Properties

Label 1280.2.n.q.1023.2
Level $1280$
Weight $2$
Character 1280.1023
Analytic conductor $10.221$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,2,Mod(767,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.767");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1023.2
Root \(0.587785 + 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 1280.1023
Dual form 1280.2.n.q.767.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.618034 + 0.618034i) q^{3} +(1.90211 - 1.17557i) q^{5} +(1.90211 + 1.90211i) q^{7} +2.23607i q^{9} +3.23607i q^{11} +(0.726543 + 0.726543i) q^{13} +(-0.449028 + 1.90211i) q^{15} +(-1.00000 + 1.00000i) q^{17} -2.00000 q^{19} -2.35114 q^{21} +(-4.25325 + 4.25325i) q^{23} +(2.23607 - 4.47214i) q^{25} +(-3.23607 - 3.23607i) q^{27} -6.15537i q^{29} +8.50651i q^{31} +(-2.00000 - 2.00000i) q^{33} +(5.85410 + 1.38197i) q^{35} +(-0.726543 + 0.726543i) q^{37} -0.898056 q^{39} -5.70820 q^{41} +(4.61803 - 4.61803i) q^{43} +(2.62866 + 4.25325i) q^{45} +(3.35520 + 3.35520i) q^{47} +0.236068i q^{49} -1.23607i q^{51} +(3.07768 + 3.07768i) q^{53} +(3.80423 + 6.15537i) q^{55} +(1.23607 - 1.23607i) q^{57} +0.472136 q^{59} +0.898056 q^{61} +(-4.25325 + 4.25325i) q^{63} +(2.23607 + 0.527864i) q^{65} +(-4.61803 - 4.61803i) q^{67} -5.25731i q^{69} +11.4127i q^{71} +(4.70820 + 4.70820i) q^{73} +(1.38197 + 4.14590i) q^{75} +(-6.15537 + 6.15537i) q^{77} +2.90617 q^{79} -2.70820 q^{81} +(6.61803 - 6.61803i) q^{83} +(-0.726543 + 3.07768i) q^{85} +(3.80423 + 3.80423i) q^{87} +2.47214i q^{89} +2.76393i q^{91} +(-5.25731 - 5.25731i) q^{93} +(-3.80423 + 2.35114i) q^{95} +(4.23607 - 4.23607i) q^{97} -7.23607 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 8 q^{17} - 16 q^{19} - 8 q^{27} - 16 q^{33} + 20 q^{35} + 8 q^{41} + 28 q^{43} - 8 q^{57} - 32 q^{59} - 28 q^{67} - 16 q^{73} + 20 q^{75} + 32 q^{81} + 44 q^{83} + 16 q^{97} - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.618034 + 0.618034i −0.356822 + 0.356822i −0.862640 0.505818i \(-0.831191\pi\)
0.505818 + 0.862640i \(0.331191\pi\)
\(4\) 0 0
\(5\) 1.90211 1.17557i 0.850651 0.525731i
\(6\) 0 0
\(7\) 1.90211 + 1.90211i 0.718931 + 0.718931i 0.968386 0.249455i \(-0.0802515\pi\)
−0.249455 + 0.968386i \(0.580252\pi\)
\(8\) 0 0
\(9\) 2.23607i 0.745356i
\(10\) 0 0
\(11\) 3.23607i 0.975711i 0.872924 + 0.487856i \(0.162221\pi\)
−0.872924 + 0.487856i \(0.837779\pi\)
\(12\) 0 0
\(13\) 0.726543 + 0.726543i 0.201507 + 0.201507i 0.800645 0.599139i \(-0.204490\pi\)
−0.599139 + 0.800645i \(0.704490\pi\)
\(14\) 0 0
\(15\) −0.449028 + 1.90211i −0.115939 + 0.491123i
\(16\) 0 0
\(17\) −1.00000 + 1.00000i −0.242536 + 0.242536i −0.817898 0.575363i \(-0.804861\pi\)
0.575363 + 0.817898i \(0.304861\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) −2.35114 −0.513061
\(22\) 0 0
\(23\) −4.25325 + 4.25325i −0.886865 + 0.886865i −0.994221 0.107356i \(-0.965762\pi\)
0.107356 + 0.994221i \(0.465762\pi\)
\(24\) 0 0
\(25\) 2.23607 4.47214i 0.447214 0.894427i
\(26\) 0 0
\(27\) −3.23607 3.23607i −0.622782 0.622782i
\(28\) 0 0
\(29\) 6.15537i 1.14302i −0.820594 0.571511i \(-0.806357\pi\)
0.820594 0.571511i \(-0.193643\pi\)
\(30\) 0 0
\(31\) 8.50651i 1.52781i 0.645326 + 0.763907i \(0.276721\pi\)
−0.645326 + 0.763907i \(0.723279\pi\)
\(32\) 0 0
\(33\) −2.00000 2.00000i −0.348155 0.348155i
\(34\) 0 0
\(35\) 5.85410 + 1.38197i 0.989524 + 0.233595i
\(36\) 0 0
\(37\) −0.726543 + 0.726543i −0.119443 + 0.119443i −0.764302 0.644859i \(-0.776916\pi\)
0.644859 + 0.764302i \(0.276916\pi\)
\(38\) 0 0
\(39\) −0.898056 −0.143804
\(40\) 0 0
\(41\) −5.70820 −0.891472 −0.445736 0.895165i \(-0.647058\pi\)
−0.445736 + 0.895165i \(0.647058\pi\)
\(42\) 0 0
\(43\) 4.61803 4.61803i 0.704244 0.704244i −0.261075 0.965319i \(-0.584077\pi\)
0.965319 + 0.261075i \(0.0840770\pi\)
\(44\) 0 0
\(45\) 2.62866 + 4.25325i 0.391857 + 0.634038i
\(46\) 0 0
\(47\) 3.35520 + 3.35520i 0.489406 + 0.489406i 0.908119 0.418713i \(-0.137519\pi\)
−0.418713 + 0.908119i \(0.637519\pi\)
\(48\) 0 0
\(49\) 0.236068i 0.0337240i
\(50\) 0 0
\(51\) 1.23607i 0.173084i
\(52\) 0 0
\(53\) 3.07768 + 3.07768i 0.422752 + 0.422752i 0.886150 0.463398i \(-0.153370\pi\)
−0.463398 + 0.886150i \(0.653370\pi\)
\(54\) 0 0
\(55\) 3.80423 + 6.15537i 0.512962 + 0.829990i
\(56\) 0 0
\(57\) 1.23607 1.23607i 0.163721 0.163721i
\(58\) 0 0
\(59\) 0.472136 0.0614669 0.0307334 0.999528i \(-0.490216\pi\)
0.0307334 + 0.999528i \(0.490216\pi\)
\(60\) 0 0
\(61\) 0.898056 0.114984 0.0574921 0.998346i \(-0.481690\pi\)
0.0574921 + 0.998346i \(0.481690\pi\)
\(62\) 0 0
\(63\) −4.25325 + 4.25325i −0.535860 + 0.535860i
\(64\) 0 0
\(65\) 2.23607 + 0.527864i 0.277350 + 0.0654735i
\(66\) 0 0
\(67\) −4.61803 4.61803i −0.564183 0.564183i 0.366310 0.930493i \(-0.380621\pi\)
−0.930493 + 0.366310i \(0.880621\pi\)
\(68\) 0 0
\(69\) 5.25731i 0.632906i
\(70\) 0 0
\(71\) 11.4127i 1.35444i 0.735783 + 0.677218i \(0.236815\pi\)
−0.735783 + 0.677218i \(0.763185\pi\)
\(72\) 0 0
\(73\) 4.70820 + 4.70820i 0.551054 + 0.551054i 0.926745 0.375691i \(-0.122595\pi\)
−0.375691 + 0.926745i \(0.622595\pi\)
\(74\) 0 0
\(75\) 1.38197 + 4.14590i 0.159576 + 0.478727i
\(76\) 0 0
\(77\) −6.15537 + 6.15537i −0.701469 + 0.701469i
\(78\) 0 0
\(79\) 2.90617 0.326970 0.163485 0.986546i \(-0.447727\pi\)
0.163485 + 0.986546i \(0.447727\pi\)
\(80\) 0 0
\(81\) −2.70820 −0.300912
\(82\) 0 0
\(83\) 6.61803 6.61803i 0.726424 0.726424i −0.243482 0.969905i \(-0.578290\pi\)
0.969905 + 0.243482i \(0.0782896\pi\)
\(84\) 0 0
\(85\) −0.726543 + 3.07768i −0.0788046 + 0.333822i
\(86\) 0 0
\(87\) 3.80423 + 3.80423i 0.407856 + 0.407856i
\(88\) 0 0
\(89\) 2.47214i 0.262046i 0.991379 + 0.131023i \(0.0418262\pi\)
−0.991379 + 0.131023i \(0.958174\pi\)
\(90\) 0 0
\(91\) 2.76393i 0.289739i
\(92\) 0 0
\(93\) −5.25731 5.25731i −0.545158 0.545158i
\(94\) 0 0
\(95\) −3.80423 + 2.35114i −0.390305 + 0.241222i
\(96\) 0 0
\(97\) 4.23607 4.23607i 0.430108 0.430108i −0.458557 0.888665i \(-0.651634\pi\)
0.888665 + 0.458557i \(0.151634\pi\)
\(98\) 0 0
\(99\) −7.23607 −0.727252
\(100\) 0 0
\(101\) −2.90617 −0.289175 −0.144587 0.989492i \(-0.546185\pi\)
−0.144587 + 0.989492i \(0.546185\pi\)
\(102\) 0 0
\(103\) 3.35520 3.35520i 0.330597 0.330597i −0.522216 0.852813i \(-0.674894\pi\)
0.852813 + 0.522216i \(0.174894\pi\)
\(104\) 0 0
\(105\) −4.47214 + 2.76393i −0.436436 + 0.269732i
\(106\) 0 0
\(107\) −0.909830 0.909830i −0.0879566 0.0879566i 0.661760 0.749716i \(-0.269810\pi\)
−0.749716 + 0.661760i \(0.769810\pi\)
\(108\) 0 0
\(109\) 14.6619i 1.40435i 0.712003 + 0.702176i \(0.247788\pi\)
−0.712003 + 0.702176i \(0.752212\pi\)
\(110\) 0 0
\(111\) 0.898056i 0.0852397i
\(112\) 0 0
\(113\) 8.70820 + 8.70820i 0.819199 + 0.819199i 0.985992 0.166793i \(-0.0533412\pi\)
−0.166793 + 0.985992i \(0.553341\pi\)
\(114\) 0 0
\(115\) −3.09017 + 13.0902i −0.288160 + 1.22066i
\(116\) 0 0
\(117\) −1.62460 + 1.62460i −0.150194 + 0.150194i
\(118\) 0 0
\(119\) −3.80423 −0.348733
\(120\) 0 0
\(121\) 0.527864 0.0479876
\(122\) 0 0
\(123\) 3.52786 3.52786i 0.318097 0.318097i
\(124\) 0 0
\(125\) −1.00406 11.1352i −0.0898056 0.995959i
\(126\) 0 0
\(127\) 2.80017 + 2.80017i 0.248475 + 0.248475i 0.820344 0.571870i \(-0.193782\pi\)
−0.571870 + 0.820344i \(0.693782\pi\)
\(128\) 0 0
\(129\) 5.70820i 0.502579i
\(130\) 0 0
\(131\) 13.7082i 1.19769i 0.800864 + 0.598846i \(0.204374\pi\)
−0.800864 + 0.598846i \(0.795626\pi\)
\(132\) 0 0
\(133\) −3.80423 3.80423i −0.329868 0.329868i
\(134\) 0 0
\(135\) −9.95959 2.35114i −0.857185 0.202354i
\(136\) 0 0
\(137\) 5.47214 5.47214i 0.467516 0.467516i −0.433593 0.901109i \(-0.642754\pi\)
0.901109 + 0.433593i \(0.142754\pi\)
\(138\) 0 0
\(139\) −21.4164 −1.81652 −0.908258 0.418411i \(-0.862587\pi\)
−0.908258 + 0.418411i \(0.862587\pi\)
\(140\) 0 0
\(141\) −4.14725 −0.349262
\(142\) 0 0
\(143\) −2.35114 + 2.35114i −0.196612 + 0.196612i
\(144\) 0 0
\(145\) −7.23607 11.7082i −0.600923 0.972313i
\(146\) 0 0
\(147\) −0.145898 0.145898i −0.0120335 0.0120335i
\(148\) 0 0
\(149\) 12.8658i 1.05400i 0.849864 + 0.527002i \(0.176684\pi\)
−0.849864 + 0.527002i \(0.823316\pi\)
\(150\) 0 0
\(151\) 6.71040i 0.546084i −0.962002 0.273042i \(-0.911970\pi\)
0.962002 0.273042i \(-0.0880298\pi\)
\(152\) 0 0
\(153\) −2.23607 2.23607i −0.180775 0.180775i
\(154\) 0 0
\(155\) 10.0000 + 16.1803i 0.803219 + 1.29964i
\(156\) 0 0
\(157\) 13.9353 13.9353i 1.11216 1.11216i 0.119303 0.992858i \(-0.461934\pi\)
0.992858 0.119303i \(-0.0380659\pi\)
\(158\) 0 0
\(159\) −3.80423 −0.301695
\(160\) 0 0
\(161\) −16.1803 −1.27519
\(162\) 0 0
\(163\) 13.8541 13.8541i 1.08514 1.08514i 0.0891157 0.996021i \(-0.471596\pi\)
0.996021 0.0891157i \(-0.0284041\pi\)
\(164\) 0 0
\(165\) −6.15537 1.45309i −0.479195 0.113123i
\(166\) 0 0
\(167\) −8.05748 8.05748i −0.623507 0.623507i 0.322920 0.946426i \(-0.395336\pi\)
−0.946426 + 0.322920i \(0.895336\pi\)
\(168\) 0 0
\(169\) 11.9443i 0.918790i
\(170\) 0 0
\(171\) 4.47214i 0.341993i
\(172\) 0 0
\(173\) 14.4904 + 14.4904i 1.10168 + 1.10168i 0.994208 + 0.107474i \(0.0342762\pi\)
0.107474 + 0.994208i \(0.465724\pi\)
\(174\) 0 0
\(175\) 12.7598 4.25325i 0.964547 0.321516i
\(176\) 0 0
\(177\) −0.291796 + 0.291796i −0.0219327 + 0.0219327i
\(178\) 0 0
\(179\) −7.52786 −0.562659 −0.281329 0.959611i \(-0.590775\pi\)
−0.281329 + 0.959611i \(0.590775\pi\)
\(180\) 0 0
\(181\) 15.2169 1.13106 0.565532 0.824726i \(-0.308671\pi\)
0.565532 + 0.824726i \(0.308671\pi\)
\(182\) 0 0
\(183\) −0.555029 + 0.555029i −0.0410289 + 0.0410289i
\(184\) 0 0
\(185\) −0.527864 + 2.23607i −0.0388093 + 0.164399i
\(186\) 0 0
\(187\) −3.23607 3.23607i −0.236645 0.236645i
\(188\) 0 0
\(189\) 12.3107i 0.895474i
\(190\) 0 0
\(191\) 13.2088i 0.955755i −0.878427 0.477877i \(-0.841406\pi\)
0.878427 0.477877i \(-0.158594\pi\)
\(192\) 0 0
\(193\) 1.47214 + 1.47214i 0.105967 + 0.105967i 0.758102 0.652136i \(-0.226127\pi\)
−0.652136 + 0.758102i \(0.726127\pi\)
\(194\) 0 0
\(195\) −1.70820 + 1.05573i −0.122327 + 0.0756023i
\(196\) 0 0
\(197\) 9.23305 9.23305i 0.657828 0.657828i −0.297038 0.954866i \(-0.595999\pi\)
0.954866 + 0.297038i \(0.0959988\pi\)
\(198\) 0 0
\(199\) 21.7153 1.53936 0.769678 0.638432i \(-0.220417\pi\)
0.769678 + 0.638432i \(0.220417\pi\)
\(200\) 0 0
\(201\) 5.70820 0.402626
\(202\) 0 0
\(203\) 11.7082 11.7082i 0.821755 0.821755i
\(204\) 0 0
\(205\) −10.8576 + 6.71040i −0.758331 + 0.468674i
\(206\) 0 0
\(207\) −9.51057 9.51057i −0.661030 0.661030i
\(208\) 0 0
\(209\) 6.47214i 0.447687i
\(210\) 0 0
\(211\) 2.29180i 0.157774i 0.996884 + 0.0788869i \(0.0251366\pi\)
−0.996884 + 0.0788869i \(0.974863\pi\)
\(212\) 0 0
\(213\) −7.05342 7.05342i −0.483293 0.483293i
\(214\) 0 0
\(215\) 3.35520 14.2128i 0.228823 0.969308i
\(216\) 0 0
\(217\) −16.1803 + 16.1803i −1.09839 + 1.09839i
\(218\) 0 0
\(219\) −5.81966 −0.393256
\(220\) 0 0
\(221\) −1.45309 −0.0977451
\(222\) 0 0
\(223\) 14.2128 14.2128i 0.951763 0.951763i −0.0471263 0.998889i \(-0.515006\pi\)
0.998889 + 0.0471263i \(0.0150063\pi\)
\(224\) 0 0
\(225\) 10.0000 + 5.00000i 0.666667 + 0.333333i
\(226\) 0 0
\(227\) −9.38197 9.38197i −0.622703 0.622703i 0.323519 0.946222i \(-0.395134\pi\)
−0.946222 + 0.323519i \(0.895134\pi\)
\(228\) 0 0
\(229\) 7.95148i 0.525449i −0.964871 0.262724i \(-0.915379\pi\)
0.964871 0.262724i \(-0.0846210\pi\)
\(230\) 0 0
\(231\) 7.60845i 0.500599i
\(232\) 0 0
\(233\) −5.47214 5.47214i −0.358492 0.358492i 0.504765 0.863257i \(-0.331579\pi\)
−0.863257 + 0.504765i \(0.831579\pi\)
\(234\) 0 0
\(235\) 10.3262 + 2.43769i 0.673609 + 0.159018i
\(236\) 0 0
\(237\) −1.79611 + 1.79611i −0.116670 + 0.116670i
\(238\) 0 0
\(239\) −13.4208 −0.868119 −0.434059 0.900884i \(-0.642919\pi\)
−0.434059 + 0.900884i \(0.642919\pi\)
\(240\) 0 0
\(241\) 11.2361 0.723779 0.361889 0.932221i \(-0.382132\pi\)
0.361889 + 0.932221i \(0.382132\pi\)
\(242\) 0 0
\(243\) 11.3820 11.3820i 0.730153 0.730153i
\(244\) 0 0
\(245\) 0.277515 + 0.449028i 0.0177298 + 0.0286873i
\(246\) 0 0
\(247\) −1.45309 1.45309i −0.0924576 0.0924576i
\(248\) 0 0
\(249\) 8.18034i 0.518408i
\(250\) 0 0
\(251\) 0.180340i 0.0113830i −0.999984 0.00569148i \(-0.998188\pi\)
0.999984 0.00569148i \(-0.00181166\pi\)
\(252\) 0 0
\(253\) −13.7638 13.7638i −0.865324 0.865324i
\(254\) 0 0
\(255\) −1.45309 2.35114i −0.0909957 0.147234i
\(256\) 0 0
\(257\) 5.29180 5.29180i 0.330093 0.330093i −0.522529 0.852622i \(-0.675011\pi\)
0.852622 + 0.522529i \(0.175011\pi\)
\(258\) 0 0
\(259\) −2.76393 −0.171742
\(260\) 0 0
\(261\) 13.7638 0.851959
\(262\) 0 0
\(263\) 7.50245 7.50245i 0.462621 0.462621i −0.436893 0.899514i \(-0.643921\pi\)
0.899514 + 0.436893i \(0.143921\pi\)
\(264\) 0 0
\(265\) 9.47214 + 2.23607i 0.581869 + 0.137361i
\(266\) 0 0
\(267\) −1.52786 1.52786i −0.0935038 0.0935038i
\(268\) 0 0
\(269\) 20.4742i 1.24833i 0.781291 + 0.624167i \(0.214562\pi\)
−0.781291 + 0.624167i \(0.785438\pi\)
\(270\) 0 0
\(271\) 17.2250i 1.04635i −0.852227 0.523173i \(-0.824748\pi\)
0.852227 0.523173i \(-0.175252\pi\)
\(272\) 0 0
\(273\) −1.70820 1.70820i −0.103385 0.103385i
\(274\) 0 0
\(275\) 14.4721 + 7.23607i 0.872703 + 0.436351i
\(276\) 0 0
\(277\) −9.23305 + 9.23305i −0.554760 + 0.554760i −0.927811 0.373051i \(-0.878312\pi\)
0.373051 + 0.927811i \(0.378312\pi\)
\(278\) 0 0
\(279\) −19.0211 −1.13877
\(280\) 0 0
\(281\) 9.70820 0.579143 0.289571 0.957156i \(-0.406487\pi\)
0.289571 + 0.957156i \(0.406487\pi\)
\(282\) 0 0
\(283\) 13.3820 13.3820i 0.795475 0.795475i −0.186903 0.982378i \(-0.559845\pi\)
0.982378 + 0.186903i \(0.0598450\pi\)
\(284\) 0 0
\(285\) 0.898056 3.80423i 0.0531962 0.225343i
\(286\) 0 0
\(287\) −10.8576 10.8576i −0.640907 0.640907i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 5.23607i 0.306944i
\(292\) 0 0
\(293\) −3.07768 3.07768i −0.179800 0.179800i 0.611469 0.791269i \(-0.290579\pi\)
−0.791269 + 0.611469i \(0.790579\pi\)
\(294\) 0 0
\(295\) 0.898056 0.555029i 0.0522868 0.0323150i
\(296\) 0 0
\(297\) 10.4721 10.4721i 0.607655 0.607655i
\(298\) 0 0
\(299\) −6.18034 −0.357418
\(300\) 0 0
\(301\) 17.5680 1.01261
\(302\) 0 0
\(303\) 1.79611 1.79611i 0.103184 0.103184i
\(304\) 0 0
\(305\) 1.70820 1.05573i 0.0978115 0.0604508i
\(306\) 0 0
\(307\) −13.5623 13.5623i −0.774042 0.774042i 0.204769 0.978810i \(-0.434356\pi\)
−0.978810 + 0.204769i \(0.934356\pi\)
\(308\) 0 0
\(309\) 4.14725i 0.235929i
\(310\) 0 0
\(311\) 20.8172i 1.18044i −0.807243 0.590219i \(-0.799041\pi\)
0.807243 0.590219i \(-0.200959\pi\)
\(312\) 0 0
\(313\) 1.76393 + 1.76393i 0.0997033 + 0.0997033i 0.755199 0.655496i \(-0.227540\pi\)
−0.655496 + 0.755199i \(0.727540\pi\)
\(314\) 0 0
\(315\) −3.09017 + 13.0902i −0.174111 + 0.737548i
\(316\) 0 0
\(317\) 3.97574 3.97574i 0.223300 0.223300i −0.586587 0.809886i \(-0.699529\pi\)
0.809886 + 0.586587i \(0.199529\pi\)
\(318\) 0 0
\(319\) 19.9192 1.11526
\(320\) 0 0
\(321\) 1.12461 0.0627697
\(322\) 0 0
\(323\) 2.00000 2.00000i 0.111283 0.111283i
\(324\) 0 0
\(325\) 4.87380 1.62460i 0.270350 0.0901165i
\(326\) 0 0
\(327\) −9.06154 9.06154i −0.501104 0.501104i
\(328\) 0 0
\(329\) 12.7639i 0.703698i
\(330\) 0 0
\(331\) 30.0689i 1.65274i 0.563131 + 0.826368i \(0.309597\pi\)
−0.563131 + 0.826368i \(0.690403\pi\)
\(332\) 0 0
\(333\) −1.62460 1.62460i −0.0890274 0.0890274i
\(334\) 0 0
\(335\) −14.2128 3.35520i −0.776531 0.183314i
\(336\) 0 0
\(337\) −19.9443 + 19.9443i −1.08643 + 1.08643i −0.0905410 + 0.995893i \(0.528860\pi\)
−0.995893 + 0.0905410i \(0.971140\pi\)
\(338\) 0 0
\(339\) −10.7639 −0.584617
\(340\) 0 0
\(341\) −27.5276 −1.49071
\(342\) 0 0
\(343\) 12.8658 12.8658i 0.694686 0.694686i
\(344\) 0 0
\(345\) −6.18034 10.0000i −0.332738 0.538382i
\(346\) 0 0
\(347\) −26.0344 26.0344i −1.39760 1.39760i −0.806862 0.590740i \(-0.798836\pi\)
−0.590740 0.806862i \(-0.701164\pi\)
\(348\) 0 0
\(349\) 16.6700i 0.892324i −0.894952 0.446162i \(-0.852791\pi\)
0.894952 0.446162i \(-0.147209\pi\)
\(350\) 0 0
\(351\) 4.70228i 0.250989i
\(352\) 0 0
\(353\) −22.4164 22.4164i −1.19311 1.19311i −0.976191 0.216914i \(-0.930401\pi\)
−0.216914 0.976191i \(-0.569599\pi\)
\(354\) 0 0
\(355\) 13.4164 + 21.7082i 0.712069 + 1.15215i
\(356\) 0 0
\(357\) 2.35114 2.35114i 0.124436 0.124436i
\(358\) 0 0
\(359\) −19.9192 −1.05129 −0.525647 0.850703i \(-0.676177\pi\)
−0.525647 + 0.850703i \(0.676177\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) −0.326238 + 0.326238i −0.0171231 + 0.0171231i
\(364\) 0 0
\(365\) 14.4904 + 3.42071i 0.758460 + 0.179048i
\(366\) 0 0
\(367\) 12.2047 + 12.2047i 0.637082 + 0.637082i 0.949835 0.312753i \(-0.101251\pi\)
−0.312753 + 0.949835i \(0.601251\pi\)
\(368\) 0 0
\(369\) 12.7639i 0.664464i
\(370\) 0 0
\(371\) 11.7082i 0.607860i
\(372\) 0 0
\(373\) 22.4418 + 22.4418i 1.16199 + 1.16199i 0.984038 + 0.177956i \(0.0569485\pi\)
0.177956 + 0.984038i \(0.443052\pi\)
\(374\) 0 0
\(375\) 7.50245 + 6.26137i 0.387425 + 0.323336i
\(376\) 0 0
\(377\) 4.47214 4.47214i 0.230327 0.230327i
\(378\) 0 0
\(379\) −0.111456 −0.00572512 −0.00286256 0.999996i \(-0.500911\pi\)
−0.00286256 + 0.999996i \(0.500911\pi\)
\(380\) 0 0
\(381\) −3.46120 −0.177323
\(382\) 0 0
\(383\) −1.00406 + 1.00406i −0.0513049 + 0.0513049i −0.732294 0.680989i \(-0.761550\pi\)
0.680989 + 0.732294i \(0.261550\pi\)
\(384\) 0 0
\(385\) −4.47214 + 18.9443i −0.227921 + 0.965489i
\(386\) 0 0
\(387\) 10.3262 + 10.3262i 0.524912 + 0.524912i
\(388\) 0 0
\(389\) 4.14725i 0.210274i 0.994458 + 0.105137i \(0.0335281\pi\)
−0.994458 + 0.105137i \(0.966472\pi\)
\(390\) 0 0
\(391\) 8.50651i 0.430193i
\(392\) 0 0
\(393\) −8.47214 8.47214i −0.427363 0.427363i
\(394\) 0 0
\(395\) 5.52786 3.41641i 0.278137 0.171898i
\(396\) 0 0
\(397\) −24.4500 + 24.4500i −1.22711 + 1.22711i −0.262055 + 0.965053i \(0.584400\pi\)
−0.965053 + 0.262055i \(0.915600\pi\)
\(398\) 0 0
\(399\) 4.70228 0.235409
\(400\) 0 0
\(401\) 31.8885 1.59244 0.796219 0.605009i \(-0.206830\pi\)
0.796219 + 0.605009i \(0.206830\pi\)
\(402\) 0 0
\(403\) −6.18034 + 6.18034i −0.307865 + 0.307865i
\(404\) 0 0
\(405\) −5.15131 + 3.18368i −0.255971 + 0.158199i
\(406\) 0 0
\(407\) −2.35114 2.35114i −0.116542 0.116542i
\(408\) 0 0
\(409\) 21.5967i 1.06789i −0.845519 0.533945i \(-0.820709\pi\)
0.845519 0.533945i \(-0.179291\pi\)
\(410\) 0 0
\(411\) 6.76393i 0.333640i
\(412\) 0 0
\(413\) 0.898056 + 0.898056i 0.0441904 + 0.0441904i
\(414\) 0 0
\(415\) 4.80828 20.3682i 0.236029 0.999836i
\(416\) 0 0
\(417\) 13.2361 13.2361i 0.648173 0.648173i
\(418\) 0 0
\(419\) −28.8328 −1.40858 −0.704288 0.709915i \(-0.748733\pi\)
−0.704288 + 0.709915i \(0.748733\pi\)
\(420\) 0 0
\(421\) −28.4257 −1.38538 −0.692692 0.721234i \(-0.743575\pi\)
−0.692692 + 0.721234i \(0.743575\pi\)
\(422\) 0 0
\(423\) −7.50245 + 7.50245i −0.364782 + 0.364782i
\(424\) 0 0
\(425\) 2.23607 + 6.70820i 0.108465 + 0.325396i
\(426\) 0 0
\(427\) 1.70820 + 1.70820i 0.0826658 + 0.0826658i
\(428\) 0 0
\(429\) 2.90617i 0.140311i
\(430\) 0 0
\(431\) 19.0211i 0.916216i 0.888897 + 0.458108i \(0.151473\pi\)
−0.888897 + 0.458108i \(0.848527\pi\)
\(432\) 0 0
\(433\) 0.819660 + 0.819660i 0.0393904 + 0.0393904i 0.726528 0.687137i \(-0.241133\pi\)
−0.687137 + 0.726528i \(0.741133\pi\)
\(434\) 0 0
\(435\) 11.7082 + 2.76393i 0.561365 + 0.132520i
\(436\) 0 0
\(437\) 8.50651 8.50651i 0.406921 0.406921i
\(438\) 0 0
\(439\) 35.1361 1.67695 0.838477 0.544937i \(-0.183446\pi\)
0.838477 + 0.544937i \(0.183446\pi\)
\(440\) 0 0
\(441\) −0.527864 −0.0251364
\(442\) 0 0
\(443\) −1.09017 + 1.09017i −0.0517955 + 0.0517955i −0.732530 0.680735i \(-0.761661\pi\)
0.680735 + 0.732530i \(0.261661\pi\)
\(444\) 0 0
\(445\) 2.90617 + 4.70228i 0.137766 + 0.222910i
\(446\) 0 0
\(447\) −7.95148 7.95148i −0.376092 0.376092i
\(448\) 0 0
\(449\) 17.5967i 0.830442i −0.909721 0.415221i \(-0.863704\pi\)
0.909721 0.415221i \(-0.136296\pi\)
\(450\) 0 0
\(451\) 18.4721i 0.869819i
\(452\) 0 0
\(453\) 4.14725 + 4.14725i 0.194855 + 0.194855i
\(454\) 0 0
\(455\) 3.24920 + 5.25731i 0.152325 + 0.246467i
\(456\) 0 0
\(457\) −9.65248 + 9.65248i −0.451524 + 0.451524i −0.895860 0.444336i \(-0.853440\pi\)
0.444336 + 0.895860i \(0.353440\pi\)
\(458\) 0 0
\(459\) 6.47214 0.302093
\(460\) 0 0
\(461\) −27.5276 −1.28209 −0.641045 0.767503i \(-0.721499\pi\)
−0.641045 + 0.767503i \(0.721499\pi\)
\(462\) 0 0
\(463\) 2.45714 2.45714i 0.114193 0.114193i −0.647701 0.761894i \(-0.724270\pi\)
0.761894 + 0.647701i \(0.224270\pi\)
\(464\) 0 0
\(465\) −16.1803 3.81966i −0.750345 0.177132i
\(466\) 0 0
\(467\) −18.3262 18.3262i −0.848037 0.848037i 0.141851 0.989888i \(-0.454695\pi\)
−0.989888 + 0.141851i \(0.954695\pi\)
\(468\) 0 0
\(469\) 17.5680i 0.811217i
\(470\) 0 0
\(471\) 17.2250i 0.793687i
\(472\) 0 0
\(473\) 14.9443 + 14.9443i 0.687138 + 0.687138i
\(474\) 0 0
\(475\) −4.47214 + 8.94427i −0.205196 + 0.410391i
\(476\) 0 0
\(477\) −6.88191 + 6.88191i −0.315101 + 0.315101i
\(478\) 0 0
\(479\) −4.70228 −0.214853 −0.107426 0.994213i \(-0.534261\pi\)
−0.107426 + 0.994213i \(0.534261\pi\)
\(480\) 0 0
\(481\) −1.05573 −0.0481371
\(482\) 0 0
\(483\) 10.0000 10.0000i 0.455016 0.455016i
\(484\) 0 0
\(485\) 3.07768 13.0373i 0.139750 0.591992i
\(486\) 0 0
\(487\) 18.9151 + 18.9151i 0.857126 + 0.857126i 0.990999 0.133872i \(-0.0427412\pi\)
−0.133872 + 0.990999i \(0.542741\pi\)
\(488\) 0 0
\(489\) 17.1246i 0.774402i
\(490\) 0 0
\(491\) 15.2361i 0.687594i 0.939044 + 0.343797i \(0.111713\pi\)
−0.939044 + 0.343797i \(0.888287\pi\)
\(492\) 0 0
\(493\) 6.15537 + 6.15537i 0.277224 + 0.277224i
\(494\) 0 0
\(495\) −13.7638 + 8.50651i −0.618638 + 0.382339i
\(496\) 0 0
\(497\) −21.7082 + 21.7082i −0.973746 + 0.973746i
\(498\) 0 0
\(499\) 11.8885 0.532204 0.266102 0.963945i \(-0.414264\pi\)
0.266102 + 0.963945i \(0.414264\pi\)
\(500\) 0 0
\(501\) 9.95959 0.444962
\(502\) 0 0
\(503\) −16.5640 + 16.5640i −0.738552 + 0.738552i −0.972298 0.233746i \(-0.924902\pi\)
0.233746 + 0.972298i \(0.424902\pi\)
\(504\) 0 0
\(505\) −5.52786 + 3.41641i −0.245987 + 0.152028i
\(506\) 0 0
\(507\) 7.38197 + 7.38197i 0.327845 + 0.327845i
\(508\) 0 0
\(509\) 10.8576i 0.481257i −0.970617 0.240628i \(-0.922646\pi\)
0.970617 0.240628i \(-0.0773535\pi\)
\(510\) 0 0
\(511\) 17.9111i 0.792339i
\(512\) 0 0
\(513\) 6.47214 + 6.47214i 0.285752 + 0.285752i
\(514\) 0 0
\(515\) 2.43769 10.3262i 0.107418 0.455028i
\(516\) 0 0
\(517\) −10.8576 + 10.8576i −0.477519 + 0.477519i
\(518\) 0 0
\(519\) −17.9111 −0.786209
\(520\) 0 0
\(521\) 0.472136 0.0206847 0.0103423 0.999947i \(-0.496708\pi\)
0.0103423 + 0.999947i \(0.496708\pi\)
\(522\) 0 0
\(523\) 25.7426 25.7426i 1.12565 1.12565i 0.134770 0.990877i \(-0.456970\pi\)
0.990877 0.134770i \(-0.0430297\pi\)
\(524\) 0 0
\(525\) −5.25731 + 10.5146i −0.229448 + 0.458896i
\(526\) 0 0
\(527\) −8.50651 8.50651i −0.370549 0.370549i
\(528\) 0 0
\(529\) 13.1803i 0.573058i
\(530\) 0 0
\(531\) 1.05573i 0.0458147i
\(532\) 0 0
\(533\) −4.14725 4.14725i −0.179637 0.179637i
\(534\) 0 0
\(535\) −2.80017 0.661030i −0.121062 0.0285788i
\(536\) 0 0
\(537\) 4.65248 4.65248i 0.200769 0.200769i
\(538\) 0 0
\(539\) −0.763932 −0.0329049
\(540\) 0 0
\(541\) 12.3107 0.529280 0.264640 0.964347i \(-0.414747\pi\)
0.264640 + 0.964347i \(0.414747\pi\)
\(542\) 0 0
\(543\) −9.40456 + 9.40456i −0.403588 + 0.403588i
\(544\) 0 0
\(545\) 17.2361 + 27.8885i 0.738312 + 1.19461i
\(546\) 0 0
\(547\) 11.5623 + 11.5623i 0.494369 + 0.494369i 0.909679 0.415311i \(-0.136327\pi\)
−0.415311 + 0.909679i \(0.636327\pi\)
\(548\) 0 0
\(549\) 2.00811i 0.0857042i
\(550\) 0 0
\(551\) 12.3107i 0.524455i
\(552\) 0 0
\(553\) 5.52786 + 5.52786i 0.235069 + 0.235069i
\(554\) 0 0
\(555\) −1.05573 1.70820i −0.0448132 0.0725092i
\(556\) 0 0
\(557\) 23.5519 23.5519i 0.997926 0.997926i −0.00207187 0.999998i \(-0.500659\pi\)
0.999998 + 0.00207187i \(0.000659497\pi\)
\(558\) 0 0
\(559\) 6.71040 0.283820
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) 4.32624 4.32624i 0.182329 0.182329i −0.610041 0.792370i \(-0.708847\pi\)
0.792370 + 0.610041i \(0.208847\pi\)
\(564\) 0 0
\(565\) 26.8011 + 6.32688i 1.12753 + 0.266174i
\(566\) 0 0
\(567\) −5.15131 5.15131i −0.216335 0.216335i
\(568\) 0 0
\(569\) 27.1246i 1.13712i −0.822641 0.568561i \(-0.807500\pi\)
0.822641 0.568561i \(-0.192500\pi\)
\(570\) 0 0
\(571\) 22.6525i 0.947977i −0.880531 0.473988i \(-0.842814\pi\)
0.880531 0.473988i \(-0.157186\pi\)
\(572\) 0 0
\(573\) 8.16348 + 8.16348i 0.341034 + 0.341034i
\(574\) 0 0
\(575\) 9.51057 + 28.5317i 0.396618 + 1.18985i
\(576\) 0 0
\(577\) 26.2361 26.2361i 1.09222 1.09222i 0.0969307 0.995291i \(-0.469097\pi\)
0.995291 0.0969307i \(-0.0309025\pi\)
\(578\) 0 0
\(579\) −1.81966 −0.0756225
\(580\) 0 0
\(581\) 25.1765 1.04450
\(582\) 0 0
\(583\) −9.95959 + 9.95959i −0.412484 + 0.412484i
\(584\) 0 0
\(585\) −1.18034 + 5.00000i −0.0488010 + 0.206725i
\(586\) 0 0
\(587\) −17.0902 17.0902i −0.705387 0.705387i 0.260175 0.965562i \(-0.416220\pi\)
−0.965562 + 0.260175i \(0.916220\pi\)
\(588\) 0 0
\(589\) 17.0130i 0.701009i
\(590\) 0 0
\(591\) 11.4127i 0.469455i
\(592\) 0 0
\(593\) 20.4164 + 20.4164i 0.838401 + 0.838401i 0.988648 0.150247i \(-0.0480069\pi\)
−0.150247 + 0.988648i \(0.548007\pi\)
\(594\) 0 0
\(595\) −7.23607 + 4.47214i −0.296650 + 0.183340i
\(596\) 0 0
\(597\) −13.4208 + 13.4208i −0.549276 + 0.549276i
\(598\) 0 0
\(599\) −6.49839 −0.265517 −0.132759 0.991148i \(-0.542383\pi\)
−0.132759 + 0.991148i \(0.542383\pi\)
\(600\) 0 0
\(601\) 17.7082 0.722333 0.361166 0.932501i \(-0.382379\pi\)
0.361166 + 0.932501i \(0.382379\pi\)
\(602\) 0 0
\(603\) 10.3262 10.3262i 0.420517 0.420517i
\(604\) 0 0
\(605\) 1.00406 0.620541i 0.0408207 0.0252286i
\(606\) 0 0
\(607\) 32.6789 + 32.6789i 1.32640 + 1.32640i 0.908489 + 0.417908i \(0.137237\pi\)
0.417908 + 0.908489i \(0.362763\pi\)
\(608\) 0 0
\(609\) 14.4721i 0.586441i
\(610\) 0 0
\(611\) 4.87539i 0.197237i
\(612\) 0 0
\(613\) −19.5357 19.5357i −0.789038 0.789038i 0.192298 0.981337i \(-0.438406\pi\)
−0.981337 + 0.192298i \(0.938406\pi\)
\(614\) 0 0
\(615\) 2.56314 10.8576i 0.103356 0.437823i
\(616\) 0 0
\(617\) −4.88854 + 4.88854i −0.196805 + 0.196805i −0.798629 0.601824i \(-0.794441\pi\)
0.601824 + 0.798629i \(0.294441\pi\)
\(618\) 0 0
\(619\) −35.3050 −1.41903 −0.709513 0.704692i \(-0.751085\pi\)
−0.709513 + 0.704692i \(0.751085\pi\)
\(620\) 0 0
\(621\) 27.5276 1.10465
\(622\) 0 0
\(623\) −4.70228 + 4.70228i −0.188393 + 0.188393i
\(624\) 0 0
\(625\) −15.0000 20.0000i −0.600000 0.800000i
\(626\) 0 0
\(627\) 4.00000 + 4.00000i 0.159745 + 0.159745i
\(628\) 0 0
\(629\) 1.45309i 0.0579383i
\(630\) 0 0
\(631\) 22.6134i 0.900223i 0.892972 + 0.450112i \(0.148616\pi\)
−0.892972 + 0.450112i \(0.851384\pi\)
\(632\) 0 0
\(633\) −1.41641 1.41641i −0.0562972 0.0562972i
\(634\) 0 0
\(635\) 8.61803 + 2.03444i 0.341996 + 0.0807344i
\(636\) 0 0
\(637\) −0.171513 + 0.171513i −0.00679561 + 0.00679561i
\(638\) 0 0
\(639\) −25.5195 −1.00954
\(640\) 0 0
\(641\) −38.6525 −1.52668 −0.763341 0.645996i \(-0.776442\pi\)
−0.763341 + 0.645996i \(0.776442\pi\)
\(642\) 0 0
\(643\) 11.5623 11.5623i 0.455973 0.455973i −0.441358 0.897331i \(-0.645503\pi\)
0.897331 + 0.441358i \(0.145503\pi\)
\(644\) 0 0
\(645\) 6.71040 + 10.8576i 0.264222 + 0.427520i
\(646\) 0 0
\(647\) 20.0252 + 20.0252i 0.787271 + 0.787271i 0.981046 0.193775i \(-0.0620731\pi\)
−0.193775 + 0.981046i \(0.562073\pi\)
\(648\) 0 0
\(649\) 1.52786i 0.0599739i
\(650\) 0 0
\(651\) 20.0000i 0.783862i
\(652\) 0 0
\(653\) −20.0907 20.0907i −0.786210 0.786210i 0.194661 0.980871i \(-0.437639\pi\)
−0.980871 + 0.194661i \(0.937639\pi\)
\(654\) 0 0
\(655\) 16.1150 + 26.0746i 0.629664 + 1.01882i
\(656\) 0 0
\(657\) −10.5279 + 10.5279i −0.410731 + 0.410731i
\(658\) 0 0
\(659\) 18.0000 0.701180 0.350590 0.936529i \(-0.385981\pi\)
0.350590 + 0.936529i \(0.385981\pi\)
\(660\) 0 0
\(661\) 3.80423 0.147967 0.0739836 0.997259i \(-0.476429\pi\)
0.0739836 + 0.997259i \(0.476429\pi\)
\(662\) 0 0
\(663\) 0.898056 0.898056i 0.0348776 0.0348776i
\(664\) 0 0
\(665\) −11.7082 2.76393i −0.454025 0.107181i
\(666\) 0 0
\(667\) 26.1803 + 26.1803i 1.01371 + 1.01371i
\(668\) 0 0
\(669\) 17.5680i 0.679220i
\(670\) 0 0
\(671\) 2.90617i 0.112191i
\(672\) 0 0
\(673\) −17.2918 17.2918i −0.666550 0.666550i 0.290366 0.956916i \(-0.406223\pi\)
−0.956916 + 0.290366i \(0.906223\pi\)
\(674\) 0 0
\(675\) −21.7082 + 7.23607i −0.835549 + 0.278516i
\(676\) 0 0
\(677\) −7.77997 + 7.77997i −0.299008 + 0.299008i −0.840625 0.541617i \(-0.817812\pi\)
0.541617 + 0.840625i \(0.317812\pi\)
\(678\) 0 0
\(679\) 16.1150 0.618435
\(680\) 0 0
\(681\) 11.5967 0.444388
\(682\) 0 0
\(683\) −22.7984 + 22.7984i −0.872356 + 0.872356i −0.992729 0.120373i \(-0.961591\pi\)
0.120373 + 0.992729i \(0.461591\pi\)
\(684\) 0 0
\(685\) 3.97574 16.8415i 0.151905 0.643481i
\(686\) 0 0
\(687\) 4.91428 + 4.91428i 0.187492 + 0.187492i
\(688\) 0 0
\(689\) 4.47214i 0.170375i
\(690\) 0 0
\(691\) 9.12461i 0.347117i 0.984824 + 0.173558i \(0.0555265\pi\)
−0.984824 + 0.173558i \(0.944473\pi\)
\(692\) 0 0
\(693\) −13.7638 13.7638i −0.522844 0.522844i
\(694\) 0 0
\(695\) −40.7364 + 25.1765i −1.54522 + 0.954999i
\(696\) 0 0
\(697\) 5.70820 5.70820i 0.216214 0.216214i
\(698\) 0 0
\(699\) 6.76393 0.255835
\(700\) 0 0
\(701\) −19.7072 −0.744330 −0.372165 0.928167i \(-0.621384\pi\)
−0.372165 + 0.928167i \(0.621384\pi\)
\(702\) 0 0
\(703\) 1.45309 1.45309i 0.0548041 0.0548041i
\(704\) 0 0
\(705\) −7.88854 + 4.87539i −0.297100 + 0.183618i
\(706\) 0 0
\(707\) −5.52786 5.52786i −0.207897 0.207897i
\(708\) 0 0
\(709\) 3.24920i 0.122026i −0.998137 0.0610131i \(-0.980567\pi\)
0.998137 0.0610131i \(-0.0194331\pi\)
\(710\) 0 0
\(711\) 6.49839i 0.243709i
\(712\) 0 0
\(713\) −36.1803 36.1803i −1.35496 1.35496i
\(714\) 0 0
\(715\) −1.70820 + 7.23607i −0.0638832 + 0.270614i
\(716\) 0 0
\(717\) 8.29451 8.29451i 0.309764 0.309764i
\(718\) 0 0
\(719\) 4.01623 0.149780 0.0748900 0.997192i \(-0.476139\pi\)
0.0748900 + 0.997192i \(0.476139\pi\)
\(720\) 0 0
\(721\) 12.7639 0.475354
\(722\) 0 0
\(723\) −6.94427 + 6.94427i −0.258260 + 0.258260i
\(724\) 0 0
\(725\) −27.5276 13.7638i −1.02235 0.511175i
\(726\) 0 0
\(727\) 9.51057 + 9.51057i 0.352727 + 0.352727i 0.861123 0.508396i \(-0.169761\pi\)
−0.508396 + 0.861123i \(0.669761\pi\)
\(728\) 0 0
\(729\) 5.94427i 0.220158i
\(730\) 0 0
\(731\) 9.23607i 0.341608i
\(732\) 0 0
\(733\) 19.1926 + 19.1926i 0.708896 + 0.708896i 0.966303 0.257407i \(-0.0828680\pi\)
−0.257407 + 0.966303i \(0.582868\pi\)
\(734\) 0 0
\(735\) −0.449028 0.106001i −0.0165626 0.00390991i
\(736\) 0 0
\(737\) 14.9443 14.9443i 0.550479 0.550479i
\(738\) 0 0
\(739\) −9.41641 −0.346388 −0.173194 0.984888i \(-0.555409\pi\)
−0.173194 + 0.984888i \(0.555409\pi\)
\(740\) 0 0
\(741\) 1.79611 0.0659818
\(742\) 0 0
\(743\) −4.80828 + 4.80828i −0.176399 + 0.176399i −0.789784 0.613385i \(-0.789807\pi\)
0.613385 + 0.789784i \(0.289807\pi\)
\(744\) 0 0
\(745\) 15.1246 + 24.4721i 0.554123 + 0.896590i
\(746\) 0 0
\(747\) 14.7984 + 14.7984i 0.541444 + 0.541444i
\(748\) 0 0
\(749\) 3.46120i 0.126469i
\(750\) 0 0
\(751\) 11.4127i 0.416455i 0.978080 + 0.208227i \(0.0667694\pi\)
−0.978080 + 0.208227i \(0.933231\pi\)
\(752\) 0 0
\(753\) 0.111456 + 0.111456i 0.00406169 + 0.00406169i
\(754\) 0 0
\(755\) −7.88854 12.7639i −0.287094 0.464527i
\(756\) 0 0
\(757\) 31.7154 31.7154i 1.15272 1.15272i 0.166709 0.986006i \(-0.446686\pi\)
0.986006 0.166709i \(-0.0533140\pi\)
\(758\) 0 0
\(759\) 17.0130 0.617533
\(760\) 0 0
\(761\) −2.94427 −0.106730 −0.0533649 0.998575i \(-0.516995\pi\)
−0.0533649 + 0.998575i \(0.516995\pi\)
\(762\) 0 0
\(763\) −27.8885 + 27.8885i −1.00963 + 1.00963i
\(764\) 0 0
\(765\) −6.88191 1.62460i −0.248816 0.0587375i
\(766\) 0 0
\(767\) 0.343027 + 0.343027i 0.0123860 + 0.0123860i
\(768\) 0 0
\(769\) 6.47214i 0.233391i 0.993168 + 0.116696i \(0.0372302\pi\)
−0.993168 + 0.116696i \(0.962770\pi\)
\(770\) 0 0
\(771\) 6.54102i 0.235569i
\(772\) 0 0
\(773\) 31.5034 + 31.5034i 1.13310 + 1.13310i 0.989659 + 0.143439i \(0.0458159\pi\)
0.143439 + 0.989659i \(0.454184\pi\)
\(774\) 0 0
\(775\) 38.0423 + 19.0211i 1.36652 + 0.683259i
\(776\) 0 0
\(777\) 1.70820 1.70820i 0.0612815 0.0612815i
\(778\) 0 0
\(779\) 11.4164 0.409035
\(780\) 0 0
\(781\) −36.9322 −1.32154
\(782\) 0 0
\(783\) −19.9192 + 19.9192i −0.711854 + 0.711854i
\(784\) 0 0
\(785\) 10.1246 42.8885i 0.361363 1.53076i
\(786\) 0 0
\(787\) 17.8541 + 17.8541i 0.636430 + 0.636430i 0.949673 0.313243i \(-0.101415\pi\)
−0.313243 + 0.949673i \(0.601415\pi\)
\(788\) 0 0
\(789\) 9.27354i 0.330147i
\(790\) 0 0
\(791\) 33.1280i 1.17790i
\(792\) 0 0
\(793\) 0.652476 + 0.652476i 0.0231701 + 0.0231701i
\(794\) 0 0
\(795\) −7.23607 + 4.47214i −0.256637 + 0.158610i
\(796\) 0 0
\(797\) −14.8334 + 14.8334i −0.525426 + 0.525426i −0.919205 0.393779i \(-0.871167\pi\)
0.393779 + 0.919205i \(0.371167\pi\)
\(798\) 0 0
\(799\) −6.71040 −0.237397
\(800\) 0 0
\(801\) −5.52786 −0.195317
\(802\) 0 0
\(803\) −15.2361 + 15.2361i −0.537669 + 0.537669i
\(804\) 0 0
\(805\) −30.7768 + 19.0211i −1.08474 + 0.670407i
\(806\) 0 0
\(807\) −12.6538 12.6538i −0.445433 0.445433i
\(808\) 0 0
\(809\) 4.94427i 0.173831i −0.996216 0.0869157i \(-0.972299\pi\)
0.996216 0.0869157i \(-0.0277011\pi\)
\(810\) 0 0
\(811\) 26.0689i 0.915402i −0.889106 0.457701i \(-0.848673\pi\)
0.889106 0.457701i \(-0.151327\pi\)
\(812\) 0 0
\(813\) 10.6456 + 10.6456i 0.373359 + 0.373359i
\(814\) 0 0
\(815\) 10.0656 42.6385i 0.352582 1.49356i
\(816\) 0 0
\(817\) −9.23607 + 9.23607i −0.323129 + 0.323129i
\(818\) 0 0
\(819\) −6.18034 −0.215959
\(820\) 0 0
\(821\) 17.9111 0.625101 0.312550 0.949901i \(-0.398817\pi\)
0.312550 + 0.949901i \(0.398817\pi\)
\(822\) 0 0
\(823\) 13.8698 13.8698i 0.483472 0.483472i −0.422767 0.906238i \(-0.638941\pi\)
0.906238 + 0.422767i \(0.138941\pi\)
\(824\) 0 0
\(825\) −13.4164 + 4.47214i −0.467099 + 0.155700i
\(826\) 0 0
\(827\) −8.14590 8.14590i −0.283261 0.283261i 0.551147 0.834408i \(-0.314190\pi\)
−0.834408 + 0.551147i \(0.814190\pi\)
\(828\) 0 0
\(829\) 54.5002i 1.89287i 0.322892 + 0.946436i \(0.395345\pi\)
−0.322892 + 0.946436i \(0.604655\pi\)
\(830\) 0 0
\(831\) 11.4127i 0.395901i
\(832\) 0 0
\(833\) −0.236068 0.236068i −0.00817927 0.00817927i
\(834\) 0 0
\(835\) −24.7984 5.85410i −0.858183 0.202590i
\(836\) 0 0
\(837\) 27.5276 27.5276i 0.951494 0.951494i
\(838\) 0 0
\(839\) −15.2169 −0.525346 −0.262673 0.964885i \(-0.584604\pi\)
−0.262673 + 0.964885i \(0.584604\pi\)
\(840\) 0 0
\(841\) −8.88854 −0.306502
\(842\) 0 0
\(843\) −6.00000 + 6.00000i −0.206651 + 0.206651i
\(844\) 0 0
\(845\) −14.0413 22.7194i −0.483037 0.781570i
\(846\) 0 0
\(847\) 1.00406 + 1.00406i 0.0344998 + 0.0344998i
\(848\) 0 0
\(849\) 16.5410i 0.567686i
\(850\) 0 0
\(851\) 6.18034i 0.211859i
\(852\) 0 0
\(853\) −18.8496 18.8496i −0.645399 0.645399i 0.306479 0.951877i \(-0.400849\pi\)
−0.951877 + 0.306479i \(0.900849\pi\)
\(854\) 0 0
\(855\) −5.25731 8.50651i −0.179796 0.290916i
\(856\) 0 0
\(857\) −35.8328 + 35.8328i −1.22403 + 1.22403i −0.257837 + 0.966188i \(0.583010\pi\)
−0.966188 + 0.257837i \(0.916990\pi\)
\(858\) 0 0
\(859\) 16.4721 0.562022 0.281011 0.959705i \(-0.409330\pi\)
0.281011 + 0.959705i \(0.409330\pi\)
\(860\) 0 0
\(861\) 13.4208 0.457379
\(862\) 0 0
\(863\) −35.5851 + 35.5851i −1.21133 + 1.21133i −0.240743 + 0.970589i \(0.577391\pi\)
−0.970589 + 0.240743i \(0.922609\pi\)
\(864\) 0 0
\(865\) 44.5967 + 10.5279i 1.51633 + 0.357958i
\(866\) 0 0
\(867\) −9.27051 9.27051i −0.314843 0.314843i
\(868\) 0 0
\(869\) 9.40456i 0.319028i
\(870\) 0 0
\(871\) 6.71040i 0.227373i
\(872\) 0 0
\(873\) 9.47214 + 9.47214i 0.320583 + 0.320583i
\(874\) 0 0
\(875\) 19.2705 23.0902i 0.651462 0.780590i
\(876\) 0 0
\(877\) 21.5438 21.5438i 0.727482 0.727482i −0.242636 0.970118i \(-0.578012\pi\)
0.970118 + 0.242636i \(0.0780119\pi\)
\(878\) 0 0
\(879\) 3.80423 0.128313
\(880\) 0 0
\(881\) 6.87539 0.231638 0.115819 0.993270i \(-0.463051\pi\)
0.115819 + 0.993270i \(0.463051\pi\)
\(882\) 0 0
\(883\) 2.79837 2.79837i 0.0941728 0.0941728i −0.658451 0.752624i \(-0.728788\pi\)
0.752624 + 0.658451i \(0.228788\pi\)
\(884\) 0 0
\(885\) −0.212002 + 0.898056i −0.00712638 + 0.0301878i
\(886\) 0 0
\(887\) −11.5187 11.5187i −0.386759 0.386759i 0.486770 0.873530i \(-0.338175\pi\)
−0.873530 + 0.486770i \(0.838175\pi\)
\(888\) 0 0
\(889\) 10.6525i 0.357273i
\(890\) 0 0
\(891\) 8.76393i 0.293603i
\(892\) 0 0
\(893\) −6.71040 6.71040i −0.224555 0.224555i
\(894\) 0 0
\(895\) −14.3188 + 8.84953i −0.478626 + 0.295807i
\(896\) 0 0
\(897\) 3.81966 3.81966i 0.127535 0.127535i
\(898\) 0 0
\(899\) 52.3607 1.74633
\(900\) 0 0
\(901\) −6.15537 −0.205065
\(902\) 0 0
\(903\) −10.8576 + 10.8576i −0.361320 + 0.361320i
\(904\) 0 0
\(905\) 28.9443 17.8885i 0.962140 0.594635i
\(906\) 0 0
\(907\) 7.67376 + 7.67376i 0.254803 + 0.254803i 0.822936 0.568133i \(-0.192334\pi\)
−0.568133 + 0.822936i \(0.692334\pi\)
\(908\) 0 0
\(909\) 6.49839i 0.215538i
\(910\) 0 0
\(911\) 10.3026i 0.341341i −0.985328 0.170671i \(-0.945407\pi\)
0.985328 0.170671i \(-0.0545934\pi\)
\(912\) 0 0
\(913\) 21.4164 + 21.4164i 0.708780 + 0.708780i
\(914\) 0 0
\(915\) −0.403252 + 1.70820i −0.0133311 + 0.0564715i
\(916\) 0 0
\(917\) −26.0746 + 26.0746i −0.861058 + 0.861058i
\(918\) 0 0
\(919\) −18.1231 −0.597825 −0.298913 0.954281i \(-0.596624\pi\)
−0.298913 + 0.954281i \(0.596624\pi\)
\(920\) 0 0
\(921\) 16.7639 0.552390
\(922\) 0 0
\(923\) −8.29180 + 8.29180i −0.272928 + 0.272928i
\(924\) 0 0
\(925\) 1.62460 + 4.87380i 0.0534165 + 0.160249i
\(926\) 0 0
\(927\) 7.50245 + 7.50245i 0.246413 + 0.246413i
\(928\) 0 0
\(929\) 36.6525i 1.20253i 0.799050 + 0.601264i \(0.205336\pi\)
−0.799050 + 0.601264i \(0.794664\pi\)
\(930\) 0 0
\(931\) 0.472136i 0.0154736i
\(932\) 0 0
\(933\) 12.8658 + 12.8658i 0.421206 + 0.421206i
\(934\) 0 0
\(935\) −9.95959 2.35114i −0.325714 0.0768905i
\(936\) 0 0
\(937\) 42.3050 42.3050i 1.38204 1.38204i 0.541056 0.840987i \(-0.318025\pi\)
0.840987 0.541056i \(-0.181975\pi\)
\(938\) 0 0
\(939\) −2.18034 −0.0711527
\(940\) 0 0
\(941\) 37.6183 1.22632 0.613160 0.789959i \(-0.289898\pi\)
0.613160 + 0.789959i \(0.289898\pi\)
\(942\) 0 0
\(943\) 24.2784 24.2784i 0.790615 0.790615i
\(944\) 0 0
\(945\) −14.4721 23.4164i −0.470779 0.761736i
\(946\) 0 0
\(947\) −2.14590 2.14590i −0.0697323 0.0697323i 0.671381 0.741113i \(-0.265702\pi\)
−0.741113 + 0.671381i \(0.765702\pi\)
\(948\) 0 0
\(949\) 6.84142i 0.222082i
\(950\) 0 0
\(951\) 4.91428i 0.159357i
\(952\) 0 0
\(953\) 29.1803 + 29.1803i 0.945244 + 0.945244i 0.998577 0.0533329i \(-0.0169844\pi\)
−0.0533329 + 0.998577i \(0.516984\pi\)
\(954\) 0 0
\(955\) −15.5279 25.1246i −0.502470 0.813013i
\(956\) 0 0
\(957\) −12.3107 + 12.3107i −0.397950 + 0.397950i
\(958\) 0 0
\(959\) 20.8172 0.672224
\(960\) 0 0
\(961\) −41.3607 −1.33422
\(962\) 0 0
\(963\) 2.03444 2.03444i 0.0655590 0.0655590i
\(964\) 0 0
\(965\) 4.53077 + 1.06957i 0.145851 + 0.0344307i
\(966\) 0 0
\(967\) −10.9637 10.9637i −0.352567 0.352567i 0.508497 0.861064i \(-0.330201\pi\)
−0.861064 + 0.508497i \(0.830201\pi\)
\(968\) 0 0
\(969\) 2.47214i 0.0794164i
\(970\) 0 0
\(971\) 15.5967i 0.500523i 0.968178 + 0.250262i \(0.0805167\pi\)
−0.968178 + 0.250262i \(0.919483\pi\)
\(972\) 0 0
\(973\) −40.7364 40.7364i −1.30595 1.30595i
\(974\) 0 0
\(975\) −2.00811 + 4.01623i −0.0643111 + 0.128622i
\(976\) 0 0
\(977\) −23.7639 + 23.7639i −0.760276 + 0.760276i −0.976372 0.216096i \(-0.930667\pi\)
0.216096 + 0.976372i \(0.430667\pi\)
\(978\) 0 0
\(979\) −8.00000 −0.255681
\(980\) 0 0
\(981\) −32.7849 −1.04674
\(982\) 0 0
\(983\) 18.0171 18.0171i 0.574655 0.574655i −0.358770 0.933426i \(-0.616804\pi\)
0.933426 + 0.358770i \(0.116804\pi\)
\(984\) 0 0
\(985\) 6.70820 28.4164i 0.213741 0.905422i
\(986\) 0 0
\(987\) −7.88854 7.88854i −0.251095 0.251095i
\(988\) 0 0
\(989\) 39.2833i 1.24914i
\(990\) 0 0
\(991\) 14.3188i 0.454853i −0.973795 0.227427i \(-0.926969\pi\)
0.973795 0.227427i \(-0.0730312\pi\)
\(992\) 0 0
\(993\) −18.5836 18.5836i −0.589732 0.589732i
\(994\) 0 0
\(995\) 41.3050 25.5279i 1.30945 0.809288i
\(996\) 0 0
\(997\) −27.9112 + 27.9112i −0.883955 + 0.883955i −0.993934 0.109979i \(-0.964922\pi\)
0.109979 + 0.993934i \(0.464922\pi\)
\(998\) 0 0
\(999\) 4.70228 0.148774
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.n.q.1023.2 8
4.3 odd 2 1280.2.n.m.1023.4 8
5.2 odd 4 1280.2.n.m.767.4 8
8.3 odd 2 inner 1280.2.n.q.1023.1 8
8.5 even 2 1280.2.n.m.1023.3 8
16.3 odd 4 40.2.k.a.3.3 yes 8
16.5 even 4 40.2.k.a.3.1 8
16.11 odd 4 160.2.o.a.143.2 8
16.13 even 4 160.2.o.a.143.1 8
20.7 even 4 inner 1280.2.n.q.767.2 8
40.27 even 4 1280.2.n.m.767.3 8
40.37 odd 4 inner 1280.2.n.q.767.1 8
48.5 odd 4 360.2.w.c.163.4 8
48.11 even 4 1440.2.bi.c.1423.2 8
48.29 odd 4 1440.2.bi.c.1423.3 8
48.35 even 4 360.2.w.c.163.2 8
80.3 even 4 200.2.k.h.107.4 8
80.13 odd 4 800.2.o.g.207.3 8
80.19 odd 4 200.2.k.h.43.2 8
80.27 even 4 160.2.o.a.47.1 8
80.29 even 4 800.2.o.g.143.4 8
80.37 odd 4 40.2.k.a.27.3 yes 8
80.43 even 4 800.2.o.g.207.4 8
80.53 odd 4 200.2.k.h.107.2 8
80.59 odd 4 800.2.o.g.143.3 8
80.67 even 4 40.2.k.a.27.1 yes 8
80.69 even 4 200.2.k.h.43.4 8
80.77 odd 4 160.2.o.a.47.2 8
240.77 even 4 1440.2.bi.c.847.2 8
240.107 odd 4 1440.2.bi.c.847.3 8
240.197 even 4 360.2.w.c.307.2 8
240.227 odd 4 360.2.w.c.307.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.k.a.3.1 8 16.5 even 4
40.2.k.a.3.3 yes 8 16.3 odd 4
40.2.k.a.27.1 yes 8 80.67 even 4
40.2.k.a.27.3 yes 8 80.37 odd 4
160.2.o.a.47.1 8 80.27 even 4
160.2.o.a.47.2 8 80.77 odd 4
160.2.o.a.143.1 8 16.13 even 4
160.2.o.a.143.2 8 16.11 odd 4
200.2.k.h.43.2 8 80.19 odd 4
200.2.k.h.43.4 8 80.69 even 4
200.2.k.h.107.2 8 80.53 odd 4
200.2.k.h.107.4 8 80.3 even 4
360.2.w.c.163.2 8 48.35 even 4
360.2.w.c.163.4 8 48.5 odd 4
360.2.w.c.307.2 8 240.197 even 4
360.2.w.c.307.4 8 240.227 odd 4
800.2.o.g.143.3 8 80.59 odd 4
800.2.o.g.143.4 8 80.29 even 4
800.2.o.g.207.3 8 80.13 odd 4
800.2.o.g.207.4 8 80.43 even 4
1280.2.n.m.767.3 8 40.27 even 4
1280.2.n.m.767.4 8 5.2 odd 4
1280.2.n.m.1023.3 8 8.5 even 2
1280.2.n.m.1023.4 8 4.3 odd 2
1280.2.n.q.767.1 8 40.37 odd 4 inner
1280.2.n.q.767.2 8 20.7 even 4 inner
1280.2.n.q.1023.1 8 8.3 odd 2 inner
1280.2.n.q.1023.2 8 1.1 even 1 trivial
1440.2.bi.c.847.2 8 240.77 even 4
1440.2.bi.c.847.3 8 240.107 odd 4
1440.2.bi.c.1423.2 8 48.11 even 4
1440.2.bi.c.1423.3 8 48.29 odd 4