214i 0.713368 0.518292i
\(335\) 0 0
\(336\) −5.52786 + 7.60845i −0.301570 + 0.415075i
\(337\) 19.9443 19.9443i 1.08643 1.08643i 0.0905410 0.995893i \(-0.471140\pi\)
0.995893 0.0905410i \(-0.0288596\pi\)
\(338\) 16.6838 + 2.64245i 0.907478 + 0.143730i
\(339\) 10.7639i 0.584617i
\(340\) 0 0
\(341\) 27.5276i 1.49071i
\(342\) 0.989378 6.24669i 0.0534995 0.337782i
\(343\) −12.8658 + 12.8658i −0.694686 + 0.694686i
\(344\) 17.5680 5.70820i 0.947206 0.307766i
\(345\) 0 0
\(346\) −17.0344 23.4459i −0.915777 1.26046i
\(347\) −26.0344 + 26.0344i −1.39760 + 1.39760i −0.590740 + 0.806862i \(0.701164\pi\)
−0.806862 + 0.590740i \(0.798836\pi\)
\(348\) 4.88493 + 9.58721i 0.261860 + 0.513928i
\(349\) 16.6700 0.892324 0.446162 0.894952i \(-0.352791\pi\)
0.446162 + 0.894952i \(0.352791\pi\)
\(350\) 0 0
\(351\) 4.70228i 0.250989i
\(352\) −12.9443 + 12.9443i −0.689932 + 0.689932i
\(353\) 22.4164 + 22.4164i 1.19311 + 1.19311i 0.976191 + 0.216914i \(0.0695992\pi\)
0.216914 + 0.976191i \(0.430401\pi\)
\(354\) −0.343027 0.472136i −0.0182317 0.0250937i
\(355\) 0 0
\(356\) −1.52786 + 4.70228i −0.0809766 + 0.249220i
\(357\) 2.35114 + 2.35114i 0.124436 + 0.124436i
\(358\) 10.5149 + 1.66540i 0.555732 + 0.0880193i
\(359\) −19.9192 −1.05129 −0.525647 0.850703i \(-0.676177\pi\)
−0.525647 + 0.850703i \(0.676177\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) −21.2550 3.36646i −1.11714 0.176937i
\(363\) 0.326238 + 0.326238i 0.0171231 + 0.0171231i
\(364\) 5.25731 + 1.70820i 0.275558 + 0.0895342i
\(365\) 0 0
\(366\) −0.652476 0.898056i −0.0341055 0.0469421i
\(367\) 12.2047 + 12.2047i 0.637082 + 0.637082i 0.949835 0.312753i \(-0.101251\pi\)
−0.312753 + 0.949835i \(0.601251\pi\)
\(368\) 23.7638 3.76382i 1.23877 0.196203i
\(369\) 12.7639i 0.664464i
\(370\) 0 0
\(371\) 11.7082 0.607860
\(372\) 13.2492 6.75080i 0.686939 0.350013i
\(373\) −22.4418 + 22.4418i −1.16199 + 1.16199i −0.177956 + 0.984038i \(0.556948\pi\)
−0.984038 + 0.177956i \(0.943052\pi\)
\(374\) 3.80423 + 5.23607i 0.196712 + 0.270751i
\(375\) 0 0
\(376\) −12.7639 + 4.14725i −0.658250 + 0.213878i
\(377\) 4.47214 4.47214i 0.230327 0.230327i
\(378\) 2.72353 17.1957i 0.140083 0.884449i
\(379\) 0.111456i 0.00572512i −0.999996 0.00286256i \(-0.999089\pi\)
0.999996 0.00286256i \(-0.000911182\pi\)
\(380\) 0 0
\(381\) 3.46120i 0.177323i
\(382\) 18.4501 + 2.92220i 0.943988 + 0.149513i
\(383\) −1.00406 + 1.00406i −0.0513049 + 0.0513049i −0.732294 0.680989i \(-0.761550\pi\)
0.680989 + 0.732294i \(0.261550\pi\)
\(384\) 9.40456 + 3.05573i 0.479925 + 0.155937i
\(385\) 0 0
\(386\) −2.38197 + 1.73060i −0.121239 + 0.0880852i
\(387\) −10.3262 + 10.3262i −0.524912 + 0.524912i
\(388\) 10.6755 5.43945i 0.541967 0.276146i
\(389\) 4.14725 0.210274 0.105137 0.994458i \(-0.466472\pi\)
0.105137 + 0.994458i \(0.466472\pi\)
\(390\) 0 0
\(391\) 8.50651i 0.430193i
\(392\) −0.594926 0.303130i −0.0300483 0.0153104i
\(393\) −8.47214 8.47214i −0.427363 0.427363i
\(394\) 14.9394 10.8541i 0.752636 0.546822i
\(395\) 0 0
\(396\) 4.47214 13.7638i 0.224733 0.691658i
\(397\) 24.4500 + 24.4500i 1.22711 + 1.22711i 0.965053 + 0.262055i \(0.0844002\pi\)
0.262055 + 0.965053i \(0.415600\pi\)
\(398\) 4.80411 30.3320i 0.240808 1.52040i
\(399\) −4.70228 −0.235409
\(400\) 0 0
\(401\) 31.8885 1.59244 0.796219 0.605009i \(-0.206830\pi\)
0.796219 + 0.605009i \(0.206830\pi\)
\(402\) −1.26284 + 7.97323i −0.0629845 + 0.397669i
\(403\) −6.18034 6.18034i −0.307865 0.307865i
\(404\) 1.79611 5.52786i 0.0893599 0.275022i
\(405\) 0 0
\(406\) −18.9443 + 13.7638i −0.940188 + 0.683087i
\(407\) 2.35114 + 2.35114i 0.116542 + 0.116542i
\(408\) 1.58721 3.11507i 0.0785786 0.154219i
\(409\) 21.5967i 1.06789i 0.845519 + 0.533945i \(0.179291\pi\)
−0.845519 + 0.533945i \(0.820709\pi\)
\(410\) 0 0
\(411\) −6.76393 −0.333640
\(412\) 8.45559 4.30834i 0.416577 0.212257i
\(413\) 0.898056 0.898056i 0.0441904 0.0441904i
\(414\) −15.3884 + 11.1803i −0.756299 + 0.549484i
\(415\) 0 0
\(416\) 5.81234i 0.284973i
\(417\) −13.2361 + 13.2361i −0.648173 + 0.648173i
\(418\) −9.04029 1.43184i −0.442175 0.0700337i
\(419\) 28.8328i 1.40858i 0.709915 + 0.704288i \(0.248733\pi\)
−0.709915 + 0.704288i \(0.751267\pi\)
\(420\) 0 0
\(421\) 28.4257i 1.38538i 0.721234 + 0.692692i \(0.243575\pi\)
−0.721234 + 0.692692i \(0.756425\pi\)
\(422\) 0.507018 3.20119i 0.0246813 0.155831i
\(423\) 7.50245 7.50245i 0.364782 0.364782i
\(424\) −3.80423 11.7082i −0.184750 0.568601i
\(425\) 0 0
\(426\) −8.29180 11.4127i −0.401739 0.552946i
\(427\) 1.70820 1.70820i 0.0826658 0.0826658i
\(428\) 2.29291 1.16829i 0.110832 0.0564716i
\(429\) 2.90617 0.140311
\(430\) 0 0
\(431\) 19.0211i 0.916216i −0.888897 0.458108i \(-0.848527\pi\)
0.888897 0.458108i \(-0.151473\pi\)
\(432\) −18.0806 + 2.86368i −0.869903 + 0.137779i
\(433\) −0.819660 0.819660i −0.0393904 0.0393904i 0.687137 0.726528i \(-0.258867\pi\)
−0.726528 + 0.687137i \(0.758867\pi\)
\(434\) 19.0211 + 26.1803i 0.913043 + 1.25670i
\(435\) 0 0
\(436\) 27.8885 + 9.06154i 1.33562 + 0.433969i
\(437\) 8.50651 + 8.50651i 0.406921 + 0.406921i
\(438\) −8.12891 1.28749i −0.388415 0.0615188i
\(439\) 35.1361 1.67695 0.838477 0.544937i \(-0.183446\pi\)
0.838477 + 0.544937i \(0.183446\pi\)
\(440\) 0 0
\(441\) 0.527864 0.0251364
\(442\) −2.02967 0.321469i −0.0965417 0.0152907i
\(443\) 1.09017 + 1.09017i 0.0517955 + 0.0517955i 0.732530 0.680735i \(-0.238339\pi\)
−0.680735 + 0.732530i \(0.738339\pi\)
\(444\) 0.555029 1.70820i 0.0263405 0.0810678i
\(445\) 0 0
\(446\) −16.7082 22.9969i −0.791156 1.08893i
\(447\) −7.95148 7.95148i −0.376092 0.376092i
\(448\) −3.36646 + 21.2550i −0.159050 + 1.00420i
\(449\) 17.5967i 0.830442i −0.909721 0.415221i \(-0.863704\pi\)
0.909721 0.415221i \(-0.136296\pi\)
\(450\) 0 0
\(451\) −18.4721 −0.869819
\(452\) 11.1820 + 21.9460i 0.525958 + 1.03225i
\(453\) −4.14725 + 4.14725i −0.194855 + 0.194855i
\(454\) −11.0292 15.1803i −0.517624 0.712449i
\(455\) 0 0
\(456\) 1.52786 + 4.70228i 0.0715488 + 0.220205i
\(457\) −9.65248 + 9.65248i −0.451524 + 0.451524i −0.895860 0.444336i \(-0.853440\pi\)
0.444336 + 0.895860i \(0.353440\pi\)
\(458\) −1.75912 + 11.1066i −0.0821983 + 0.518979i
\(459\) 6.47214i 0.302093i
\(460\) 0 0
\(461\) 27.5276i 1.28209i −0.767503 0.641045i \(-0.778501\pi\)
0.767503 0.641045i \(-0.221499\pi\)
\(462\) −10.6275 1.68323i −0.494436 0.0783110i
\(463\) 2.45714 2.45714i 0.114193 0.114193i −0.647701 0.761894i \(-0.724270\pi\)
0.761894 + 0.647701i \(0.224270\pi\)
\(464\) 19.9192 + 14.4721i 0.924725 + 0.671852i
\(465\) 0 0
\(466\) −8.85410 + 6.43288i −0.410158 + 0.297997i
\(467\) 18.3262 18.3262i 0.848037 0.848037i −0.141851 0.989888i \(-0.545305\pi\)
0.989888 + 0.141851i \(0.0453054\pi\)
\(468\) 2.08611 + 4.09423i 0.0964306 + 0.189256i
\(469\) −17.5680 −0.811217
\(470\) 0 0
\(471\) 17.2250i 0.793687i
\(472\) −1.18985 0.606260i −0.0547674 0.0279054i
\(473\) 14.9443 + 14.9443i 0.687138 + 0.687138i
\(474\) 2.90617 2.11146i 0.133485 0.0969824i
\(475\) 0 0
\(476\) 7.23607 + 2.35114i 0.331665 + 0.107764i
\(477\) 6.88191 + 6.88191i 0.315101 + 0.315101i
\(478\) 2.96911 18.7462i 0.135804 0.857431i
\(479\) 4.70228 0.214853 0.107426 0.994213i \(-0.465739\pi\)
0.107426 + 0.994213i \(0.465739\pi\)
\(480\) 0 0
\(481\) −1.05573 −0.0481371
\(482\) 2.48577 15.6946i 0.113224 0.714868i
\(483\) 10.0000 + 10.0000i 0.455016 + 0.455016i
\(484\) 1.00406 + 0.326238i 0.0456390 + 0.0148290i
\(485\) 0 0
\(486\) 18.4164 13.3803i 0.835385 0.606943i
\(487\) −18.9151 18.9151i −0.857126 0.857126i 0.133872 0.990999i \(-0.457259\pi\)
−0.990999 + 0.133872i \(0.957259\pi\)
\(488\) −2.26323 1.15317i −0.102452 0.0522018i
\(489\) 17.1246i 0.774402i
\(490\) 0 0
\(491\) −15.2361 −0.687594 −0.343797 0.939044i \(-0.611713\pi\)
−0.343797 + 0.939044i \(0.611713\pi\)
\(492\) 4.53006 + 8.89074i 0.204231 + 0.400825i
\(493\) 6.15537 6.15537i 0.277224 0.277224i
\(494\) 2.35114 1.70820i 0.105783 0.0768557i
\(495\) 0 0
\(496\) 20.0000 27.5276i 0.898027 1.23603i
\(497\) 21.7082 21.7082i 0.973746 0.973746i
\(498\) −11.4263 1.80975i −0.512026 0.0810969i
\(499\) 11.8885i 0.532204i −0.963945 0.266102i \(-0.914264\pi\)
0.963945 0.266102i \(-0.0857359\pi\)
\(500\) 0 0
\(501\) 9.95959i 0.444962i
\(502\) 0.0398969 0.251899i 0.00178069 0.0112428i
\(503\) 16.5640 16.5640i 0.738552 0.738552i −0.233746 0.972298i \(-0.575098\pi\)
0.972298 + 0.233746i \(0.0750984\pi\)
\(504\) −5.25731 16.1803i −0.234179 0.720730i
\(505\) 0 0
\(506\) 16.1803 + 22.2703i 0.719304 + 0.990037i
\(507\) 7.38197 7.38197i 0.327845 0.327845i
\(508\) −3.59564 7.05684i −0.159531 0.313097i
\(509\) 10.8576 0.481257 0.240628 0.970617i \(-0.422646\pi\)
0.240628 + 0.970617i \(0.422646\pi\)
\(510\) 0 0
\(511\) 17.9111i 0.792339i
\(512\) 22.3488 3.53971i 0.987688 0.156434i
\(513\) −6.47214 6.47214i −0.285752 0.285752i
\(514\) 6.22088 + 8.56231i 0.274391 + 0.377667i
\(515\) 0 0
\(516\) 3.52786 10.8576i 0.155306 0.477981i
\(517\) −10.8576 10.8576i −0.477519 0.477519i
\(518\) 3.86067 + 0.611469i 0.169628 + 0.0268664i
\(519\) −17.9111 −0.786209
\(520\) 0 0
\(521\) −0.472136 −0.0206847 −0.0103423 0.999947i \(-0.503292\pi\)
−0.0103423 + 0.999947i \(0.503292\pi\)
\(522\) −19.2253 3.04499i −0.841470 0.133276i
\(523\) −25.7426 25.7426i −1.12565 1.12565i −0.990877 0.134770i \(-0.956970\pi\)
−0.134770 0.990877i \(-0.543030\pi\)
\(524\) −26.0746 8.47214i −1.13907 0.370107i
\(525\) 0 0
\(526\) 8.81966 + 12.1392i 0.384555 + 0.529295i
\(527\) −8.50651 8.50651i −0.370549 0.370549i
\(528\) 1.76985 + 11.1744i 0.0770230 + 0.486304i
\(529\) 13.1803i 0.573058i
\(530\) 0 0
\(531\) 1.05573 0.0458147
\(532\) −9.58721 + 4.88493i −0.415658 + 0.211788i
\(533\) 4.14725 4.14725i 0.179637 0.179637i
\(534\) 1.79611 + 2.47214i 0.0777254 + 0.106980i
\(535\) 0 0
\(536\) 5.70820 + 17.5680i 0.246557 + 0.758824i
\(537\) 4.65248 4.65248i 0.200769 0.200769i
\(538\) −4.52955 + 28.5984i −0.195283 + 1.23297i
\(539\) 0.763932i 0.0329049i
\(540\) 0 0
\(541\) 12.3107i 0.529280i 0.964347 + 0.264640i \(0.0852531\pi\)
−0.964347 + 0.264640i \(0.914747\pi\)
\(542\) 24.0599 + 3.81072i 1.03346 + 0.163684i
\(543\) −9.40456 + 9.40456i −0.403588 + 0.403588i
\(544\) 8.00000i 0.342997i
\(545\) 0 0
\(546\) 2.76393 2.00811i 0.118285 0.0859394i
\(547\) −11.5623 + 11.5623i −0.494369 + 0.494369i −0.909679 0.415311i \(-0.863673\pi\)
0.415311 + 0.909679i \(0.363673\pi\)
\(548\) −13.7906 + 7.02666i −0.589105 + 0.300164i
\(549\) 2.00811 0.0857042
\(550\) 0 0
\(551\) 12.3107i 0.524455i
\(552\) 6.75080 13.2492i 0.287333 0.563923i
\(553\) 5.52786 + 5.52786i 0.235069 + 0.235069i
\(554\) −14.9394 + 10.8541i −0.634714 + 0.461147i
\(555\) 0 0
\(556\) −13.2361 + 40.7364i −0.561334 + 1.72761i
\(557\) −23.5519 23.5519i −0.997926 0.997926i 0.00207187 0.999998i \(-0.499341\pi\)
−0.999998 + 0.00207187i \(0.999341\pi\)
\(558\) −4.20808 + 26.5688i −0.178142 + 1.12475i
\(559\) −6.71040 −0.283820
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) −2.14776 + 13.5604i −0.0905979 + 0.572013i
\(563\) 4.32624 + 4.32624i 0.182329 + 0.182329i 0.792370 0.610041i \(-0.208847\pi\)
−0.610041 + 0.792370i \(0.708847\pi\)
\(564\) −2.56314 + 7.88854i −0.107928 + 0.332168i
\(565\) 0 0
\(566\) −21.6525 + 15.7314i −0.910121 + 0.661242i
\(567\) 5.15131 + 5.15131i 0.216335 + 0.216335i
\(568\) −28.7616 14.6548i −1.20681 0.614901i
\(569\) 27.1246i 1.13712i 0.822641 + 0.568561i \(0.192500\pi\)
−0.822641 + 0.568561i \(0.807500\pi\)
\(570\) 0 0
\(571\) 22.6525 0.947977 0.473988 0.880531i \(-0.342814\pi\)
0.473988 + 0.880531i \(0.342814\pi\)
\(572\) 5.92522 3.01905i 0.247746 0.126233i
\(573\) 8.16348 8.16348i 0.341034 0.341034i
\(574\) −17.5680 + 12.7639i −0.733276 + 0.532756i
\(575\) 0 0
\(576\) −14.4721 + 10.5146i −0.603006 + 0.438109i
\(577\) −26.2361 + 26.2361i −1.09222 + 1.09222i −0.0969307 + 0.995291i \(0.530903\pi\)
−0.995291 + 0.0969307i \(0.969097\pi\)
\(578\) 20.9520 + 3.31848i 0.871490 + 0.138030i
\(579\) 1.81966i 0.0756225i
\(580\) 0 0
\(581\) 25.1765i 1.04450i
\(582\) 1.15838 7.31375i 0.0480166 0.303165i
\(583\) 9.95959 9.95959i 0.412484 0.412484i
\(584\) −17.9111 + 5.81966i −0.741165 + 0.240819i
\(585\) 0 0
\(586\) −3.61803 4.97980i −0.149460 0.205714i
\(587\) −17.0902 + 17.0902i −0.705387 + 0.705387i −0.965562 0.260175i \(-0.916220\pi\)
0.260175 + 0.965562i \(0.416220\pi\)
\(588\) −0.367684 + 0.187345i −0.0151631 + 0.00772596i
\(589\) 17.0130 0.701009
\(590\) 0 0
\(591\) 11.4127i 0.469455i
\(592\) −0.642937 4.05934i −0.0264246 0.166838i
\(593\) −20.4164 20.4164i −0.838401 0.838401i 0.150247 0.988648i \(-0.451993\pi\)
−0.988648 + 0.150247i \(0.951993\pi\)
\(594\) −12.3107 16.9443i −0.505116 0.695232i
\(595\) 0 0
\(596\) −24.4721 7.95148i −1.00242 0.325705i
\(597\) −13.4208 13.4208i −0.549276 0.549276i
\(598\) −8.63271 1.36729i −0.353018 0.0559125i
\(599\) −6.49839 −0.265517 −0.132759 0.991148i \(-0.542383\pi\)
−0.132759 + 0.991148i \(0.542383\pi\)
\(600\) 0 0
\(601\) −17.7082 −0.722333 −0.361166 0.932501i \(-0.617621\pi\)
−0.361166 + 0.932501i \(0.617621\pi\)
\(602\) 24.5391 + 3.88661i 1.00014 + 0.158406i
\(603\) −10.3262 10.3262i −0.420517 0.420517i
\(604\) −4.14725 + 12.7639i −0.168749 + 0.519357i
\(605\) 0 0
\(606\) −2.11146 2.90617i −0.0857720 0.118055i
\(607\) 32.6789 + 32.6789i 1.32640 + 1.32640i 0.908489 + 0.417908i \(0.137237\pi\)
0.417908 + 0.908489i \(0.362763\pi\)
\(608\) 8.00000 + 8.00000i 0.324443 + 0.324443i
\(609\) 14.4721i 0.586441i
\(610\) 0 0
\(611\) 4.87539 0.197237
\(612\) 2.87129 + 5.63522i 0.116065 + 0.227790i
\(613\) 19.5357 19.5357i 0.789038 0.789038i −0.192298 0.981337i \(-0.561594\pi\)
0.981337 + 0.192298i \(0.0615941\pi\)
\(614\) −15.9434 21.9443i −0.643425 0.885599i
\(615\) 0 0
\(616\) −23.4164 + 7.60845i −0.943474 + 0.306553i
\(617\) −4.88854 + 4.88854i −0.196805 + 0.196805i −0.798629 0.601824i \(-0.794441\pi\)
0.601824 + 0.798629i \(0.294441\pi\)
\(618\) 0.917504 5.79289i 0.0369074 0.233024i
\(619\) 35.3050i 1.41903i −0.704692 0.709513i \(-0.748915\pi\)
0.704692 0.709513i \(-0.251085\pi\)
\(620\) 0 0
\(621\) 27.5276i 1.10465i
\(622\) −29.0776 4.60543i −1.16590 0.184661i
\(623\) −4.70228 + 4.70228i −0.188393 + 0.188393i
\(624\) −2.90617 2.11146i −0.116340 0.0845259i
\(625\) 0 0
\(626\) 2.85410 2.07363i 0.114073 0.0828788i
\(627\) −4.00000 + 4.00000i −0.159745 + 0.159745i
\(628\) 17.8941 + 35.1191i 0.714051 + 1.40140i
\(629\) −1.45309 −0.0579383
\(630\) 0 0
\(631\) 22.6134i 0.900223i 0.892972 + 0.450112i \(0.148616\pi\)
−0.892972 + 0.450112i \(0.851384\pi\)
\(632\) 3.73175 7.32398i 0.148441 0.291332i
\(633\) −1.41641 1.41641i −0.0562972 0.0562972i
\(634\) −6.43288 + 4.67376i −0.255482 + 0.185619i
\(635\) 0 0
\(636\) −7.23607 2.35114i −0.286929 0.0932288i
\(637\) 0.171513 + 0.171513i 0.00679561 + 0.00679561i
\(638\) −4.40676 + 27.8232i −0.174465 + 1.10153i
\(639\) 25.5195 1.00954
\(640\) 0 0
\(641\) −38.6525 −1.52668 −0.763341 0.645996i \(-0.776442\pi\)
−0.763341 + 0.645996i \(0.776442\pi\)
\(642\) 0.248800 1.57086i 0.00981935 0.0619969i
\(643\) 11.5623 + 11.5623i 0.455973 + 0.455973i 0.897331 0.441358i \(-0.145503\pi\)
−0.441358 + 0.897331i \(0.645503\pi\)
\(644\) 30.7768 + 10.0000i 1.21278 + 0.394055i
\(645\) 0 0
\(646\) 3.23607 2.35114i 0.127321 0.0925044i
\(647\) −20.0252 20.0252i −0.787271 0.787271i 0.193775 0.981046i \(-0.437927\pi\)
−0.981046 + 0.193775i \(0.937927\pi\)
\(648\) 3.47755 6.82507i 0.136611 0.268114i
\(649\) 1.52786i 0.0599739i
\(650\) 0 0
\(651\) 20.0000 0.783862
\(652\) −17.7898 34.9144i −0.696701 1.36735i
\(653\) −20.0907 + 20.0907i −0.786210 + 0.786210i −0.980871 0.194661i \(-0.937639\pi\)
0.194661 + 0.980871i \(0.437639\pi\)
\(654\) 14.6619 10.6525i 0.573325 0.416545i
\(655\) 0 0
\(656\) 18.4721 + 13.4208i 0.721216 + 0.523994i
\(657\) 10.5279 10.5279i 0.410731 0.410731i
\(658\) −17.8287 2.82379i −0.695035 0.110083i
\(659\) 18.0000i 0.701180i −0.936529 0.350590i \(-0.885981\pi\)
0.936529 0.350590i \(-0.114019\pi\)
\(660\) 0 0
\(661\) 3.80423i 0.147967i −0.997259 0.0739836i \(-0.976429\pi\)
0.997259 0.0739836i \(-0.0235713\pi\)
\(662\) −6.65219 + 42.0003i −0.258545 + 1.63239i
\(663\) −0.898056 + 0.898056i −0.0348776 + 0.0348776i
\(664\) −25.1765 + 8.18034i −0.977038 + 0.317459i
\(665\) 0 0
\(666\) 1.90983 + 2.62866i 0.0740044 + 0.101858i
\(667\) 26.1803 26.1803i 1.01371 1.01371i
\(668\) −10.3464 20.3060i −0.400316 0.785664i
\(669\) −17.5680 −0.679220
\(670\) 0 0
\(671\) 2.90617i 0.112191i
\(672\) 9.40456 + 9.40456i 0.362789 + 0.362789i
\(673\) 17.2918 + 17.2918i 0.666550 + 0.666550i 0.956916 0.290366i \(-0.0937770\pi\)
−0.290366 + 0.956916i \(0.593777\pi\)
\(674\) −23.4459 32.2705i −0.903102 1.24301i
\(675\) 0 0
\(676\) 7.38197 22.7194i 0.283922 0.873821i
\(677\) −7.77997 7.77997i −0.299008 0.299008i 0.541617 0.840625i \(-0.317812\pi\)
−0.840625 + 0.541617i \(0.817812\pi\)
\(678\) 15.0351 + 2.38132i 0.577419 + 0.0914542i
\(679\) 16.1150 0.618435
\(680\) 0 0
\(681\) −11.5967 −0.444388
\(682\) 38.4507 + 6.08999i 1.47235 + 0.233198i
\(683\) 22.7984 + 22.7984i 0.872356 + 0.872356i 0.992729 0.120373i \(-0.0384091\pi\)
−0.120373 + 0.992729i \(0.538409\pi\)
\(684\) −8.50651 2.76393i −0.325254 0.105682i
\(685\) 0 0
\(686\) 15.1246 + 20.8172i 0.577460 + 0.794806i
\(687\) 4.91428 + 4.91428i 0.187492 + 0.187492i
\(688\) −4.08662 25.8019i −0.155801 0.983689i
\(689\) 4.47214i 0.170375i
\(690\) 0 0
\(691\) 9.12461 0.347117 0.173558 0.984824i \(-0.444473\pi\)
0.173558 + 0.984824i \(0.444473\pi\)
\(692\) −36.5178 + 18.6068i −1.38820 + 0.707323i
\(693\) 13.7638 13.7638i 0.522844 0.522844i
\(694\) 30.6053 + 42.1246i 1.16176 + 1.59903i
\(695\) 0 0
\(696\) 14.4721 4.70228i 0.548565 0.178240i
\(697\) 5.70820 5.70820i 0.216214 0.216214i
\(698\) 3.68793 23.2847i 0.139590 0.881338i
\(699\) 6.76393i 0.255835i
\(700\) 0 0
\(701\) 19.7072i 0.744330i −0.928167 0.372165i \(-0.878616\pi\)
0.928167 0.372165i \(-0.121384\pi\)
\(702\) 6.56816 + 1.04029i 0.247899 + 0.0392634i
\(703\) 1.45309 1.45309i 0.0548041 0.0548041i
\(704\) 15.2169 + 20.9443i 0.573509 + 0.789367i
\(705\) 0 0
\(706\) 36.2705 26.3521i 1.36506 0.991773i
\(707\) 5.52786 5.52786i 0.207897 0.207897i
\(708\) −0.735369 + 0.374689i −0.0276369 + 0.0140817i
\(709\) −3.24920 −0.122026 −0.0610131 0.998137i \(-0.519433\pi\)
−0.0610131 + 0.998137i \(0.519433\pi\)
\(710\) 0 0
\(711\) 6.49839i 0.243709i
\(712\) 6.23015 + 3.17442i 0.233485 + 0.118966i
\(713\) −36.1803 36.1803i −1.35496 1.35496i
\(714\) 3.80423 2.76393i 0.142370 0.103438i
\(715\) 0 0
\(716\) 4.65248 14.3188i 0.173871 0.535120i
\(717\) −8.29451 8.29451i −0.309764 0.309764i
\(718\) −4.40676 + 27.8232i −0.164459 + 1.03835i
\(719\) −4.01623 −0.149780 −0.0748900 0.997192i \(-0.523861\pi\)
−0.0748900 + 0.997192i \(0.523861\pi\)
\(720\) 0 0
\(721\) 12.7639 0.475354
\(722\) 3.31848 20.9520i 0.123501 0.779754i
\(723\) −6.94427 6.94427i −0.258260 0.258260i
\(724\) −9.40456 + 28.9443i −0.349518 + 1.07571i
\(725\) 0 0
\(726\) 0.527864 0.383516i 0.0195909 0.0142336i
\(727\) −9.51057 9.51057i −0.352727 0.352727i 0.508396 0.861123i \(-0.330239\pi\)
−0.861123 + 0.508396i \(0.830239\pi\)
\(728\) 3.54911 6.96552i 0.131539 0.258159i
\(729\) 5.94427i 0.220158i
\(730\) 0 0
\(731\) −9.23607 −0.341608
\(732\) −1.39875 + 0.712701i −0.0516995 + 0.0263422i
\(733\) 19.1926 19.1926i 0.708896 0.708896i −0.257407 0.966303i \(-0.582868\pi\)
0.966303 + 0.257407i \(0.0828680\pi\)
\(734\) 19.7477 14.3475i 0.728900 0.529577i
\(735\) 0 0
\(736\) 34.0260i 1.25422i
\(737\) −14.9443 + 14.9443i −0.550479 + 0.550479i
\(738\) −17.8287 2.82379i −0.656283 0.103945i
\(739\) 9.41641i 0.346388i 0.984888 + 0.173194i \(0.0554088\pi\)
−0.984888 + 0.173194i \(0.944591\pi\)
\(740\) 0 0
\(741\) 1.79611i 0.0659818i
\(742\) 2.59023 16.3540i 0.0950902 0.600376i
\(743\) 4.80828 4.80828i 0.176399 0.176399i −0.613385 0.789784i \(-0.710193\pi\)
0.789784 + 0.613385i \(0.210193\pi\)
\(744\) −6.49839 20.0000i −0.238243 0.733236i
\(745\) 0 0
\(746\) 26.3820 + 36.3117i 0.965912 + 1.32946i
\(747\) 14.7984 14.7984i 0.541444 0.541444i
\(748\) 8.15537 4.15537i 0.298190 0.151935i
\(749\) 3.46120 0.126469
\(750\) 0 0
\(751\) 11.4127i 0.416455i −0.978080 0.208227i \(-0.933231\pi\)
0.978080 0.208227i \(-0.0667694\pi\)
\(752\) 2.96911 + 18.7462i 0.108272 + 0.683603i
\(753\) −0.111456 0.111456i −0.00406169 0.00406169i
\(754\) −5.25731 7.23607i −0.191460 0.263522i
\(755\) 0 0
\(756\) −23.4164 7.60845i −0.851647 0.276717i
\(757\) 31.7154 + 31.7154i 1.15272 + 1.15272i 0.986006 + 0.166709i \(0.0533140\pi\)
0.166709 + 0.986006i \(0.446686\pi\)
\(758\) −0.155682 0.0246576i −0.00565463 0.000895606i
\(759\) 17.0130 0.617533
\(760\) 0 0
\(761\) 2.94427 0.106730 0.0533649 0.998575i \(-0.483005\pi\)
0.0533649 + 0.998575i \(0.483005\pi\)
\(762\) −4.83461 0.765727i −0.175139 0.0277394i
\(763\) 27.8885 + 27.8885i 1.00963 + 1.00963i
\(764\) 8.16348 25.1246i 0.295344 0.908977i
\(765\) 0 0
\(766\) 1.18034 + 1.62460i 0.0426474 + 0.0586991i
\(767\) 0.343027 + 0.343027i 0.0123860 + 0.0123860i
\(768\) 6.34884 12.4603i 0.229094 0.449622i
\(769\) 6.47214i 0.233391i 0.993168 + 0.116696i \(0.0372302\pi\)
−0.993168 + 0.116696i \(0.962770\pi\)
\(770\) 0 0
\(771\) 6.54102 0.235569
\(772\) 1.89034 + 3.71000i 0.0680348 + 0.133526i
\(773\) −31.5034 + 31.5034i −1.13310 + 1.13310i −0.143439 + 0.989659i \(0.545816\pi\)
−0.989659 + 0.143439i \(0.954184\pi\)
\(774\) 12.1392 + 16.7082i 0.436335 + 0.600564i
\(775\) 0 0
\(776\) −5.23607 16.1150i −0.187964 0.578493i
\(777\) 1.70820 1.70820i 0.0612815 0.0612815i
\(778\) 0.917504 5.79289i 0.0328941 0.207685i
\(779\) 11.4164i 0.409035i
\(780\) 0 0
\(781\) 36.9322i 1.32154i
\(782\) −11.8819 1.88191i −0.424896 0.0672969i
\(783\) −19.9192 + 19.9192i −0.711854 + 0.711854i
\(784\) −0.555029 + 0.763932i −0.0198225 + 0.0272833i
\(785\) 0 0
\(786\) −13.7082 + 9.95959i −0.488955 + 0.355247i
\(787\) −17.8541 + 17.8541i −0.636430 + 0.636430i −0.949673 0.313243i \(-0.898585\pi\)
0.313243 + 0.949673i \(0.398585\pi\)
\(788\) −11.8560 23.2686i −0.422351 0.828911i
\(789\) 9.27354 0.330147
\(790\) 0 0
\(791\) 33.1280i 1.17790i
\(792\) −18.2360 9.29168i −0.647986 0.330166i
\(793\) 0.652476 + 0.652476i 0.0231701 + 0.0231701i
\(794\) 39.5609 28.7426i 1.40396 1.02004i
\(795\) 0 0
\(796\) −41.3050 13.4208i −1.46402 0.475687i
\(797\) 14.8334 + 14.8334i 0.525426 + 0.525426i 0.919205 0.393779i \(-0.128833\pi\)
−0.393779 + 0.919205i \(0.628833\pi\)
\(798\) −1.04029 + 6.56816i −0.0368260 + 0.232510i
\(799\) 6.71040 0.237397
\(800\) 0 0
\(801\) −5.52786 −0.195317
\(802\) 7.05476 44.5420i 0.249112 1.57283i
\(803\) −15.2361 15.2361i −0.537669 0.537669i
\(804\) 10.8576 + 3.52786i 0.382920 + 0.124418i
\(805\) 0 0
\(806\) −10.0000 + 7.26543i −0.352235 + 0.255914i
\(807\) 12.6538 + 12.6538i 0.445433 + 0.445433i
\(808\) −7.32398 3.73175i −0.257657 0.131283i
\(809\) 4.94427i 0.173831i 0.996216 + 0.0869157i \(0.0277011\pi\)
−0.996216 + 0.0869157i \(0.972299\pi\)
\(810\) 0 0
\(811\) 26.0689 0.915402 0.457701 0.889106i \(-0.348673\pi\)
0.457701 + 0.889106i \(0.348673\pi\)
\(812\) 15.0343 + 29.5064i 0.527599 + 1.03547i
\(813\) 10.6456 10.6456i 0.373359 0.373359i
\(814\) 3.80423 2.76393i 0.133338 0.0968758i
\(815\) 0 0
\(816\) −4.00000 2.90617i −0.140028 0.101736i
\(817\) 9.23607 9.23607i 0.323129 0.323129i
\(818\) 30.1664 + 4.77789i 1.05474 + 0.167055i
\(819\) 6.18034i 0.215959i
\(820\) 0 0
\(821\) 17.9111i 0.625101i −0.949901 0.312550i \(-0.898817\pi\)
0.949901 0.312550i \(-0.101183\pi\)
\(822\) −1.49640 + 9.44788i −0.0521928 + 0.329532i
\(823\) −13.8698 + 13.8698i −0.483472 + 0.483472i −0.906238 0.422767i \(-0.861059\pi\)
0.422767 + 0.906238i \(0.361059\pi\)
\(824\) −4.14725 12.7639i −0.144476 0.444653i
\(825\) 0 0
\(826\) −1.05573 1.45309i −0.0367335 0.0505593i
\(827\) −8.14590 + 8.14590i −0.283261 + 0.283261i −0.834408 0.551147i \(-0.814190\pi\)
0.551147 + 0.834408i \(0.314190\pi\)
\(828\) 12.2123 + 23.9680i 0.424407 + 0.832946i
\(829\) −54.5002 −1.89287 −0.946436 0.322892i \(-0.895345\pi\)
−0.946436 + 0.322892i \(0.895345\pi\)
\(830\) 0 0
\(831\) 11.4127i 0.395901i
\(832\) −8.11869 1.28587i −0.281465 0.0445797i
\(833\) 0.236068 + 0.236068i 0.00817927 + 0.00817927i
\(834\) 15.5599 + 21.4164i 0.538796 + 0.741590i
\(835\) 0 0
\(836\) −4.00000 + 12.3107i −0.138343 + 0.425776i
\(837\) 27.5276 + 27.5276i 0.951494 + 0.951494i
\(838\) 40.2737 + 6.37873i 1.39123 + 0.220350i
\(839\) −15.2169 −0.525346 −0.262673 0.964885i \(-0.584604\pi\)
−0.262673 + 0.964885i \(0.584604\pi\)
\(840\) 0 0
\(841\) 8.88854 0.306502
\(842\) 39.7051 + 6.28867i 1.36833 + 0.216722i
\(843\) 6.00000 + 6.00000i 0.206651 + 0.206651i
\(844\) −4.35926 1.41641i −0.150052 0.0487548i
\(845\) 0 0
\(846\) −8.81966 12.1392i −0.303226 0.417355i
\(847\) 1.00406 + 1.00406i 0.0344998 + 0.0344998i
\(848\) −17.1957 + 2.72353i −0.590501 + 0.0935262i
\(849\) 16.5410i 0.567686i
\(850\) 0 0
\(851\) −6.18034 −0.211859
\(852\) −17.7757 + 9.05715i −0.608984 + 0.310293i
\(853\) 18.8496 18.8496i 0.645399 0.645399i −0.306479 0.951877i \(-0.599151\pi\)
0.951877 + 0.306479i \(0.0991509\pi\)
\(854\) −2.00811 2.76393i −0.0687163 0.0945798i
\(855\) 0 0
\(856\) −1.12461 3.46120i −0.0384384 0.118301i
\(857\) −35.8328 + 35.8328i −1.22403 + 1.22403i −0.257837 + 0.966188i \(0.583010\pi\)
−0.966188 + 0.257837i \(0.916990\pi\)
\(858\) 0.642937 4.05934i 0.0219495 0.138584i
\(859\) 16.4721i 0.562022i 0.959705 + 0.281011i \(0.0906697\pi\)
−0.959705 + 0.281011i \(0.909330\pi\)
\(860\) 0 0
\(861\) 13.4208i 0.457379i
\(862\) −26.5688 4.20808i −0.904935 0.143328i
\(863\) −35.5851 + 35.5851i −1.21133 + 1.21133i −0.240743 + 0.970589i \(0.577391\pi\)
−0.970589 + 0.240743i \(0.922609\pi\)
\(864\) 25.8885i 0.880746i
\(865\) 0 0
\(866\) −1.32624 + 0.963568i −0.0450674 + 0.0327434i
\(867\) 9.27051 9.27051i 0.314843 0.314843i
\(868\) 40.7768 20.7768i 1.38406 0.705212i
\(869\) 9.40456 0.319028
\(870\) 0 0
\(871\) 6.71040i 0.227373i
\(872\) 18.8270 36.9501i 0.637563 1.25129i
\(873\) 9.47214 + 9.47214i 0.320583 + 0.320583i
\(874\) 13.7638 10.0000i 0.465568 0.338255i
\(875\) 0 0
\(876\) −3.59675 + 11.0697i −0.121523 + 0.374009i
\(877\) −21.5438 21.5438i −0.727482 0.727482i 0.242636 0.970118i \(-0.421988\pi\)
−0.970118 + 0.242636i \(0.921988\pi\)
\(878\) 7.77322 49.0782i 0.262333 1.65631i
\(879\) −3.80423 −0.128313
\(880\) 0 0
\(881\) 6.87539 0.231638 0.115819 0.993270i \(-0.463051\pi\)
0.115819 + 0.993270i \(0.463051\pi\)
\(882\) 0.116780 0.737322i 0.00393220 0.0248269i
\(883\) 2.79837 + 2.79837i 0.0941728 + 0.0941728i 0.752624 0.658451i \(-0.228788\pi\)
−0.658451 + 0.752624i \(0.728788\pi\)
\(884\) −0.898056 + 2.76393i −0.0302049 + 0.0929611i
\(885\) 0 0
\(886\) 1.76393 1.28157i 0.0592605 0.0430552i
\(887\) 11.5187 + 11.5187i 0.386759 + 0.386759i 0.873530 0.486770i \(-0.161825\pi\)
−0.486770 + 0.873530i \(0.661825\pi\)
\(888\) −2.26323 1.15317i −0.0759491 0.0386980i
\(889\) 10.6525i 0.357273i
\(890\) 0 0
\(891\) 8.76393 0.293603
\(892\) −35.8185 + 18.2504i −1.19929 + 0.611069i
\(893\) −6.71040 + 6.71040i −0.224555 + 0.224555i
\(894\) −12.8658 + 9.34752i −0.430295 + 0.312628i
\(895\) 0 0
\(896\) 28.9443 + 9.40456i 0.966960 + 0.314184i
\(897\) −3.81966 + 3.81966i −0.127535 + 0.127535i
\(898\) −24.5792 3.89296i −0.820218 0.129910i
\(899\) 52.3607i 1.74633i
\(900\) 0 0
\(901\) 6.15537i 0.205065i
\(902\) −4.08662 + 25.8019i −0.136070 + 0.859110i
\(903\) 10.8576 10.8576i 0.361320 0.361320i
\(904\) 33.1280 10.7639i 1.10182 0.358003i
\(905\) 0 0
\(906\) 4.87539 + 6.71040i 0.161974 + 0.222938i
\(907\) 7.67376 7.67376i 0.254803 0.254803i −0.568133 0.822936i \(-0.692334\pi\)
0.822936 + 0.568133i \(0.192334\pi\)
\(908\) −23.6439 + 12.0472i −0.784651 + 0.399800i
\(909\) 6.49839 0.215538
\(910\) 0 0
\(911\) 10.3026i 0.341341i 0.985328 + 0.170671i \(0.0545934\pi\)
−0.985328 + 0.170671i \(0.945407\pi\)
\(912\) 6.90617 1.09383i 0.228686 0.0362203i
\(913\) −21.4164 21.4164i −0.708780 0.708780i
\(914\) 11.3472 + 15.6180i 0.375331 + 0.516599i
\(915\) 0 0
\(916\) 15.1246 + 4.91428i 0.499731 + 0.162373i
\(917\) −26.0746 26.0746i −0.861058 0.861058i
\(918\) 9.04029 + 1.43184i 0.298374 + 0.0472578i
\(919\) −18.1231 −0.597825 −0.298913 0.954281i \(-0.596624\pi\)
−0.298913 + 0.954281i \(0.596624\pi\)
\(920\) 0 0
\(921\) −16.7639 −0.552390
\(922\) −38.4507 6.08999i −1.26631 0.200563i
\(923\) 8.29180 + 8.29180i 0.272928 + 0.272928i
\(924\) −4.70228 + 14.4721i −0.154694 + 0.476098i
\(925\) 0 0
\(926\) −2.88854 3.97574i −0.0949234 0.130651i
\(927\) 7.50245 + 7.50245i 0.246413 + 0.246413i
\(928\) 24.6215 24.6215i 0.808239 0.808239i
\(929\) 36.6525i 1.20253i 0.799050 + 0.601264i \(0.205336\pi\)
−0.799050 + 0.601264i \(0.794664\pi\)
\(930\) 0 0
\(931\) −0.472136 −0.0154736
\(932\) 7.02666 + 13.7906i 0.230166 + 0.451726i
\(933\) −12.8658 + 12.8658i −0.421206 + 0.421206i
\(934\) −21.5438 29.6525i −0.704934 0.970259i
\(935\) 0 0
\(936\) 6.18034 2.00811i 0.202011 0.0656373i
\(937\) 42.3050 42.3050i 1.38204 1.38204i 0.541056 0.840987i \(-0.318025\pi\)
0.840987 0.541056i \(-0.181975\pi\)
\(938\) −3.88661 + 24.5391i −0.126902 + 0.801230i
\(939\) 2.18034i 0.0711527i
\(940\) 0 0
\(941\) 37.6183i 1.22632i 0.789959 + 0.613160i \(0.210102\pi\)
−0.789959 + 0.613160i \(0.789898\pi\)
\(942\) 24.0599 + 3.81072i 0.783915 + 0.124160i
\(943\) 24.2784 24.2784i 0.790615 0.790615i
\(944\) −1.11006 + 1.52786i −0.0361293 + 0.0497277i
\(945\) 0 0
\(946\) 24.1803 17.5680i 0.786171 0.571186i
\(947\) 2.14590 2.14590i 0.0697323 0.0697323i −0.671381 0.741113i \(-0.734298\pi\)
0.741113 + 0.671381i \(0.234298\pi\)
\(948\) −2.30635 4.52647i −0.0749068 0.147013i
\(949\) 6.84142 0.222082
\(950\) 0 0
\(951\) 4.91428i 0.159357i
\(952\) 4.88493 9.58721i 0.158321 0.310723i
\(953\) 29.1803 + 29.1803i 0.945244 + 0.945244i 0.998577 0.0533329i \(-0.0169844\pi\)
−0.0533329 + 0.998577i \(0.516984\pi\)
\(954\) 11.1352 8.09017i 0.360514 0.261929i
\(955\) 0 0
\(956\) −25.5279 8.29451i −0.825630 0.268263i
\(957\) 12.3107 + 12.3107i 0.397950 + 0.397950i
\(958\) 1.04029 6.56816i 0.0336104 0.212208i
\(959\) −20.8172 −0.672224
\(960\) 0 0
\(961\) −41.3607 −1.33422
\(962\) −0.233561 + 1.47464i −0.00753029 + 0.0475444i
\(963\) 2.03444 + 2.03444i 0.0655590 + 0.0655590i
\(964\) −21.3723 6.94427i −0.688355 0.223660i
\(965\) 0 0
\(966\) 16.1803 11.7557i 0.520594 0.378234i
\(967\) 10.9637 + 10.9637i 0.352567 + 0.352567i 0.861064 0.508497i \(-0.169799\pi\)
−0.508497 + 0.861064i \(0.669799\pi\)
\(968\) 0.677819 1.33030i 0.0217859 0.0427573i
\(969\) 2.47214i 0.0794164i
\(970\) 0 0
\(971\) −15.5967 −0.500523 −0.250262 0.968178i \(-0.580517\pi\)
−0.250262 + 0.968178i \(0.580517\pi\)
\(972\) −14.6153 28.6842i −0.468787 0.920047i
\(973\) −40.7364 + 40.7364i −1.30595 + 1.30595i
\(974\) −30.6053 + 22.2361i −0.980658 + 0.712490i
\(975\) 0 0
\(976\) −2.11146 + 2.90617i −0.0675861 + 0.0930242i
\(977\) 23.7639 23.7639i 0.760276 0.760276i −0.216096 0.976372i \(-0.569333\pi\)
0.976372 + 0.216096i \(0.0693326\pi\)
\(978\) −23.9197 3.78851i −0.764868 0.121143i
\(979\) 8.00000i 0.255681i
\(980\) 0 0
\(981\) 32.7849i 1.04674i
\(982\) −3.37070 + 21.2818i −0.107563 + 0.679129i
\(983\) −18.0171 + 18.0171i −0.574655 + 0.574655i −0.933426 0.358770i \(-0.883196\pi\)
0.358770 + 0.933426i \(0.383196\pi\)
\(984\) 13.4208 4.36068i 0.427839 0.139013i
\(985\) 0 0
\(986\) −7.23607 9.95959i −0.230443 0.317178i
\(987\) −7.88854 + 7.88854i −0.251095 + 0.251095i
\(988\) −1.86588 3.66199i −0.0593614 0.116503i
\(989\) −39.2833 −1.24914
\(990\) 0 0
\(991\) 14.3188i 0.454853i 0.973795 + 0.227427i \(0.0730312\pi\)
−0.973795 + 0.227427i \(0.926969\pi\)
\(992\) −34.0260 34.0260i −1.08033 1.08033i
\(993\) 18.5836 + 18.5836i 0.589732 + 0.589732i
\(994\) −25.5195 35.1246i −0.809430 1.11409i
\(995\) 0 0
\(996\) −5.05573 + 15.5599i −0.160197 + 0.493035i
\(997\) −27.9112 27.9112i −0.883955 0.883955i 0.109979 0.993934i \(-0.464922\pi\)
−0.993934 + 0.109979i \(0.964922\pi\)
\(998\) −16.6059 2.63012i −0.525652 0.0832551i
\(999\) 4.70228 0.148774
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.2.k.h.43.2 8
4.3 odd 2 800.2.o.g.143.4 8
5.2 odd 4 inner 200.2.k.h.107.4 8
5.3 odd 4 40.2.k.a.27.1 yes 8
5.4 even 2 40.2.k.a.3.3 yes 8
8.3 odd 2 inner 200.2.k.h.43.4 8
8.5 even 2 800.2.o.g.143.3 8
15.8 even 4 360.2.w.c.307.4 8
15.14 odd 2 360.2.w.c.163.2 8
20.3 even 4 160.2.o.a.47.2 8
20.7 even 4 800.2.o.g.207.3 8
20.19 odd 2 160.2.o.a.143.1 8
40.3 even 4 40.2.k.a.27.3 yes 8
40.13 odd 4 160.2.o.a.47.1 8
40.19 odd 2 40.2.k.a.3.1 8
40.27 even 4 inner 200.2.k.h.107.2 8
40.29 even 2 160.2.o.a.143.2 8
40.37 odd 4 800.2.o.g.207.4 8
60.23 odd 4 1440.2.bi.c.847.2 8
60.59 even 2 1440.2.bi.c.1423.3 8
80.3 even 4 1280.2.n.q.767.1 8
80.13 odd 4 1280.2.n.m.767.3 8
80.19 odd 4 1280.2.n.m.1023.3 8
80.29 even 4 1280.2.n.q.1023.1 8
80.43 even 4 1280.2.n.m.767.4 8
80.53 odd 4 1280.2.n.q.767.2 8
80.59 odd 4 1280.2.n.q.1023.2 8
80.69 even 4 1280.2.n.m.1023.4 8
120.29 odd 2 1440.2.bi.c.1423.2 8
120.53 even 4 1440.2.bi.c.847.3 8
120.59 even 2 360.2.w.c.163.4 8
120.83 odd 4 360.2.w.c.307.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.k.a.3.1 8 40.19 odd 2
40.2.k.a.3.3 yes 8 5.4 even 2
40.2.k.a.27.1 yes 8 5.3 odd 4
40.2.k.a.27.3 yes 8 40.3 even 4
160.2.o.a.47.1 8 40.13 odd 4
160.2.o.a.47.2 8 20.3 even 4
160.2.o.a.143.1 8 20.19 odd 2
160.2.o.a.143.2 8 40.29 even 2
200.2.k.h.43.2 8 1.1 even 1 trivial
200.2.k.h.43.4 8 8.3 odd 2 inner
200.2.k.h.107.2 8 40.27 even 4 inner
200.2.k.h.107.4 8 5.2 odd 4 inner
360.2.w.c.163.2 8 15.14 odd 2
360.2.w.c.163.4 8 120.59 even 2
360.2.w.c.307.2 8 120.83 odd 4
360.2.w.c.307.4 8 15.8 even 4
800.2.o.g.143.3 8 8.5 even 2
800.2.o.g.143.4 8 4.3 odd 2
800.2.o.g.207.3 8 20.7 even 4
800.2.o.g.207.4 8 40.37 odd 4
1280.2.n.m.767.3 8 80.13 odd 4
1280.2.n.m.767.4 8 80.43 even 4
1280.2.n.m.1023.3 8 80.19 odd 4
1280.2.n.m.1023.4 8 80.69 even 4
1280.2.n.q.767.1 8 80.3 even 4
1280.2.n.q.767.2 8 80.53 odd 4
1280.2.n.q.1023.1 8 80.29 even 4
1280.2.n.q.1023.2 8 80.59 odd 4
1440.2.bi.c.847.2 8 60.23 odd 4
1440.2.bi.c.847.3 8 120.53 even 4
1440.2.bi.c.1423.2 8 120.29 odd 2
1440.2.bi.c.1423.3 8 60.59 even 2