Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [624,4,Mod(287,624)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(624, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("624.287");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 624 = 2^{4} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 624.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(36.8171918436\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
287.1 | 0 | −5.00421 | − | 1.39923i | 0 | − | 1.15858i | 0 | 9.33514i | 0 | 23.0843 | + | 14.0041i | 0 | |||||||||||||
287.2 | 0 | −5.00421 | + | 1.39923i | 0 | 1.15858i | 0 | − | 9.33514i | 0 | 23.0843 | − | 14.0041i | 0 | |||||||||||||
287.3 | 0 | −4.62561 | − | 2.36721i | 0 | − | 8.18552i | 0 | 30.2381i | 0 | 15.7926 | + | 21.8996i | 0 | |||||||||||||
287.4 | 0 | −4.62561 | + | 2.36721i | 0 | 8.18552i | 0 | − | 30.2381i | 0 | 15.7926 | − | 21.8996i | 0 | |||||||||||||
287.5 | 0 | −3.81974 | − | 3.52273i | 0 | − | 18.3557i | 0 | − | 21.7737i | 0 | 2.18081 | + | 26.9118i | 0 | ||||||||||||
287.6 | 0 | −3.81974 | + | 3.52273i | 0 | 18.3557i | 0 | 21.7737i | 0 | 2.18081 | − | 26.9118i | 0 | ||||||||||||||
287.7 | 0 | −2.35002 | − | 4.63437i | 0 | − | 6.29951i | 0 | − | 30.3725i | 0 | −15.9549 | + | 21.7817i | 0 | ||||||||||||
287.8 | 0 | −2.35002 | + | 4.63437i | 0 | 6.29951i | 0 | 30.3725i | 0 | −15.9549 | − | 21.7817i | 0 | ||||||||||||||
287.9 | 0 | −1.92666 | − | 4.82576i | 0 | 18.6497i | 0 | 4.79314i | 0 | −19.5759 | + | 18.5952i | 0 | ||||||||||||||
287.10 | 0 | −1.92666 | + | 4.82576i | 0 | − | 18.6497i | 0 | − | 4.79314i | 0 | −19.5759 | − | 18.5952i | 0 | ||||||||||||
287.11 | 0 | −0.486351 | − | 5.17334i | 0 | 4.15078i | 0 | 6.70503i | 0 | −26.5269 | + | 5.03212i | 0 | ||||||||||||||
287.12 | 0 | −0.486351 | + | 5.17334i | 0 | − | 4.15078i | 0 | − | 6.70503i | 0 | −26.5269 | − | 5.03212i | 0 | ||||||||||||
287.13 | 0 | 0.486351 | − | 5.17334i | 0 | − | 4.15078i | 0 | 6.70503i | 0 | −26.5269 | − | 5.03212i | 0 | |||||||||||||
287.14 | 0 | 0.486351 | + | 5.17334i | 0 | 4.15078i | 0 | − | 6.70503i | 0 | −26.5269 | + | 5.03212i | 0 | |||||||||||||
287.15 | 0 | 1.92666 | − | 4.82576i | 0 | − | 18.6497i | 0 | 4.79314i | 0 | −19.5759 | − | 18.5952i | 0 | |||||||||||||
287.16 | 0 | 1.92666 | + | 4.82576i | 0 | 18.6497i | 0 | − | 4.79314i | 0 | −19.5759 | + | 18.5952i | 0 | |||||||||||||
287.17 | 0 | 2.35002 | − | 4.63437i | 0 | 6.29951i | 0 | − | 30.3725i | 0 | −15.9549 | − | 21.7817i | 0 | |||||||||||||
287.18 | 0 | 2.35002 | + | 4.63437i | 0 | − | 6.29951i | 0 | 30.3725i | 0 | −15.9549 | + | 21.7817i | 0 | |||||||||||||
287.19 | 0 | 3.81974 | − | 3.52273i | 0 | 18.3557i | 0 | − | 21.7737i | 0 | 2.18081 | − | 26.9118i | 0 | |||||||||||||
287.20 | 0 | 3.81974 | + | 3.52273i | 0 | − | 18.3557i | 0 | 21.7737i | 0 | 2.18081 | + | 26.9118i | 0 | |||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 624.4.d.c | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 624.4.d.c | ✓ | 24 |
4.b | odd | 2 | 1 | inner | 624.4.d.c | ✓ | 24 |
12.b | even | 2 | 1 | inner | 624.4.d.c | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
624.4.d.c | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
624.4.d.c | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
624.4.d.c | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
624.4.d.c | ✓ | 24 | 12.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} + 810T_{5}^{10} + 207621T_{5}^{8} + 17923788T_{5}^{6} + 582053364T_{5}^{4} + 6117946848T_{5}^{2} + 7206159168 \) acting on \(S_{4}^{\mathrm{new}}(624, [\chi])\).