Properties

Label 676.2.l.k.319.1
Level $676$
Weight $2$
Character 676.319
Analytic conductor $5.398$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(19,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: 16.0.102930383934669717504.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 5 x^{14} - 2 x^{13} + 5 x^{12} - 8 x^{11} - 12 x^{10} + 32 x^{9} - 36 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 319.1
Root \(-1.39427 - 0.236640i\) of defining polynomial
Character \(\chi\) \(=\) 676.319
Dual form 676.2.l.k.587.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.902074 - 1.08916i) q^{2} +(-0.736159 - 0.425021i) q^{3} +(-0.372527 + 1.96500i) q^{4} +(0.166404 + 0.166404i) q^{5} +(0.201154 + 1.18519i) q^{6} +(-0.684384 + 2.55416i) q^{7} +(2.47624 - 1.36683i) q^{8} +(-1.13871 - 1.97231i) q^{9} +(0.0311314 - 0.331348i) q^{10} +(1.39298 - 0.373247i) q^{11} +(1.10941 - 1.28822i) q^{12} +(3.39924 - 1.55864i) q^{14} +(-0.0517744 - 0.193225i) q^{15} +(-3.72245 - 1.46403i) q^{16} +(1.21178 - 0.699622i) q^{17} +(-1.12095 + 3.01941i) q^{18} +(-5.39188 - 1.44475i) q^{19} +(-0.388973 + 0.264994i) q^{20} +(1.58939 - 1.58939i) q^{21} +(-1.66309 - 1.18047i) q^{22} +(-4.37216 + 7.57279i) q^{23} +(-2.40384 - 0.0462481i) q^{24} -4.94462i q^{25} +4.48604i q^{27} +(-4.76397 - 2.29631i) q^{28} +(-2.11023 + 3.65503i) q^{29} +(-0.163748 + 0.230693i) q^{30} +(-3.88100 + 3.88100i) q^{31} +(1.76336 + 5.37499i) q^{32} +(-1.18409 - 0.317276i) q^{33} +(-1.85511 - 0.688709i) q^{34} +(-0.538906 + 0.311137i) q^{35} +(4.29979 - 1.50283i) q^{36} +(0.133975 + 0.500000i) q^{37} +(3.29032 + 7.17588i) q^{38} +(0.639502 + 0.184609i) q^{40} +(-5.59808 + 1.50000i) q^{41} +(-3.16484 - 0.297348i) q^{42} +(-4.59362 - 7.95638i) q^{43} +(0.214509 + 2.87624i) q^{44} +(0.138714 - 0.517686i) q^{45} +(12.1920 - 2.06925i) q^{46} +(2.80318 + 2.80318i) q^{47} +(2.11807 + 2.65988i) q^{48} +(0.00684229 + 0.00395040i) q^{49} +(-5.38547 + 4.46041i) q^{50} -1.18942 q^{51} -5.94462 q^{53} +(4.88600 - 4.04674i) q^{54} +(0.293906 + 0.169687i) q^{55} +(1.79641 + 7.26015i) q^{56} +(3.35523 + 3.35523i) q^{57} +(5.88449 - 0.998732i) q^{58} +(-2.20512 + 8.22961i) q^{59} +(0.398974 - 0.0297554i) q^{60} +(3.61102 + 6.25448i) q^{61} +(7.72796 + 0.726071i) q^{62} +(5.81691 - 1.55864i) q^{63} +(4.26353 - 6.76922i) q^{64} +(0.722573 + 1.57587i) q^{66} +(0.652790 + 2.43624i) q^{67} +(0.923336 + 2.64178i) q^{68} +(6.43720 - 3.71652i) q^{69} +(0.825010 + 0.306284i) q^{70} +(-10.5002 - 2.81352i) q^{71} +(-5.51555 - 3.32748i) q^{72} +(-5.05407 + 5.05407i) q^{73} +(0.423724 - 0.596956i) q^{74} +(-2.10157 + 3.64002i) q^{75} +(4.84756 - 10.0568i) q^{76} +3.81333i q^{77} +8.51654i q^{79} +(-0.375809 - 0.863050i) q^{80} +(-1.50948 + 2.61449i) q^{81} +(6.68361 + 4.74407i) q^{82} +(6.91195 - 6.91195i) q^{83} +(2.53106 + 3.71523i) q^{84} +(0.318065 + 0.0852251i) q^{85} +(-4.52197 + 12.1804i) q^{86} +(3.10694 - 1.79379i) q^{87} +(2.93918 - 2.82822i) q^{88} +(1.71941 + 6.41693i) q^{89} +(-0.688971 + 0.315910i) q^{90} +(-13.2518 - 11.4124i) q^{92} +(4.50653 - 1.20752i) q^{93} +(0.524430 - 5.58179i) q^{94} +(-0.656818 - 1.13764i) q^{95} +(0.986372 - 4.70632i) q^{96} +(4.00474 - 14.9459i) q^{97} +(-0.00186964 - 0.0110159i) q^{98} +(-2.32236 - 2.32236i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} - 6 q^{4} + 12 q^{5} + 14 q^{6} - 10 q^{8} + 4 q^{9} + 8 q^{14} - 2 q^{16} + 12 q^{17} + 6 q^{18} - 2 q^{20} + 28 q^{21} - 10 q^{24} - 12 q^{28} - 8 q^{29} + 42 q^{30} - 28 q^{32} + 20 q^{33}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.902074 1.08916i −0.637862 0.770150i
\(3\) −0.736159 0.425021i −0.425021 0.245386i 0.272202 0.962240i \(-0.412248\pi\)
−0.697223 + 0.716854i \(0.745581\pi\)
\(4\) −0.372527 + 1.96500i −0.186263 + 0.982500i
\(5\) 0.166404 + 0.166404i 0.0744180 + 0.0744180i 0.743336 0.668918i \(-0.233242\pi\)
−0.668918 + 0.743336i \(0.733242\pi\)
\(6\) 0.201154 + 1.18519i 0.0821208 + 0.483853i
\(7\) −0.684384 + 2.55416i −0.258673 + 0.965381i 0.707337 + 0.706876i \(0.249896\pi\)
−0.966010 + 0.258504i \(0.916770\pi\)
\(8\) 2.47624 1.36683i 0.875483 0.483249i
\(9\) −1.13871 1.97231i −0.379571 0.657437i
\(10\) 0.0311314 0.331348i 0.00984462 0.104782i
\(11\) 1.39298 0.373247i 0.419998 0.112538i −0.0426292 0.999091i \(-0.513573\pi\)
0.462628 + 0.886553i \(0.346907\pi\)
\(12\) 1.10941 1.28822i 0.320258 0.371877i
\(13\) 0 0
\(14\) 3.39924 1.55864i 0.908486 0.416563i
\(15\) −0.0517744 0.193225i −0.0133681 0.0498904i
\(16\) −3.72245 1.46403i −0.930612 0.366007i
\(17\) 1.21178 0.699622i 0.293900 0.169683i −0.345799 0.938308i \(-0.612392\pi\)
0.639699 + 0.768625i \(0.279059\pi\)
\(18\) −1.12095 + 3.01941i −0.264211 + 0.711681i
\(19\) −5.39188 1.44475i −1.23698 0.331449i −0.419688 0.907668i \(-0.637861\pi\)
−0.817295 + 0.576220i \(0.804527\pi\)
\(20\) −0.388973 + 0.264994i −0.0869771 + 0.0592544i
\(21\) 1.58939 1.58939i 0.346833 0.346833i
\(22\) −1.66309 1.18047i −0.354572 0.251678i
\(23\) −4.37216 + 7.57279i −0.911657 + 1.57904i −0.0999345 + 0.994994i \(0.531863\pi\)
−0.811723 + 0.584043i \(0.801470\pi\)
\(24\) −2.40384 0.0462481i −0.490682 0.00944036i
\(25\) 4.94462i 0.988924i
\(26\) 0 0
\(27\) 4.48604i 0.863339i
\(28\) −4.76397 2.29631i −0.900305 0.433961i
\(29\) −2.11023 + 3.65503i −0.391861 + 0.678723i −0.992695 0.120651i \(-0.961502\pi\)
0.600834 + 0.799374i \(0.294835\pi\)
\(30\) −0.163748 + 0.230693i −0.0298961 + 0.0421187i
\(31\) −3.88100 + 3.88100i −0.697047 + 0.697047i −0.963773 0.266725i \(-0.914058\pi\)
0.266725 + 0.963773i \(0.414058\pi\)
\(32\) 1.76336 + 5.37499i 0.311722 + 0.950173i
\(33\) −1.18409 0.317276i −0.206124 0.0552307i
\(34\) −1.85511 0.688709i −0.318149 0.118113i
\(35\) −0.538906 + 0.311137i −0.0910917 + 0.0525918i
\(36\) 4.29979 1.50283i 0.716632 0.250472i
\(37\) 0.133975 + 0.500000i 0.0220253 + 0.0821995i 0.976064 0.217485i \(-0.0697853\pi\)
−0.954038 + 0.299684i \(0.903119\pi\)
\(38\) 3.29032 + 7.17588i 0.533760 + 1.16408i
\(39\) 0 0
\(40\) 0.639502 + 0.184609i 0.101114 + 0.0291893i
\(41\) −5.59808 + 1.50000i −0.874273 + 0.234261i −0.667934 0.744220i \(-0.732821\pi\)
−0.206338 + 0.978481i \(0.566155\pi\)
\(42\) −3.16484 0.297348i −0.488345 0.0458818i
\(43\) −4.59362 7.95638i −0.700520 1.21334i −0.968284 0.249852i \(-0.919618\pi\)
0.267764 0.963484i \(-0.413715\pi\)
\(44\) 0.214509 + 2.87624i 0.0323385 + 0.433610i
\(45\) 0.138714 0.517686i 0.0206782 0.0771721i
\(46\) 12.1920 2.06925i 1.79761 0.305095i
\(47\) 2.80318 + 2.80318i 0.408886 + 0.408886i 0.881350 0.472464i \(-0.156635\pi\)
−0.472464 + 0.881350i \(0.656635\pi\)
\(48\) 2.11807 + 2.65988i 0.305717 + 0.383920i
\(49\) 0.00684229 + 0.00395040i 0.000977470 + 0.000564343i
\(50\) −5.38547 + 4.46041i −0.761620 + 0.630797i
\(51\) −1.18942 −0.166552
\(52\) 0 0
\(53\) −5.94462 −0.816556 −0.408278 0.912858i \(-0.633871\pi\)
−0.408278 + 0.912858i \(0.633871\pi\)
\(54\) 4.88600 4.04674i 0.664901 0.550691i
\(55\) 0.293906 + 0.169687i 0.0396303 + 0.0228806i
\(56\) 1.79641 + 7.26015i 0.240055 + 0.970178i
\(57\) 3.35523 + 3.35523i 0.444411 + 0.444411i
\(58\) 5.88449 0.998732i 0.772672 0.131140i
\(59\) −2.20512 + 8.22961i −0.287082 + 1.07140i 0.660223 + 0.751070i \(0.270462\pi\)
−0.947305 + 0.320334i \(0.896205\pi\)
\(60\) 0.398974 0.0297554i 0.0515073 0.00384140i
\(61\) 3.61102 + 6.25448i 0.462344 + 0.800804i 0.999077 0.0429485i \(-0.0136751\pi\)
−0.536733 + 0.843752i \(0.680342\pi\)
\(62\) 7.72796 + 0.726071i 0.981452 + 0.0922111i
\(63\) 5.81691 1.55864i 0.732861 0.196370i
\(64\) 4.26353 6.76922i 0.532941 0.846152i
\(65\) 0 0
\(66\) 0.722573 + 1.57587i 0.0889426 + 0.193976i
\(67\) 0.652790 + 2.43624i 0.0797510 + 0.297635i 0.994269 0.106912i \(-0.0340962\pi\)
−0.914518 + 0.404546i \(0.867429\pi\)
\(68\) 0.923336 + 2.64178i 0.111971 + 0.320362i
\(69\) 6.43720 3.71652i 0.774948 0.447416i
\(70\) 0.825010 + 0.306284i 0.0986075 + 0.0366080i
\(71\) −10.5002 2.81352i −1.24614 0.333903i −0.425298 0.905053i \(-0.639831\pi\)
−0.820846 + 0.571150i \(0.806498\pi\)
\(72\) −5.51555 3.32748i −0.650014 0.392147i
\(73\) −5.05407 + 5.05407i −0.591534 + 0.591534i −0.938046 0.346512i \(-0.887366\pi\)
0.346512 + 0.938046i \(0.387366\pi\)
\(74\) 0.423724 0.596956i 0.0492569 0.0693947i
\(75\) −2.10157 + 3.64002i −0.242668 + 0.420314i
\(76\) 4.84756 10.0568i 0.556053 1.15360i
\(77\) 3.81333i 0.434569i
\(78\) 0 0
\(79\) 8.51654i 0.958186i 0.877764 + 0.479093i \(0.159034\pi\)
−0.877764 + 0.479093i \(0.840966\pi\)
\(80\) −0.375809 0.863050i −0.0420168 0.0964919i
\(81\) −1.50948 + 2.61449i −0.167720 + 0.290499i
\(82\) 6.68361 + 4.74407i 0.738081 + 0.523895i
\(83\) 6.91195 6.91195i 0.758685 0.758685i −0.217398 0.976083i \(-0.569757\pi\)
0.976083 + 0.217398i \(0.0697570\pi\)
\(84\) 2.53106 + 3.71523i 0.276161 + 0.405365i
\(85\) 0.318065 + 0.0852251i 0.0344989 + 0.00924396i
\(86\) −4.52197 + 12.1804i −0.487616 + 1.31345i
\(87\) 3.10694 1.79379i 0.333098 0.192314i
\(88\) 2.93918 2.82822i 0.313317 0.301489i
\(89\) 1.71941 + 6.41693i 0.182257 + 0.680193i 0.995201 + 0.0978511i \(0.0311969\pi\)
−0.812944 + 0.582342i \(0.802136\pi\)
\(90\) −0.688971 + 0.315910i −0.0726240 + 0.0332998i
\(91\) 0 0
\(92\) −13.2518 11.4124i −1.38160 1.18982i
\(93\) 4.50653 1.20752i 0.467306 0.125214i
\(94\) 0.524430 5.58179i 0.0540908 0.575717i
\(95\) −0.656818 1.13764i −0.0673881 0.116720i
\(96\) 0.986372 4.70632i 0.100671 0.480336i
\(97\) 4.00474 14.9459i 0.406620 1.51753i −0.394429 0.918926i \(-0.629058\pi\)
0.801049 0.598599i \(-0.204276\pi\)
\(98\) −0.00186964 0.0110159i −0.000188863 0.00111277i
\(99\) −2.32236 2.32236i −0.233406 0.233406i
\(100\) 9.71618 + 1.84200i 0.971618 + 0.184200i
\(101\) −7.94541 4.58728i −0.790598 0.456452i 0.0495752 0.998770i \(-0.484213\pi\)
−0.840173 + 0.542319i \(0.817547\pi\)
\(102\) 1.07294 + 1.29546i 0.106237 + 0.128270i
\(103\) −10.9080 −1.07480 −0.537398 0.843329i \(-0.680593\pi\)
−0.537398 + 0.843329i \(0.680593\pi\)
\(104\) 0 0
\(105\) 0.528960 0.0516212
\(106\) 5.36248 + 6.47462i 0.520850 + 0.628871i
\(107\) 8.53605 + 4.92829i 0.825211 + 0.476436i 0.852210 0.523200i \(-0.175262\pi\)
−0.0269990 + 0.999635i \(0.508595\pi\)
\(108\) −8.81507 1.67117i −0.848230 0.160808i
\(109\) −0.0243171 0.0243171i −0.00232916 0.00232916i 0.705941 0.708270i \(-0.250524\pi\)
−0.708270 + 0.705941i \(0.750524\pi\)
\(110\) −0.0803094 0.473180i −0.00765720 0.0451160i
\(111\) 0.113884 0.425021i 0.0108094 0.0403412i
\(112\) 6.28695 8.50576i 0.594061 0.803718i
\(113\) −2.27664 3.94325i −0.214168 0.370950i 0.738847 0.673873i \(-0.235371\pi\)
−0.953015 + 0.302923i \(0.902037\pi\)
\(114\) 0.627709 6.68104i 0.0587903 0.625737i
\(115\) −1.98769 + 0.532599i −0.185353 + 0.0496651i
\(116\) −6.39602 5.50821i −0.593856 0.511424i
\(117\) 0 0
\(118\) 10.9525 5.02200i 1.00826 0.462312i
\(119\) 0.957620 + 3.57389i 0.0877849 + 0.327618i
\(120\) −0.392312 0.407704i −0.0358130 0.0372181i
\(121\) −7.72521 + 4.46015i −0.702292 + 0.405468i
\(122\) 3.55470 9.57497i 0.321827 0.866877i
\(123\) 4.75860 + 1.27506i 0.429069 + 0.114969i
\(124\) −6.18038 9.07193i −0.555015 0.814683i
\(125\) 1.65482 1.65482i 0.148012 0.148012i
\(126\) −6.94488 4.92952i −0.618699 0.439157i
\(127\) 2.67207 4.62816i 0.237108 0.410683i −0.722775 0.691083i \(-0.757134\pi\)
0.959883 + 0.280400i \(0.0904672\pi\)
\(128\) −11.2188 + 1.46268i −0.991608 + 0.129284i
\(129\) 7.80954i 0.687592i
\(130\) 0 0
\(131\) 11.2254i 0.980764i −0.871508 0.490382i \(-0.836857\pi\)
0.871508 0.490382i \(-0.163143\pi\)
\(132\) 1.06455 2.20854i 0.0926574 0.192229i
\(133\) 7.38024 12.7830i 0.639948 1.10842i
\(134\) 2.06459 2.90866i 0.178353 0.251270i
\(135\) −0.746494 + 0.746494i −0.0642480 + 0.0642480i
\(136\) 2.04439 3.38873i 0.175305 0.290582i
\(137\) −4.64424 1.24442i −0.396784 0.106318i 0.0549089 0.998491i \(-0.482513\pi\)
−0.451693 + 0.892173i \(0.649180\pi\)
\(138\) −9.85470 3.65855i −0.838888 0.311436i
\(139\) −6.01080 + 3.47034i −0.509830 + 0.294350i −0.732764 0.680483i \(-0.761770\pi\)
0.222934 + 0.974834i \(0.428437\pi\)
\(140\) −0.410628 1.17486i −0.0347044 0.0992935i
\(141\) −0.872175 3.25500i −0.0734504 0.274121i
\(142\) 6.40759 + 13.9744i 0.537713 + 1.17270i
\(143\) 0 0
\(144\) 1.35128 + 9.00893i 0.112607 + 0.750744i
\(145\) −0.959363 + 0.257060i −0.0796707 + 0.0213477i
\(146\) 10.0638 + 0.945533i 0.832887 + 0.0782529i
\(147\) −0.00335801 0.00581624i −0.000276964 0.000479715i
\(148\) −1.03241 + 0.0769967i −0.0848635 + 0.00632909i
\(149\) −3.92298 + 14.6408i −0.321383 + 1.19942i 0.596515 + 0.802602i \(0.296552\pi\)
−0.917898 + 0.396817i \(0.870115\pi\)
\(150\) 5.86033 0.994631i 0.478494 0.0812113i
\(151\) 0.480824 + 0.480824i 0.0391289 + 0.0391289i 0.726401 0.687272i \(-0.241192\pi\)
−0.687272 + 0.726401i \(0.741192\pi\)
\(152\) −15.3263 + 3.79226i −1.24313 + 0.307593i
\(153\) −2.75974 1.59334i −0.223112 0.128814i
\(154\) 4.15331 3.43990i 0.334683 0.277195i
\(155\) −1.29162 −0.103746
\(156\) 0 0
\(157\) 5.90408 0.471197 0.235598 0.971851i \(-0.424295\pi\)
0.235598 + 0.971851i \(0.424295\pi\)
\(158\) 9.27585 7.68255i 0.737947 0.611191i
\(159\) 4.37618 + 2.52659i 0.347054 + 0.200372i
\(160\) −0.600989 + 1.18785i −0.0475123 + 0.0939078i
\(161\) −16.3499 16.3499i −1.28855 1.28855i
\(162\) 4.20925 0.714406i 0.330710 0.0561290i
\(163\) 4.07194 15.1967i 0.318939 1.19030i −0.601327 0.799003i \(-0.705361\pi\)
0.920266 0.391294i \(-0.127972\pi\)
\(164\) −0.862067 11.5590i −0.0673161 0.902607i
\(165\) −0.144241 0.249833i −0.0112292 0.0194495i
\(166\) −13.7633 1.29311i −1.06824 0.100365i
\(167\) −5.41542 + 1.45106i −0.419058 + 0.112286i −0.462185 0.886783i \(-0.652935\pi\)
0.0431274 + 0.999070i \(0.486268\pi\)
\(168\) 1.76327 6.10813i 0.136040 0.471253i
\(169\) 0 0
\(170\) −0.194094 0.423302i −0.0148863 0.0324658i
\(171\) 3.29032 + 12.2796i 0.251617 + 0.939046i
\(172\) 17.3455 6.06249i 1.32258 0.462261i
\(173\) 1.87129 1.08039i 0.142272 0.0821405i −0.427175 0.904169i \(-0.640491\pi\)
0.569446 + 0.822029i \(0.307158\pi\)
\(174\) −4.75640 1.76581i −0.360582 0.133866i
\(175\) 12.6293 + 3.38402i 0.954688 + 0.255808i
\(176\) −5.73173 0.649967i −0.432045 0.0489931i
\(177\) 5.12108 5.12108i 0.384924 0.384924i
\(178\) 5.43801 7.66125i 0.407596 0.574235i
\(179\) 5.06638 8.77523i 0.378679 0.655892i −0.612191 0.790710i \(-0.709712\pi\)
0.990870 + 0.134818i \(0.0430450\pi\)
\(180\) 0.965579 + 0.465424i 0.0719700 + 0.0346907i
\(181\) 13.8528i 1.02967i −0.857289 0.514836i \(-0.827853\pi\)
0.857289 0.514836i \(-0.172147\pi\)
\(182\) 0 0
\(183\) 6.13905i 0.453812i
\(184\) −0.475750 + 24.7281i −0.0350727 + 1.82298i
\(185\) −0.0609080 + 0.105496i −0.00447805 + 0.00775620i
\(186\) −5.38041 3.81905i −0.394511 0.280026i
\(187\) 1.42685 1.42685i 0.104342 0.104342i
\(188\) −6.55252 + 4.46400i −0.477891 + 0.325570i
\(189\) −11.4580 3.07017i −0.833450 0.223322i
\(190\) −0.646573 + 1.74162i −0.0469073 + 0.126350i
\(191\) −3.35193 + 1.93524i −0.242537 + 0.140029i −0.616342 0.787478i \(-0.711386\pi\)
0.373805 + 0.927507i \(0.378053\pi\)
\(192\) −6.01570 + 3.17113i −0.434146 + 0.228856i
\(193\) −2.12861 7.94409i −0.153221 0.571828i −0.999251 0.0386934i \(-0.987680\pi\)
0.846030 0.533135i \(-0.178986\pi\)
\(194\) −19.8910 + 9.12050i −1.42809 + 0.654814i
\(195\) 0 0
\(196\) −0.0103115 + 0.0119735i −0.000736533 + 0.000855248i
\(197\) 11.9588 3.20436i 0.852032 0.228301i 0.193730 0.981055i \(-0.437942\pi\)
0.658302 + 0.752754i \(0.271275\pi\)
\(198\) −0.434476 + 4.62436i −0.0308768 + 0.328639i
\(199\) 1.21698 + 2.10788i 0.0862696 + 0.149423i 0.905932 0.423424i \(-0.139172\pi\)
−0.819662 + 0.572848i \(0.805839\pi\)
\(200\) −6.75848 12.2441i −0.477896 0.865786i
\(201\) 0.554899 2.07091i 0.0391396 0.146071i
\(202\) 2.17107 + 12.7919i 0.152756 + 0.900032i
\(203\) −7.89132 7.89132i −0.553862 0.553862i
\(204\) 0.443089 2.33720i 0.0310225 0.163637i
\(205\) −1.18115 0.681935i −0.0824949 0.0476284i
\(206\) 9.83981 + 11.8805i 0.685572 + 0.827755i
\(207\) 19.9145 1.38416
\(208\) 0 0
\(209\) −8.05002 −0.556831
\(210\) −0.477161 0.576121i −0.0329272 0.0397561i
\(211\) −3.62910 2.09526i −0.249838 0.144244i 0.369852 0.929091i \(-0.379408\pi\)
−0.619690 + 0.784847i \(0.712742\pi\)
\(212\) 2.21453 11.6812i 0.152094 0.802266i
\(213\) 6.53401 + 6.53401i 0.447703 + 0.447703i
\(214\) −2.33246 13.7428i −0.159444 0.939437i
\(215\) 0.559576 2.08837i 0.0381628 0.142425i
\(216\) 6.13167 + 11.1085i 0.417207 + 0.755838i
\(217\) −7.25658 12.5688i −0.492609 0.853223i
\(218\) −0.00454933 + 0.0484210i −0.000308120 + 0.00327948i
\(219\) 5.86868 1.57251i 0.396569 0.106260i
\(220\) −0.442923 + 0.514313i −0.0298618 + 0.0346750i
\(221\) 0 0
\(222\) −0.565647 + 0.259363i −0.0379637 + 0.0174073i
\(223\) −4.87316 18.1869i −0.326331 1.21788i −0.912967 0.408033i \(-0.866215\pi\)
0.586636 0.809850i \(-0.300452\pi\)
\(224\) −14.9354 + 0.825347i −0.997913 + 0.0551458i
\(225\) −9.75232 + 5.63051i −0.650155 + 0.375367i
\(226\) −2.24113 + 6.03672i −0.149078 + 0.401557i
\(227\) 7.18635 + 1.92558i 0.476974 + 0.127805i 0.489293 0.872119i \(-0.337255\pi\)
−0.0123190 + 0.999924i \(0.503921\pi\)
\(228\) −7.84294 + 5.34312i −0.519412 + 0.353857i
\(229\) 3.17720 3.17720i 0.209955 0.209955i −0.594293 0.804248i \(-0.702568\pi\)
0.804248 + 0.594293i \(0.202568\pi\)
\(230\) 2.37312 + 1.68446i 0.156479 + 0.111070i
\(231\) 1.62075 2.80721i 0.106637 0.184701i
\(232\) −0.229622 + 11.9351i −0.0150754 + 0.783577i
\(233\) 13.3205i 0.872655i 0.899788 + 0.436328i \(0.143721\pi\)
−0.899788 + 0.436328i \(0.856279\pi\)
\(234\) 0 0
\(235\) 0.932921i 0.0608571i
\(236\) −15.3497 7.39881i −0.999182 0.481621i
\(237\) 3.61971 6.26953i 0.235126 0.407250i
\(238\) 3.02868 4.26691i 0.196320 0.276583i
\(239\) 5.96641 5.96641i 0.385935 0.385935i −0.487300 0.873235i \(-0.662018\pi\)
0.873235 + 0.487300i \(0.162018\pi\)
\(240\) −0.0901592 + 0.795068i −0.00581975 + 0.0513215i
\(241\) 14.9406 + 4.00333i 0.962410 + 0.257877i 0.705620 0.708590i \(-0.250668\pi\)
0.256790 + 0.966467i \(0.417335\pi\)
\(242\) 11.8265 + 4.39058i 0.760237 + 0.282237i
\(243\) 13.8775 8.01218i 0.890242 0.513982i
\(244\) −13.6352 + 4.76570i −0.872907 + 0.305093i
\(245\) 0.000481222 0.00179594i 3.07441e−5 0.000114739i
\(246\) −2.90387 6.33307i −0.185144 0.403782i
\(247\) 0 0
\(248\) −4.30560 + 14.9150i −0.273406 + 0.947101i
\(249\) −8.02602 + 2.15056i −0.508628 + 0.136287i
\(250\) −3.29513 0.309590i −0.208403 0.0195802i
\(251\) 13.7387 + 23.7962i 0.867182 + 1.50200i 0.864865 + 0.502005i \(0.167404\pi\)
0.00231697 + 0.999997i \(0.499262\pi\)
\(252\) 0.895766 + 12.0109i 0.0564279 + 0.756613i
\(253\) −3.26379 + 12.1806i −0.205193 + 0.765789i
\(254\) −7.45120 + 1.26464i −0.467530 + 0.0793504i
\(255\) −0.197923 0.197923i −0.0123944 0.0123944i
\(256\) 11.7132 + 10.8995i 0.732077 + 0.681222i
\(257\) 24.1060 + 13.9176i 1.50369 + 0.868157i 0.999991 + 0.00427985i \(0.00136232\pi\)
0.503702 + 0.863878i \(0.331971\pi\)
\(258\) 8.50582 7.04478i 0.529549 0.438589i
\(259\) −1.36877 −0.0850511
\(260\) 0 0
\(261\) 9.61181 0.594956
\(262\) −12.2262 + 10.1261i −0.755335 + 0.625592i
\(263\) −20.6166 11.9030i −1.27128 0.733972i −0.296048 0.955173i \(-0.595669\pi\)
−0.975228 + 0.221201i \(0.929002\pi\)
\(264\) −3.36575 + 0.832803i −0.207148 + 0.0512555i
\(265\) −0.989207 0.989207i −0.0607665 0.0607665i
\(266\) −20.5802 + 3.49292i −1.26185 + 0.214165i
\(267\) 1.46157 5.45466i 0.0894468 0.333820i
\(268\) −5.03040 + 0.375166i −0.307281 + 0.0229169i
\(269\) 10.3559 + 17.9370i 0.631412 + 1.09364i 0.987263 + 0.159095i \(0.0508576\pi\)
−0.355851 + 0.934543i \(0.615809\pi\)
\(270\) 1.48644 + 0.139657i 0.0904620 + 0.00849924i
\(271\) −13.3489 + 3.57684i −0.810890 + 0.217277i −0.640360 0.768075i \(-0.721215\pi\)
−0.170530 + 0.985352i \(0.554548\pi\)
\(272\) −5.53506 + 0.830223i −0.335612 + 0.0503397i
\(273\) 0 0
\(274\) 2.83408 + 6.18087i 0.171213 + 0.373400i
\(275\) −1.84556 6.88774i −0.111292 0.415346i
\(276\) 4.90493 + 14.0336i 0.295242 + 0.844723i
\(277\) 11.0276 6.36681i 0.662587 0.382545i −0.130675 0.991425i \(-0.541714\pi\)
0.793262 + 0.608880i \(0.208381\pi\)
\(278\) 9.20193 + 3.41621i 0.551895 + 0.204891i
\(279\) 12.0739 + 3.23518i 0.722844 + 0.193685i
\(280\) −0.909186 + 1.50705i −0.0543343 + 0.0900632i
\(281\) −15.4454 + 15.4454i −0.921396 + 0.921396i −0.997128 0.0757324i \(-0.975871\pi\)
0.0757324 + 0.997128i \(0.475871\pi\)
\(282\) −2.75844 + 3.88619i −0.164263 + 0.231419i
\(283\) 10.3449 17.9178i 0.614939 1.06511i −0.375456 0.926840i \(-0.622514\pi\)
0.990395 0.138265i \(-0.0441527\pi\)
\(284\) 9.44017 19.5848i 0.560171 1.16214i
\(285\) 1.11665i 0.0661445i
\(286\) 0 0
\(287\) 15.3249i 0.904603i
\(288\) 8.59319 9.59848i 0.506358 0.565596i
\(289\) −7.52106 + 13.0269i −0.442415 + 0.766286i
\(290\) 1.14539 + 0.813009i 0.0672599 + 0.0477415i
\(291\) −9.30045 + 9.30045i −0.545202 + 0.545202i
\(292\) −8.04846 11.8140i −0.471001 0.691363i
\(293\) 22.2734 + 5.96815i 1.30123 + 0.348663i 0.841914 0.539611i \(-0.181429\pi\)
0.459314 + 0.888274i \(0.348095\pi\)
\(294\) −0.00330563 + 0.00890407i −0.000192788 + 0.000519296i
\(295\) −1.73638 + 1.00250i −0.101096 + 0.0583677i
\(296\) 1.01517 + 1.05500i 0.0590056 + 0.0613206i
\(297\) 1.67440 + 6.24895i 0.0971586 + 0.362601i
\(298\) 19.4849 8.93431i 1.12873 0.517551i
\(299\) 0 0
\(300\) −6.36976 5.48559i −0.367758 0.316711i
\(301\) 23.4656 6.28760i 1.35254 0.362411i
\(302\) 0.0899543 0.957432i 0.00517629 0.0550940i
\(303\) 3.89939 + 6.75394i 0.224014 + 0.388004i
\(304\) 17.9559 + 13.2719i 1.02984 + 0.761195i
\(305\) −0.439881 + 1.64166i −0.0251875 + 0.0940010i
\(306\) 0.754095 + 4.44310i 0.0431087 + 0.253995i
\(307\) 16.3164 + 16.3164i 0.931228 + 0.931228i 0.997783 0.0665547i \(-0.0212007\pi\)
−0.0665547 + 0.997783i \(0.521201\pi\)
\(308\) −7.49318 1.42057i −0.426964 0.0809442i
\(309\) 8.03001 + 4.63613i 0.456811 + 0.263740i
\(310\) 1.16514 + 1.40678i 0.0661755 + 0.0798999i
\(311\) 8.54527 0.484558 0.242279 0.970207i \(-0.422105\pi\)
0.242279 + 0.970207i \(0.422105\pi\)
\(312\) 0 0
\(313\) 5.88378 0.332571 0.166285 0.986078i \(-0.446823\pi\)
0.166285 + 0.986078i \(0.446823\pi\)
\(314\) −5.32591 6.43047i −0.300559 0.362892i
\(315\) 1.22732 + 0.708592i 0.0691515 + 0.0399247i
\(316\) −16.7350 3.17264i −0.941417 0.178475i
\(317\) 16.5045 + 16.5045i 0.926984 + 0.926984i 0.997510 0.0705258i \(-0.0224677\pi\)
−0.0705258 + 0.997510i \(0.522468\pi\)
\(318\) −1.19578 7.04552i −0.0670563 0.395093i
\(319\) −1.57528 + 5.87902i −0.0881986 + 0.329162i
\(320\) 1.83589 0.416956i 0.102629 0.0233086i
\(321\) −4.18926 7.25601i −0.233822 0.404991i
\(322\) −3.05879 + 32.5564i −0.170460 + 1.81430i
\(323\) −7.54456 + 2.02156i −0.419790 + 0.112483i
\(324\) −4.57516 3.94009i −0.254175 0.218894i
\(325\) 0 0
\(326\) −20.2248 + 9.27355i −1.12015 + 0.513614i
\(327\) 0.00756596 + 0.0282365i 0.000418399 + 0.00156148i
\(328\) −11.8119 + 11.3660i −0.652205 + 0.627582i
\(329\) −9.07823 + 5.24132i −0.500499 + 0.288963i
\(330\) −0.141991 + 0.382469i −0.00781636 + 0.0210542i
\(331\) 13.8768 + 3.71829i 0.762740 + 0.204375i 0.619162 0.785264i \(-0.287473\pi\)
0.143578 + 0.989639i \(0.454139\pi\)
\(332\) 11.0071 + 16.1569i 0.604093 + 0.886723i
\(333\) 0.833596 0.833596i 0.0456808 0.0456808i
\(334\) 6.46554 + 4.58929i 0.353779 + 0.251115i
\(335\) −0.296774 + 0.514027i −0.0162145 + 0.0280843i
\(336\) −8.24332 + 3.58950i −0.449710 + 0.195823i
\(337\) 14.3427i 0.781297i −0.920540 0.390649i \(-0.872251\pi\)
0.920540 0.390649i \(-0.127749\pi\)
\(338\) 0 0
\(339\) 3.87048i 0.210216i
\(340\) −0.285955 + 0.593248i −0.0155081 + 0.0321734i
\(341\) −3.95757 + 6.85471i −0.214314 + 0.371203i
\(342\) 10.4063 14.6608i 0.562710 0.792765i
\(343\) −13.1032 + 13.1032i −0.707505 + 0.707505i
\(344\) −22.2499 13.4232i −1.19964 0.723730i
\(345\) 1.68962 + 0.452732i 0.0909659 + 0.0243743i
\(346\) −2.86476 1.06354i −0.154010 0.0571762i
\(347\) 0.407300 0.235155i 0.0218650 0.0126238i −0.489028 0.872268i \(-0.662648\pi\)
0.510893 + 0.859645i \(0.329315\pi\)
\(348\) 2.36738 + 6.77336i 0.126905 + 0.363090i
\(349\) −7.32017 27.3192i −0.391840 1.46237i −0.827097 0.562059i \(-0.810009\pi\)
0.435257 0.900306i \(-0.356657\pi\)
\(350\) −7.70686 16.8080i −0.411949 0.898423i
\(351\) 0 0
\(352\) 4.46252 + 6.82907i 0.237853 + 0.363991i
\(353\) −34.7270 + 9.30507i −1.84833 + 0.495259i −0.999445 0.0333153i \(-0.989393\pi\)
−0.848887 + 0.528574i \(0.822727\pi\)
\(354\) −10.1972 0.958070i −0.541978 0.0509208i
\(355\) −1.27909 2.21545i −0.0678872 0.117584i
\(356\) −13.2498 + 0.988165i −0.702238 + 0.0523726i
\(357\) 0.814018 3.03796i 0.0430824 0.160786i
\(358\) −14.1279 + 2.39782i −0.746681 + 0.126729i
\(359\) −11.7167 11.7167i −0.618383 0.618383i 0.326733 0.945117i \(-0.394052\pi\)
−0.945117 + 0.326733i \(0.894052\pi\)
\(360\) −0.364103 1.47151i −0.0191899 0.0775556i
\(361\) 10.5306 + 6.07986i 0.554244 + 0.319993i
\(362\) −15.0879 + 12.4963i −0.793002 + 0.656789i
\(363\) 7.58264 0.397985
\(364\) 0 0
\(365\) −1.68203 −0.0880416
\(366\) −6.68639 + 5.53787i −0.349503 + 0.289469i
\(367\) −8.79501 5.07780i −0.459096 0.265059i 0.252568 0.967579i \(-0.418725\pi\)
−0.711664 + 0.702520i \(0.752058\pi\)
\(368\) 27.3619 21.7884i 1.42634 1.13580i
\(369\) 9.33307 + 9.33307i 0.485860 + 0.485860i
\(370\) 0.169845 0.0288266i 0.00882982 0.00149862i
\(371\) 4.06840 15.1835i 0.211221 0.788288i
\(372\) 0.693977 + 9.30517i 0.0359810 + 0.482451i
\(373\) 7.50790 + 13.0041i 0.388744 + 0.673325i 0.992281 0.124010i \(-0.0395756\pi\)
−0.603537 + 0.797335i \(0.706242\pi\)
\(374\) −2.84119 0.266940i −0.146914 0.0138032i
\(375\) −1.92155 + 0.514877i −0.0992283 + 0.0265881i
\(376\) 10.7728 + 3.10987i 0.555567 + 0.160379i
\(377\) 0 0
\(378\) 6.99210 + 15.2491i 0.359635 + 0.784331i
\(379\) −8.63337 32.2202i −0.443467 1.65504i −0.719953 0.694022i \(-0.755837\pi\)
0.276487 0.961018i \(-0.410830\pi\)
\(380\) 2.48015 0.866845i 0.127229 0.0444682i
\(381\) −3.93413 + 2.27137i −0.201552 + 0.116366i
\(382\) 5.13147 + 1.90505i 0.262549 + 0.0974711i
\(383\) −20.2216 5.41837i −1.03328 0.276866i −0.297953 0.954581i \(-0.596304\pi\)
−0.735325 + 0.677715i \(0.762970\pi\)
\(384\) 8.88046 + 3.69145i 0.453179 + 0.188378i
\(385\) −0.634552 + 0.634552i −0.0323398 + 0.0323398i
\(386\) −6.73220 + 9.48455i −0.342660 + 0.482751i
\(387\) −10.4616 + 18.1201i −0.531794 + 0.921095i
\(388\) 27.8768 + 13.4371i 1.41523 + 0.682163i
\(389\) 9.60410i 0.486947i 0.969908 + 0.243474i \(0.0782870\pi\)
−0.969908 + 0.243474i \(0.921713\pi\)
\(390\) 0 0
\(391\) 12.2354i 0.618772i
\(392\) 0.0223427 0.000429857i 0.00112848 2.17111e-5i
\(393\) −4.77101 + 8.26364i −0.240666 + 0.416846i
\(394\) −14.2778 10.1345i −0.719305 0.510568i
\(395\) −1.41718 + 1.41718i −0.0713063 + 0.0713063i
\(396\) 5.42858 3.69830i 0.272796 0.185846i
\(397\) −2.49473 0.668462i −0.125207 0.0335492i 0.195671 0.980670i \(-0.437311\pi\)
−0.320878 + 0.947120i \(0.603978\pi\)
\(398\) 1.19800 3.22694i 0.0600503 0.161752i
\(399\) −10.8661 + 6.27352i −0.543983 + 0.314069i
\(400\) −7.23907 + 18.4061i −0.361953 + 0.920304i
\(401\) 7.00137 + 26.1295i 0.349632 + 1.30484i 0.887107 + 0.461563i \(0.152711\pi\)
−0.537476 + 0.843279i \(0.680622\pi\)
\(402\) −2.75611 + 1.26374i −0.137462 + 0.0630298i
\(403\) 0 0
\(404\) 11.9739 13.9038i 0.595723 0.691742i
\(405\) −0.686244 + 0.183879i −0.0340998 + 0.00913700i
\(406\) −1.47634 + 15.7134i −0.0732693 + 0.779845i
\(407\) 0.373247 + 0.646483i 0.0185012 + 0.0320450i
\(408\) −2.94528 + 1.62574i −0.145813 + 0.0804859i
\(409\) −1.24095 + 4.63129i −0.0613611 + 0.229003i −0.989796 0.142493i \(-0.954488\pi\)
0.928435 + 0.371496i \(0.121155\pi\)
\(410\) 0.322746 + 1.90161i 0.0159393 + 0.0939139i
\(411\) 2.88999 + 2.88999i 0.142553 + 0.142553i
\(412\) 4.06352 21.4342i 0.200195 1.05599i
\(413\) −19.5106 11.2644i −0.960053 0.554287i
\(414\) −17.9644 21.6901i −0.882901 1.06601i
\(415\) 2.30035 0.112920
\(416\) 0 0
\(417\) 5.89987 0.288918
\(418\) 7.26171 + 8.76774i 0.355182 + 0.428844i
\(419\) −4.85410 2.80251i −0.237138 0.136912i 0.376723 0.926326i \(-0.377051\pi\)
−0.613861 + 0.789414i \(0.710384\pi\)
\(420\) −0.197052 + 1.03941i −0.00961514 + 0.0507178i
\(421\) −3.55354 3.55354i −0.173189 0.173189i 0.615190 0.788379i \(-0.289079\pi\)
−0.788379 + 0.615190i \(0.789079\pi\)
\(422\) 0.991646 + 5.84274i 0.0482726 + 0.284420i
\(423\) 2.33672 8.72077i 0.113615 0.424018i
\(424\) −14.7203 + 8.12531i −0.714881 + 0.394600i
\(425\) −3.45936 5.99179i −0.167804 0.290645i
\(426\) 1.22241 13.0107i 0.0592257 0.630371i
\(427\) −18.4462 + 4.94266i −0.892676 + 0.239192i
\(428\) −12.8640 + 14.9374i −0.621805 + 0.722027i
\(429\) 0 0
\(430\) −2.77934 + 1.27439i −0.134032 + 0.0614567i
\(431\) 0.894922 + 3.33989i 0.0431069 + 0.160877i 0.984124 0.177482i \(-0.0567950\pi\)
−0.941017 + 0.338359i \(0.890128\pi\)
\(432\) 6.56769 16.6990i 0.315988 0.803433i
\(433\) −4.73943 + 2.73631i −0.227762 + 0.131499i −0.609539 0.792756i \(-0.708646\pi\)
0.381777 + 0.924254i \(0.375312\pi\)
\(434\) −7.14339 + 19.2415i −0.342894 + 0.923622i
\(435\) 0.815499 + 0.218512i 0.0391002 + 0.0104769i
\(436\) 0.0568419 0.0387243i 0.00272223 0.00185456i
\(437\) 34.5150 34.5150i 1.65107 1.65107i
\(438\) −7.00669 4.97340i −0.334793 0.237638i
\(439\) 15.2532 26.4193i 0.727994 1.26092i −0.229736 0.973253i \(-0.573786\pi\)
0.957730 0.287669i \(-0.0928804\pi\)
\(440\) 0.959717 + 0.0184642i 0.0457527 + 0.000880248i
\(441\) 0.0179935i 0.000856833i
\(442\) 0 0
\(443\) 12.8994i 0.612869i −0.951892 0.306434i \(-0.900864\pi\)
0.951892 0.306434i \(-0.0991360\pi\)
\(444\) 0.792742 + 0.382114i 0.0376219 + 0.0181343i
\(445\) −0.781685 + 1.35392i −0.0370554 + 0.0641819i
\(446\) −15.4124 + 21.7135i −0.729799 + 1.02817i
\(447\) 9.11058 9.11058i 0.430916 0.430916i
\(448\) 14.3718 + 15.5225i 0.679002 + 0.733368i
\(449\) −9.53370 2.55455i −0.449923 0.120557i 0.0267403 0.999642i \(-0.491487\pi\)
−0.476663 + 0.879086i \(0.658154\pi\)
\(450\) 14.9298 + 5.54268i 0.703798 + 0.261284i
\(451\) −7.23812 + 4.17893i −0.340830 + 0.196778i
\(452\) 8.59660 3.00463i 0.404350 0.141326i
\(453\) −0.149602 0.558323i −0.00702893 0.0262323i
\(454\) −4.38536 9.56407i −0.205815 0.448864i
\(455\) 0 0
\(456\) 12.8944 + 3.72231i 0.603836 + 0.174313i
\(457\) −10.0284 + 2.68710i −0.469108 + 0.125697i −0.485626 0.874166i \(-0.661408\pi\)
0.0165184 + 0.999864i \(0.494742\pi\)
\(458\) −6.32653 0.594401i −0.295619 0.0277746i
\(459\) 3.13853 + 5.43609i 0.146494 + 0.253735i
\(460\) −0.306091 4.10421i −0.0142715 0.191360i
\(461\) −7.43710 + 27.7556i −0.346380 + 1.29271i 0.544611 + 0.838689i \(0.316677\pi\)
−0.890991 + 0.454021i \(0.849989\pi\)
\(462\) −4.51953 + 0.767066i −0.210267 + 0.0356872i
\(463\) 5.89061 + 5.89061i 0.273760 + 0.273760i 0.830612 0.556852i \(-0.187991\pi\)
−0.556852 + 0.830612i \(0.687991\pi\)
\(464\) 13.2063 10.5162i 0.613088 0.488204i
\(465\) 0.950841 + 0.548968i 0.0440942 + 0.0254578i
\(466\) 14.5081 12.0161i 0.672076 0.556634i
\(467\) 3.30334 0.152860 0.0764301 0.997075i \(-0.475648\pi\)
0.0764301 + 0.997075i \(0.475648\pi\)
\(468\) 0 0
\(469\) −6.66931 −0.307960
\(470\) 1.01610 0.841563i 0.0468691 0.0388184i
\(471\) −4.34634 2.50936i −0.200269 0.115625i
\(472\) 5.78811 + 23.3925i 0.266420 + 1.07673i
\(473\) −9.36849 9.36849i −0.430764 0.430764i
\(474\) −10.0937 + 1.71314i −0.463621 + 0.0786870i
\(475\) −7.14374 + 26.6608i −0.327777 + 1.22328i
\(476\) −7.37943 + 0.550355i −0.338235 + 0.0252255i
\(477\) 6.76922 + 11.7246i 0.309941 + 0.536834i
\(478\) −11.8805 1.11622i −0.543402 0.0510546i
\(479\) 26.8650 7.19847i 1.22750 0.328906i 0.413892 0.910326i \(-0.364169\pi\)
0.813604 + 0.581420i \(0.197503\pi\)
\(480\) 0.947285 0.619013i 0.0432374 0.0282539i
\(481\) 0 0
\(482\) −9.11729 19.8840i −0.415281 0.905691i
\(483\) 5.08705 + 18.9851i 0.231469 + 0.863854i
\(484\) −5.88635 16.8416i −0.267561 0.765525i
\(485\) 3.15346 1.82065i 0.143191 0.0826714i
\(486\) −21.2451 7.88721i −0.963695 0.357771i
\(487\) 9.96577 + 2.67032i 0.451592 + 0.121004i 0.477444 0.878662i \(-0.341563\pi\)
−0.0258522 + 0.999666i \(0.508230\pi\)
\(488\) 17.4906 + 10.5519i 0.791762 + 0.477663i
\(489\) −9.45652 + 9.45652i −0.427638 + 0.427638i
\(490\) 0.00152197 0.00214420i 6.87555e−5 9.68651e-5i
\(491\) −6.81243 + 11.7995i −0.307441 + 0.532503i −0.977802 0.209532i \(-0.932806\pi\)
0.670361 + 0.742035i \(0.266139\pi\)
\(492\) −4.27821 + 8.87566i −0.192877 + 0.400146i
\(493\) 5.90546i 0.265969i
\(494\) 0 0
\(495\) 0.772899i 0.0347392i
\(496\) 20.1287 8.76491i 0.903805 0.393556i
\(497\) 14.3723 24.8936i 0.644688 1.11663i
\(498\) 9.58236 + 6.80163i 0.429396 + 0.304788i
\(499\) −11.2288 + 11.2288i −0.502670 + 0.502670i −0.912267 0.409597i \(-0.865669\pi\)
0.409597 + 0.912267i \(0.365669\pi\)
\(500\) 2.63526 + 3.86819i 0.117852 + 0.172991i
\(501\) 4.60334 + 1.23346i 0.205662 + 0.0551070i
\(502\) 13.5244 36.4296i 0.603625 1.62593i
\(503\) 19.7978 11.4303i 0.882739 0.509650i 0.0111787 0.999938i \(-0.496442\pi\)
0.871561 + 0.490288i \(0.163108\pi\)
\(504\) 12.2737 11.8103i 0.546712 0.526073i
\(505\) −0.558805 2.08549i −0.0248665 0.0928030i
\(506\) 16.2108 7.43304i 0.720657 0.330439i
\(507\) 0 0
\(508\) 8.09892 + 6.97473i 0.359331 + 0.309454i
\(509\) 9.52759 2.55291i 0.422303 0.113156i −0.0414078 0.999142i \(-0.513184\pi\)
0.463711 + 0.885987i \(0.346518\pi\)
\(510\) −0.0370282 + 0.394111i −0.00163964 + 0.0174515i
\(511\) −9.44995 16.3678i −0.418041 0.724069i
\(512\) 1.30512 22.5897i 0.0576787 0.998335i
\(513\) 6.48121 24.1882i 0.286152 1.06794i
\(514\) −6.58693 38.8100i −0.290537 1.71183i
\(515\) −1.81513 1.81513i −0.0799842 0.0799842i
\(516\) −15.3457 2.90926i −0.675559 0.128073i
\(517\) 4.95105 + 2.85849i 0.217747 + 0.125716i
\(518\) 1.23473 + 1.49080i 0.0542509 + 0.0655022i
\(519\) −1.83676 −0.0806246
\(520\) 0 0
\(521\) 15.9204 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(522\) −8.67056 10.4688i −0.379500 0.458206i
\(523\) 1.86869 + 1.07889i 0.0817122 + 0.0471766i 0.540299 0.841473i \(-0.318311\pi\)
−0.458587 + 0.888649i \(0.651644\pi\)
\(524\) 22.0578 + 4.18174i 0.963600 + 0.182680i
\(525\) −7.85891 7.85891i −0.342991 0.342991i
\(526\) 5.63346 + 33.1922i 0.245631 + 1.44725i
\(527\) −1.98769 + 7.41814i −0.0865849 + 0.323139i
\(528\) 3.94321 + 2.91459i 0.171606 + 0.126841i
\(529\) −26.7315 46.3003i −1.16224 2.01306i
\(530\) −0.185064 + 1.96974i −0.00803869 + 0.0855600i
\(531\) 18.7423 5.02200i 0.813348 0.217936i
\(532\) 22.3692 + 19.2642i 0.969826 + 0.835207i
\(533\) 0 0
\(534\) −7.25943 + 3.32863i −0.314146 + 0.144044i
\(535\) 0.600345 + 2.24052i 0.0259552 + 0.0968660i
\(536\) 4.94641 + 5.14047i 0.213652 + 0.222034i
\(537\) −7.45933 + 4.30664i −0.321894 + 0.185845i
\(538\) 10.1944 27.4597i 0.439512 1.18387i
\(539\) 0.0110056 + 0.00294895i 0.000474046 + 0.000127020i
\(540\) −1.18877 1.74495i −0.0511566 0.0750907i
\(541\) −8.15947 + 8.15947i −0.350803 + 0.350803i −0.860408 0.509605i \(-0.829791\pi\)
0.509605 + 0.860408i \(0.329791\pi\)
\(542\) 15.9375 + 11.3125i 0.684572 + 0.485914i
\(543\) −5.88774 + 10.1979i −0.252667 + 0.437632i
\(544\) 5.89727 + 5.27962i 0.252843 + 0.226362i
\(545\) 0.00809292i 0.000346663i
\(546\) 0 0
\(547\) 8.11076i 0.346791i 0.984852 + 0.173396i \(0.0554739\pi\)
−0.984852 + 0.173396i \(0.944526\pi\)
\(548\) 4.17539 8.66235i 0.178364 0.370037i
\(549\) 8.22384 14.2441i 0.350985 0.607924i
\(550\) −5.83700 + 8.22336i −0.248890 + 0.350645i
\(551\) 16.6588 16.6588i 0.709687 0.709687i
\(552\) 10.8602 18.0016i 0.462240 0.766198i
\(553\) −21.7526 5.82859i −0.925014 0.247857i
\(554\) −16.8822 6.26750i −0.717256 0.266281i
\(555\) 0.0896759 0.0517744i 0.00380653 0.00219770i
\(556\) −4.58003 13.1040i −0.194237 0.555734i
\(557\) 0.887873 + 3.31359i 0.0376204 + 0.140401i 0.982182 0.187934i \(-0.0601791\pi\)
−0.944561 + 0.328335i \(0.893512\pi\)
\(558\) −7.36789 16.0687i −0.311908 0.680243i
\(559\) 0 0
\(560\) 2.46156 0.369219i 0.104020 0.0156023i
\(561\) −1.65683 + 0.443946i −0.0699514 + 0.0187434i
\(562\) 30.7554 + 2.88958i 1.29734 + 0.121890i
\(563\) −3.12130 5.40625i −0.131547 0.227846i 0.792726 0.609578i \(-0.208661\pi\)
−0.924273 + 0.381732i \(0.875328\pi\)
\(564\) 6.72099 0.501249i 0.283005 0.0211064i
\(565\) 0.277331 1.03501i 0.0116674 0.0435434i
\(566\) −28.8472 + 4.89602i −1.21254 + 0.205795i
\(567\) −5.64476 5.64476i −0.237058 0.237058i
\(568\) −29.8466 + 7.38508i −1.25234 + 0.309871i
\(569\) −27.8969 16.1063i −1.16950 0.675211i −0.215937 0.976407i \(-0.569281\pi\)
−0.953562 + 0.301197i \(0.902614\pi\)
\(570\) 1.21620 1.00730i 0.0509412 0.0421911i
\(571\) −41.4189 −1.73333 −0.866663 0.498894i \(-0.833740\pi\)
−0.866663 + 0.498894i \(0.833740\pi\)
\(572\) 0 0
\(573\) 3.29007 0.137445
\(574\) −16.6913 + 13.8242i −0.696680 + 0.577012i
\(575\) 37.4446 + 21.6186i 1.56155 + 0.901560i
\(576\) −18.2059 0.700797i −0.758581 0.0291999i
\(577\) −12.3408 12.3408i −0.513753 0.513753i 0.401921 0.915674i \(-0.368343\pi\)
−0.915674 + 0.401921i \(0.868343\pi\)
\(578\) 20.9728 3.55957i 0.872355 0.148058i
\(579\) −1.80941 + 6.75282i −0.0751966 + 0.280638i
\(580\) −0.147736 1.98091i −0.00613439 0.0822528i
\(581\) 12.9238 + 22.3846i 0.536168 + 0.928671i
\(582\) 18.5193 + 1.73996i 0.767651 + 0.0721237i
\(583\) −8.28072 + 2.21881i −0.342952 + 0.0918938i
\(584\) −5.60701 + 19.4231i −0.232020 + 0.803736i
\(585\) 0 0
\(586\) −13.5920 29.6430i −0.561481 1.22454i
\(587\) 5.98011 + 22.3181i 0.246825 + 0.921165i 0.972457 + 0.233082i \(0.0748810\pi\)
−0.725632 + 0.688083i \(0.758452\pi\)
\(588\) 0.0126799 0.00443178i 0.000522908 0.000182764i
\(589\) 26.5330 15.3188i 1.09327 0.631200i
\(590\) 2.65822 + 0.986862i 0.109437 + 0.0406285i
\(591\) −10.1655 2.72384i −0.418154 0.112044i
\(592\) 0.233301 2.05737i 0.00958862 0.0845572i
\(593\) −11.0244 + 11.0244i −0.452717 + 0.452717i −0.896255 0.443538i \(-0.853723\pi\)
0.443538 + 0.896255i \(0.353723\pi\)
\(594\) 5.29565 7.46070i 0.217283 0.306116i
\(595\) −0.435357 + 0.754060i −0.0178479 + 0.0309134i
\(596\) −27.3077 13.1627i −1.11857 0.539167i
\(597\) 2.06898i 0.0846775i
\(598\) 0 0
\(599\) 10.6090i 0.433471i 0.976230 + 0.216735i \(0.0695409\pi\)
−0.976230 + 0.216735i \(0.930459\pi\)
\(600\) −0.228679 + 11.8861i −0.00933579 + 0.485247i
\(601\) −14.1251 + 24.4655i −0.576177 + 0.997967i 0.419736 + 0.907646i \(0.362123\pi\)
−0.995913 + 0.0903210i \(0.971211\pi\)
\(602\) −28.0159 19.8859i −1.14184 0.810488i
\(603\) 4.06169 4.06169i 0.165405 0.165405i
\(604\) −1.12394 + 0.765700i −0.0457324 + 0.0311559i
\(605\) −2.02769 0.543318i −0.0824373 0.0220890i
\(606\) 3.83856 10.3396i 0.155931 0.420017i
\(607\) −8.89476 + 5.13539i −0.361027 + 0.208439i −0.669531 0.742784i \(-0.733505\pi\)
0.308504 + 0.951223i \(0.400172\pi\)
\(608\) −1.74233 31.5290i −0.0706606 1.27867i
\(609\) 2.45528 + 9.16324i 0.0994931 + 0.371313i
\(610\) 2.18483 1.00180i 0.0884610 0.0405615i
\(611\) 0 0
\(612\) 4.15898 4.82933i 0.168117 0.195214i
\(613\) 34.2262 9.17089i 1.38238 0.370409i 0.510397 0.859939i \(-0.329498\pi\)
0.871986 + 0.489530i \(0.162832\pi\)
\(614\) 3.05254 32.4898i 0.123190 1.31118i
\(615\) 0.579674 + 1.00403i 0.0233747 + 0.0404862i
\(616\) 5.21218 + 9.44271i 0.210005 + 0.380458i
\(617\) 10.8473 40.4828i 0.436697 1.62978i −0.300275 0.953853i \(-0.597078\pi\)
0.736972 0.675923i \(-0.236255\pi\)
\(618\) −2.19419 12.9281i −0.0882632 0.520043i
\(619\) −12.0880 12.0880i −0.485858 0.485858i 0.421138 0.906996i \(-0.361631\pi\)
−0.906996 + 0.421138i \(0.861631\pi\)
\(620\) 0.481165 2.53804i 0.0193240 0.101930i
\(621\) −33.9719 19.6137i −1.36324 0.787069i
\(622\) −7.70846 9.30714i −0.309081 0.373182i
\(623\) −17.5666 −0.703790
\(624\) 0 0
\(625\) −24.1724 −0.966894
\(626\) −5.30760 6.40836i −0.212134 0.256129i
\(627\) 5.92609 + 3.42143i 0.236665 + 0.136639i
\(628\) −2.19943 + 11.6015i −0.0877667 + 0.462951i
\(629\) 0.512159 + 0.512159i 0.0204211 + 0.0204211i
\(630\) −0.335363 1.97594i −0.0133612 0.0787235i
\(631\) 3.12081 11.6470i 0.124237 0.463660i −0.875574 0.483084i \(-0.839517\pi\)
0.999811 + 0.0194238i \(0.00618318\pi\)
\(632\) 11.6407 + 21.0890i 0.463042 + 0.838875i
\(633\) 1.78106 + 3.08489i 0.0707909 + 0.122613i
\(634\) 3.08772 32.8642i 0.122629 1.30521i
\(635\) 1.21479 0.325501i 0.0482073 0.0129171i
\(636\) −6.59499 + 7.65798i −0.261509 + 0.303659i
\(637\) 0 0
\(638\) 7.82419 3.58758i 0.309763 0.142034i
\(639\) 6.40759 + 23.9134i 0.253480 + 0.946001i
\(640\) −2.11024 1.62345i −0.0834146 0.0641724i
\(641\) −1.81632 + 1.04865i −0.0717404 + 0.0414193i −0.535441 0.844573i \(-0.679855\pi\)
0.463701 + 0.885992i \(0.346521\pi\)
\(642\) −4.12391 + 11.1082i −0.162758 + 0.438406i
\(643\) −40.9391 10.9696i −1.61448 0.432599i −0.665108 0.746747i \(-0.731614\pi\)
−0.949374 + 0.314148i \(0.898281\pi\)
\(644\) 38.2183 26.0367i 1.50601 1.02599i
\(645\) −1.29954 + 1.29954i −0.0511692 + 0.0511692i
\(646\) 9.00754 + 6.39362i 0.354397 + 0.251553i
\(647\) −21.5400 + 37.3083i −0.846824 + 1.46674i 0.0372042 + 0.999308i \(0.488155\pi\)
−0.884028 + 0.467434i \(0.845179\pi\)
\(648\) −0.164252 + 8.53732i −0.00645242 + 0.335377i
\(649\) 12.2867i 0.482296i
\(650\) 0 0
\(651\) 12.3368i 0.483518i
\(652\) 28.3446 + 13.6625i 1.11006 + 0.535066i
\(653\) 5.56059 9.63123i 0.217603 0.376899i −0.736472 0.676468i \(-0.763510\pi\)
0.954075 + 0.299569i \(0.0968429\pi\)
\(654\) 0.0239290 0.0337120i 0.000935697 0.00131824i
\(655\) 1.86794 1.86794i 0.0729865 0.0729865i
\(656\) 23.0346 + 2.61208i 0.899350 + 0.101984i
\(657\) 15.7233 + 4.21305i 0.613425 + 0.164367i
\(658\) 13.8978 + 5.15956i 0.541795 + 0.201141i
\(659\) −13.2010 + 7.62162i −0.514239 + 0.296896i −0.734575 0.678528i \(-0.762618\pi\)
0.220335 + 0.975424i \(0.429285\pi\)
\(660\) 0.544655 0.190364i 0.0212007 0.00740992i
\(661\) 2.67284 + 9.97516i 0.103961 + 0.387989i 0.998225 0.0595512i \(-0.0189669\pi\)
−0.894264 + 0.447540i \(0.852300\pi\)
\(662\) −8.46813 18.4682i −0.329123 0.717788i
\(663\) 0 0
\(664\) 7.66815 26.5631i 0.297582 1.03085i
\(665\) 3.35523 0.899032i 0.130110 0.0348630i
\(666\) −1.65988 0.155952i −0.0643191 0.00604302i
\(667\) −18.4525 31.9607i −0.714485 1.23753i
\(668\) −0.833940 11.1819i −0.0322661 0.432639i
\(669\) −4.14239 + 15.4596i −0.160154 + 0.597704i
\(670\) 0.827568 0.140457i 0.0319717 0.00542633i
\(671\) 7.36454 + 7.36454i 0.284305 + 0.284305i
\(672\) 11.3456 + 5.74028i 0.437666 + 0.221436i
\(673\) 25.8030 + 14.8974i 0.994631 + 0.574251i 0.906655 0.421872i \(-0.138627\pi\)
0.0879759 + 0.996123i \(0.471960\pi\)
\(674\) −15.6215 + 12.9382i −0.601716 + 0.498360i
\(675\) 22.1818 0.853776
\(676\) 0 0
\(677\) −29.1021 −1.11849 −0.559243 0.829004i \(-0.688908\pi\)
−0.559243 + 0.829004i \(0.688908\pi\)
\(678\) 4.21556 3.49146i 0.161898 0.134089i
\(679\) 35.4334 + 20.4575i 1.35981 + 0.785085i
\(680\) 0.904093 0.223704i 0.0346704 0.00857864i
\(681\) −4.47188 4.47188i −0.171363 0.171363i
\(682\) 11.0359 1.87304i 0.422585 0.0717223i
\(683\) 1.30625 4.87499i 0.0499823 0.186536i −0.936421 0.350878i \(-0.885883\pi\)
0.986404 + 0.164342i \(0.0525499\pi\)
\(684\) −25.3552 + 1.89098i −0.969480 + 0.0723035i
\(685\) −0.565743 0.979896i −0.0216159 0.0374399i
\(686\) 26.0915 + 2.45139i 0.996176 + 0.0935945i
\(687\) −3.68930 + 0.988544i −0.140755 + 0.0377153i
\(688\) 5.45113 + 36.3424i 0.207822 + 1.38554i
\(689\) 0 0
\(690\) −1.03106 2.24866i −0.0392519 0.0856049i
\(691\) −2.89268 10.7956i −0.110043 0.410685i 0.888826 0.458246i \(-0.151522\pi\)
−0.998868 + 0.0475604i \(0.984855\pi\)
\(692\) 1.42586 + 4.07956i 0.0542031 + 0.155082i
\(693\) 7.52106 4.34229i 0.285701 0.164950i
\(694\) −0.623535 0.231487i −0.0236691 0.00878711i
\(695\) −1.57770 0.422743i −0.0598455 0.0160355i
\(696\) 5.24170 8.68852i 0.198686 0.329337i
\(697\) −5.73421 + 5.73421i −0.217199 + 0.217199i
\(698\) −23.1516 + 32.6168i −0.876302 + 1.23456i
\(699\) 5.66150 9.80601i 0.214138 0.370897i
\(700\) −11.3544 + 23.5560i −0.429155 + 0.890333i
\(701\) 27.1476i 1.02535i −0.858582 0.512676i \(-0.828654\pi\)
0.858582 0.512676i \(-0.171346\pi\)
\(702\) 0 0
\(703\) 2.88950i 0.108980i
\(704\) 3.41241 11.0207i 0.128610 0.415359i
\(705\) 0.396511 0.686778i 0.0149335 0.0258656i
\(706\) 41.4610 + 29.4293i 1.56041 + 1.10759i
\(707\) 17.1544 17.1544i 0.645156 0.645156i
\(708\) 8.15518 + 11.9707i 0.306490 + 0.449885i
\(709\) −40.9857 10.9821i −1.53925 0.412441i −0.613228 0.789906i \(-0.710129\pi\)
−0.926024 + 0.377465i \(0.876796\pi\)
\(710\) −1.25914 + 3.39163i −0.0472547 + 0.127286i
\(711\) 16.7973 9.69790i 0.629946 0.363700i
\(712\) 13.0286 + 13.5397i 0.488266 + 0.507422i
\(713\) −12.4217 46.3583i −0.465195 1.73613i
\(714\) −4.04312 + 1.85387i −0.151310 + 0.0693792i
\(715\) 0 0
\(716\) 15.3560 + 13.2245i 0.573880 + 0.494221i
\(717\) −6.92808 + 1.85637i −0.258734 + 0.0693275i
\(718\) −2.19200 + 23.3306i −0.0818047 + 0.870692i
\(719\) −8.21566 14.2299i −0.306392 0.530687i 0.671178 0.741296i \(-0.265789\pi\)
−0.977570 + 0.210609i \(0.932455\pi\)
\(720\) −1.27426 + 1.72398i −0.0474889 + 0.0642489i
\(721\) 7.46526 27.8607i 0.278021 1.03759i
\(722\) −2.87748 16.9540i −0.107089 0.630963i
\(723\) −9.29717 9.29717i −0.345765 0.345765i
\(724\) 27.2208 + 5.16054i 1.01165 + 0.191790i
\(725\) 18.0728 + 10.4343i 0.671205 + 0.387520i
\(726\) −6.84010 8.25869i −0.253860 0.306509i
\(727\) −32.1429 −1.19211 −0.596057 0.802942i \(-0.703267\pi\)
−0.596057 + 0.802942i \(0.703267\pi\)
\(728\) 0 0
\(729\) −4.56452 −0.169056
\(730\) 1.51732 + 1.83200i 0.0561584 + 0.0678052i
\(731\) −11.1329 6.42759i −0.411765 0.237733i
\(732\) 12.0632 + 2.28696i 0.445870 + 0.0845284i
\(733\) 19.2047 + 19.2047i 0.709343 + 0.709343i 0.966397 0.257054i \(-0.0827518\pi\)
−0.257054 + 0.966397i \(0.582752\pi\)
\(734\) 2.40322 + 14.1597i 0.0887045 + 0.522644i
\(735\) 0.000409059 0.00152663i 1.50884e−5 5.63106e-5i
\(736\) −48.4134 10.1467i −1.78454 0.374013i
\(737\) 1.81864 + 3.14998i 0.0669905 + 0.116031i
\(738\) 1.74606 18.5843i 0.0642735 0.684097i
\(739\) 22.4404 6.01290i 0.825485 0.221188i 0.178742 0.983896i \(-0.442797\pi\)
0.646743 + 0.762708i \(0.276131\pi\)
\(740\) −0.184609 0.158984i −0.00678637 0.00584438i
\(741\) 0 0
\(742\) −20.2072 + 9.26549i −0.741830 + 0.340147i
\(743\) 9.98778 + 37.2749i 0.366416 + 1.36748i 0.865491 + 0.500925i \(0.167007\pi\)
−0.499075 + 0.866559i \(0.666327\pi\)
\(744\) 9.50878 9.14980i 0.348609 0.335448i
\(745\) −3.08908 + 1.78348i −0.113175 + 0.0653417i
\(746\) 7.39079 19.9079i 0.270596 0.728880i
\(747\) −21.5032 5.76177i −0.786762 0.210812i
\(748\) 2.27222 + 3.33530i 0.0830806 + 0.121951i
\(749\) −18.4296 + 18.4296i −0.673402 + 0.673402i
\(750\) 2.29416 + 1.62841i 0.0837708 + 0.0594611i
\(751\) −0.646973 + 1.12059i −0.0236084 + 0.0408909i −0.877588 0.479415i \(-0.840849\pi\)
0.853980 + 0.520306i \(0.174182\pi\)
\(752\) −6.33076 14.5387i −0.230859 0.530170i
\(753\) 23.3570i 0.851178i
\(754\) 0 0
\(755\) 0.160022i 0.00582380i
\(756\) 10.3013 21.3713i 0.374655 0.777268i
\(757\) 11.2800 19.5376i 0.409979 0.710104i −0.584908 0.811100i \(-0.698869\pi\)
0.994887 + 0.100995i \(0.0322027\pi\)
\(758\) −27.3049 + 38.4681i −0.991759 + 1.39722i
\(759\) 7.57969 7.57969i 0.275125 0.275125i
\(760\) −3.18141 1.91931i −0.115402 0.0696208i
\(761\) −8.40241 2.25142i −0.304587 0.0816138i 0.103288 0.994651i \(-0.467064\pi\)
−0.407875 + 0.913038i \(0.633730\pi\)
\(762\) 6.02276 + 2.23594i 0.218182 + 0.0809997i
\(763\) 0.0787520 0.0454675i 0.00285101 0.00164603i
\(764\) −2.55406 7.30748i −0.0924027 0.264375i
\(765\) −0.194094 0.724369i −0.00701748 0.0261896i
\(766\) 12.3399 + 26.9123i 0.445860 + 0.972381i
\(767\) 0 0
\(768\) −3.99026 13.0022i −0.143986 0.469175i
\(769\) 9.35018 2.50537i 0.337176 0.0903461i −0.0862584 0.996273i \(-0.527491\pi\)
0.423434 + 0.905927i \(0.360824\pi\)
\(770\) 1.26354 + 0.118714i 0.0455348 + 0.00427816i
\(771\) −11.8306 20.4912i −0.426068 0.737971i
\(772\) 16.4031 1.22334i 0.590361 0.0440289i
\(773\) 4.96928 18.5456i 0.178732 0.667039i −0.817153 0.576420i \(-0.804449\pi\)
0.995886 0.0906182i \(-0.0288843\pi\)
\(774\) 29.1728 4.95128i 1.04859 0.177970i
\(775\) 19.1900 + 19.1900i 0.689327 + 0.689327i
\(776\) −10.5119 42.4834i −0.377354 1.52507i
\(777\) 1.00763 + 0.581756i 0.0361486 + 0.0208704i
\(778\) 10.4604 8.66361i 0.375023 0.310605i
\(779\) 32.3513 1.15911
\(780\) 0 0
\(781\) −15.6767 −0.560955
\(782\) 13.3263 11.0372i 0.476547 0.394691i
\(783\) −16.3966 9.46660i −0.585968 0.338309i
\(784\) −0.0196866 0.0247225i −0.000703092 0.000882945i
\(785\) 0.982461 + 0.982461i 0.0350655 + 0.0350655i
\(786\) 13.3042 2.25803i 0.474545 0.0805411i
\(787\) −7.73737 + 28.8763i −0.275808 + 1.02933i 0.679491 + 0.733684i \(0.262201\pi\)
−0.955298 + 0.295644i \(0.904466\pi\)
\(788\) 1.84158 + 24.6928i 0.0656037 + 0.879645i
\(789\) 10.1181 + 17.5250i 0.360213 + 0.623907i
\(790\) 2.82194 + 0.265132i 0.100400 + 0.00943298i
\(791\) 11.6298 3.11619i 0.413508 0.110799i
\(792\) −8.92500 2.57644i −0.317136 0.0915498i
\(793\) 0 0
\(794\) 1.52237 + 3.32016i 0.0540270 + 0.117828i
\(795\) 0.307779 + 1.14865i 0.0109158 + 0.0407383i
\(796\) −4.59533 + 1.60613i −0.162877 + 0.0569278i
\(797\) 32.2562 18.6231i 1.14257 0.659665i 0.195507 0.980702i \(-0.437365\pi\)
0.947067 + 0.321037i \(0.104031\pi\)
\(798\) 16.6348 + 6.17567i 0.588867 + 0.218616i
\(799\) 5.35801 + 1.43567i 0.189553 + 0.0507905i
\(800\) 26.5773 8.71916i 0.939649 0.308269i
\(801\) 10.6983 10.6983i 0.378004 0.378004i
\(802\) 22.1433 31.1963i 0.781908 1.10158i
\(803\) −5.15378 + 8.92661i −0.181873 + 0.315013i
\(804\) 3.86263 + 1.86185i 0.136224 + 0.0656623i
\(805\) 5.44136i 0.191783i
\(806\) 0 0
\(807\) 17.6060i 0.619759i
\(808\) −25.9448 0.499159i −0.912735 0.0175603i
\(809\) −20.9090 + 36.2154i −0.735121 + 1.27327i 0.219550 + 0.975601i \(0.429541\pi\)
−0.954670 + 0.297665i \(0.903792\pi\)
\(810\) 0.819316 + 0.581556i 0.0287878 + 0.0204338i
\(811\) 4.29617 4.29617i 0.150859 0.150859i −0.627643 0.778502i \(-0.715980\pi\)
0.778502 + 0.627643i \(0.215980\pi\)
\(812\) 18.4462 12.5667i 0.647333 0.441005i
\(813\) 11.3472 + 3.04046i 0.397962 + 0.106634i
\(814\) 0.367425 0.989700i 0.0128782 0.0346890i
\(815\) 3.20637 1.85120i 0.112314 0.0648447i
\(816\) 4.42754 + 1.74134i 0.154995 + 0.0609591i
\(817\) 13.2733 + 49.5365i 0.464373 + 1.73306i
\(818\) 6.16364 2.82618i 0.215506 0.0988149i
\(819\) 0 0
\(820\) 1.78001 2.06691i 0.0621607 0.0721798i
\(821\) −18.2378 + 4.88681i −0.636505 + 0.170551i −0.562620 0.826716i \(-0.690207\pi\)
−0.0738852 + 0.997267i \(0.523540\pi\)
\(822\) 0.540670 5.75464i 0.0188580 0.200716i
\(823\) 6.80437 + 11.7855i 0.237185 + 0.410817i 0.959906 0.280324i \(-0.0904418\pi\)
−0.722720 + 0.691141i \(0.757108\pi\)
\(824\) −27.0108 + 14.9094i −0.940966 + 0.519394i
\(825\) −1.56881 + 5.85487i −0.0546189 + 0.203841i
\(826\) 5.33123 + 31.4114i 0.185497 + 1.09294i
\(827\) 17.0815 + 17.0815i 0.593982 + 0.593982i 0.938705 0.344723i \(-0.112027\pi\)
−0.344723 + 0.938705i \(0.612027\pi\)
\(828\) −7.41869 + 39.1320i −0.257817 + 1.35993i
\(829\) −23.8014 13.7417i −0.826657 0.477270i 0.0260500 0.999661i \(-0.491707\pi\)
−0.852707 + 0.522390i \(0.825040\pi\)
\(830\) −2.07508 2.50544i −0.0720272 0.0869651i
\(831\) −10.8241 −0.375485
\(832\) 0 0
\(833\) 0.0110551 0.000383038
\(834\) −5.32212 6.42589i −0.184290 0.222510i
\(835\) −1.14261 0.659685i −0.0395416 0.0228294i
\(836\) 2.99885 15.8183i 0.103717 0.547087i
\(837\) −17.4103 17.4103i −0.601788 0.601788i
\(838\) 1.32637 + 7.81495i 0.0458188 + 0.269963i
\(839\) −10.3356 + 38.5731i −0.356825 + 1.33169i 0.521347 + 0.853345i \(0.325430\pi\)
−0.878172 + 0.478345i \(0.841237\pi\)
\(840\) 1.30983 0.723001i 0.0451935 0.0249459i
\(841\) 5.59382 + 9.68878i 0.192890 + 0.334096i
\(842\) −0.664809 + 7.07592i −0.0229108 + 0.243852i
\(843\) 17.9349 4.80564i 0.617711 0.165515i
\(844\) 5.46913 6.35064i 0.188255 0.218598i
\(845\) 0 0
\(846\) −11.6062 + 5.32172i −0.399029 + 0.182964i
\(847\) −6.10491 22.7839i −0.209767 0.782862i
\(848\) 22.1285 + 8.70310i 0.759897 + 0.298866i
\(849\) −15.2309 + 8.79359i −0.522725 + 0.301795i
\(850\) −3.40540 + 9.17283i −0.116804 + 0.314625i
\(851\) −4.37216 1.17152i −0.149876 0.0401590i
\(852\) −15.2734 + 10.4052i −0.523258 + 0.356477i
\(853\) 6.78242 6.78242i 0.232226 0.232226i −0.581395 0.813621i \(-0.697493\pi\)
0.813621 + 0.581395i \(0.197493\pi\)
\(854\) 22.0232 + 15.6322i 0.753618 + 0.534923i
\(855\) −1.49586 + 2.59090i −0.0511572 + 0.0886068i
\(856\) 27.8735 + 0.536265i 0.952696 + 0.0183292i
\(857\) 25.7579i 0.879872i 0.898029 + 0.439936i \(0.144999\pi\)
−0.898029 + 0.439936i \(0.855001\pi\)
\(858\) 0 0
\(859\) 51.8251i 1.76825i 0.467252 + 0.884124i \(0.345244\pi\)
−0.467252 + 0.884124i \(0.654756\pi\)
\(860\) 3.89518 + 1.87754i 0.132825 + 0.0640236i
\(861\) −6.51343 + 11.2816i −0.221977 + 0.384476i
\(862\) 2.83038 3.98754i 0.0964032 0.135816i
\(863\) −35.1233 + 35.1233i −1.19561 + 1.19561i −0.220144 + 0.975467i \(0.570653\pi\)
−0.975467 + 0.220144i \(0.929347\pi\)
\(864\) −24.1124 + 7.91052i −0.820321 + 0.269121i
\(865\) 0.491171 + 0.131609i 0.0167003 + 0.00447483i
\(866\) 7.25558 + 2.69363i 0.246555 + 0.0915332i
\(867\) 11.0734 6.39322i 0.376072 0.217125i
\(868\) 27.4009 9.57698i 0.930047 0.325064i
\(869\) 3.17877 + 11.8633i 0.107833 + 0.402436i
\(870\) −0.497646 1.08532i −0.0168718 0.0367958i
\(871\) 0 0
\(872\) −0.0934525 0.0269775i −0.00316470 0.000913575i
\(873\) −34.0382 + 9.12050i −1.15202 + 0.308682i
\(874\) −68.7272 6.45718i −2.32473 0.218417i
\(875\) 3.09414 + 5.35921i 0.104601 + 0.181174i
\(876\) 0.903738 + 12.1178i 0.0305345 + 0.409421i
\(877\) −9.61256 + 35.8746i −0.324593 + 1.21140i 0.590127 + 0.807310i \(0.299078\pi\)
−0.914720 + 0.404088i \(0.867589\pi\)
\(878\) −42.5342 + 7.21902i −1.43546 + 0.243630i
\(879\) −13.8602 13.8602i −0.467493 0.467493i
\(880\) −0.845624 1.06194i −0.0285060 0.0357979i
\(881\) −1.73014 0.998897i −0.0582899 0.0336537i 0.470572 0.882362i \(-0.344048\pi\)
−0.528862 + 0.848708i \(0.677381\pi\)
\(882\) −0.0195977 + 0.0162314i −0.000659890 + 0.000546541i
\(883\) −16.1625 −0.543913 −0.271956 0.962310i \(-0.587671\pi\)
−0.271956 + 0.962310i \(0.587671\pi\)
\(884\) 0 0
\(885\) 1.70433 0.0572906
\(886\) −14.0495 + 11.6362i −0.472001 + 0.390926i
\(887\) 15.2472 + 8.80298i 0.511951 + 0.295575i 0.733635 0.679543i \(-0.237822\pi\)
−0.221684 + 0.975119i \(0.571155\pi\)
\(888\) −0.298929 1.20812i −0.0100314 0.0405417i
\(889\) 9.99232 + 9.99232i 0.335132 + 0.335132i
\(890\) 2.17977 0.369956i 0.0730659 0.0124009i
\(891\) −1.12682 + 4.20534i −0.0377498 + 0.140884i
\(892\) 37.5526 2.80066i 1.25735 0.0937730i
\(893\) −11.0645 19.1644i −0.370261 0.641311i
\(894\) −18.1413 1.70444i −0.606735 0.0570050i
\(895\) 2.30330 0.617167i 0.0769908 0.0206296i
\(896\) 3.94203 29.6555i 0.131694 0.990721i
\(897\) 0 0
\(898\) 5.81779 + 12.6881i 0.194142 + 0.423407i
\(899\) −5.99536 22.3750i −0.199956 0.746247i
\(900\) −7.43094 21.2608i −0.247698 0.708694i
\(901\) −7.20357 + 4.15898i −0.239986 + 0.138556i
\(902\) 11.0808 + 4.11375i 0.368951 + 0.136973i
\(903\) −19.9468 5.34473i −0.663788 0.177861i
\(904\) −11.0273 6.65265i −0.366762 0.221264i
\(905\) 2.30516 2.30516i 0.0766261 0.0766261i
\(906\) −0.473150 + 0.666589i −0.0157193 + 0.0221459i
\(907\) −14.7054 + 25.4704i −0.488283 + 0.845731i −0.999909 0.0134769i \(-0.995710\pi\)
0.511626 + 0.859208i \(0.329043\pi\)
\(908\) −6.46086 + 13.4038i −0.214411 + 0.444822i
\(909\) 20.8944i 0.693024i
\(910\) 0 0
\(911\) 20.5091i 0.679495i 0.940517 + 0.339748i \(0.110342\pi\)
−0.940517 + 0.339748i \(0.889658\pi\)
\(912\) −7.57752 17.4018i −0.250917 0.576232i
\(913\) 7.04832 12.2080i 0.233265 0.404027i
\(914\) 11.9730 + 8.49853i 0.396032 + 0.281106i
\(915\) 1.02156 1.02156i 0.0337718 0.0337718i
\(916\) 5.05960 + 7.42678i 0.167174 + 0.245388i
\(917\) 28.6713 + 7.68245i 0.946810 + 0.253697i
\(918\) 3.08958 8.32211i 0.101971 0.274671i
\(919\) −42.4137 + 24.4876i −1.39910 + 0.807770i −0.994298 0.106635i \(-0.965992\pi\)
−0.404800 + 0.914405i \(0.632659\pi\)
\(920\) −4.19401 + 4.03568i −0.138272 + 0.133052i
\(921\) −5.07665 18.9463i −0.167281 0.624302i
\(922\) 36.9391 16.9375i 1.21652 0.557806i
\(923\) 0 0
\(924\) 4.91240 + 4.23053i 0.161606 + 0.139174i
\(925\) 2.47231 0.662453i 0.0812890 0.0217813i
\(926\) 1.10204 11.7296i 0.0362152 0.385457i
\(927\) 12.4211 + 21.5139i 0.407962 + 0.706610i
\(928\) −23.3669 4.89734i −0.767056 0.160763i
\(929\) 1.77316 6.61751i 0.0581754 0.217113i −0.930719 0.365736i \(-0.880817\pi\)
0.988894 + 0.148623i \(0.0474840\pi\)
\(930\) −0.259816 1.53082i −0.00851969 0.0501977i
\(931\) −0.0311855 0.0311855i −0.00102206 0.00102206i
\(932\) −26.1748 4.96224i −0.857384 0.162544i
\(933\) −6.29067 3.63192i −0.205947 0.118904i
\(934\) −2.97985 3.59785i −0.0975038 0.117725i
\(935\) 0.474867 0.0155298
\(936\) 0 0
\(937\) 11.1107 0.362970 0.181485 0.983394i \(-0.441910\pi\)
0.181485 + 0.983394i \(0.441910\pi\)
\(938\) 6.01621 + 7.26393i 0.196436 + 0.237176i
\(939\) −4.33139 2.50073i −0.141350 0.0816083i
\(940\) −1.83319 0.347538i −0.0597921 0.0113354i
\(941\) 20.5970 + 20.5970i 0.671442 + 0.671442i 0.958048 0.286606i \(-0.0925272\pi\)
−0.286606 + 0.958048i \(0.592527\pi\)
\(942\) 1.18763 + 6.99747i 0.0386951 + 0.227990i
\(943\) 13.1165 48.9513i 0.427131 1.59407i
\(944\) 20.2568 27.4059i 0.659304 0.891988i
\(945\) −1.39577 2.41755i −0.0454045 0.0786430i
\(946\) −1.75269 + 18.6548i −0.0569849 + 0.606521i
\(947\) −28.3374 + 7.59297i −0.920841 + 0.246739i −0.687945 0.725763i \(-0.741487\pi\)
−0.232896 + 0.972502i \(0.574820\pi\)
\(948\) 10.9712 + 9.44830i 0.356327 + 0.306867i
\(949\) 0 0
\(950\) 35.4820 16.2694i 1.15119 0.527848i
\(951\) −5.13516 19.1647i −0.166519 0.621457i
\(952\) 7.25621 + 7.54089i 0.235175 + 0.244402i
\(953\) −11.3638 + 6.56091i −0.368110 + 0.212529i −0.672633 0.739977i \(-0.734837\pi\)
0.304522 + 0.952505i \(0.401503\pi\)
\(954\) 6.66363 17.9492i 0.215743 0.581128i
\(955\) −0.879806 0.235743i −0.0284699 0.00762847i
\(956\) 9.50135 + 13.9466i 0.307296 + 0.451067i
\(957\) 3.65836 3.65836i 0.118258 0.118258i
\(958\) −32.0745 22.7667i −1.03628 0.735559i
\(959\) 6.35689 11.0105i 0.205275 0.355546i
\(960\) −1.52872 0.473347i −0.0493393 0.0152772i
\(961\) 0.875747i 0.0282499i
\(962\) 0 0
\(963\) 22.4477i 0.723365i
\(964\) −13.4323 + 27.8670i −0.432626 + 0.897535i
\(965\) 0.967718 1.67614i 0.0311519 0.0539568i
\(966\) 16.0889 22.6666i 0.517652 0.729286i
\(967\) −13.0476 + 13.0476i −0.419581 + 0.419581i −0.885059 0.465478i \(-0.845882\pi\)
0.465478 + 0.885059i \(0.345882\pi\)
\(968\) −13.0332 + 21.6035i −0.418902 + 0.694362i
\(969\) 6.41320 + 1.71841i 0.206022 + 0.0552033i
\(970\) −4.82762 1.79225i −0.155006 0.0575457i
\(971\) 38.3512 22.1421i 1.23075 0.710573i 0.263562 0.964642i \(-0.415103\pi\)
0.967186 + 0.254070i \(0.0817692\pi\)
\(972\) 10.5742 + 30.2540i 0.339167 + 0.970399i
\(973\) −4.75009 17.7276i −0.152281 0.568320i
\(974\) −6.08146 13.2631i −0.194862 0.424978i
\(975\) 0 0
\(976\) −4.28511 28.5686i −0.137163 0.914459i
\(977\) −0.239374 + 0.0641402i −0.00765826 + 0.00205203i −0.262646 0.964892i \(-0.584595\pi\)
0.254988 + 0.966944i \(0.417929\pi\)
\(978\) 18.8301 + 1.76916i 0.602120 + 0.0565715i
\(979\) 4.79020 + 8.29687i 0.153095 + 0.265169i
\(980\) −0.00370830 0.000276564i −0.000118457 8.83450e-6i
\(981\) −0.0202707 + 0.0756511i −0.000647192 + 0.00241535i
\(982\) 18.9968 3.22419i 0.606212 0.102888i
\(983\) −8.44991 8.44991i −0.269510 0.269510i 0.559393 0.828903i \(-0.311034\pi\)
−0.828903 + 0.559393i \(0.811034\pi\)
\(984\) 13.5262 3.34686i 0.431201 0.106694i
\(985\) 2.52321 + 1.45678i 0.0803963 + 0.0464168i
\(986\) 6.43198 5.32716i 0.204836 0.169651i
\(987\) 8.91069 0.283630
\(988\) 0 0
\(989\) 80.3360 2.55454
\(990\) −0.841809 + 0.697212i −0.0267544 + 0.0221588i
\(991\) −36.2254 20.9147i −1.15074 0.664379i −0.201671 0.979453i \(-0.564637\pi\)
−0.949067 + 0.315074i \(0.897971\pi\)
\(992\) −27.7039 14.0167i −0.879601 0.445031i
\(993\) −8.63520 8.63520i −0.274030 0.274030i
\(994\) −40.0780 + 6.80214i −1.27120 + 0.215751i
\(995\) −0.148248 + 0.553269i −0.00469978 + 0.0175398i
\(996\) −1.23595 16.5723i −0.0391627 0.525112i
\(997\) −6.38088 11.0520i −0.202085 0.350021i 0.747115 0.664694i \(-0.231438\pi\)
−0.949200 + 0.314674i \(0.898105\pi\)
\(998\) 22.3591 + 2.10072i 0.707765 + 0.0664972i
\(999\) −2.24302 + 0.601015i −0.0709660 + 0.0190153i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.2.l.k.319.1 16
4.3 odd 2 inner 676.2.l.k.319.2 16
13.2 odd 12 inner 676.2.l.k.587.2 16
13.3 even 3 676.2.l.i.427.4 16
13.4 even 6 676.2.f.h.99.6 16
13.5 odd 4 676.2.l.i.19.2 16
13.6 odd 12 676.2.f.i.239.8 16
13.7 odd 12 676.2.f.h.239.1 16
13.8 odd 4 676.2.l.m.19.3 16
13.9 even 3 676.2.f.i.99.3 16
13.10 even 6 676.2.l.m.427.1 16
13.11 odd 12 52.2.l.b.15.3 yes 16
13.12 even 2 52.2.l.b.7.4 yes 16
39.11 even 12 468.2.cb.f.379.2 16
39.38 odd 2 468.2.cb.f.163.1 16
52.3 odd 6 676.2.l.i.427.2 16
52.7 even 12 676.2.f.h.239.6 16
52.11 even 12 52.2.l.b.15.4 yes 16
52.15 even 12 inner 676.2.l.k.587.1 16
52.19 even 12 676.2.f.i.239.3 16
52.23 odd 6 676.2.l.m.427.3 16
52.31 even 4 676.2.l.i.19.4 16
52.35 odd 6 676.2.f.i.99.8 16
52.43 odd 6 676.2.f.h.99.1 16
52.47 even 4 676.2.l.m.19.1 16
52.51 odd 2 52.2.l.b.7.3 16
104.11 even 12 832.2.bu.n.639.3 16
104.37 odd 12 832.2.bu.n.639.2 16
104.51 odd 2 832.2.bu.n.319.2 16
104.77 even 2 832.2.bu.n.319.3 16
156.11 odd 12 468.2.cb.f.379.1 16
156.155 even 2 468.2.cb.f.163.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.l.b.7.3 16 52.51 odd 2
52.2.l.b.7.4 yes 16 13.12 even 2
52.2.l.b.15.3 yes 16 13.11 odd 12
52.2.l.b.15.4 yes 16 52.11 even 12
468.2.cb.f.163.1 16 39.38 odd 2
468.2.cb.f.163.2 16 156.155 even 2
468.2.cb.f.379.1 16 156.11 odd 12
468.2.cb.f.379.2 16 39.11 even 12
676.2.f.h.99.1 16 52.43 odd 6
676.2.f.h.99.6 16 13.4 even 6
676.2.f.h.239.1 16 13.7 odd 12
676.2.f.h.239.6 16 52.7 even 12
676.2.f.i.99.3 16 13.9 even 3
676.2.f.i.99.8 16 52.35 odd 6
676.2.f.i.239.3 16 52.19 even 12
676.2.f.i.239.8 16 13.6 odd 12
676.2.l.i.19.2 16 13.5 odd 4
676.2.l.i.19.4 16 52.31 even 4
676.2.l.i.427.2 16 52.3 odd 6
676.2.l.i.427.4 16 13.3 even 3
676.2.l.k.319.1 16 1.1 even 1 trivial
676.2.l.k.319.2 16 4.3 odd 2 inner
676.2.l.k.587.1 16 52.15 even 12 inner
676.2.l.k.587.2 16 13.2 odd 12 inner
676.2.l.m.19.1 16 52.47 even 4
676.2.l.m.19.3 16 13.8 odd 4
676.2.l.m.427.1 16 13.10 even 6
676.2.l.m.427.3 16 52.23 odd 6
832.2.bu.n.319.2 16 104.51 odd 2
832.2.bu.n.319.3 16 104.77 even 2
832.2.bu.n.639.2 16 104.37 odd 12
832.2.bu.n.639.3 16 104.11 even 12