Properties

Label 676.2.f.h.99.1
Level $676$
Weight $2$
Character 676.99
Analytic conductor $5.398$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(99,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.102930383934669717504.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 5 x^{14} - 2 x^{13} + 5 x^{12} - 8 x^{11} - 12 x^{10} + 32 x^{9} - 36 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 99.1
Root \(-1.39427 + 0.236640i\) of defining polynomial
Character \(\chi\) \(=\) 676.99
Dual form 676.2.f.h.239.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32580 + 0.492201i) q^{2} -0.850043i q^{3} +(1.51548 - 1.30512i) q^{4} +(-0.166404 - 0.166404i) q^{5} +(0.418392 + 1.12698i) q^{6} +(-1.86977 - 1.86977i) q^{7} +(-1.36683 + 2.47624i) q^{8} +2.27743 q^{9} +(0.302522 + 0.138714i) q^{10} +(-1.01973 - 1.01973i) q^{11} +(-1.10941 - 1.28822i) q^{12} +(3.39924 + 1.55864i) q^{14} +(-0.141450 + 0.141450i) q^{15} +(0.593337 - 3.95575i) q^{16} +1.39924i q^{17} +(-3.01941 + 1.12095i) q^{18} +(3.94713 - 3.94713i) q^{19} +(-0.469358 - 0.0350045i) q^{20} +(-1.58939 + 1.58939i) q^{21} +(1.85387 + 0.850043i) q^{22} -8.74431 q^{23} +(2.10491 + 1.16187i) q^{24} -4.94462i q^{25} -4.48604i q^{27} +(-5.27387 - 0.393323i) q^{28} +4.22047 q^{29} +(0.117912 - 0.257157i) q^{30} +(-3.88100 + 3.88100i) q^{31} +(1.16038 + 5.53656i) q^{32} +(-0.866814 + 0.866814i) q^{33} +(-0.688709 - 1.85511i) q^{34} +0.622275i q^{35} +(3.45139 - 2.97231i) q^{36} +(-0.366025 + 0.366025i) q^{37} +(-3.29032 + 7.17588i) q^{38} +(0.639502 - 0.184609i) q^{40} +(-4.09808 - 4.09808i) q^{41} +(1.32491 - 2.88950i) q^{42} -9.18723 q^{43} +(-2.87624 - 0.214509i) q^{44} +(-0.378973 - 0.378973i) q^{45} +(11.5932 - 4.30396i) q^{46} +(2.80318 + 2.80318i) q^{47} +(-3.36256 - 0.504362i) q^{48} -0.00790080i q^{49} +(2.43375 + 6.55556i) q^{50} +1.18942 q^{51} -5.94462 q^{53} +(2.20803 + 5.94758i) q^{54} +0.339374i q^{55} +(7.18567 - 2.07434i) q^{56} +(-3.35523 - 3.35523i) q^{57} +(-5.59549 + 2.07732i) q^{58} +(-6.02449 - 6.02449i) q^{59} +(-0.0297554 + 0.398974i) q^{60} -7.22205 q^{61} +(3.23518 - 7.05564i) q^{62} +(-4.25827 - 4.25827i) q^{63} +(-4.26353 - 6.76922i) q^{64} +(0.722573 - 1.57587i) q^{66} +(1.78345 - 1.78345i) q^{67} +(1.82618 + 2.12052i) q^{68} +7.43304i q^{69} +(-0.306284 - 0.825010i) q^{70} +(7.68668 - 7.68668i) q^{71} +(-3.11287 + 5.63946i) q^{72} +(5.05407 - 5.05407i) q^{73} +(0.305117 - 0.665434i) q^{74} -4.20314 q^{75} +(0.830315 - 11.1333i) q^{76} +3.81333i q^{77} -8.51654i q^{79} +(-0.756985 + 0.559518i) q^{80} +3.01896 q^{81} +(7.45030 + 3.41614i) q^{82} +(6.91195 - 6.91195i) q^{83} +(-0.334342 + 4.48301i) q^{84} +(0.232839 - 0.232839i) q^{85} +(12.1804 - 4.52197i) q^{86} -3.58758i q^{87} +(3.91890 - 1.13129i) q^{88} +(-4.69752 + 4.69752i) q^{89} +(0.688971 + 0.315910i) q^{90} +(-13.2518 + 11.4124i) q^{92} +(3.29901 + 3.29901i) q^{93} +(-5.09618 - 2.33672i) q^{94} -1.31364 q^{95} +(4.70632 - 0.986372i) q^{96} +(-10.9412 - 10.9412i) q^{97} +(0.00388878 + 0.0104749i) q^{98} +(-2.32236 - 2.32236i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 12 q^{5} + 4 q^{6} + 10 q^{8} - 8 q^{9} + 8 q^{14} + 4 q^{16} - 6 q^{18} - 22 q^{20} - 28 q^{21} + 4 q^{24} - 36 q^{28} + 16 q^{29} - 2 q^{32} + 28 q^{33} + 14 q^{34} + 8 q^{37} - 40 q^{40}+ \cdots + 70 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32580 + 0.492201i −0.937480 + 0.348039i
\(3\) 0.850043i 0.490772i −0.969425 0.245386i \(-0.921085\pi\)
0.969425 0.245386i \(-0.0789148\pi\)
\(4\) 1.51548 1.30512i 0.757738 0.652559i
\(5\) −0.166404 0.166404i −0.0744180 0.0744180i 0.668918 0.743336i \(-0.266758\pi\)
−0.743336 + 0.668918i \(0.766758\pi\)
\(6\) 0.418392 + 1.12698i 0.170808 + 0.460089i
\(7\) −1.86977 1.86977i −0.706708 0.706708i 0.259134 0.965841i \(-0.416563\pi\)
−0.965841 + 0.259134i \(0.916563\pi\)
\(8\) −1.36683 + 2.47624i −0.483249 + 0.875483i
\(9\) 2.27743 0.759142
\(10\) 0.302522 + 0.138714i 0.0956658 + 0.0438651i
\(11\) −1.01973 1.01973i −0.307460 0.307460i 0.536463 0.843924i \(-0.319760\pi\)
−0.843924 + 0.536463i \(0.819760\pi\)
\(12\) −1.10941 1.28822i −0.320258 0.371877i
\(13\) 0 0
\(14\) 3.39924 + 1.55864i 0.908486 + 0.416563i
\(15\) −0.141450 + 0.141450i −0.0365223 + 0.0365223i
\(16\) 0.593337 3.95575i 0.148334 0.988937i
\(17\) 1.39924i 0.339366i 0.985499 + 0.169683i \(0.0542744\pi\)
−0.985499 + 0.169683i \(0.945726\pi\)
\(18\) −3.01941 + 1.12095i −0.711681 + 0.264211i
\(19\) 3.94713 3.94713i 0.905535 0.905535i −0.0903734 0.995908i \(-0.528806\pi\)
0.995908 + 0.0903734i \(0.0288060\pi\)
\(20\) −0.469358 0.0350045i −0.104952 0.00782725i
\(21\) −1.58939 + 1.58939i −0.346833 + 0.346833i
\(22\) 1.85387 + 0.850043i 0.395246 + 0.181230i
\(23\) −8.74431 −1.82331 −0.911657 0.410951i \(-0.865197\pi\)
−0.911657 + 0.410951i \(0.865197\pi\)
\(24\) 2.10491 + 1.16187i 0.429663 + 0.237165i
\(25\) 4.94462i 0.988924i
\(26\) 0 0
\(27\) 4.48604i 0.863339i
\(28\) −5.27387 0.393323i −0.996668 0.0743311i
\(29\) 4.22047 0.783722 0.391861 0.920025i \(-0.371831\pi\)
0.391861 + 0.920025i \(0.371831\pi\)
\(30\) 0.117912 0.257157i 0.0215278 0.0469501i
\(31\) −3.88100 + 3.88100i −0.697047 + 0.697047i −0.963773 0.266725i \(-0.914058\pi\)
0.266725 + 0.963773i \(0.414058\pi\)
\(32\) 1.16038 + 5.53656i 0.205128 + 0.978735i
\(33\) −0.866814 + 0.866814i −0.150893 + 0.150893i
\(34\) −0.688709 1.85511i −0.118113 0.318149i
\(35\) 0.622275i 0.105184i
\(36\) 3.45139 2.97231i 0.575231 0.495385i
\(37\) −0.366025 + 0.366025i −0.0601742 + 0.0601742i −0.736553 0.676379i \(-0.763548\pi\)
0.676379 + 0.736553i \(0.263548\pi\)
\(38\) −3.29032 + 7.17588i −0.533760 + 1.16408i
\(39\) 0 0
\(40\) 0.639502 0.184609i 0.101114 0.0291893i
\(41\) −4.09808 4.09808i −0.640012 0.640012i 0.310546 0.950558i \(-0.399488\pi\)
−0.950558 + 0.310546i \(0.899488\pi\)
\(42\) 1.32491 2.88950i 0.204438 0.445860i
\(43\) −9.18723 −1.40104 −0.700520 0.713633i \(-0.747049\pi\)
−0.700520 + 0.713633i \(0.747049\pi\)
\(44\) −2.87624 0.214509i −0.433610 0.0323385i
\(45\) −0.378973 0.378973i −0.0564939 0.0564939i
\(46\) 11.5932 4.30396i 1.70932 0.634584i
\(47\) 2.80318 + 2.80318i 0.408886 + 0.408886i 0.881350 0.472464i \(-0.156635\pi\)
−0.472464 + 0.881350i \(0.656635\pi\)
\(48\) −3.36256 0.504362i −0.485343 0.0727984i
\(49\) 0.00790080i 0.00112869i
\(50\) 2.43375 + 6.55556i 0.344184 + 0.927097i
\(51\) 1.18942 0.166552
\(52\) 0 0
\(53\) −5.94462 −0.816556 −0.408278 0.912858i \(-0.633871\pi\)
−0.408278 + 0.912858i \(0.633871\pi\)
\(54\) 2.20803 + 5.94758i 0.300475 + 0.809363i
\(55\) 0.339374i 0.0457612i
\(56\) 7.18567 2.07434i 0.960226 0.277195i
\(57\) −3.35523 3.35523i −0.444411 0.444411i
\(58\) −5.59549 + 2.07732i −0.734723 + 0.272765i
\(59\) −6.02449 6.02449i −0.784322 0.784322i 0.196235 0.980557i \(-0.437129\pi\)
−0.980557 + 0.196235i \(0.937129\pi\)
\(60\) −0.0297554 + 0.398974i −0.00384140 + 0.0515073i
\(61\) −7.22205 −0.924688 −0.462344 0.886701i \(-0.652992\pi\)
−0.462344 + 0.886701i \(0.652992\pi\)
\(62\) 3.23518 7.05564i 0.410869 0.896068i
\(63\) −4.25827 4.25827i −0.536492 0.536492i
\(64\) −4.26353 6.76922i −0.532941 0.846152i
\(65\) 0 0
\(66\) 0.722573 1.57587i 0.0889426 0.193976i
\(67\) 1.78345 1.78345i 0.217884 0.217884i −0.589722 0.807606i \(-0.700763\pi\)
0.807606 + 0.589722i \(0.200763\pi\)
\(68\) 1.82618 + 2.12052i 0.221456 + 0.257151i
\(69\) 7.43304i 0.894833i
\(70\) −0.306284 0.825010i −0.0366080 0.0986075i
\(71\) 7.68668 7.68668i 0.912241 0.912241i −0.0842073 0.996448i \(-0.526836\pi\)
0.996448 + 0.0842073i \(0.0268358\pi\)
\(72\) −3.11287 + 5.63946i −0.366855 + 0.664616i
\(73\) 5.05407 5.05407i 0.591534 0.591534i −0.346512 0.938046i \(-0.612634\pi\)
0.938046 + 0.346512i \(0.112634\pi\)
\(74\) 0.305117 0.665434i 0.0354692 0.0773551i
\(75\) −4.20314 −0.485337
\(76\) 0.830315 11.1333i 0.0952437 1.27707i
\(77\) 3.81333i 0.434569i
\(78\) 0 0
\(79\) 8.51654i 0.958186i −0.877764 0.479093i \(-0.840966\pi\)
0.877764 0.479093i \(-0.159034\pi\)
\(80\) −0.756985 + 0.559518i −0.0846335 + 0.0625560i
\(81\) 3.01896 0.335440
\(82\) 7.45030 + 3.41614i 0.822747 + 0.377250i
\(83\) 6.91195 6.91195i 0.758685 0.758685i −0.217398 0.976083i \(-0.569757\pi\)
0.976083 + 0.217398i \(0.0697570\pi\)
\(84\) −0.334342 + 4.48301i −0.0364797 + 0.489137i
\(85\) 0.232839 0.232839i 0.0252550 0.0252550i
\(86\) 12.1804 4.52197i 1.31345 0.487616i
\(87\) 3.58758i 0.384629i
\(88\) 3.91890 1.13129i 0.417756 0.120596i
\(89\) −4.69752 + 4.69752i −0.497936 + 0.497936i −0.910795 0.412859i \(-0.864530\pi\)
0.412859 + 0.910795i \(0.364530\pi\)
\(90\) 0.688971 + 0.315910i 0.0726240 + 0.0332998i
\(91\) 0 0
\(92\) −13.2518 + 11.4124i −1.38160 + 1.18982i
\(93\) 3.29901 + 3.29901i 0.342092 + 0.342092i
\(94\) −5.09618 2.33672i −0.525631 0.241015i
\(95\) −1.31364 −0.134776
\(96\) 4.70632 0.986372i 0.480336 0.100671i
\(97\) −10.9412 10.9412i −1.11091 1.11091i −0.993028 0.117877i \(-0.962391\pi\)
−0.117877 0.993028i \(-0.537609\pi\)
\(98\) 0.00388878 + 0.0104749i 0.000392826 + 0.00105812i
\(99\) −2.32236 2.32236i −0.233406 0.233406i
\(100\) −6.45331 7.49345i −0.645331 0.749345i
\(101\) 9.17457i 0.912904i 0.889748 + 0.456452i \(0.150880\pi\)
−0.889748 + 0.456452i \(0.849120\pi\)
\(102\) −1.57693 + 0.585432i −0.156139 + 0.0579664i
\(103\) 10.9080 1.07480 0.537398 0.843329i \(-0.319407\pi\)
0.537398 + 0.843329i \(0.319407\pi\)
\(104\) 0 0
\(105\) 0.528960 0.0516212
\(106\) 7.88136 2.92595i 0.765505 0.284193i
\(107\) 9.85658i 0.952872i 0.879209 + 0.476436i \(0.158072\pi\)
−0.879209 + 0.476436i \(0.841928\pi\)
\(108\) −5.85481 6.79849i −0.563379 0.654185i
\(109\) 0.0243171 + 0.0243171i 0.00232916 + 0.00232916i 0.708270 0.705941i \(-0.249476\pi\)
−0.705941 + 0.708270i \(0.749476\pi\)
\(110\) −0.167040 0.449941i −0.0159267 0.0429002i
\(111\) 0.311137 + 0.311137i 0.0295318 + 0.0295318i
\(112\) −8.50576 + 6.28695i −0.803718 + 0.594061i
\(113\) 4.55328 0.428336 0.214168 0.976797i \(-0.431296\pi\)
0.214168 + 0.976797i \(0.431296\pi\)
\(114\) 6.09981 + 2.79691i 0.571299 + 0.261955i
\(115\) 1.45509 + 1.45509i 0.135688 + 0.135688i
\(116\) 6.39602 5.50821i 0.593856 0.511424i
\(117\) 0 0
\(118\) 10.9525 + 5.02200i 1.00826 + 0.462312i
\(119\) 2.61627 2.61627i 0.239833 0.239833i
\(120\) −0.156926 0.543604i −0.0143253 0.0496241i
\(121\) 8.92030i 0.810937i
\(122\) 9.57497 3.55470i 0.866877 0.321827i
\(123\) −3.48354 + 3.48354i −0.314100 + 0.314100i
\(124\) −0.816402 + 10.9467i −0.0733151 + 0.983044i
\(125\) −1.65482 + 1.65482i −0.148012 + 0.148012i
\(126\) 7.74153 + 3.54968i 0.689670 + 0.316230i
\(127\) 5.34414 0.474216 0.237108 0.971483i \(-0.423801\pi\)
0.237108 + 0.971483i \(0.423801\pi\)
\(128\) 8.98439 + 6.87610i 0.794115 + 0.607767i
\(129\) 7.80954i 0.687592i
\(130\) 0 0
\(131\) 11.2254i 0.980764i 0.871508 + 0.490382i \(0.163143\pi\)
−0.871508 + 0.490382i \(0.836857\pi\)
\(132\) −0.182342 + 2.44493i −0.0158708 + 0.212804i
\(133\) −14.7605 −1.27990
\(134\) −1.48668 + 3.24232i −0.128430 + 0.280094i
\(135\) −0.746494 + 0.746494i −0.0642480 + 0.0642480i
\(136\) −3.46486 1.91253i −0.297109 0.163998i
\(137\) −3.39982 + 3.39982i −0.290466 + 0.290466i −0.837264 0.546798i \(-0.815846\pi\)
0.546798 + 0.837264i \(0.315846\pi\)
\(138\) −3.65855 9.85470i −0.311436 0.838888i
\(139\) 6.94068i 0.588700i 0.955698 + 0.294350i \(0.0951032\pi\)
−0.955698 + 0.294350i \(0.904897\pi\)
\(140\) 0.812141 + 0.943042i 0.0686385 + 0.0797016i
\(141\) 2.38283 2.38283i 0.200670 0.200670i
\(142\) −6.40759 + 13.9744i −0.537713 + 1.17270i
\(143\) 0 0
\(144\) 1.35128 9.00893i 0.112607 0.750744i
\(145\) −0.702302 0.702302i −0.0583230 0.0583230i
\(146\) −4.21305 + 9.18828i −0.348674 + 0.760428i
\(147\) −0.00671601 −0.000553928
\(148\) −0.0769967 + 1.03241i −0.00632909 + 0.0848635i
\(149\) 10.7178 + 10.7178i 0.878035 + 0.878035i 0.993331 0.115296i \(-0.0367816\pi\)
−0.115296 + 0.993331i \(0.536782\pi\)
\(150\) 5.57251 2.06879i 0.454993 0.168916i
\(151\) 0.480824 + 0.480824i 0.0391289 + 0.0391289i 0.726401 0.687272i \(-0.241192\pi\)
−0.687272 + 0.726401i \(0.741192\pi\)
\(152\) 4.37897 + 15.1691i 0.355182 + 1.23038i
\(153\) 3.18667i 0.257627i
\(154\) −1.87692 5.05570i −0.151247 0.407400i
\(155\) 1.29162 0.103746
\(156\) 0 0
\(157\) 5.90408 0.471197 0.235598 0.971851i \(-0.424295\pi\)
0.235598 + 0.971851i \(0.424295\pi\)
\(158\) 4.19185 + 11.2912i 0.333486 + 0.898280i
\(159\) 5.05318i 0.400743i
\(160\) 0.728214 1.11440i 0.0575703 0.0881008i
\(161\) 16.3499 + 16.3499i 1.28855 + 1.28855i
\(162\) −4.00252 + 1.48593i −0.314468 + 0.116746i
\(163\) 11.1248 + 11.1248i 0.871358 + 0.871358i 0.992620 0.121263i \(-0.0386943\pi\)
−0.121263 + 0.992620i \(0.538694\pi\)
\(164\) −11.5590 0.862067i −0.902607 0.0673161i
\(165\) 0.288482 0.0224583
\(166\) −5.76177 + 12.5659i −0.447200 + 0.975304i
\(167\) 3.96436 + 3.96436i 0.306772 + 0.306772i 0.843656 0.536884i \(-0.180399\pi\)
−0.536884 + 0.843656i \(0.680399\pi\)
\(168\) −1.76327 6.10813i −0.136040 0.471253i
\(169\) 0 0
\(170\) −0.194094 + 0.423302i −0.0148863 + 0.0324658i
\(171\) 8.98931 8.98931i 0.687430 0.687430i
\(172\) −13.9230 + 11.9904i −1.06162 + 0.914261i
\(173\) 2.16078i 0.164281i 0.996621 + 0.0821405i \(0.0261756\pi\)
−0.996621 + 0.0821405i \(0.973824\pi\)
\(174\) 1.76581 + 4.75640i 0.133866 + 0.360582i
\(175\) −9.24531 + 9.24531i −0.698880 + 0.698880i
\(176\) −4.63884 + 3.42875i −0.349666 + 0.258452i
\(177\) −5.12108 + 5.12108i −0.384924 + 0.384924i
\(178\) 3.91583 8.54008i 0.293504 0.640106i
\(179\) 10.1328 0.757359 0.378679 0.925528i \(-0.376378\pi\)
0.378679 + 0.925528i \(0.376378\pi\)
\(180\) −1.06893 0.0797203i −0.0796732 0.00594200i
\(181\) 13.8528i 1.02967i −0.857289 0.514836i \(-0.827853\pi\)
0.857289 0.514836i \(-0.172147\pi\)
\(182\) 0 0
\(183\) 6.13905i 0.453812i
\(184\) 11.9520 21.6530i 0.881115 1.59628i
\(185\) 0.121816 0.00895609
\(186\) −5.99760 2.75004i −0.439765 0.201643i
\(187\) 1.42685 1.42685i 0.104342 0.104342i
\(188\) 7.90664 + 0.589675i 0.576651 + 0.0430065i
\(189\) −8.38787 + 8.38787i −0.610128 + 0.610128i
\(190\) 1.74162 0.646573i 0.126350 0.0469073i
\(191\) 3.87048i 0.280058i 0.990147 + 0.140029i \(0.0447196\pi\)
−0.990147 + 0.140029i \(0.955280\pi\)
\(192\) −5.75413 + 3.62418i −0.415268 + 0.261553i
\(193\) 5.81548 5.81548i 0.418607 0.418607i −0.466116 0.884724i \(-0.654347\pi\)
0.884724 + 0.466116i \(0.154347\pi\)
\(194\) 19.8910 + 9.12050i 1.42809 + 0.654814i
\(195\) 0 0
\(196\) −0.0103115 0.0119735i −0.000736533 0.000855248i
\(197\) 8.75448 + 8.75448i 0.623731 + 0.623731i 0.946483 0.322753i \(-0.104608\pi\)
−0.322753 + 0.946483i \(0.604608\pi\)
\(198\) 4.22205 + 1.93591i 0.300048 + 0.137579i
\(199\) 2.43397 0.172539 0.0862696 0.996272i \(-0.472505\pi\)
0.0862696 + 0.996272i \(0.472505\pi\)
\(200\) 12.2441 + 6.75848i 0.865786 + 0.477896i
\(201\) −1.51601 1.51601i −0.106931 0.106931i
\(202\) −4.51573 12.1636i −0.317726 0.855829i
\(203\) −7.89132 7.89132i −0.553862 0.553862i
\(204\) 1.80253 1.55233i 0.126203 0.108685i
\(205\) 1.36387i 0.0952569i
\(206\) −14.4618 + 5.36892i −1.00760 + 0.374071i
\(207\) −19.9145 −1.38416
\(208\) 0 0
\(209\) −8.05002 −0.556831
\(210\) −0.701294 + 0.260355i −0.0483939 + 0.0179662i
\(211\) 4.19052i 0.288488i −0.989542 0.144244i \(-0.953925\pi\)
0.989542 0.144244i \(-0.0460750\pi\)
\(212\) −9.00893 + 7.75843i −0.618736 + 0.532851i
\(213\) −6.53401 6.53401i −0.447703 0.447703i
\(214\) −4.85142 13.0678i −0.331636 0.893298i
\(215\) 1.52879 + 1.52879i 0.104263 + 0.104263i
\(216\) 11.1085 + 6.13167i 0.755838 + 0.417207i
\(217\) 14.5132 0.985217
\(218\) −0.0442085 0.0202707i −0.00299418 0.00137290i
\(219\) −4.29617 4.29617i −0.290308 0.290308i
\(220\) 0.442923 + 0.514313i 0.0298618 + 0.0346750i
\(221\) 0 0
\(222\) −0.565647 0.259363i −0.0379637 0.0174073i
\(223\) −13.3137 + 13.3137i −0.891553 + 0.891553i −0.994669 0.103117i \(-0.967118\pi\)
0.103117 + 0.994669i \(0.467118\pi\)
\(224\) 8.18247 12.5218i 0.546714 0.836645i
\(225\) 11.2610i 0.750734i
\(226\) −6.03672 + 2.24113i −0.401557 + 0.149078i
\(227\) −5.26077 + 5.26077i −0.349170 + 0.349170i −0.859800 0.510631i \(-0.829412\pi\)
0.510631 + 0.859800i \(0.329412\pi\)
\(228\) −9.46375 0.705803i −0.626752 0.0467430i
\(229\) −3.17720 + 3.17720i −0.209955 + 0.209955i −0.804248 0.594293i \(-0.797432\pi\)
0.594293 + 0.804248i \(0.297432\pi\)
\(230\) −2.64534 1.21295i −0.174429 0.0799799i
\(231\) 3.24149 0.213274
\(232\) −5.76868 + 10.4509i −0.378733 + 0.686135i
\(233\) 13.3205i 0.872655i 0.899788 + 0.436328i \(0.143721\pi\)
−0.899788 + 0.436328i \(0.856279\pi\)
\(234\) 0 0
\(235\) 0.932921i 0.0608571i
\(236\) −16.9927 1.26731i −1.10613 0.0824946i
\(237\) −7.23943 −0.470251
\(238\) −2.18091 + 4.75637i −0.141367 + 0.308310i
\(239\) 5.96641 5.96641i 0.385935 0.385935i −0.487300 0.873235i \(-0.662018\pi\)
0.873235 + 0.487300i \(0.162018\pi\)
\(240\) 0.475614 + 0.643470i 0.0307008 + 0.0415358i
\(241\) 10.9373 10.9373i 0.704533 0.704533i −0.260847 0.965380i \(-0.584002\pi\)
0.965380 + 0.260847i \(0.0840018\pi\)
\(242\) 4.39058 + 11.8265i 0.282237 + 0.760237i
\(243\) 16.0244i 1.02796i
\(244\) −10.9448 + 9.42562i −0.700672 + 0.603413i
\(245\) −0.00131472 + 0.00131472i −8.39945e−5 + 8.39945e-5i
\(246\) 2.90387 6.33307i 0.185144 0.403782i
\(247\) 0 0
\(248\) −4.30560 14.9150i −0.273406 0.947101i
\(249\) −5.87545 5.87545i −0.372342 0.372342i
\(250\) 1.37945 3.00846i 0.0872443 0.190272i
\(251\) 27.4775 1.73436 0.867182 0.497992i \(-0.165929\pi\)
0.867182 + 0.497992i \(0.165929\pi\)
\(252\) −12.0109 0.895766i −0.756613 0.0564279i
\(253\) 8.91683 + 8.91683i 0.560597 + 0.560597i
\(254\) −7.08524 + 2.63039i −0.444568 + 0.165045i
\(255\) −0.197923 0.197923i −0.0123944 0.0123944i
\(256\) −15.2959 4.69419i −0.955994 0.293387i
\(257\) 27.8352i 1.73631i −0.496289 0.868157i \(-0.665304\pi\)
0.496289 0.868157i \(-0.334696\pi\)
\(258\) −3.84386 10.3539i −0.239309 0.644604i
\(259\) 1.36877 0.0850511
\(260\) 0 0
\(261\) 9.61181 0.594956
\(262\) −5.52513 14.8825i −0.341344 0.919446i
\(263\) 23.8060i 1.46794i −0.679180 0.733972i \(-0.737664\pi\)
0.679180 0.733972i \(-0.262336\pi\)
\(264\) −0.961648 3.33123i −0.0591854 0.205023i
\(265\) 0.989207 + 0.989207i 0.0607665 + 0.0607665i
\(266\) 19.5694 7.26513i 1.19988 0.445453i
\(267\) 3.99309 + 3.99309i 0.244373 + 0.244373i
\(268\) 0.375166 5.03040i 0.0229169 0.307281i
\(269\) −20.7119 −1.26282 −0.631412 0.775448i \(-0.717524\pi\)
−0.631412 + 0.775448i \(0.717524\pi\)
\(270\) 0.622275 1.35712i 0.0378704 0.0825920i
\(271\) 9.77210 + 9.77210i 0.593613 + 0.593613i 0.938605 0.344993i \(-0.112119\pi\)
−0.344993 + 0.938605i \(0.612119\pi\)
\(272\) 5.53506 + 0.830223i 0.335612 + 0.0503397i
\(273\) 0 0
\(274\) 2.83408 6.18087i 0.171213 0.373400i
\(275\) −5.04218 + 5.04218i −0.304055 + 0.304055i
\(276\) 9.70099 + 11.2646i 0.583931 + 0.678049i
\(277\) 12.7336i 0.765090i 0.923937 + 0.382545i \(0.124952\pi\)
−0.923937 + 0.382545i \(0.875048\pi\)
\(278\) −3.41621 9.20193i −0.204891 0.551895i
\(279\) −8.83868 + 8.83868i −0.529158 + 0.529158i
\(280\) −1.54090 0.850546i −0.0920865 0.0508299i
\(281\) 15.4454 15.4454i 0.921396 0.921396i −0.0757324 0.997128i \(-0.524129\pi\)
0.997128 + 0.0757324i \(0.0241295\pi\)
\(282\) −1.98632 + 4.33197i −0.118283 + 0.257965i
\(283\) 20.6898 1.22988 0.614939 0.788575i \(-0.289181\pi\)
0.614939 + 0.788575i \(0.289181\pi\)
\(284\) 1.61696 21.6810i 0.0959490 1.28653i
\(285\) 1.11665i 0.0661445i
\(286\) 0 0
\(287\) 15.3249i 0.904603i
\(288\) 2.64268 + 12.6091i 0.155721 + 0.742999i
\(289\) 15.0421 0.884830
\(290\) 1.27678 + 0.585436i 0.0749753 + 0.0343780i
\(291\) −9.30045 + 9.30045i −0.545202 + 0.545202i
\(292\) 1.06317 14.2555i 0.0622172 0.834238i
\(293\) 16.3053 16.3053i 0.952565 0.952565i −0.0463600 0.998925i \(-0.514762\pi\)
0.998925 + 0.0463600i \(0.0147621\pi\)
\(294\) 0.00890407 0.00330563i 0.000519296 0.000192788i
\(295\) 2.00500i 0.116735i
\(296\) −0.406071 1.40666i −0.0236024 0.0817606i
\(297\) −4.57455 + 4.57455i −0.265442 + 0.265442i
\(298\) −19.4849 8.93431i −1.12873 0.517551i
\(299\) 0 0
\(300\) −6.36976 + 5.48559i −0.367758 + 0.316711i
\(301\) 17.1780 + 17.1780i 0.990126 + 0.990126i
\(302\) −0.874138 0.400813i −0.0503010 0.0230642i
\(303\) 7.79878 0.448028
\(304\) −13.2719 17.9559i −0.761195 1.02984i
\(305\) 1.20178 + 1.20178i 0.0688135 + 0.0688135i
\(306\) −1.56848 4.22488i −0.0896643 0.241521i
\(307\) 16.3164 + 16.3164i 0.931228 + 0.931228i 0.997783 0.0665547i \(-0.0212007\pi\)
−0.0665547 + 0.997783i \(0.521201\pi\)
\(308\) 4.97684 + 5.77900i 0.283582 + 0.329289i
\(309\) 9.27226i 0.527480i
\(310\) −1.71243 + 0.635739i −0.0972596 + 0.0361076i
\(311\) −8.54527 −0.484558 −0.242279 0.970207i \(-0.577895\pi\)
−0.242279 + 0.970207i \(0.577895\pi\)
\(312\) 0 0
\(313\) 5.88378 0.332571 0.166285 0.986078i \(-0.446823\pi\)
0.166285 + 0.986078i \(0.446823\pi\)
\(314\) −7.82761 + 2.90599i −0.441738 + 0.163995i
\(315\) 1.41718i 0.0798493i
\(316\) −11.1151 12.9066i −0.625272 0.726054i
\(317\) −16.5045 16.5045i −0.926984 0.926984i 0.0705258 0.997510i \(-0.477532\pi\)
−0.997510 + 0.0705258i \(0.977532\pi\)
\(318\) −2.48718 6.69949i −0.139474 0.375689i
\(319\) −4.30374 4.30374i −0.240963 0.240963i
\(320\) −0.416956 + 1.83589i −0.0233086 + 0.102629i
\(321\) 8.37852 0.467643
\(322\) −29.7240 13.6292i −1.65646 0.759525i
\(323\) 5.52300 + 5.52300i 0.307308 + 0.307308i
\(324\) 4.57516 3.94009i 0.254175 0.218894i
\(325\) 0 0
\(326\) −20.2248 9.27355i −1.12015 0.513614i
\(327\) 0.0206706 0.0206706i 0.00114309 0.00114309i
\(328\) 15.7492 4.54643i 0.869605 0.251035i
\(329\) 10.4826i 0.577926i
\(330\) −0.382469 + 0.141991i −0.0210542 + 0.00781636i
\(331\) −10.1585 + 10.1585i −0.558364 + 0.558364i −0.928842 0.370477i \(-0.879194\pi\)
0.370477 + 0.928842i \(0.379194\pi\)
\(332\) 1.45399 19.4958i 0.0797981 1.06997i
\(333\) −0.833596 + 0.833596i −0.0456808 + 0.0456808i
\(334\) −7.20721 3.30468i −0.394361 0.180824i
\(335\) −0.593547 −0.0324290
\(336\) 5.34417 + 7.23026i 0.291549 + 0.394443i
\(337\) 14.3427i 0.781297i −0.920540 0.390649i \(-0.872251\pi\)
0.920540 0.390649i \(-0.127749\pi\)
\(338\) 0 0
\(339\) 3.87048i 0.210216i
\(340\) 0.0489799 0.656745i 0.00265631 0.0356170i
\(341\) 7.91513 0.428629
\(342\) −7.49345 + 16.3425i −0.405200 + 0.883704i
\(343\) −13.1032 + 13.1032i −0.707505 + 0.707505i
\(344\) 12.5574 22.7498i 0.677051 1.22659i
\(345\) 1.23689 1.23689i 0.0665917 0.0665917i
\(346\) −1.06354 2.86476i −0.0571762 0.154010i
\(347\) 0.470309i 0.0252475i −0.999920 0.0126238i \(-0.995982\pi\)
0.999920 0.0126238i \(-0.00401838\pi\)
\(348\) −4.68221 5.43689i −0.250993 0.291448i
\(349\) 19.9991 19.9991i 1.07053 1.07053i 0.0732091 0.997317i \(-0.476676\pi\)
0.997317 0.0732091i \(-0.0233240\pi\)
\(350\) 7.70686 16.8080i 0.411949 0.898423i
\(351\) 0 0
\(352\) 4.46252 6.82907i 0.237853 0.363991i
\(353\) −25.4219 25.4219i −1.35307 1.35307i −0.882202 0.470871i \(-0.843940\pi\)
−0.470871 0.882202i \(-0.656060\pi\)
\(354\) 4.26891 9.31011i 0.226890 0.494827i
\(355\) −2.55819 −0.135774
\(356\) −0.988165 + 13.2498i −0.0523726 + 0.702238i
\(357\) −2.22394 2.22394i −0.117703 0.117703i
\(358\) −13.4340 + 4.98736i −0.710009 + 0.263590i
\(359\) −11.7167 11.7167i −0.618383 0.618383i 0.326733 0.945117i \(-0.394052\pi\)
−0.945117 + 0.326733i \(0.894052\pi\)
\(360\) 1.45642 0.420434i 0.0767601 0.0221588i
\(361\) 12.1597i 0.639986i
\(362\) 6.81837 + 18.3660i 0.358366 + 0.965297i
\(363\) −7.58264 −0.397985
\(364\) 0 0
\(365\) −1.68203 −0.0880416
\(366\) −3.02165 8.13913i −0.157944 0.425439i
\(367\) 10.1556i 0.530118i −0.964232 0.265059i \(-0.914609\pi\)
0.964232 0.265059i \(-0.0853914\pi\)
\(368\) −5.18832 + 34.5903i −0.270460 + 1.80314i
\(369\) −9.33307 9.33307i −0.485860 0.485860i
\(370\) −0.161503 + 0.0599580i −0.00839616 + 0.00311707i
\(371\) 11.1151 + 11.1151i 0.577067 + 0.577067i
\(372\) 9.30517 + 0.693977i 0.482451 + 0.0359810i
\(373\) −15.0158 −0.777489 −0.388744 0.921346i \(-0.627091\pi\)
−0.388744 + 0.921346i \(0.627091\pi\)
\(374\) −1.18942 + 2.59401i −0.0615033 + 0.134133i
\(375\) 1.40667 + 1.40667i 0.0726401 + 0.0726401i
\(376\) −10.7728 + 3.10987i −0.555567 + 0.160379i
\(377\) 0 0
\(378\) 6.99210 15.2491i 0.359635 0.784331i
\(379\) −23.5868 + 23.5868i −1.21157 + 1.21157i −0.241064 + 0.970509i \(0.577496\pi\)
−0.970509 + 0.241064i \(0.922504\pi\)
\(380\) −1.99078 + 1.71445i −0.102125 + 0.0879494i
\(381\) 4.54275i 0.232732i
\(382\) −1.90505 5.13147i −0.0974711 0.262549i
\(383\) 14.8033 14.8033i 0.756412 0.756412i −0.219256 0.975667i \(-0.570363\pi\)
0.975667 + 0.219256i \(0.0703629\pi\)
\(384\) 5.84498 7.63712i 0.298275 0.389730i
\(385\) 0.634552 0.634552i 0.0323398 0.0323398i
\(386\) −4.84776 + 10.5725i −0.246745 + 0.538128i
\(387\) −20.9233 −1.06359
\(388\) −30.8605 2.30157i −1.56671 0.116844i
\(389\) 9.60410i 0.486947i 0.969908 + 0.243474i \(0.0782870\pi\)
−0.969908 + 0.243474i \(0.921713\pi\)
\(390\) 0 0
\(391\) 12.2354i 0.618772i
\(392\) 0.0195643 + 0.0107991i 0.000988145 + 0.000545436i
\(393\) 9.54203 0.481332
\(394\) −15.9156 7.29770i −0.801817 0.367653i
\(395\) −1.41718 + 1.41718i −0.0713063 + 0.0713063i
\(396\) −6.55043 0.488529i −0.329172 0.0245495i
\(397\) −1.82627 + 1.82627i −0.0916580 + 0.0916580i −0.751449 0.659791i \(-0.770645\pi\)
0.659791 + 0.751449i \(0.270645\pi\)
\(398\) −3.22694 + 1.19800i −0.161752 + 0.0600503i
\(399\) 12.5470i 0.628138i
\(400\) −19.5597 2.93383i −0.977984 0.146691i
\(401\) −19.1281 + 19.1281i −0.955211 + 0.955211i −0.999039 0.0438280i \(-0.986045\pi\)
0.0438280 + 0.999039i \(0.486045\pi\)
\(402\) 2.75611 + 1.26374i 0.137462 + 0.0630298i
\(403\) 0 0
\(404\) 11.9739 + 13.9038i 0.595723 + 0.691742i
\(405\) −0.502366 0.502366i −0.0249628 0.0249628i
\(406\) 14.3464 + 6.57817i 0.712000 + 0.326469i
\(407\) 0.746494 0.0370023
\(408\) −1.62574 + 2.94528i −0.0804859 + 0.145813i
\(409\) 3.39034 + 3.39034i 0.167642 + 0.167642i 0.785942 0.618300i \(-0.212178\pi\)
−0.618300 + 0.785942i \(0.712178\pi\)
\(410\) −0.671299 1.80822i −0.0331531 0.0893014i
\(411\) 2.88999 + 2.88999i 0.142553 + 0.142553i
\(412\) 16.5308 14.2362i 0.814414 0.701368i
\(413\) 22.5289i 1.10857i
\(414\) 26.4026 9.80195i 1.29762 0.481740i
\(415\) −2.30035 −0.112920
\(416\) 0 0
\(417\) 5.89987 0.288918
\(418\) 10.6727 3.96223i 0.522018 0.193799i
\(419\) 5.60503i 0.273824i −0.990583 0.136912i \(-0.956282\pi\)
0.990583 0.136912i \(-0.0437177\pi\)
\(420\) 0.801626 0.690355i 0.0391154 0.0336859i
\(421\) 3.55354 + 3.55354i 0.173189 + 0.173189i 0.788379 0.615190i \(-0.210921\pi\)
−0.615190 + 0.788379i \(0.710921\pi\)
\(422\) 2.06258 + 5.55579i 0.100405 + 0.270451i
\(423\) 6.38405 + 6.38405i 0.310403 + 0.310403i
\(424\) 8.12531 14.7203i 0.394600 0.714881i
\(425\) 6.91873 0.335607
\(426\) 11.8788 + 5.44672i 0.575530 + 0.263895i
\(427\) 13.5036 + 13.5036i 0.653484 + 0.653484i
\(428\) 12.8640 + 14.9374i 0.621805 + 0.722027i
\(429\) 0 0
\(430\) −2.77934 1.27439i −0.134032 0.0614567i
\(431\) 2.44497 2.44497i 0.117770 0.117770i −0.645766 0.763536i \(-0.723462\pi\)
0.763536 + 0.645766i \(0.223462\pi\)
\(432\) −17.7456 2.66173i −0.853788 0.128063i
\(433\) 5.47262i 0.262997i −0.991316 0.131499i \(-0.958021\pi\)
0.991316 0.131499i \(-0.0419789\pi\)
\(434\) −19.2415 + 7.14339i −0.923622 + 0.342894i
\(435\) −0.596987 + 0.596987i −0.0286233 + 0.0286233i
\(436\) 0.0685887 + 0.00511532i 0.00328480 + 0.000244980i
\(437\) −34.5150 + 34.5150i −1.65107 + 1.65107i
\(438\) 7.81043 + 3.58127i 0.373197 + 0.171120i
\(439\) 30.5063 1.45599 0.727994 0.685584i \(-0.240453\pi\)
0.727994 + 0.685584i \(0.240453\pi\)
\(440\) −0.840371 0.463868i −0.0400631 0.0221140i
\(441\) 0.0179935i 0.000856833i
\(442\) 0 0
\(443\) 12.8994i 0.612869i 0.951892 + 0.306434i \(0.0991360\pi\)
−0.951892 + 0.306434i \(0.900864\pi\)
\(444\) 0.877592 + 0.0654505i 0.0416487 + 0.00310614i
\(445\) 1.56337 0.0741108
\(446\) 11.0983 24.2043i 0.525518 1.14611i
\(447\) 9.11058 9.11058i 0.430916 0.430916i
\(448\) −4.68507 + 20.6287i −0.221349 + 0.974616i
\(449\) −6.97915 + 6.97915i −0.329367 + 0.329367i −0.852346 0.522979i \(-0.824821\pi\)
0.522979 + 0.852346i \(0.324821\pi\)
\(450\) 5.54268 + 14.9298i 0.261284 + 0.703798i
\(451\) 8.35786i 0.393556i
\(452\) 6.90038 5.94256i 0.324567 0.279515i
\(453\) 0.408721 0.408721i 0.0192034 0.0192034i
\(454\) 4.38536 9.56407i 0.205815 0.448864i
\(455\) 0 0
\(456\) 12.8944 3.72231i 0.603836 0.174313i
\(457\) −7.34129 7.34129i −0.343411 0.343411i 0.514237 0.857648i \(-0.328075\pi\)
−0.857648 + 0.514237i \(0.828075\pi\)
\(458\) 2.64850 5.77614i 0.123756 0.269901i
\(459\) 6.27706 0.292988
\(460\) 4.10421 + 0.306091i 0.191360 + 0.0142715i
\(461\) 20.3185 + 20.3185i 0.946329 + 0.946329i 0.998631 0.0523023i \(-0.0166559\pi\)
−0.0523023 + 0.998631i \(0.516656\pi\)
\(462\) −4.29756 + 1.59546i −0.199941 + 0.0742277i
\(463\) 5.89061 + 5.89061i 0.273760 + 0.273760i 0.830612 0.556852i \(-0.187991\pi\)
−0.556852 + 0.830612i \(0.687991\pi\)
\(464\) 2.50416 16.6951i 0.116253 0.775051i
\(465\) 1.09794i 0.0509156i
\(466\) −6.55637 17.6603i −0.303718 0.818097i
\(467\) −3.30334 −0.152860 −0.0764301 0.997075i \(-0.524352\pi\)
−0.0764301 + 0.997075i \(0.524352\pi\)
\(468\) 0 0
\(469\) −6.66931 −0.307960
\(470\) 0.459185 + 1.23686i 0.0211806 + 0.0570523i
\(471\) 5.01872i 0.231250i
\(472\) 23.1526 6.68361i 1.06568 0.307638i
\(473\) 9.36849 + 9.36849i 0.430764 + 0.430764i
\(474\) 9.59801 3.56325i 0.440851 0.163666i
\(475\) −19.5171 19.5171i −0.895505 0.895505i
\(476\) 0.550355 7.37943i 0.0252255 0.338235i
\(477\) −13.5384 −0.619882
\(478\) −4.97358 + 10.8469i −0.227486 + 0.496127i
\(479\) −19.6666 19.6666i −0.898589 0.898589i 0.0967224 0.995311i \(-0.469164\pi\)
−0.995311 + 0.0967224i \(0.969164\pi\)
\(480\) −0.947285 0.619013i −0.0432374 0.0282539i
\(481\) 0 0
\(482\) −9.11729 + 19.8840i −0.415281 + 0.905691i
\(483\) 13.8981 13.8981i 0.632385 0.632385i
\(484\) −11.6420 13.5185i −0.529184 0.614478i
\(485\) 3.64130i 0.165343i
\(486\) 7.88721 + 21.2451i 0.357771 + 0.963695i
\(487\) −7.29545 + 7.29545i −0.330588 + 0.330588i −0.852810 0.522222i \(-0.825103\pi\)
0.522222 + 0.852810i \(0.325103\pi\)
\(488\) 9.87134 17.8835i 0.446855 0.809549i
\(489\) 9.45652 9.45652i 0.427638 0.427638i
\(490\) 0.00109595 0.00239016i 4.95099e−5 0.000107977i
\(491\) −13.6249 −0.614881 −0.307441 0.951567i \(-0.599473\pi\)
−0.307441 + 0.951567i \(0.599473\pi\)
\(492\) −0.732794 + 9.82565i −0.0330369 + 0.442975i
\(493\) 5.90546i 0.265969i
\(494\) 0 0
\(495\) 0.772899i 0.0347392i
\(496\) 13.0495 + 17.6550i 0.585940 + 0.792732i
\(497\) −28.7447 −1.28938
\(498\) 10.6816 + 4.89775i 0.478652 + 0.219474i
\(499\) −11.2288 + 11.2288i −0.502670 + 0.502670i −0.912267 0.409597i \(-0.865669\pi\)
0.409597 + 0.912267i \(0.365669\pi\)
\(500\) −0.348107 + 4.66758i −0.0155678 + 0.208741i
\(501\) 3.36988 3.36988i 0.150555 0.150555i
\(502\) −36.4296 + 13.5244i −1.62593 + 0.603625i
\(503\) 22.8605i 1.01930i −0.860382 0.509650i \(-0.829775\pi\)
0.860382 0.509650i \(-0.170225\pi\)
\(504\) 16.3649 4.72415i 0.728948 0.210430i
\(505\) 1.52668 1.52668i 0.0679365 0.0679365i
\(506\) −16.2108 7.43304i −0.720657 0.330439i
\(507\) 0 0
\(508\) 8.09892 6.97473i 0.359331 0.309454i
\(509\) 6.97468 + 6.97468i 0.309147 + 0.309147i 0.844579 0.535431i \(-0.179851\pi\)
−0.535431 + 0.844579i \(0.679851\pi\)
\(510\) 0.359824 + 0.164988i 0.0159333 + 0.00730580i
\(511\) −18.8999 −0.836083
\(512\) 22.5897 1.30512i 0.998335 0.0576787i
\(513\) −17.7070 17.7070i −0.781783 0.781783i
\(514\) 13.7005 + 36.9039i 0.604305 + 1.62776i
\(515\) −1.81513 1.81513i −0.0799842 0.0799842i
\(516\) 10.1924 + 11.8352i 0.448694 + 0.521015i
\(517\) 5.71698i 0.251433i
\(518\) −1.81471 + 0.673709i −0.0797338 + 0.0296011i
\(519\) 1.83676 0.0806246
\(520\) 0 0
\(521\) 15.9204 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(522\) −12.7433 + 4.73094i −0.557760 + 0.207068i
\(523\) 2.15778i 0.0943532i 0.998887 + 0.0471766i \(0.0150224\pi\)
−0.998887 + 0.0471766i \(0.984978\pi\)
\(524\) 14.6504 + 17.0118i 0.640006 + 0.743162i
\(525\) 7.85891 + 7.85891i 0.342991 + 0.342991i
\(526\) 11.7174 + 31.5620i 0.510901 + 1.37617i
\(527\) −5.43046 5.43046i −0.236554 0.236554i
\(528\) 2.91459 + 3.94321i 0.126841 + 0.171606i
\(529\) 53.4630 2.32448
\(530\) −1.79838 0.824599i −0.0781165 0.0358183i
\(531\) −13.7203 13.7203i −0.595412 0.595412i
\(532\) −22.3692 + 19.2642i −0.969826 + 0.835207i
\(533\) 0 0
\(534\) −7.25943 3.32863i −0.314146 0.144044i
\(535\) 1.64017 1.64017i 0.0709109 0.0709109i
\(536\) 1.97857 + 6.85395i 0.0854614 + 0.296045i
\(537\) 8.61329i 0.371691i
\(538\) 27.4597 10.1944i 1.18387 0.439512i
\(539\) −0.00805668 + 0.00805668i −0.000347026 + 0.000347026i
\(540\) −0.157032 + 2.10556i −0.00675757 + 0.0906087i
\(541\) 8.15947 8.15947i 0.350803 0.350803i −0.509605 0.860408i \(-0.670209\pi\)
0.860408 + 0.509605i \(0.170209\pi\)
\(542\) −17.7657 8.14598i −0.763100 0.349900i
\(543\) −11.7755 −0.505334
\(544\) −7.74700 + 1.62365i −0.332150 + 0.0696135i
\(545\) 0.00809292i 0.000346663i
\(546\) 0 0
\(547\) 8.11076i 0.346791i −0.984852 0.173396i \(-0.944526\pi\)
0.984852 0.173396i \(-0.0554739\pi\)
\(548\) −0.715183 + 9.58951i −0.0305511 + 0.409644i
\(549\) −16.4477 −0.701970
\(550\) 4.20314 9.16667i 0.179222 0.390868i
\(551\) 16.6588 16.6588i 0.709687 0.709687i
\(552\) −18.4060 10.1597i −0.783411 0.432427i
\(553\) −15.9240 + 15.9240i −0.677157 + 0.677157i
\(554\) −6.26750 16.8822i −0.266281 0.717256i
\(555\) 0.103549i 0.00439540i
\(556\) 9.05840 + 10.5184i 0.384162 + 0.446081i
\(557\) −2.42571 + 2.42571i −0.102781 + 0.102781i −0.756627 0.653846i \(-0.773154\pi\)
0.653846 + 0.756627i \(0.273154\pi\)
\(558\) 7.36789 16.0687i 0.311908 0.680243i
\(559\) 0 0
\(560\) 2.46156 + 0.369219i 0.104020 + 0.0156023i
\(561\) −1.21288 1.21288i −0.0512080 0.0512080i
\(562\) −12.8752 + 28.0797i −0.543109 + 1.18447i
\(563\) −6.24260 −0.263094 −0.131547 0.991310i \(-0.541994\pi\)
−0.131547 + 0.991310i \(0.541994\pi\)
\(564\) 0.501249 6.72099i 0.0211064 0.283005i
\(565\) −0.757683 0.757683i −0.0318759 0.0318759i
\(566\) −27.4304 + 10.1835i −1.15299 + 0.428045i
\(567\) −5.64476 5.64476i −0.237058 0.237058i
\(568\) 8.52765 + 29.5405i 0.357812 + 1.23949i
\(569\) 32.2126i 1.35042i 0.737625 + 0.675211i \(0.235947\pi\)
−0.737625 + 0.675211i \(0.764053\pi\)
\(570\) −0.549615 1.48045i −0.0230208 0.0620091i
\(571\) 41.4189 1.73333 0.866663 0.498894i \(-0.166260\pi\)
0.866663 + 0.498894i \(0.166260\pi\)
\(572\) 0 0
\(573\) 3.29007 0.137445
\(574\) −7.54295 20.3178i −0.314837 0.848047i
\(575\) 43.2373i 1.80312i
\(576\) −9.70988 15.4164i −0.404578 0.642350i
\(577\) 12.3408 + 12.3408i 0.513753 + 0.513753i 0.915674 0.401921i \(-0.131657\pi\)
−0.401921 + 0.915674i \(0.631657\pi\)
\(578\) −19.9428 + 7.40375i −0.829511 + 0.307955i
\(579\) −4.94341 4.94341i −0.205441 0.205441i
\(580\) −1.98091 0.147736i −0.0822528 0.00613439i
\(581\) −25.8475 −1.07234
\(582\) 7.75282 16.9082i 0.321365 0.700867i
\(583\) 6.06191 + 6.06191i 0.251058 + 0.251058i
\(584\) 5.60701 + 19.4231i 0.232020 + 0.803736i
\(585\) 0 0
\(586\) −13.5920 + 29.6430i −0.561481 + 1.22454i
\(587\) 16.3380 16.3380i 0.674340 0.674340i −0.284374 0.958713i \(-0.591786\pi\)
0.958713 + 0.284374i \(0.0917857\pi\)
\(588\) −0.0101780 + 0.00876519i −0.000419732 + 0.000361470i
\(589\) 30.6376i 1.26240i
\(590\) −0.986862 2.65822i −0.0406285 0.109437i
\(591\) 7.44168 7.44168i 0.306110 0.306110i
\(592\) 1.23073 + 1.66508i 0.0505826 + 0.0684344i
\(593\) 11.0244 11.0244i 0.452717 0.452717i −0.443538 0.896255i \(-0.646277\pi\)
0.896255 + 0.443538i \(0.146277\pi\)
\(594\) 3.81333 8.31652i 0.156463 0.341231i
\(595\) −0.870713 −0.0356958
\(596\) 30.2305 + 2.25458i 1.23829 + 0.0923513i
\(597\) 2.06898i 0.0846775i
\(598\) 0 0
\(599\) 10.6090i 0.433471i −0.976230 0.216735i \(-0.930459\pi\)
0.976230 0.216735i \(-0.0695409\pi\)
\(600\) 5.74499 10.4080i 0.234538 0.424904i
\(601\) 28.2503 1.15235 0.576177 0.817325i \(-0.304544\pi\)
0.576177 + 0.817325i \(0.304544\pi\)
\(602\) −31.2296 14.3195i −1.27283 0.583621i
\(603\) 4.06169 4.06169i 0.165405 0.165405i
\(604\) 1.35621 + 0.101146i 0.0551834 + 0.00411556i
\(605\) −1.48437 + 1.48437i −0.0603483 + 0.0603483i
\(606\) −10.3396 + 3.83856i −0.420017 + 0.155931i
\(607\) 10.2708i 0.416878i 0.978035 + 0.208439i \(0.0668383\pi\)
−0.978035 + 0.208439i \(0.933162\pi\)
\(608\) 26.4337 + 17.2734i 1.07203 + 0.700528i
\(609\) −6.70796 + 6.70796i −0.271820 + 0.271820i
\(610\) −2.18483 1.00180i −0.0884610 0.0405615i
\(611\) 0 0
\(612\) 4.15898 + 4.82933i 0.168117 + 0.195214i
\(613\) 25.0553 + 25.0553i 1.01198 + 1.01198i 0.999927 + 0.0120477i \(0.00383501\pi\)
0.0120477 + 0.999927i \(0.496165\pi\)
\(614\) −29.6632 13.6013i −1.19711 0.548905i
\(615\) 1.15935 0.0467495
\(616\) −9.44271 5.21218i −0.380458 0.210005i
\(617\) −29.6355 29.6355i −1.19308 1.19308i −0.976198 0.216881i \(-0.930412\pi\)
−0.216881 0.976198i \(-0.569588\pi\)
\(618\) 4.56381 + 12.2931i 0.183584 + 0.494502i
\(619\) −12.0880 12.0880i −0.485858 0.485858i 0.421138 0.906996i \(-0.361631\pi\)
−0.906996 + 0.421138i \(0.861631\pi\)
\(620\) 1.95743 1.68572i 0.0786122 0.0677002i
\(621\) 39.2273i 1.57414i
\(622\) 11.3293 4.20599i 0.454263 0.168645i
\(623\) 17.5666 0.703790
\(624\) 0 0
\(625\) −24.1724 −0.966894
\(626\) −7.80069 + 2.89600i −0.311778 + 0.115747i
\(627\) 6.84286i 0.273278i
\(628\) 8.94749 7.70552i 0.357044 0.307484i
\(629\) −0.512159 0.512159i −0.0204211 0.0204211i
\(630\) −0.697540 1.87890i −0.0277907 0.0748572i
\(631\) 8.52621 + 8.52621i 0.339423 + 0.339423i 0.856150 0.516727i \(-0.172850\pi\)
−0.516727 + 0.856150i \(0.672850\pi\)
\(632\) 21.0890 + 11.6407i 0.838875 + 0.463042i
\(633\) −3.56213 −0.141582
\(634\) 30.0051 + 13.7581i 1.19166 + 0.546403i
\(635\) −0.889285 0.889285i −0.0352902 0.0352902i
\(636\) 6.59499 + 7.65798i 0.261509 + 0.303659i
\(637\) 0 0
\(638\) 7.82419 + 3.58758i 0.309763 + 0.142034i
\(639\) 17.5059 17.5059i 0.692521 0.692521i
\(640\) −0.350828 2.63925i −0.0138677 0.104325i
\(641\) 2.09731i 0.0828386i −0.999142 0.0414193i \(-0.986812\pi\)
0.999142 0.0414193i \(-0.0131880\pi\)
\(642\) −11.1082 + 4.12391i −0.438406 + 0.162758i
\(643\) 29.9695 29.9695i 1.18188 1.18188i 0.202627 0.979256i \(-0.435052\pi\)
0.979256 0.202627i \(-0.0649478\pi\)
\(644\) 46.1163 + 3.43934i 1.81724 + 0.135529i
\(645\) 1.29954 1.29954i 0.0511692 0.0511692i
\(646\) −10.0408 4.60395i −0.395050 0.181140i
\(647\) −43.0799 −1.69365 −0.846824 0.531874i \(-0.821488\pi\)
−0.846824 + 0.531874i \(0.821488\pi\)
\(648\) −4.12641 + 7.47566i −0.162101 + 0.293672i
\(649\) 12.2867i 0.482296i
\(650\) 0 0
\(651\) 12.3368i 0.483518i
\(652\) 31.3784 + 2.34019i 1.22887 + 0.0916490i
\(653\) −11.1212 −0.435206 −0.217603 0.976037i \(-0.569824\pi\)
−0.217603 + 0.976037i \(0.569824\pi\)
\(654\) −0.0172309 + 0.0375791i −0.000673782 + 0.00146946i
\(655\) 1.86794 1.86794i 0.0729865 0.0729865i
\(656\) −18.6425 + 13.7794i −0.727867 + 0.537996i
\(657\) 11.5103 11.5103i 0.449058 0.449058i
\(658\) 5.15956 + 13.8978i 0.201141 + 0.541795i
\(659\) 15.2432i 0.593792i 0.954910 + 0.296896i \(0.0959515\pi\)
−0.954910 + 0.296896i \(0.904048\pi\)
\(660\) 0.437188 0.376503i 0.0170175 0.0146554i
\(661\) −7.30232 + 7.30232i −0.284027 + 0.284027i −0.834713 0.550685i \(-0.814366\pi\)
0.550685 + 0.834713i \(0.314366\pi\)
\(662\) 8.46813 18.4682i 0.329123 0.717788i
\(663\) 0 0
\(664\) 7.66815 + 26.5631i 0.297582 + 1.03085i
\(665\) 2.45620 + 2.45620i 0.0952474 + 0.0952474i
\(666\) 0.694883 1.51548i 0.0269262 0.0587235i
\(667\) −36.9051 −1.42897
\(668\) 11.1819 + 0.833940i 0.432639 + 0.0322661i
\(669\) 11.3172 + 11.3172i 0.437549 + 0.437549i
\(670\) 0.786923 0.292145i 0.0304015 0.0112865i
\(671\) 7.36454 + 7.36454i 0.284305 + 0.284305i
\(672\) −10.6440 6.95545i −0.410602 0.268312i
\(673\) 29.7947i 1.14850i −0.818680 0.574251i \(-0.805293\pi\)
0.818680 0.574251i \(-0.194707\pi\)
\(674\) 7.05950 + 19.0155i 0.271922 + 0.732451i
\(675\) −22.1818 −0.853776
\(676\) 0 0
\(677\) −29.1021 −1.11849 −0.559243 0.829004i \(-0.688908\pi\)
−0.559243 + 0.829004i \(0.688908\pi\)
\(678\) 1.90505 + 5.13147i 0.0731632 + 0.197073i
\(679\) 40.9149i 1.57017i
\(680\) 0.258313 + 0.894819i 0.00990586 + 0.0343147i
\(681\) 4.47188 + 4.47188i 0.171363 + 0.171363i
\(682\) −10.4939 + 3.89584i −0.401831 + 0.149179i
\(683\) 3.56874 + 3.56874i 0.136554 + 0.136554i 0.772080 0.635526i \(-0.219217\pi\)
−0.635526 + 0.772080i \(0.719217\pi\)
\(684\) 1.89098 25.3552i 0.0723035 0.969480i
\(685\) 1.13149 0.0432319
\(686\) 10.9228 23.8216i 0.417033 0.909511i
\(687\) 2.70075 + 2.70075i 0.103040 + 0.103040i
\(688\) −5.45113 + 36.3424i −0.207822 + 1.38554i
\(689\) 0 0
\(690\) −1.03106 + 2.24866i −0.0392519 + 0.0856049i
\(691\) −7.90295 + 7.90295i −0.300642 + 0.300642i −0.841265 0.540623i \(-0.818189\pi\)
0.540623 + 0.841265i \(0.318189\pi\)
\(692\) 2.82007 + 3.27461i 0.107203 + 0.124482i
\(693\) 8.68457i 0.329900i
\(694\) 0.231487 + 0.623535i 0.00878711 + 0.0236691i
\(695\) 1.15495 1.15495i 0.0438099 0.0438099i
\(696\) 8.88371 + 4.90363i 0.336736 + 0.185872i
\(697\) 5.73421 5.73421i 0.217199 0.217199i
\(698\) −16.6711 + 36.3583i −0.631012 + 1.37618i
\(699\) 11.3230 0.428275
\(700\) −1.94483 + 26.0773i −0.0735078 + 0.985628i
\(701\) 27.1476i 1.02535i −0.858582 0.512676i \(-0.828654\pi\)
0.858582 0.512676i \(-0.171346\pi\)
\(702\) 0 0
\(703\) 2.88950i 0.108980i
\(704\) −2.55513 + 11.2504i −0.0963000 + 0.424016i
\(705\) −0.793023 −0.0298670
\(706\) 46.2170 + 21.1916i 1.73940 + 0.797557i
\(707\) 17.1544 17.1544i 0.645156 0.645156i
\(708\) −1.07726 + 14.4445i −0.0404861 + 0.542857i
\(709\) −30.0036 + 30.0036i −1.12681 + 1.12681i −0.136118 + 0.990693i \(0.543463\pi\)
−0.990693 + 0.136118i \(0.956537\pi\)
\(710\) 3.39163 1.25914i 0.127286 0.0472547i
\(711\) 19.3958i 0.727399i
\(712\) −5.21145 18.0529i −0.195307 0.676561i
\(713\) 33.9366 33.9366i 1.27094 1.27094i
\(714\) 4.04312 + 1.85387i 0.151310 + 0.0693792i
\(715\) 0 0
\(716\) 15.3560 13.2245i 0.573880 0.494221i
\(717\) −5.07171 5.07171i −0.189406 0.189406i
\(718\) 21.3009 + 9.76699i 0.794943 + 0.364501i
\(719\) −16.4313 −0.612785 −0.306392 0.951905i \(-0.599122\pi\)
−0.306392 + 0.951905i \(0.599122\pi\)
\(720\) −1.72398 + 1.27426i −0.0642489 + 0.0474889i
\(721\) −20.3955 20.3955i −0.759567 0.759567i
\(722\) 5.98503 + 16.1213i 0.222740 + 0.599974i
\(723\) −9.29717 9.29717i −0.345765 0.345765i
\(724\) −18.0795 20.9936i −0.671921 0.780221i
\(725\) 20.8686i 0.775041i
\(726\) 10.0530 3.73218i 0.373103 0.138514i
\(727\) 32.1429 1.19211 0.596057 0.802942i \(-0.296733\pi\)
0.596057 + 0.802942i \(0.296733\pi\)
\(728\) 0 0
\(729\) −4.56452 −0.169056
\(730\) 2.23003 0.827898i 0.0825372 0.0306419i
\(731\) 12.8552i 0.475466i
\(732\) 8.01218 + 9.30358i 0.296139 + 0.343870i
\(733\) −19.2047 19.2047i −0.709343 0.709343i 0.257054 0.966397i \(-0.417248\pi\)
−0.966397 + 0.257054i \(0.917248\pi\)
\(734\) 4.99860 + 13.4643i 0.184502 + 0.496975i
\(735\) 0.00111757 + 0.00111757i 4.12222e−5 + 4.12222e-5i
\(736\) −10.1467 48.4134i −0.374013 1.78454i
\(737\) −3.63728 −0.133981
\(738\) 16.9675 + 7.78001i 0.624582 + 0.286386i
\(739\) −16.4275 16.4275i −0.604297 0.604297i 0.337153 0.941450i \(-0.390536\pi\)
−0.941450 + 0.337153i \(0.890536\pi\)
\(740\) 0.184609 0.158984i 0.00678637 0.00584438i
\(741\) 0 0
\(742\) −20.2072 9.26549i −0.741830 0.340147i
\(743\) 27.2871 27.2871i 1.00107 1.00107i 0.00106799 0.999999i \(-0.499660\pi\)
0.999999 0.00106799i \(-0.000339950\pi\)
\(744\) −12.6783 + 3.65994i −0.464811 + 0.134180i
\(745\) 3.56696i 0.130683i
\(746\) 19.9079 7.39079i 0.728880 0.270596i
\(747\) 15.7415 15.7415i 0.575950 0.575950i
\(748\) 0.300151 4.02456i 0.0109746 0.147153i
\(749\) 18.4296 18.4296i 0.673402 0.673402i
\(750\) −2.55732 1.17259i −0.0933803 0.0428171i
\(751\) −1.29395 −0.0472168 −0.0236084 0.999721i \(-0.507515\pi\)
−0.0236084 + 0.999721i \(0.507515\pi\)
\(752\) 12.7519 9.42546i 0.465015 0.343711i
\(753\) 23.3570i 0.851178i
\(754\) 0 0
\(755\) 0.160022i 0.00582380i
\(756\) −1.76446 + 23.6588i −0.0641730 + 0.860462i
\(757\) −22.5600 −0.819958 −0.409979 0.912095i \(-0.634464\pi\)
−0.409979 + 0.912095i \(0.634464\pi\)
\(758\) 19.6619 42.8808i 0.714152 1.55750i
\(759\) 7.57969 7.57969i 0.275125 0.275125i
\(760\) 1.79552 3.25288i 0.0651305 0.117994i
\(761\) −6.15099 + 6.15099i −0.222973 + 0.222973i −0.809749 0.586776i \(-0.800397\pi\)
0.586776 + 0.809749i \(0.300397\pi\)
\(762\) 2.23594 + 6.02276i 0.0809997 + 0.218182i
\(763\) 0.0909349i 0.00329207i
\(764\) 5.05143 + 5.86562i 0.182754 + 0.212211i
\(765\) 0.530275 0.530275i 0.0191721 0.0191721i
\(766\) −12.3399 + 26.9123i −0.445860 + 0.972381i
\(767\) 0 0
\(768\) −3.99026 + 13.0022i −0.143986 + 0.469175i
\(769\) 6.84481 + 6.84481i 0.246830 + 0.246830i 0.819668 0.572838i \(-0.194158\pi\)
−0.572838 + 0.819668i \(0.694158\pi\)
\(770\) −0.528960 + 1.15361i −0.0190624 + 0.0415734i
\(771\) −23.6611 −0.852135
\(772\) 1.22334 16.4031i 0.0440289 0.590361i
\(773\) −13.5763 13.5763i −0.488306 0.488306i 0.419465 0.907771i \(-0.362218\pi\)
−0.907771 + 0.419465i \(0.862218\pi\)
\(774\) 27.7400 10.2984i 0.997093 0.370170i
\(775\) 19.1900 + 19.1900i 0.689327 + 0.689327i
\(776\) 42.0477 12.1382i 1.50942 0.435735i
\(777\) 1.16351i 0.0417408i
\(778\) −4.72715 12.7331i −0.169477 0.456504i
\(779\) −32.3513 −1.15911
\(780\) 0 0
\(781\) −15.6767 −0.560955
\(782\) 6.02228 + 16.2217i 0.215356 + 0.580086i
\(783\) 18.9332i 0.676617i
\(784\) −0.0312536 0.00468784i −0.00111620 0.000167423i
\(785\) −0.982461 0.982461i −0.0350655 0.0350655i
\(786\) −12.6508 + 4.69660i −0.451239 + 0.167522i
\(787\) −21.1389 21.1389i −0.753520 0.753520i 0.221614 0.975134i \(-0.428867\pi\)
−0.975134 + 0.221614i \(0.928867\pi\)
\(788\) 24.6928 + 1.84158i 0.879645 + 0.0656037i
\(789\) −20.2362 −0.720426
\(790\) 1.18136 2.57644i 0.0420309 0.0916656i
\(791\) −8.51359 8.51359i −0.302709 0.302709i
\(792\) 8.92500 2.57644i 0.317136 0.0915498i
\(793\) 0 0
\(794\) 1.52237 3.32016i 0.0540270 0.117828i
\(795\) 0.840869 0.840869i 0.0298225 0.0298225i
\(796\) 3.68862 3.17661i 0.130740 0.112592i
\(797\) 37.2463i 1.31933i 0.751559 + 0.659665i \(0.229302\pi\)
−0.751559 + 0.659665i \(0.770698\pi\)
\(798\) −6.17567 16.6348i −0.218616 0.588867i
\(799\) −3.92234 + 3.92234i −0.138762 + 0.138762i
\(800\) 27.3762 5.73763i 0.967895 0.202856i
\(801\) −10.6983 + 10.6983i −0.378004 + 0.378004i
\(802\) 15.9451 34.7748i 0.563041 1.22794i
\(803\) −10.3076 −0.363746
\(804\) −4.27606 0.318907i −0.150805 0.0112470i
\(805\) 5.44136i 0.191783i
\(806\) 0 0
\(807\) 17.6060i 0.619759i
\(808\) −22.7184 12.5401i −0.799232 0.441160i
\(809\) 41.8180 1.47024 0.735121 0.677936i \(-0.237125\pi\)
0.735121 + 0.677936i \(0.237125\pi\)
\(810\) 0.913300 + 0.418770i 0.0320901 + 0.0147141i
\(811\) 4.29617 4.29617i 0.150859 0.150859i −0.627643 0.778502i \(-0.715980\pi\)
0.778502 + 0.627643i \(0.215980\pi\)
\(812\) −22.2582 1.66001i −0.781110 0.0582549i
\(813\) 8.30670 8.30670i 0.291329 0.291329i
\(814\) −0.989700 + 0.367425i −0.0346890 + 0.0128782i
\(815\) 3.70240i 0.129689i
\(816\) 0.705725 4.70503i 0.0247053 0.164709i
\(817\) −36.2632 + 36.2632i −1.26869 + 1.26869i
\(818\) −6.16364 2.82618i −0.215506 0.0988149i
\(819\) 0 0
\(820\) 1.78001 + 2.06691i 0.0621607 + 0.0721798i
\(821\) −13.3510 13.3510i −0.465954 0.465954i 0.434647 0.900601i \(-0.356873\pi\)
−0.900601 + 0.434647i \(0.856873\pi\)
\(822\) −5.25400 2.40909i −0.183254 0.0840266i
\(823\) 13.6087 0.474371 0.237185 0.971464i \(-0.423775\pi\)
0.237185 + 0.971464i \(0.423775\pi\)
\(824\) −14.9094 + 27.0108i −0.519394 + 0.940966i
\(825\) 4.28607 + 4.28607i 0.149222 + 0.149222i
\(826\) −11.0887 29.8687i −0.385826 1.03927i
\(827\) 17.0815 + 17.0815i 0.593982 + 0.593982i 0.938705 0.344723i \(-0.112027\pi\)
−0.344723 + 0.938705i \(0.612027\pi\)
\(828\) −30.1800 + 25.9908i −1.04883 + 0.903243i
\(829\) 27.4835i 0.954541i 0.878757 + 0.477270i \(0.158374\pi\)
−0.878757 + 0.477270i \(0.841626\pi\)
\(830\) 3.04980 1.13223i 0.105860 0.0393004i
\(831\) 10.8241 0.375485
\(832\) 0 0
\(833\) 0.0110551 0.000383038
\(834\) −7.82203 + 2.90392i −0.270855 + 0.100555i
\(835\) 1.31937i 0.0456587i
\(836\) −12.1996 + 10.5062i −0.421932 + 0.363365i
\(837\) 17.4103 + 17.4103i 0.601788 + 0.601788i
\(838\) 2.75880 + 7.43113i 0.0953012 + 0.256704i
\(839\) −28.2374 28.2374i −0.974865 0.974865i 0.0248272 0.999692i \(-0.492096\pi\)
−0.999692 + 0.0248272i \(0.992096\pi\)
\(840\) −0.723001 + 1.30983i −0.0249459 + 0.0451935i
\(841\) −11.1876 −0.385781
\(842\) −6.46033 2.96222i −0.222638 0.102085i
\(843\) −13.1293 13.1293i −0.452196 0.452196i
\(844\) −5.46913 6.35064i −0.188255 0.218598i
\(845\) 0 0
\(846\) −11.6062 5.32172i −0.399029 0.182964i
\(847\) −16.6789 + 16.6789i −0.573095 + 0.573095i
\(848\) −3.52716 + 23.5154i −0.121123 + 0.807523i
\(849\) 17.5872i 0.603590i
\(850\) −9.17283 + 3.40540i −0.314625 + 0.116804i
\(851\) 3.20064 3.20064i 0.109717 0.109717i
\(852\) −18.4298 1.37449i −0.631394 0.0470891i
\(853\) −6.78242 + 6.78242i −0.232226 + 0.232226i −0.813621 0.581395i \(-0.802507\pi\)
0.581395 + 0.813621i \(0.302507\pi\)
\(854\) −24.5495 11.2565i −0.840066 0.385191i
\(855\) −2.99171 −0.102314
\(856\) −24.4073 13.4723i −0.834223 0.460474i
\(857\) 25.7579i 0.879872i 0.898029 + 0.439936i \(0.144999\pi\)
−0.898029 + 0.439936i \(0.855001\pi\)
\(858\) 0 0
\(859\) 51.8251i 1.76825i −0.467252 0.884124i \(-0.654756\pi\)
0.467252 0.884124i \(-0.345244\pi\)
\(860\) 4.31210 + 0.321595i 0.147041 + 0.0109663i
\(861\) 13.0269 0.443954
\(862\) −2.03812 + 4.44495i −0.0694186 + 0.151396i
\(863\) −35.1233 + 35.1233i −1.19561 + 1.19561i −0.220144 + 0.975467i \(0.570653\pi\)
−0.975467 + 0.220144i \(0.929347\pi\)
\(864\) 24.8372 5.20550i 0.844980 0.177095i
\(865\) 0.359562 0.359562i 0.0122255 0.0122255i
\(866\) 2.69363 + 7.25558i 0.0915332 + 0.246555i
\(867\) 12.7864i 0.434250i
\(868\) 21.9943 18.9414i 0.746537 0.642912i
\(869\) −8.68457 + 8.68457i −0.294604 + 0.294604i
\(870\) 0.497646 1.08532i 0.0168718 0.0367958i
\(871\) 0 0
\(872\) −0.0934525 + 0.0269775i −0.00316470 + 0.000913575i
\(873\) −24.9177 24.9177i −0.843335 0.843335i
\(874\) 28.7715 62.7481i 0.973212 2.12249i
\(875\) 6.18828 0.209202
\(876\) −12.1178 0.903738i −0.409421 0.0305345i
\(877\) 26.2620 + 26.2620i 0.886805 + 0.886805i 0.994215 0.107410i \(-0.0342557\pi\)
−0.107410 + 0.994215i \(0.534256\pi\)
\(878\) −40.4452 + 15.0152i −1.36496 + 0.506740i
\(879\) −13.8602 13.8602i −0.467493 0.467493i
\(880\) 1.34248 + 0.201363i 0.0452549 + 0.00678795i
\(881\) 1.99779i 0.0673074i 0.999434 + 0.0336537i \(0.0107143\pi\)
−0.999434 + 0.0336537i \(0.989286\pi\)
\(882\) 0.00885641 + 0.0238557i 0.000298211 + 0.000803264i
\(883\) 16.1625 0.543913 0.271956 0.962310i \(-0.412329\pi\)
0.271956 + 0.962310i \(0.412329\pi\)
\(884\) 0 0
\(885\) 1.70433 0.0572906
\(886\) −6.34909 17.1020i −0.213302 0.574552i
\(887\) 17.6060i 0.591150i 0.955319 + 0.295575i \(0.0955113\pi\)
−0.955319 + 0.295575i \(0.904489\pi\)
\(888\) −1.19572 + 0.345177i −0.0401259 + 0.0115834i
\(889\) −9.99232 9.99232i −0.335132 0.335132i
\(890\) −2.07271 + 0.769492i −0.0694774 + 0.0257934i
\(891\) −3.07852 3.07852i −0.103134 0.103134i
\(892\) −2.80066 + 37.5526i −0.0937730 + 1.25735i
\(893\) 22.1291 0.740522
\(894\) −7.59454 + 16.5630i −0.254000 + 0.553950i
\(895\) −1.68613 1.68613i −0.0563611 0.0563611i
\(896\) −3.94203 29.6555i −0.131694 0.990721i
\(897\) 0 0
\(898\) 5.81779 12.6881i 0.194142 0.423407i
\(899\) −16.3796 + 16.3796i −0.546291 + 0.546291i
\(900\) −14.6969 17.0658i −0.489898 0.568860i
\(901\) 8.31797i 0.277112i
\(902\) −4.11375 11.0808i −0.136973 0.368951i
\(903\) 14.6021 14.6021i 0.485926 0.485926i
\(904\) −6.22358 + 11.2750i −0.206993 + 0.375001i
\(905\) −2.30516 + 2.30516i −0.0766261 + 0.0766261i
\(906\) −0.340708 + 0.743054i −0.0113193 + 0.0246863i
\(907\) −29.4107 −0.976567 −0.488283 0.872685i \(-0.662377\pi\)
−0.488283 + 0.872685i \(0.662377\pi\)
\(908\) −1.10665 + 14.8385i −0.0367255 + 0.492433i
\(909\) 20.8944i 0.693024i
\(910\) 0 0
\(911\) 20.5091i 0.679495i −0.940517 0.339748i \(-0.889658\pi\)
0.940517 0.339748i \(-0.110342\pi\)
\(912\) −15.2632 + 11.2817i −0.505416 + 0.373574i
\(913\) −14.0966 −0.466531
\(914\) 13.3464 + 6.11967i 0.441461 + 0.202421i
\(915\) 1.02156 1.02156i 0.0337718 0.0337718i
\(916\) −0.668352 + 8.96158i −0.0220830 + 0.296099i
\(917\) 20.9889 20.9889i 0.693113 0.693113i
\(918\) −8.32211 + 3.08958i −0.274671 + 0.101971i
\(919\) 48.9751i 1.61554i 0.589498 + 0.807770i \(0.299326\pi\)
−0.589498 + 0.807770i \(0.700674\pi\)
\(920\) −5.59201 + 1.61428i −0.184363 + 0.0532213i
\(921\) 13.8697 13.8697i 0.457021 0.457021i
\(922\) −36.9391 16.9375i −1.21652 0.557806i
\(923\) 0 0
\(924\) 4.91240 4.23053i 0.161606 0.139174i
\(925\) 1.80986 + 1.80986i 0.0595077 + 0.0595077i
\(926\) −10.7091 4.91039i −0.351923 0.161365i
\(927\) 24.8422 0.815923
\(928\) 4.89734 + 23.3669i 0.160763 + 0.767056i
\(929\) −4.84435 4.84435i −0.158938 0.158938i 0.623158 0.782096i \(-0.285849\pi\)
−0.782096 + 0.623158i \(0.785849\pi\)
\(930\) 0.540405 + 1.45564i 0.0177206 + 0.0477324i
\(931\) −0.0311855 0.0311855i −0.00102206 0.00102206i
\(932\) 17.3848 + 20.1869i 0.569459 + 0.661244i
\(933\) 7.26384i 0.237808i
\(934\) 4.37956 1.62591i 0.143303 0.0532013i
\(935\) −0.474867 −0.0155298
\(936\) 0 0
\(937\) 11.1107 0.362970 0.181485 0.983394i \(-0.441910\pi\)
0.181485 + 0.983394i \(0.441910\pi\)
\(938\) 8.84215 3.28264i 0.288706 0.107182i
\(939\) 5.00146i 0.163217i
\(940\) −1.21757 1.41382i −0.0397128 0.0461137i
\(941\) −20.5970 20.5970i −0.671442 0.671442i 0.286606 0.958048i \(-0.407473\pi\)
−0.958048 + 0.286606i \(0.907473\pi\)
\(942\) 2.47022 + 6.65380i 0.0804841 + 0.216793i
\(943\) 35.8348 + 35.8348i 1.16694 + 1.16694i
\(944\) −27.4059 + 20.2568i −0.891988 + 0.659304i
\(945\) 2.79155 0.0908091
\(946\) −17.0319 7.80954i −0.553755 0.253910i
\(947\) 20.7444 + 20.7444i 0.674102 + 0.674102i 0.958659 0.284557i \(-0.0918465\pi\)
−0.284557 + 0.958659i \(0.591846\pi\)
\(948\) −10.9712 + 9.44830i −0.356327 + 0.306867i
\(949\) 0 0
\(950\) 35.4820 + 16.2694i 1.15119 + 0.527848i
\(951\) −14.0295 + 14.0295i −0.454938 + 0.454938i
\(952\) 2.90250 + 10.0545i 0.0940706 + 0.325868i
\(953\) 13.1218i 0.425057i −0.977155 0.212529i \(-0.931830\pi\)
0.977155 0.212529i \(-0.0681699\pi\)
\(954\) 17.9492 6.66363i 0.581128 0.215743i
\(955\) 0.644063 0.644063i 0.0208414 0.0208414i
\(956\) 1.25509 16.8288i 0.0405925 0.544283i
\(957\) −3.65836 + 3.65836i −0.118258 + 0.118258i
\(958\) 35.7538 + 16.3940i 1.15515 + 0.529666i
\(959\) 12.7138 0.410549
\(960\) 1.56059 + 0.354431i 0.0503677 + 0.0114392i
\(961\) 0.875747i 0.0282499i
\(962\) 0 0
\(963\) 22.4477i 0.723365i
\(964\) 2.30076 30.8497i 0.0741024 0.993601i
\(965\) −1.93544 −0.0623039
\(966\) −11.5854 + 25.2667i −0.372754 + 0.812943i
\(967\) −13.0476 + 13.0476i −0.419581 + 0.419581i −0.885059 0.465478i \(-0.845882\pi\)
0.465478 + 0.885059i \(0.345882\pi\)
\(968\) 22.0888 + 12.1926i 0.709961 + 0.391884i
\(969\) 4.69479 4.69479i 0.150818 0.150818i
\(970\) −1.79225 4.82762i −0.0575457 0.155006i
\(971\) 44.2841i 1.42115i −0.703624 0.710573i \(-0.748436\pi\)
0.703624 0.710573i \(-0.251564\pi\)
\(972\) −20.9137 24.2845i −0.670806 0.778927i
\(973\) 12.9775 12.9775i 0.416039 0.416039i
\(974\) 6.08146 13.2631i 0.194862 0.424978i
\(975\) 0 0
\(976\) −4.28511 + 28.5686i −0.137163 + 0.914459i
\(977\) −0.175234 0.175234i −0.00560624 0.00560624i 0.704298 0.709904i \(-0.251262\pi\)
−0.709904 + 0.704298i \(0.751262\pi\)
\(978\) −7.88292 + 17.1919i −0.252068 + 0.549737i
\(979\) 9.58040 0.306191
\(980\) −0.000276564 0.00370830i −8.83450e−6 0.000118457i
\(981\) 0.0553805 + 0.0553805i 0.00176816 + 0.00176816i
\(982\) 18.0638 6.70617i 0.576439 0.214002i
\(983\) −8.44991 8.44991i −0.269510 0.269510i 0.559393 0.828903i \(-0.311034\pi\)
−0.828903 + 0.559393i \(0.811034\pi\)
\(984\) −3.86466 13.3875i −0.123201 0.426778i
\(985\) 2.91356i 0.0928336i
\(986\) −2.90667 7.82945i −0.0925674 0.249340i
\(987\) −8.91069 −0.283630
\(988\) 0 0
\(989\) 80.3360 2.55454
\(990\) −0.380422 1.02471i −0.0120906 0.0325673i
\(991\) 41.8295i 1.32876i −0.747396 0.664379i \(-0.768696\pi\)
0.747396 0.664379i \(-0.231304\pi\)
\(992\) −25.9908 16.9839i −0.825209 0.539241i
\(993\) 8.63520 + 8.63520i 0.274030 + 0.274030i
\(994\) 38.1096 14.1482i 1.20876 0.448752i
\(995\) −0.405021 0.405021i −0.0128400 0.0128400i
\(996\) −16.5723 1.23595i −0.525112 0.0391627i
\(997\) 12.7618 0.404169 0.202085 0.979368i \(-0.435228\pi\)
0.202085 + 0.979368i \(0.435228\pi\)
\(998\) 9.36028 20.4139i 0.296294 0.646191i
\(999\) 1.64200 + 1.64200i 0.0519507 + 0.0519507i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.2.f.h.99.1 16
4.3 odd 2 inner 676.2.f.h.99.6 16
13.2 odd 12 676.2.l.m.19.1 16
13.3 even 3 52.2.l.b.7.3 16
13.4 even 6 676.2.l.i.427.2 16
13.5 odd 4 inner 676.2.f.h.239.6 16
13.6 odd 12 52.2.l.b.15.4 yes 16
13.7 odd 12 676.2.l.k.587.1 16
13.8 odd 4 676.2.f.i.239.3 16
13.9 even 3 676.2.l.m.427.3 16
13.10 even 6 676.2.l.k.319.2 16
13.11 odd 12 676.2.l.i.19.4 16
13.12 even 2 676.2.f.i.99.8 16
39.29 odd 6 468.2.cb.f.163.2 16
39.32 even 12 468.2.cb.f.379.1 16
52.3 odd 6 52.2.l.b.7.4 yes 16
52.7 even 12 676.2.l.k.587.2 16
52.11 even 12 676.2.l.i.19.2 16
52.15 even 12 676.2.l.m.19.3 16
52.19 even 12 52.2.l.b.15.3 yes 16
52.23 odd 6 676.2.l.k.319.1 16
52.31 even 4 inner 676.2.f.h.239.1 16
52.35 odd 6 676.2.l.m.427.1 16
52.43 odd 6 676.2.l.i.427.4 16
52.47 even 4 676.2.f.i.239.8 16
52.51 odd 2 676.2.f.i.99.3 16
104.3 odd 6 832.2.bu.n.319.3 16
104.19 even 12 832.2.bu.n.639.2 16
104.29 even 6 832.2.bu.n.319.2 16
104.45 odd 12 832.2.bu.n.639.3 16
156.71 odd 12 468.2.cb.f.379.2 16
156.107 even 6 468.2.cb.f.163.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.l.b.7.3 16 13.3 even 3
52.2.l.b.7.4 yes 16 52.3 odd 6
52.2.l.b.15.3 yes 16 52.19 even 12
52.2.l.b.15.4 yes 16 13.6 odd 12
468.2.cb.f.163.1 16 156.107 even 6
468.2.cb.f.163.2 16 39.29 odd 6
468.2.cb.f.379.1 16 39.32 even 12
468.2.cb.f.379.2 16 156.71 odd 12
676.2.f.h.99.1 16 1.1 even 1 trivial
676.2.f.h.99.6 16 4.3 odd 2 inner
676.2.f.h.239.1 16 52.31 even 4 inner
676.2.f.h.239.6 16 13.5 odd 4 inner
676.2.f.i.99.3 16 52.51 odd 2
676.2.f.i.99.8 16 13.12 even 2
676.2.f.i.239.3 16 13.8 odd 4
676.2.f.i.239.8 16 52.47 even 4
676.2.l.i.19.2 16 52.11 even 12
676.2.l.i.19.4 16 13.11 odd 12
676.2.l.i.427.2 16 13.4 even 6
676.2.l.i.427.4 16 52.43 odd 6
676.2.l.k.319.1 16 52.23 odd 6
676.2.l.k.319.2 16 13.10 even 6
676.2.l.k.587.1 16 13.7 odd 12
676.2.l.k.587.2 16 52.7 even 12
676.2.l.m.19.1 16 13.2 odd 12
676.2.l.m.19.3 16 52.15 even 12
676.2.l.m.427.1 16 52.35 odd 6
676.2.l.m.427.3 16 13.9 even 3
832.2.bu.n.319.2 16 104.29 even 6
832.2.bu.n.319.3 16 104.3 odd 6
832.2.bu.n.639.2 16 104.19 even 12
832.2.bu.n.639.3 16 104.45 odd 12