Properties

Label 676.2.l.i.19.4
Level $676$
Weight $2$
Character 676.19
Analytic conductor $5.398$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(19,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: 16.0.102930383934669717504.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 5 x^{14} - 2 x^{13} + 5 x^{12} - 8 x^{11} - 12 x^{10} + 32 x^{9} - 36 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.4
Root \(1.08916 + 0.902074i\) of defining polynomial
Character \(\chi\) \(=\) 676.19
Dual form 676.2.l.i.427.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39427 + 0.236640i) q^{2} +(0.736159 + 0.425021i) q^{3} +(1.88800 + 0.659882i) q^{4} +(0.166404 - 0.166404i) q^{5} +(0.925830 + 0.766801i) q^{6} +(2.55416 + 0.684384i) q^{7} +(2.47624 + 1.36683i) q^{8} +(-1.13871 - 1.97231i) q^{9} +(0.271390 - 0.192635i) q^{10} +(-0.373247 - 1.39298i) q^{11} +(1.10941 + 1.28822i) q^{12} +(3.39924 + 1.55864i) q^{14} +(0.193225 - 0.0517744i) q^{15} +(3.12911 + 2.49172i) q^{16} +(-1.21178 + 0.699622i) q^{17} +(-1.12095 - 3.01941i) q^{18} +(1.44475 - 5.39188i) q^{19} +(0.423978 - 0.204364i) q^{20} +(1.58939 + 1.58939i) q^{21} +(-0.190775 - 2.03052i) q^{22} +(-4.37216 + 7.57279i) q^{23} +(1.24197 + 2.05866i) q^{24} +4.94462i q^{25} -4.48604i q^{27} +(4.37064 + 2.97756i) q^{28} +(-2.11023 + 3.65503i) q^{29} +(0.281660 - 0.0264630i) q^{30} +(-3.88100 - 3.88100i) q^{31} +(3.77320 + 4.21461i) q^{32} +(0.317276 - 1.18409i) q^{33} +(-1.85511 + 0.688709i) q^{34} +(0.538906 - 0.311137i) q^{35} +(-0.848402 - 4.47514i) q^{36} +(-0.500000 + 0.133975i) q^{37} +(3.29032 - 7.17588i) q^{38} +(0.639502 - 0.184609i) q^{40} +(1.50000 + 5.59808i) q^{41} +(1.83993 + 2.59215i) q^{42} +(-4.59362 - 7.95638i) q^{43} +(0.214509 - 2.87624i) q^{44} +(-0.517686 - 0.138714i) q^{45} +(-7.88801 + 9.52393i) q^{46} +(2.80318 - 2.80318i) q^{47} +(1.24449 + 3.16424i) q^{48} +(-0.00684229 - 0.00395040i) q^{49} +(-1.17009 + 6.89416i) q^{50} -1.18942 q^{51} -5.94462 q^{53} +(1.06158 - 6.25477i) q^{54} +(-0.293906 - 0.169687i) q^{55} +(5.38927 + 5.18581i) q^{56} +(3.35523 - 3.35523i) q^{57} +(-3.80717 + 4.59675i) q^{58} +(8.22961 + 2.20512i) q^{59} +(0.398974 + 0.0297554i) q^{60} +(3.61102 + 6.25448i) q^{61} +(-4.49277 - 6.32957i) q^{62} +(-1.55864 - 5.81691i) q^{63} +(4.26353 + 6.76922i) q^{64} +(0.722573 - 1.57587i) q^{66} +(-2.43624 + 0.652790i) q^{67} +(-2.74951 + 0.521255i) q^{68} +(-6.43720 + 3.71652i) q^{69} +(0.825010 - 0.306284i) q^{70} +(2.81352 - 10.5002i) q^{71} +(-0.123908 - 6.44034i) q^{72} +(-5.05407 - 5.05407i) q^{73} +(-0.728841 + 0.0684774i) q^{74} +(-2.10157 + 3.64002i) q^{75} +(6.28570 - 9.22653i) q^{76} -3.81333i q^{77} -8.51654i q^{79} +(0.935328 - 0.106064i) q^{80} +(-1.50948 + 2.61449i) q^{81} +(0.766683 + 8.16022i) q^{82} +(6.91195 + 6.91195i) q^{83} +(1.95196 + 4.04958i) q^{84} +(-0.0852251 + 0.318065i) q^{85} +(-4.52197 - 12.1804i) q^{86} +(-3.10694 + 1.79379i) q^{87} +(0.979719 - 3.95951i) q^{88} +(-6.41693 + 1.71941i) q^{89} +(-0.688971 - 0.315910i) q^{90} +(-13.2518 + 11.4124i) q^{92} +(-1.20752 - 4.50653i) q^{93} +(4.57175 - 3.24506i) q^{94} +(-0.656818 - 1.13764i) q^{95} +(0.986372 + 4.70632i) q^{96} +(-14.9459 - 4.00474i) q^{97} +(-0.00860521 - 0.00712710i) q^{98} +(-2.32236 + 2.32236i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} + 6 q^{4} + 12 q^{5} - 10 q^{6} - 10 q^{8} + 4 q^{9} + 8 q^{14} - 2 q^{16} - 12 q^{17} + 6 q^{18} - 20 q^{20} + 28 q^{21} + 14 q^{24} - 24 q^{28} - 8 q^{29} - 42 q^{30} + 26 q^{32} + 8 q^{33}+ \cdots + 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39427 + 0.236640i 0.985901 + 0.167330i
\(3\) 0.736159 + 0.425021i 0.425021 + 0.245386i 0.697223 0.716854i \(-0.254419\pi\)
−0.272202 + 0.962240i \(0.587752\pi\)
\(4\) 1.88800 + 0.659882i 0.944001 + 0.329941i
\(5\) 0.166404 0.166404i 0.0744180 0.0744180i −0.668918 0.743336i \(-0.733242\pi\)
0.743336 + 0.668918i \(0.233242\pi\)
\(6\) 0.925830 + 0.766801i 0.377969 + 0.313045i
\(7\) 2.55416 + 0.684384i 0.965381 + 0.258673i 0.706876 0.707337i \(-0.250104\pi\)
0.258504 + 0.966010i \(0.416770\pi\)
\(8\) 2.47624 + 1.36683i 0.875483 + 0.483249i
\(9\) −1.13871 1.97231i −0.379571 0.657437i
\(10\) 0.271390 0.192635i 0.0858212 0.0609165i
\(11\) −0.373247 1.39298i −0.112538 0.419998i 0.886553 0.462628i \(-0.153093\pi\)
−0.999091 + 0.0426292i \(0.986427\pi\)
\(12\) 1.10941 + 1.28822i 0.320258 + 0.371877i
\(13\) 0 0
\(14\) 3.39924 + 1.55864i 0.908486 + 0.416563i
\(15\) 0.193225 0.0517744i 0.0498904 0.0133681i
\(16\) 3.12911 + 2.49172i 0.782278 + 0.622930i
\(17\) −1.21178 + 0.699622i −0.293900 + 0.169683i −0.639699 0.768625i \(-0.720941\pi\)
0.345799 + 0.938308i \(0.387608\pi\)
\(18\) −1.12095 3.01941i −0.264211 0.711681i
\(19\) 1.44475 5.39188i 0.331449 1.23698i −0.576220 0.817295i \(-0.695473\pi\)
0.907668 0.419688i \(-0.137861\pi\)
\(20\) 0.423978 0.204364i 0.0948043 0.0456972i
\(21\) 1.58939 + 1.58939i 0.346833 + 0.346833i
\(22\) −0.190775 2.03052i −0.0406733 0.432908i
\(23\) −4.37216 + 7.57279i −0.911657 + 1.57904i −0.0999345 + 0.994994i \(0.531863\pi\)
−0.811723 + 0.584043i \(0.801470\pi\)
\(24\) 1.24197 + 2.05866i 0.253516 + 0.420223i
\(25\) 4.94462i 0.988924i
\(26\) 0 0
\(27\) 4.48604i 0.863339i
\(28\) 4.37064 + 2.97756i 0.825974 + 0.562706i
\(29\) −2.11023 + 3.65503i −0.391861 + 0.678723i −0.992695 0.120651i \(-0.961502\pi\)
0.600834 + 0.799374i \(0.294835\pi\)
\(30\) 0.281660 0.0264630i 0.0514239 0.00483147i
\(31\) −3.88100 3.88100i −0.697047 0.697047i 0.266725 0.963773i \(-0.414058\pi\)
−0.963773 + 0.266725i \(0.914058\pi\)
\(32\) 3.77320 + 4.21461i 0.667014 + 0.745046i
\(33\) 0.317276 1.18409i 0.0552307 0.206124i
\(34\) −1.85511 + 0.688709i −0.318149 + 0.118113i
\(35\) 0.538906 0.311137i 0.0910917 0.0525918i
\(36\) −0.848402 4.47514i −0.141400 0.745857i
\(37\) −0.500000 + 0.133975i −0.0821995 + 0.0220253i −0.299684 0.954038i \(-0.596881\pi\)
0.217485 + 0.976064i \(0.430215\pi\)
\(38\) 3.29032 7.17588i 0.533760 1.16408i
\(39\) 0 0
\(40\) 0.639502 0.184609i 0.101114 0.0291893i
\(41\) 1.50000 + 5.59808i 0.234261 + 0.874273i 0.978481 + 0.206338i \(0.0661547\pi\)
−0.744220 + 0.667934i \(0.767179\pi\)
\(42\) 1.83993 + 2.59215i 0.283907 + 0.399978i
\(43\) −4.59362 7.95638i −0.700520 1.21334i −0.968284 0.249852i \(-0.919618\pi\)
0.267764 0.963484i \(-0.413715\pi\)
\(44\) 0.214509 2.87624i 0.0323385 0.433610i
\(45\) −0.517686 0.138714i −0.0771721 0.0206782i
\(46\) −7.88801 + 9.52393i −1.16302 + 1.40423i
\(47\) 2.80318 2.80318i 0.408886 0.408886i −0.472464 0.881350i \(-0.656635\pi\)
0.881350 + 0.472464i \(0.156635\pi\)
\(48\) 1.24449 + 3.16424i 0.179626 + 0.456719i
\(49\) −0.00684229 0.00395040i −0.000977470 0.000564343i
\(50\) −1.17009 + 6.89416i −0.165476 + 0.974981i
\(51\) −1.18942 −0.166552
\(52\) 0 0
\(53\) −5.94462 −0.816556 −0.408278 0.912858i \(-0.633871\pi\)
−0.408278 + 0.912858i \(0.633871\pi\)
\(54\) 1.06158 6.25477i 0.144462 0.851166i
\(55\) −0.293906 0.169687i −0.0396303 0.0228806i
\(56\) 5.38927 + 5.18581i 0.720171 + 0.692983i
\(57\) 3.35523 3.35523i 0.444411 0.444411i
\(58\) −3.80717 + 4.59675i −0.499906 + 0.603583i
\(59\) 8.22961 + 2.20512i 1.07140 + 0.287082i 0.751070 0.660223i \(-0.229538\pi\)
0.320334 + 0.947305i \(0.396205\pi\)
\(60\) 0.398974 + 0.0297554i 0.0515073 + 0.00384140i
\(61\) 3.61102 + 6.25448i 0.462344 + 0.800804i 0.999077 0.0429485i \(-0.0136751\pi\)
−0.536733 + 0.843752i \(0.680342\pi\)
\(62\) −4.49277 6.32957i −0.570583 0.803856i
\(63\) −1.55864 5.81691i −0.196370 0.732861i
\(64\) 4.26353 + 6.76922i 0.532941 + 0.846152i
\(65\) 0 0
\(66\) 0.722573 1.57587i 0.0889426 0.193976i
\(67\) −2.43624 + 0.652790i −0.297635 + 0.0797510i −0.404546 0.914518i \(-0.632571\pi\)
0.106912 + 0.994269i \(0.465904\pi\)
\(68\) −2.74951 + 0.521255i −0.333427 + 0.0632115i
\(69\) −6.43720 + 3.71652i −0.774948 + 0.447416i
\(70\) 0.825010 0.306284i 0.0986075 0.0366080i
\(71\) 2.81352 10.5002i 0.333903 1.24614i −0.571150 0.820846i \(-0.693502\pi\)
0.905053 0.425298i \(-0.139831\pi\)
\(72\) −0.123908 6.44034i −0.0146026 0.759002i
\(73\) −5.05407 5.05407i −0.591534 0.591534i 0.346512 0.938046i \(-0.387366\pi\)
−0.938046 + 0.346512i \(0.887366\pi\)
\(74\) −0.728841 + 0.0684774i −0.0847260 + 0.00796033i
\(75\) −2.10157 + 3.64002i −0.242668 + 0.420314i
\(76\) 6.28570 9.22653i 0.721020 1.05836i
\(77\) 3.81333i 0.434569i
\(78\) 0 0
\(79\) 8.51654i 0.958186i −0.877764 0.479093i \(-0.840966\pi\)
0.877764 0.479093i \(-0.159034\pi\)
\(80\) 0.935328 0.106064i 0.104573 0.0118583i
\(81\) −1.50948 + 2.61449i −0.167720 + 0.290499i
\(82\) 0.766683 + 8.16022i 0.0846660 + 0.901145i
\(83\) 6.91195 + 6.91195i 0.758685 + 0.758685i 0.976083 0.217398i \(-0.0697570\pi\)
−0.217398 + 0.976083i \(0.569757\pi\)
\(84\) 1.95196 + 4.04958i 0.212976 + 0.441845i
\(85\) −0.0852251 + 0.318065i −0.00924396 + 0.0344989i
\(86\) −4.52197 12.1804i −0.487616 1.31345i
\(87\) −3.10694 + 1.79379i −0.333098 + 0.192314i
\(88\) 0.979719 3.95951i 0.104438 0.422085i
\(89\) −6.41693 + 1.71941i −0.680193 + 0.182257i −0.582342 0.812944i \(-0.697864\pi\)
−0.0978511 + 0.995201i \(0.531197\pi\)
\(90\) −0.688971 0.315910i −0.0726240 0.0332998i
\(91\) 0 0
\(92\) −13.2518 + 11.4124i −1.38160 + 1.18982i
\(93\) −1.20752 4.50653i −0.125214 0.467306i
\(94\) 4.57175 3.24506i 0.471540 0.334703i
\(95\) −0.656818 1.13764i −0.0673881 0.116720i
\(96\) 0.986372 + 4.70632i 0.100671 + 0.480336i
\(97\) −14.9459 4.00474i −1.51753 0.406620i −0.598599 0.801049i \(-0.704276\pi\)
−0.918926 + 0.394429i \(0.870942\pi\)
\(98\) −0.00860521 0.00712710i −0.000869257 0.000719946i
\(99\) −2.32236 + 2.32236i −0.233406 + 0.233406i
\(100\) −3.26287 + 9.33546i −0.326287 + 0.933546i
\(101\) 7.94541 + 4.58728i 0.790598 + 0.456452i 0.840173 0.542319i \(-0.182453\pi\)
−0.0495752 + 0.998770i \(0.515787\pi\)
\(102\) −1.65837 0.281464i −0.164203 0.0278690i
\(103\) −10.9080 −1.07480 −0.537398 0.843329i \(-0.680593\pi\)
−0.537398 + 0.843329i \(0.680593\pi\)
\(104\) 0 0
\(105\) 0.528960 0.0516212
\(106\) −8.28843 1.40673i −0.805044 0.136634i
\(107\) −8.53605 4.92829i −0.825211 0.476436i 0.0269990 0.999635i \(-0.491405\pi\)
−0.852210 + 0.523200i \(0.824738\pi\)
\(108\) 2.96026 8.46966i 0.284851 0.814993i
\(109\) −0.0243171 + 0.0243171i −0.00232916 + 0.00232916i −0.708270 0.705941i \(-0.750524\pi\)
0.705941 + 0.708270i \(0.250524\pi\)
\(110\) −0.369631 0.306140i −0.0352430 0.0291893i
\(111\) −0.425021 0.113884i −0.0403412 0.0108094i
\(112\) 6.28695 + 8.50576i 0.594061 + 0.803718i
\(113\) −2.27664 3.94325i −0.214168 0.370950i 0.738847 0.673873i \(-0.235371\pi\)
−0.953015 + 0.302923i \(0.902037\pi\)
\(114\) 5.47210 3.88413i 0.512509 0.363782i
\(115\) 0.532599 + 1.98769i 0.0496651 + 0.185353i
\(116\) −6.39602 + 5.50821i −0.593856 + 0.511424i
\(117\) 0 0
\(118\) 10.9525 + 5.02200i 1.00826 + 0.462312i
\(119\) −3.57389 + 0.957620i −0.327618 + 0.0877849i
\(120\) 0.549238 + 0.135900i 0.0501383 + 0.0124059i
\(121\) 7.72521 4.46015i 0.702292 0.405468i
\(122\) 3.55470 + 9.57497i 0.321827 + 0.866877i
\(123\) −1.27506 + 4.75860i −0.114969 + 0.429069i
\(124\) −4.76633 9.88833i −0.428029 0.887998i
\(125\) 1.65482 + 1.65482i 0.148012 + 0.148012i
\(126\) −0.796653 8.47920i −0.0709715 0.755387i
\(127\) 2.67207 4.62816i 0.237108 0.410683i −0.722775 0.691083i \(-0.757134\pi\)
0.959883 + 0.280400i \(0.0904672\pi\)
\(128\) 4.34266 + 10.4471i 0.383841 + 0.923399i
\(129\) 7.80954i 0.687592i
\(130\) 0 0
\(131\) 11.2254i 0.980764i 0.871508 + 0.490382i \(0.163143\pi\)
−0.871508 + 0.490382i \(0.836857\pi\)
\(132\) 1.38038 2.02620i 0.120146 0.176358i
\(133\) 7.38024 12.7830i 0.639948 1.10842i
\(134\) −3.55127 + 0.333655i −0.306783 + 0.0288234i
\(135\) −0.746494 0.746494i −0.0642480 0.0642480i
\(136\) −3.95693 + 0.0761283i −0.339304 + 0.00652795i
\(137\) 1.24442 4.64424i 0.106318 0.396784i −0.892173 0.451693i \(-0.850820\pi\)
0.998491 + 0.0549089i \(0.0174868\pi\)
\(138\) −9.85470 + 3.65855i −0.838888 + 0.311436i
\(139\) 6.01080 3.47034i 0.509830 0.294350i −0.222934 0.974834i \(-0.571563\pi\)
0.732764 + 0.680483i \(0.238230\pi\)
\(140\) 1.22277 0.231814i 0.103343 0.0195918i
\(141\) 3.25500 0.872175i 0.274121 0.0734504i
\(142\) 6.40759 13.9744i 0.537713 1.17270i
\(143\) 0 0
\(144\) 1.35128 9.00893i 0.112607 0.750744i
\(145\) 0.257060 + 0.959363i 0.0213477 + 0.0796707i
\(146\) −5.85076 8.24275i −0.484212 0.682175i
\(147\) −0.00335801 0.00581624i −0.000276964 0.000479715i
\(148\) −1.03241 0.0769967i −0.0848635 0.00632909i
\(149\) 14.6408 + 3.92298i 1.19942 + 0.321383i 0.802602 0.596515i \(-0.203448\pi\)
0.396817 + 0.917898i \(0.370115\pi\)
\(150\) −3.79154 + 4.57788i −0.309578 + 0.373782i
\(151\) 0.480824 0.480824i 0.0391289 0.0391289i −0.687272 0.726401i \(-0.741192\pi\)
0.726401 + 0.687272i \(0.241192\pi\)
\(152\) 10.9474 11.3769i 0.887948 0.922786i
\(153\) 2.75974 + 1.59334i 0.223112 + 0.128814i
\(154\) 0.902385 5.31682i 0.0727163 0.428442i
\(155\) −1.29162 −0.103746
\(156\) 0 0
\(157\) 5.90408 0.471197 0.235598 0.971851i \(-0.424295\pi\)
0.235598 + 0.971851i \(0.424295\pi\)
\(158\) 2.01535 11.8744i 0.160333 0.944676i
\(159\) −4.37618 2.52659i −0.347054 0.200372i
\(160\) 1.32920 + 0.0734532i 0.105083 + 0.00580699i
\(161\) −16.3499 + 16.3499i −1.28855 + 1.28855i
\(162\) −2.72332 + 3.28812i −0.213964 + 0.258339i
\(163\) −15.1967 4.07194i −1.19030 0.318939i −0.391294 0.920266i \(-0.627972\pi\)
−0.799003 + 0.601327i \(0.794639\pi\)
\(164\) −0.862067 + 11.5590i −0.0673161 + 0.902607i
\(165\) −0.144241 0.249833i −0.0112292 0.0194495i
\(166\) 8.00151 + 11.2728i 0.621038 + 0.874939i
\(167\) 1.45106 + 5.41542i 0.112286 + 0.419058i 0.999070 0.0431274i \(-0.0137321\pi\)
−0.886783 + 0.462185i \(0.847065\pi\)
\(168\) 1.76327 + 6.10813i 0.136040 + 0.471253i
\(169\) 0 0
\(170\) −0.194094 + 0.423302i −0.0148863 + 0.0324658i
\(171\) −12.2796 + 3.29032i −0.939046 + 0.251617i
\(172\) −3.42249 18.0529i −0.260962 1.37652i
\(173\) −1.87129 + 1.08039i −0.142272 + 0.0821405i −0.569446 0.822029i \(-0.692842\pi\)
0.427175 + 0.904169i \(0.359509\pi\)
\(174\) −4.75640 + 1.76581i −0.360582 + 0.133866i
\(175\) −3.38402 + 12.6293i −0.255808 + 0.954688i
\(176\) 2.30298 5.28881i 0.173593 0.398659i
\(177\) 5.12108 + 5.12108i 0.384924 + 0.384924i
\(178\) −9.35384 + 0.878829i −0.701100 + 0.0658710i
\(179\) 5.06638 8.77523i 0.378679 0.655892i −0.612191 0.790710i \(-0.709712\pi\)
0.990870 + 0.134818i \(0.0430450\pi\)
\(180\) −0.885858 0.603504i −0.0660280 0.0449825i
\(181\) 13.8528i 1.02967i 0.857289 + 0.514836i \(0.172147\pi\)
−0.857289 + 0.514836i \(0.827853\pi\)
\(182\) 0 0
\(183\) 6.13905i 0.453812i
\(184\) −21.1773 + 12.7760i −1.56121 + 0.941863i
\(185\) −0.0609080 + 0.105496i −0.00447805 + 0.00775620i
\(186\) −0.617191 6.56910i −0.0452547 0.481669i
\(187\) 1.42685 + 1.42685i 0.104342 + 0.104342i
\(188\) 7.14219 3.44265i 0.520898 0.251081i
\(189\) 3.07017 11.4580i 0.223322 0.833450i
\(190\) −0.646573 1.74162i −0.0469073 0.126350i
\(191\) 3.35193 1.93524i 0.242537 0.140029i −0.373805 0.927507i \(-0.621947\pi\)
0.616342 + 0.787478i \(0.288614\pi\)
\(192\) 0.261570 + 6.79531i 0.0188772 + 0.490409i
\(193\) 7.94409 2.12861i 0.571828 0.153221i 0.0386934 0.999251i \(-0.487680\pi\)
0.533135 + 0.846030i \(0.321014\pi\)
\(194\) −19.8910 9.12050i −1.42809 0.654814i
\(195\) 0 0
\(196\) −0.0103115 0.0119735i −0.000736533 0.000855248i
\(197\) −3.20436 11.9588i −0.228301 0.852032i −0.981055 0.193730i \(-0.937942\pi\)
0.752754 0.658302i \(-0.228725\pi\)
\(198\) −3.78757 + 2.68844i −0.269171 + 0.191059i
\(199\) 1.21698 + 2.10788i 0.0862696 + 0.149423i 0.905932 0.423424i \(-0.139172\pi\)
−0.819662 + 0.572848i \(0.805839\pi\)
\(200\) −6.75848 + 12.2441i −0.477896 + 0.865786i
\(201\) −2.07091 0.554899i −0.146071 0.0391396i
\(202\) 9.99255 + 8.27613i 0.703073 + 0.582307i
\(203\) −7.89132 + 7.89132i −0.553862 + 0.553862i
\(204\) −2.24562 0.784875i −0.157225 0.0549522i
\(205\) 1.18115 + 0.681935i 0.0824949 + 0.0476284i
\(206\) −15.2087 2.58127i −1.05964 0.179845i
\(207\) 19.9145 1.38416
\(208\) 0 0
\(209\) −8.05002 −0.556831
\(210\) 0.737516 + 0.125173i 0.0508934 + 0.00863777i
\(211\) 3.62910 + 2.09526i 0.249838 + 0.144244i 0.619690 0.784847i \(-0.287258\pi\)
−0.369852 + 0.929091i \(0.620592\pi\)
\(212\) −11.2235 3.92275i −0.770830 0.269416i
\(213\) 6.53401 6.53401i 0.447703 0.447703i
\(214\) −10.7354 8.89136i −0.733855 0.607801i
\(215\) −2.08837 0.559576i −0.142425 0.0381628i
\(216\) 6.13167 11.1085i 0.417207 0.755838i
\(217\) −7.25658 12.5688i −0.492609 0.853223i
\(218\) −0.0396591 + 0.0281503i −0.00268606 + 0.00190658i
\(219\) −1.57251 5.86868i −0.106260 0.396569i
\(220\) −0.442923 0.514313i −0.0298618 0.0346750i
\(221\) 0 0
\(222\) −0.565647 0.259363i −0.0379637 0.0174073i
\(223\) 18.1869 4.87316i 1.21788 0.326331i 0.408033 0.912967i \(-0.366215\pi\)
0.809850 + 0.586636i \(0.199548\pi\)
\(224\) 6.75293 + 13.3471i 0.451199 + 0.891791i
\(225\) 9.75232 5.63051i 0.650155 0.375367i
\(226\) −2.24113 6.03672i −0.149078 0.401557i
\(227\) −1.92558 + 7.18635i −0.127805 + 0.476974i −0.999924 0.0123190i \(-0.996079\pi\)
0.872119 + 0.489293i \(0.162745\pi\)
\(228\) 8.54875 4.12063i 0.566155 0.272895i
\(229\) 3.17720 + 3.17720i 0.209955 + 0.209955i 0.804248 0.594293i \(-0.202568\pi\)
−0.594293 + 0.804248i \(0.702568\pi\)
\(230\) 0.272223 + 2.89741i 0.0179498 + 0.191050i
\(231\) 1.62075 2.80721i 0.106637 0.184701i
\(232\) −10.2213 + 6.16640i −0.671059 + 0.404844i
\(233\) 13.3205i 0.872655i −0.899788 0.436328i \(-0.856279\pi\)
0.899788 0.436328i \(-0.143721\pi\)
\(234\) 0 0
\(235\) 0.932921i 0.0608571i
\(236\) 14.0824 + 9.59385i 0.916687 + 0.624506i
\(237\) 3.61971 6.26953i 0.235126 0.407250i
\(238\) −5.20959 + 0.489461i −0.337688 + 0.0317270i
\(239\) 5.96641 + 5.96641i 0.385935 + 0.385935i 0.873235 0.487300i \(-0.162018\pi\)
−0.487300 + 0.873235i \(0.662018\pi\)
\(240\) 0.733629 + 0.319454i 0.0473556 + 0.0206207i
\(241\) −4.00333 + 14.9406i −0.257877 + 0.962410i 0.708590 + 0.705620i \(0.249332\pi\)
−0.966467 + 0.256790i \(0.917335\pi\)
\(242\) 11.8265 4.39058i 0.760237 0.282237i
\(243\) −13.8775 + 8.01218i −0.890242 + 0.513982i
\(244\) 2.69040 + 14.1913i 0.172236 + 0.908506i
\(245\) −0.00179594 0.000481222i −0.000114739 3.07441e-5i
\(246\) −2.90387 + 6.33307i −0.185144 + 0.403782i
\(247\) 0 0
\(248\) −4.30560 14.9150i −0.273406 0.947101i
\(249\) 2.15056 + 8.02602i 0.136287 + 0.508628i
\(250\) 1.91568 + 2.69887i 0.121158 + 0.170692i
\(251\) 13.7387 + 23.7962i 0.867182 + 1.50200i 0.864865 + 0.502005i \(0.167404\pi\)
0.00231697 + 0.999997i \(0.499262\pi\)
\(252\) 0.895766 12.0109i 0.0564279 0.756613i
\(253\) 12.1806 + 3.26379i 0.765789 + 0.205193i
\(254\) 4.82081 5.82061i 0.302484 0.365217i
\(255\) −0.197923 + 0.197923i −0.0123944 + 0.0123944i
\(256\) 3.58267 + 15.5937i 0.223917 + 0.974608i
\(257\) −24.1060 13.9176i −1.50369 0.868157i −0.999991 0.00427985i \(-0.998638\pi\)
−0.503702 0.863878i \(-0.668029\pi\)
\(258\) 1.84805 10.8886i 0.115055 0.677897i
\(259\) −1.36877 −0.0850511
\(260\) 0 0
\(261\) 9.61181 0.594956
\(262\) −2.65637 + 15.6512i −0.164111 + 0.966936i
\(263\) 20.6166 + 11.9030i 1.27128 + 0.733972i 0.975228 0.221201i \(-0.0709978\pi\)
0.296048 + 0.955173i \(0.404331\pi\)
\(264\) 2.40411 2.49843i 0.147962 0.153768i
\(265\) −0.989207 + 0.989207i −0.0607665 + 0.0607665i
\(266\) 13.3150 16.0765i 0.816398 0.985713i
\(267\) −5.45466 1.46157i −0.333820 0.0894468i
\(268\) −5.03040 0.375166i −0.307281 0.0229169i
\(269\) 10.3559 + 17.9370i 0.631412 + 1.09364i 0.987263 + 0.159095i \(0.0508576\pi\)
−0.355851 + 0.934543i \(0.615809\pi\)
\(270\) −0.864167 1.21747i −0.0525915 0.0740927i
\(271\) 3.57684 + 13.3489i 0.217277 + 0.810890i 0.985352 + 0.170530i \(0.0545480\pi\)
−0.768075 + 0.640360i \(0.778785\pi\)
\(272\) −5.53506 0.830223i −0.335612 0.0503397i
\(273\) 0 0
\(274\) 2.83408 6.18087i 0.171213 0.373400i
\(275\) 6.88774 1.84556i 0.415346 0.111292i
\(276\) −14.6059 + 2.76900i −0.879173 + 0.166674i
\(277\) −11.0276 + 6.36681i −0.662587 + 0.382545i −0.793262 0.608880i \(-0.791619\pi\)
0.130675 + 0.991425i \(0.458286\pi\)
\(278\) 9.20193 3.41621i 0.551895 0.204891i
\(279\) −3.23518 + 12.0739i −0.193685 + 0.722844i
\(280\) 1.75973 0.0338560i 0.105164 0.00202328i
\(281\) −15.4454 15.4454i −0.921396 0.921396i 0.0757324 0.997128i \(-0.475871\pi\)
−0.997128 + 0.0757324i \(0.975871\pi\)
\(282\) 4.74476 0.445788i 0.282546 0.0265463i
\(283\) 10.3449 17.9178i 0.614939 1.06511i −0.375456 0.926840i \(-0.622514\pi\)
0.990395 0.138265i \(-0.0441527\pi\)
\(284\) 12.2408 17.9678i 0.726360 1.06619i
\(285\) 1.11665i 0.0661445i
\(286\) 0 0
\(287\) 15.3249i 0.904603i
\(288\) 4.01593 12.2412i 0.236641 0.721317i
\(289\) −7.52106 + 13.0269i −0.442415 + 0.766286i
\(290\) 0.131389 + 1.39845i 0.00771544 + 0.0821196i
\(291\) −9.30045 9.30045i −0.545202 0.545202i
\(292\) −6.20700 12.8772i −0.363237 0.753580i
\(293\) −5.96815 + 22.2734i −0.348663 + 1.30123i 0.539611 + 0.841914i \(0.318571\pi\)
−0.888274 + 0.459314i \(0.848095\pi\)
\(294\) −0.00330563 0.00890407i −0.000192788 0.000519296i
\(295\) 1.73638 1.00250i 0.101096 0.0583677i
\(296\) −1.42124 0.351664i −0.0826080 0.0204400i
\(297\) −6.24895 + 1.67440i −0.362601 + 0.0971586i
\(298\) 19.4849 + 8.93431i 1.12873 + 0.517551i
\(299\) 0 0
\(300\) −6.36976 + 5.48559i −0.367758 + 0.316711i
\(301\) −6.28760 23.4656i −0.362411 1.35254i
\(302\) 0.784183 0.556619i 0.0451247 0.0320298i
\(303\) 3.89939 + 6.75394i 0.224014 + 0.388004i
\(304\) 17.9559 13.2719i 1.02984 0.761195i
\(305\) 1.64166 + 0.439881i 0.0940010 + 0.0251875i
\(306\) 3.47079 + 2.87461i 0.198412 + 0.164331i
\(307\) 16.3164 16.3164i 0.931228 0.931228i −0.0665547 0.997783i \(-0.521201\pi\)
0.997783 + 0.0665547i \(0.0212007\pi\)
\(308\) 2.51635 7.19957i 0.143382 0.410234i
\(309\) −8.03001 4.63613i −0.456811 0.263740i
\(310\) −1.80088 0.305650i −0.102283 0.0173598i
\(311\) 8.54527 0.484558 0.242279 0.970207i \(-0.422105\pi\)
0.242279 + 0.970207i \(0.422105\pi\)
\(312\) 0 0
\(313\) 5.88378 0.332571 0.166285 0.986078i \(-0.446823\pi\)
0.166285 + 0.986078i \(0.446823\pi\)
\(314\) 8.23191 + 1.39714i 0.464553 + 0.0788452i
\(315\) −1.22732 0.708592i −0.0691515 0.0399247i
\(316\) 5.61992 16.0793i 0.316145 0.904529i
\(317\) 16.5045 16.5045i 0.926984 0.926984i −0.0705258 0.997510i \(-0.522468\pi\)
0.997510 + 0.0705258i \(0.0224677\pi\)
\(318\) −5.50371 4.55834i −0.308633 0.255619i
\(319\) 5.87902 + 1.57528i 0.329162 + 0.0881986i
\(320\) 1.83589 + 0.416956i 0.102629 + 0.0233086i
\(321\) −4.18926 7.25601i −0.233822 0.404991i
\(322\) −26.6652 + 18.9272i −1.48600 + 1.05477i
\(323\) 2.02156 + 7.54456i 0.112483 + 0.419790i
\(324\) −4.57516 + 3.94009i −0.254175 + 0.218894i
\(325\) 0 0
\(326\) −20.2248 9.27355i −1.12015 0.513614i
\(327\) −0.0282365 + 0.00756596i −0.00156148 + 0.000418399i
\(328\) −3.93728 + 15.9124i −0.217400 + 0.878617i
\(329\) 9.07823 5.24132i 0.500499 0.288963i
\(330\) −0.141991 0.382469i −0.00781636 0.0210542i
\(331\) −3.71829 + 13.8768i −0.204375 + 0.762740i 0.785264 + 0.619162i \(0.212527\pi\)
−0.989639 + 0.143578i \(0.954139\pi\)
\(332\) 8.48871 + 17.6109i 0.465878 + 0.966521i
\(333\) 0.833596 + 0.833596i 0.0456808 + 0.0456808i
\(334\) 0.741668 + 7.89396i 0.0405822 + 0.431939i
\(335\) −0.296774 + 0.514027i −0.0162145 + 0.0280843i
\(336\) 1.01306 + 8.93367i 0.0552670 + 0.487372i
\(337\) 14.3427i 0.781297i 0.920540 + 0.390649i \(0.127749\pi\)
−0.920540 + 0.390649i \(0.872251\pi\)
\(338\) 0 0
\(339\) 3.87048i 0.210216i
\(340\) −0.370790 + 0.544268i −0.0201089 + 0.0295171i
\(341\) −3.95757 + 6.85471i −0.214314 + 0.371203i
\(342\) −17.8998 + 1.68175i −0.967910 + 0.0909388i
\(343\) −13.1032 13.1032i −0.707505 0.707505i
\(344\) −0.499848 25.9806i −0.0269500 1.40078i
\(345\) −0.452732 + 1.68962i −0.0243743 + 0.0909659i
\(346\) −2.86476 + 1.06354i −0.154010 + 0.0571762i
\(347\) −0.407300 + 0.235155i −0.0218650 + 0.0126238i −0.510893 0.859645i \(-0.670685\pi\)
0.489028 + 0.872268i \(0.337352\pi\)
\(348\) −7.04959 + 1.33647i −0.377898 + 0.0716423i
\(349\) 27.3192 7.32017i 1.46237 0.391840i 0.562059 0.827097i \(-0.310009\pi\)
0.900306 + 0.435257i \(0.143343\pi\)
\(350\) −7.70686 + 16.8080i −0.411949 + 0.898423i
\(351\) 0 0
\(352\) 4.46252 6.82907i 0.237853 0.363991i
\(353\) 9.30507 + 34.7270i 0.495259 + 1.84833i 0.528574 + 0.848887i \(0.322727\pi\)
−0.0333153 + 0.999445i \(0.510607\pi\)
\(354\) 5.92834 + 8.35204i 0.315088 + 0.443906i
\(355\) −1.27909 2.21545i −0.0678872 0.117584i
\(356\) −13.2498 0.988165i −0.702238 0.0523726i
\(357\) −3.03796 0.814018i −0.160786 0.0430824i
\(358\) 9.14050 11.0362i 0.483091 0.583280i
\(359\) −11.7167 + 11.7167i −0.618383 + 0.618383i −0.945117 0.326733i \(-0.894052\pi\)
0.326733 + 0.945117i \(0.394052\pi\)
\(360\) −1.09232 1.05108i −0.0575701 0.0553967i
\(361\) −10.5306 6.07986i −0.554244 0.319993i
\(362\) −3.27813 + 19.3146i −0.172295 + 1.01515i
\(363\) 7.58264 0.397985
\(364\) 0 0
\(365\) −1.68203 −0.0880416
\(366\) −1.45274 + 8.55952i −0.0759362 + 0.447413i
\(367\) 8.79501 + 5.07780i 0.459096 + 0.265059i 0.711664 0.702520i \(-0.247942\pi\)
−0.252568 + 0.967579i \(0.581275\pi\)
\(368\) −32.5502 + 12.8019i −1.69680 + 0.667347i
\(369\) 9.33307 9.33307i 0.485860 0.485860i
\(370\) −0.109887 + 0.132677i −0.00571275 + 0.00689754i
\(371\) −15.1835 4.06840i −0.788288 0.211221i
\(372\) 0.693977 9.30517i 0.0359810 0.482451i
\(373\) 7.50790 + 13.0041i 0.388744 + 0.673325i 0.992281 0.124010i \(-0.0395756\pi\)
−0.603537 + 0.797335i \(0.706242\pi\)
\(374\) 1.65177 + 2.32707i 0.0854110 + 0.120330i
\(375\) 0.514877 + 1.92155i 0.0265881 + 0.0992283i
\(376\) 10.7728 3.10987i 0.555567 0.160379i
\(377\) 0 0
\(378\) 6.99210 15.2491i 0.359635 0.784331i
\(379\) 32.2202 8.63337i 1.65504 0.443467i 0.694022 0.719953i \(-0.255837\pi\)
0.961018 + 0.276487i \(0.0891702\pi\)
\(380\) −0.489364 2.58129i −0.0251039 0.132418i
\(381\) 3.93413 2.27137i 0.201552 0.116366i
\(382\) 5.13147 1.90505i 0.262549 0.0974711i
\(383\) 5.41837 20.2216i 0.276866 1.03328i −0.677715 0.735325i \(-0.737030\pi\)
0.954581 0.297953i \(-0.0963037\pi\)
\(384\) −1.24334 + 9.53643i −0.0634490 + 0.486654i
\(385\) −0.634552 0.634552i −0.0323398 0.0323398i
\(386\) 11.5800 1.08798i 0.589405 0.0553768i
\(387\) −10.4616 + 18.1201i −0.531794 + 0.921095i
\(388\) −25.5752 17.4235i −1.29839 0.884544i
\(389\) 9.60410i 0.486947i −0.969908 0.243474i \(-0.921713\pi\)
0.969908 0.243474i \(-0.0782870\pi\)
\(390\) 0 0
\(391\) 12.2354i 0.618772i
\(392\) −0.0115436 0.0191344i −0.000583040 0.000966434i
\(393\) −4.77101 + 8.26364i −0.240666 + 0.416846i
\(394\) −1.63782 17.4322i −0.0825121 0.878221i
\(395\) −1.41718 1.41718i −0.0713063 0.0713063i
\(396\) −5.91711 + 2.85214i −0.297346 + 0.143325i
\(397\) 0.668462 2.49473i 0.0335492 0.125207i −0.947120 0.320878i \(-0.896022\pi\)
0.980670 + 0.195671i \(0.0626886\pi\)
\(398\) 1.19800 + 3.22694i 0.0600503 + 0.161752i
\(399\) 10.8661 6.27352i 0.543983 0.314069i
\(400\) −12.3206 + 15.4723i −0.616030 + 0.773613i
\(401\) −26.1295 + 7.00137i −1.30484 + 0.349632i −0.843279 0.537476i \(-0.819378\pi\)
−0.461563 + 0.887107i \(0.652711\pi\)
\(402\) −2.75611 1.26374i −0.137462 0.0630298i
\(403\) 0 0
\(404\) 11.9739 + 13.9038i 0.595723 + 0.691742i
\(405\) 0.183879 + 0.686244i 0.00913700 + 0.0340998i
\(406\) −12.8701 + 9.13526i −0.638731 + 0.453375i
\(407\) 0.373247 + 0.646483i 0.0185012 + 0.0320450i
\(408\) −2.94528 1.62574i −0.145813 0.0804859i
\(409\) 4.63129 + 1.24095i 0.229003 + 0.0613611i 0.371496 0.928435i \(-0.378845\pi\)
−0.142493 + 0.989796i \(0.545512\pi\)
\(410\) 1.48547 + 1.23031i 0.0733621 + 0.0607608i
\(411\) 2.88999 2.88999i 0.142553 0.142553i
\(412\) −20.5943 7.19799i −1.01461 0.354619i
\(413\) 19.5106 + 11.2644i 0.960053 + 0.554287i
\(414\) 27.7663 + 4.71257i 1.36464 + 0.231610i
\(415\) 2.30035 0.112920
\(416\) 0 0
\(417\) 5.89987 0.288918
\(418\) −11.2239 1.90496i −0.548981 0.0931745i
\(419\) 4.85410 + 2.80251i 0.237138 + 0.136912i 0.613861 0.789414i \(-0.289616\pi\)
−0.376723 + 0.926326i \(0.622949\pi\)
\(420\) 0.998678 + 0.349051i 0.0487305 + 0.0170320i
\(421\) −3.55354 + 3.55354i −0.173189 + 0.173189i −0.788379 0.615190i \(-0.789079\pi\)
0.615190 + 0.788379i \(0.289079\pi\)
\(422\) 4.56414 + 3.78016i 0.222179 + 0.184015i
\(423\) −8.72077 2.33672i −0.424018 0.113615i
\(424\) −14.7203 8.12531i −0.714881 0.394600i
\(425\) −3.45936 5.99179i −0.167804 0.290645i
\(426\) 10.6564 7.56399i 0.516305 0.366477i
\(427\) 4.94266 + 18.4462i 0.239192 + 0.892676i
\(428\) −12.8640 14.9374i −0.621805 0.722027i
\(429\) 0 0
\(430\) −2.77934 1.27439i −0.134032 0.0614567i
\(431\) −3.33989 + 0.894922i −0.160877 + 0.0431069i −0.338359 0.941017i \(-0.609872\pi\)
0.177482 + 0.984124i \(0.443205\pi\)
\(432\) 11.1780 14.0373i 0.537799 0.675371i
\(433\) 4.73943 2.73631i 0.227762 0.131499i −0.381777 0.924254i \(-0.624688\pi\)
0.609539 + 0.792756i \(0.291354\pi\)
\(434\) −7.14339 19.2415i −0.342894 0.923622i
\(435\) −0.218512 + 0.815499i −0.0104769 + 0.0391002i
\(436\) −0.0619572 + 0.0298643i −0.00296721 + 0.00143024i
\(437\) 34.5150 + 34.5150i 1.65107 + 1.65107i
\(438\) −0.803743 8.55467i −0.0384043 0.408758i
\(439\) 15.2532 26.4193i 0.727994 1.26092i −0.229736 0.973253i \(-0.573786\pi\)
0.957730 0.287669i \(-0.0928804\pi\)
\(440\) −0.495849 0.821907i −0.0236387 0.0391829i
\(441\) 0.0179935i 0.000856833i
\(442\) 0 0
\(443\) 12.8994i 0.612869i 0.951892 + 0.306434i \(0.0991360\pi\)
−0.951892 + 0.306434i \(0.900864\pi\)
\(444\) −0.727292 0.495478i −0.0345157 0.0235143i
\(445\) −0.781685 + 1.35392i −0.0370554 + 0.0641819i
\(446\) 26.5107 2.49078i 1.25532 0.117942i
\(447\) 9.11058 + 9.11058i 0.430916 + 0.430916i
\(448\) 6.25697 + 20.2075i 0.295614 + 0.954716i
\(449\) 2.55455 9.53370i 0.120557 0.449923i −0.879086 0.476663i \(-0.841846\pi\)
0.999642 + 0.0267403i \(0.00851273\pi\)
\(450\) 14.9298 5.54268i 0.703798 0.261284i
\(451\) 7.23812 4.17893i 0.340830 0.196778i
\(452\) −1.69622 8.94719i −0.0797833 0.420840i
\(453\) 0.558323 0.149602i 0.0262323 0.00702893i
\(454\) −4.38536 + 9.56407i −0.205815 + 0.448864i
\(455\) 0 0
\(456\) 12.8944 3.72231i 0.603836 0.174313i
\(457\) 2.68710 + 10.0284i 0.125697 + 0.469108i 0.999864 0.0165184i \(-0.00525822\pi\)
−0.874166 + 0.485626i \(0.838592\pi\)
\(458\) 3.67803 + 5.18174i 0.171863 + 0.242127i
\(459\) 3.13853 + 5.43609i 0.146494 + 0.253735i
\(460\) −0.306091 + 4.10421i −0.0142715 + 0.191360i
\(461\) 27.7556 + 7.43710i 1.29271 + 0.346380i 0.838689 0.544611i \(-0.183323\pi\)
0.454021 + 0.890991i \(0.349989\pi\)
\(462\) 2.92406 3.53049i 0.136040 0.164253i
\(463\) 5.89061 5.89061i 0.273760 0.273760i −0.556852 0.830612i \(-0.687991\pi\)
0.830612 + 0.556852i \(0.187991\pi\)
\(464\) −15.7105 + 6.17889i −0.729341 + 0.286848i
\(465\) −0.950841 0.548968i −0.0440942 0.0254578i
\(466\) 3.15217 18.5724i 0.146021 0.860352i
\(467\) 3.30334 0.152860 0.0764301 0.997075i \(-0.475648\pi\)
0.0764301 + 0.997075i \(0.475648\pi\)
\(468\) 0 0
\(469\) −6.66931 −0.307960
\(470\) 0.220766 1.30075i 0.0101832 0.0599990i
\(471\) 4.34634 + 2.50936i 0.200269 + 0.115625i
\(472\) 17.3645 + 16.7089i 0.799264 + 0.769090i
\(473\) −9.36849 + 9.36849i −0.430764 + 0.430764i
\(474\) 6.53049 7.88487i 0.299956 0.362164i
\(475\) 26.6608 + 7.14374i 1.22328 + 0.327777i
\(476\) −7.37943 0.550355i −0.338235 0.0252255i
\(477\) 6.76922 + 11.7246i 0.309941 + 0.536834i
\(478\) 6.90693 + 9.73071i 0.315915 + 0.445072i
\(479\) −7.19847 26.8650i −0.328906 1.22750i −0.910326 0.413892i \(-0.864169\pi\)
0.581420 0.813604i \(-0.302497\pi\)
\(480\) 0.947285 + 0.619013i 0.0432374 + 0.0282539i
\(481\) 0 0
\(482\) −9.11729 + 19.8840i −0.415281 + 0.905691i
\(483\) −18.9851 + 5.08705i −0.863854 + 0.231469i
\(484\) 17.5284 3.32305i 0.796745 0.151048i
\(485\) −3.15346 + 1.82065i −0.143191 + 0.0826714i
\(486\) −21.2451 + 7.88721i −0.963695 + 0.357771i
\(487\) −2.67032 + 9.96577i −0.121004 + 0.451592i −0.999666 0.0258522i \(-0.991770\pi\)
0.878662 + 0.477444i \(0.158437\pi\)
\(488\) 0.392928 + 20.4233i 0.0177870 + 0.924517i
\(489\) −9.45652 9.45652i −0.427638 0.427638i
\(490\) −0.00261792 0.000245963i −0.000118265 1.11115e-5i
\(491\) −6.81243 + 11.7995i −0.307441 + 0.532503i −0.977802 0.209532i \(-0.932806\pi\)
0.670361 + 0.742035i \(0.266139\pi\)
\(492\) −5.54744 + 8.14287i −0.250098 + 0.367109i
\(493\) 5.90546i 0.265969i
\(494\) 0 0
\(495\) 0.772899i 0.0347392i
\(496\) −2.47371 21.8144i −0.111073 0.979496i
\(497\) 14.3723 24.8936i 0.644688 1.11663i
\(498\) 1.09920 + 11.6994i 0.0492564 + 0.524262i
\(499\) −11.2288 11.2288i −0.502670 0.502670i 0.409597 0.912267i \(-0.365669\pi\)
−0.912267 + 0.409597i \(0.865669\pi\)
\(500\) 2.03232 + 4.21630i 0.0908882 + 0.188559i
\(501\) −1.23346 + 4.60334i −0.0551070 + 0.205662i
\(502\) 13.5244 + 36.4296i 0.603625 + 1.62593i
\(503\) −19.7978 + 11.4303i −0.882739 + 0.509650i −0.871561 0.490288i \(-0.836892\pi\)
−0.0111787 + 0.999938i \(0.503558\pi\)
\(504\) 4.09119 16.5345i 0.182236 0.736503i
\(505\) 2.08549 0.558805i 0.0928030 0.0248665i
\(506\) 16.2108 + 7.43304i 0.720657 + 0.330439i
\(507\) 0 0
\(508\) 8.09892 6.97473i 0.359331 0.309454i
\(509\) −2.55291 9.52759i −0.113156 0.422303i 0.885987 0.463711i \(-0.153482\pi\)
−0.999142 + 0.0414078i \(0.986816\pi\)
\(510\) −0.322796 + 0.229123i −0.0142937 + 0.0101457i
\(511\) −9.44995 16.3678i −0.418041 0.724069i
\(512\) 1.30512 + 22.5897i 0.0576787 + 0.998335i
\(513\) −24.1882 6.48121i −1.06794 0.286152i
\(514\) −30.3170 25.1094i −1.33722 1.10753i
\(515\) −1.81513 + 1.81513i −0.0799842 + 0.0799842i
\(516\) 5.15338 14.7444i 0.226865 0.649088i
\(517\) −4.95105 2.85849i −0.217747 0.125716i
\(518\) −1.90844 0.323905i −0.0838520 0.0142316i
\(519\) −1.83676 −0.0806246
\(520\) 0 0
\(521\) 15.9204 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(522\) 13.4015 + 2.27454i 0.586568 + 0.0995539i
\(523\) −1.86869 1.07889i −0.0817122 0.0471766i 0.458587 0.888649i \(-0.348356\pi\)
−0.540299 + 0.841473i \(0.681689\pi\)
\(524\) −7.40741 + 21.1935i −0.323594 + 0.925842i
\(525\) −7.85891 + 7.85891i −0.342991 + 0.342991i
\(526\) 25.9285 + 21.4748i 1.13054 + 0.936346i
\(527\) 7.41814 + 1.98769i 0.323139 + 0.0865849i
\(528\) 3.94321 2.91459i 0.171606 0.126841i
\(529\) −26.7315 46.3003i −1.16224 2.01306i
\(530\) −1.61331 + 1.14514i −0.0700778 + 0.0497417i
\(531\) −5.02200 18.7423i −0.217936 0.813348i
\(532\) 22.3692 19.2642i 0.969826 0.835207i
\(533\) 0 0
\(534\) −7.25943 3.32863i −0.314146 0.144044i
\(535\) −2.24052 + 0.600345i −0.0968660 + 0.0259552i
\(536\) −6.92498 1.71348i −0.299114 0.0740110i
\(537\) 7.45933 4.30664i 0.321894 0.185845i
\(538\) 10.1944 + 27.4597i 0.439512 + 1.18387i
\(539\) −0.00294895 + 0.0110056i −0.000127020 + 0.000474046i
\(540\) −0.916785 1.90198i −0.0394521 0.0818482i
\(541\) −8.15947 8.15947i −0.350803 0.350803i 0.509605 0.860408i \(-0.329791\pi\)
−0.860408 + 0.509605i \(0.829791\pi\)
\(542\) 1.82820 + 19.4585i 0.0785279 + 0.835814i
\(543\) −5.88774 + 10.1979i −0.252667 + 0.437632i
\(544\) −7.52092 2.46737i −0.322457 0.105788i
\(545\) 0.00809292i 0.000346663i
\(546\) 0 0
\(547\) 8.11076i 0.346791i −0.984852 0.173396i \(-0.944526\pi\)
0.984852 0.173396i \(-0.0554739\pi\)
\(548\) 5.41412 7.94717i 0.231280 0.339486i
\(549\) 8.22384 14.2441i 0.350985 0.607924i
\(550\) 10.0401 0.943308i 0.428113 0.0402228i
\(551\) 16.6588 + 16.6588i 0.709687 + 0.709687i
\(552\) −21.0199 + 0.404408i −0.894667 + 0.0172127i
\(553\) 5.82859 21.7526i 0.247857 0.925014i
\(554\) −16.8822 + 6.26750i −0.717256 + 0.266281i
\(555\) −0.0896759 + 0.0517744i −0.00380653 + 0.00219770i
\(556\) 13.6384 2.58559i 0.578398 0.109653i
\(557\) −3.31359 + 0.887873i −0.140401 + 0.0376204i −0.328335 0.944561i \(-0.606488\pi\)
0.187934 + 0.982182i \(0.439821\pi\)
\(558\) −7.36789 + 16.0687i −0.311908 + 0.680243i
\(559\) 0 0
\(560\) 2.46156 + 0.369219i 0.104020 + 0.0156023i
\(561\) 0.443946 + 1.65683i 0.0187434 + 0.0699514i
\(562\) −17.8801 25.1901i −0.754228 1.06258i
\(563\) −3.12130 5.40625i −0.131547 0.227846i 0.792726 0.609578i \(-0.208661\pi\)
−0.924273 + 0.381732i \(0.875328\pi\)
\(564\) 6.72099 + 0.501249i 0.283005 + 0.0211064i
\(565\) −1.03501 0.277331i −0.0435434 0.0116674i
\(566\) 18.6637 22.5344i 0.784493 0.947191i
\(567\) −5.64476 + 5.64476i −0.237058 + 0.237058i
\(568\) 21.3190 22.1554i 0.894525 0.929620i
\(569\) 27.8969 + 16.1063i 1.16950 + 0.675211i 0.953562 0.301197i \(-0.0973861\pi\)
0.215937 + 0.976407i \(0.430719\pi\)
\(570\) 0.264243 1.55691i 0.0110679 0.0652119i
\(571\) −41.4189 −1.73333 −0.866663 0.498894i \(-0.833740\pi\)
−0.866663 + 0.498894i \(0.833740\pi\)
\(572\) 0 0
\(573\) 3.29007 0.137445
\(574\) −3.62649 + 21.3672i −0.151367 + 0.891849i
\(575\) −37.4446 21.6186i −1.56155 0.901560i
\(576\) 8.49606 16.1172i 0.354002 0.671550i
\(577\) −12.3408 + 12.3408i −0.513753 + 0.513753i −0.915674 0.401921i \(-0.868343\pi\)
0.401921 + 0.915674i \(0.368343\pi\)
\(578\) −13.5691 + 16.3832i −0.564400 + 0.681453i
\(579\) 6.75282 + 1.80941i 0.280638 + 0.0751966i
\(580\) −0.147736 + 1.98091i −0.00613439 + 0.0822528i
\(581\) 12.9238 + 22.3846i 0.536168 + 0.928671i
\(582\) −10.7665 15.1682i −0.446287 0.628744i
\(583\) 2.21881 + 8.28072i 0.0918938 + 0.342952i
\(584\) −5.60701 19.4231i −0.232020 0.803736i
\(585\) 0 0
\(586\) −13.5920 + 29.6430i −0.561481 + 1.22454i
\(587\) −22.3181 + 5.98011i −0.921165 + 0.246825i −0.688083 0.725632i \(-0.741548\pi\)
−0.233082 + 0.972457i \(0.574881\pi\)
\(588\) −0.00250189 0.0131970i −0.000103176 0.000544234i
\(589\) −26.5330 + 15.3188i −1.09327 + 0.631200i
\(590\) 2.65822 0.986862i 0.109437 0.0406285i
\(591\) 2.72384 10.1655i 0.112044 0.418154i
\(592\) −1.89838 0.826639i −0.0780230 0.0339746i
\(593\) −11.0244 11.0244i −0.452717 0.452717i 0.443538 0.896255i \(-0.353723\pi\)
−0.896255 + 0.443538i \(0.853723\pi\)
\(594\) −9.10898 + 0.855823i −0.373746 + 0.0351148i
\(595\) −0.435357 + 0.754060i −0.0178479 + 0.0309134i
\(596\) 25.0531 + 17.0678i 1.02622 + 0.699124i
\(597\) 2.06898i 0.0846775i
\(598\) 0 0
\(599\) 10.6090i 0.433471i −0.976230 0.216735i \(-0.930459\pi\)
0.976230 0.216735i \(-0.0695409\pi\)
\(600\) −10.1793 + 6.14108i −0.415568 + 0.250708i
\(601\) −14.1251 + 24.4655i −0.576177 + 0.997967i 0.419736 + 0.907646i \(0.362123\pi\)
−0.995913 + 0.0903210i \(0.971211\pi\)
\(602\) −3.21373 34.2054i −0.130982 1.39411i
\(603\) 4.06169 + 4.06169i 0.165405 + 0.165405i
\(604\) 1.22508 0.590510i 0.0498480 0.0240275i
\(605\) 0.543318 2.02769i 0.0220890 0.0824373i
\(606\) 3.83856 + 10.3396i 0.155931 + 0.420017i
\(607\) 8.89476 5.13539i 0.361027 0.208439i −0.308504 0.951223i \(-0.599828\pi\)
0.669531 + 0.742784i \(0.266495\pi\)
\(608\) 28.1760 14.2556i 1.14269 0.578140i
\(609\) −9.16324 + 2.45528i −0.371313 + 0.0994931i
\(610\) 2.18483 + 1.00180i 0.0884610 + 0.0405615i
\(611\) 0 0
\(612\) 4.15898 + 4.82933i 0.168117 + 0.195214i
\(613\) −9.17089 34.2262i −0.370409 1.38238i −0.859939 0.510397i \(-0.829498\pi\)
0.489530 0.871986i \(-0.337168\pi\)
\(614\) 26.6107 18.8885i 1.07392 0.762277i
\(615\) 0.579674 + 1.00403i 0.0233747 + 0.0404862i
\(616\) 5.21218 9.44271i 0.210005 0.380458i
\(617\) −40.4828 10.8473i −1.62978 0.436697i −0.675923 0.736972i \(-0.736255\pi\)
−0.953853 + 0.300275i \(0.902922\pi\)
\(618\) −10.0989 8.36426i −0.406239 0.336460i
\(619\) −12.0880 + 12.0880i −0.485858 + 0.485858i −0.906996 0.421138i \(-0.861631\pi\)
0.421138 + 0.906996i \(0.361631\pi\)
\(620\) −2.43859 0.852320i −0.0979362 0.0342300i
\(621\) 33.9719 + 19.6137i 1.36324 + 0.787069i
\(622\) 11.9145 + 2.02215i 0.477726 + 0.0810809i
\(623\) −17.5666 −0.703790
\(624\) 0 0
\(625\) −24.1724 −0.966894
\(626\) 8.20360 + 1.39234i 0.327882 + 0.0556490i
\(627\) −5.92609 3.42143i −0.236665 0.136639i
\(628\) 11.1469 + 3.89600i 0.444810 + 0.155467i
\(629\) 0.512159 0.512159i 0.0204211 0.0204211i
\(630\) −1.54354 1.27841i −0.0614960 0.0509329i
\(631\) −11.6470 3.12081i −0.463660 0.124237i 0.0194238 0.999811i \(-0.493817\pi\)
−0.483084 + 0.875574i \(0.660483\pi\)
\(632\) 11.6407 21.0890i 0.463042 0.838875i
\(633\) 1.78106 + 3.08489i 0.0707909 + 0.122613i
\(634\) 26.9174 19.1062i 1.06903 0.758803i
\(635\) −0.325501 1.21479i −0.0129171 0.0482073i
\(636\) −6.59499 7.65798i −0.261509 0.303659i
\(637\) 0 0
\(638\) 7.82419 + 3.58758i 0.309763 + 0.142034i
\(639\) −23.9134 + 6.40759i −0.946001 + 0.253480i
\(640\) 2.46107 + 1.01580i 0.0972822 + 0.0401529i
\(641\) 1.81632 1.04865i 0.0717404 0.0414193i −0.463701 0.885992i \(-0.653479\pi\)
0.535441 + 0.844573i \(0.320145\pi\)
\(642\) −4.12391 11.1082i −0.162758 0.438406i
\(643\) 10.9696 40.9391i 0.432599 1.61448i −0.314148 0.949374i \(-0.601719\pi\)
0.746747 0.665108i \(-0.231614\pi\)
\(644\) −41.6576 + 20.0796i −1.64154 + 0.791248i
\(645\) −1.29954 1.29954i −0.0511692 0.0511692i
\(646\) 1.03326 + 10.9976i 0.0406532 + 0.432693i
\(647\) −21.5400 + 37.3083i −0.846824 + 1.46674i 0.0372042 + 0.999308i \(0.488155\pi\)
−0.884028 + 0.467434i \(0.845179\pi\)
\(648\) −7.31141 + 4.41090i −0.287219 + 0.173277i
\(649\) 12.2867i 0.482296i
\(650\) 0 0
\(651\) 12.3368i 0.483518i
\(652\) −26.0044 17.7159i −1.01841 0.693807i
\(653\) 5.56059 9.63123i 0.217603 0.376899i −0.736472 0.676468i \(-0.763510\pi\)
0.954075 + 0.299569i \(0.0968429\pi\)
\(654\) −0.0411599 + 0.00386713i −0.00160948 + 0.000151217i
\(655\) 1.86794 + 1.86794i 0.0729865 + 0.0729865i
\(656\) −9.25517 + 21.2546i −0.361354 + 0.829852i
\(657\) −4.21305 + 15.7233i −0.164367 + 0.613425i
\(658\) 13.8978 5.15956i 0.541795 0.201141i
\(659\) 13.2010 7.62162i 0.514239 0.296896i −0.220335 0.975424i \(-0.570715\pi\)
0.734575 + 0.678528i \(0.237382\pi\)
\(660\) −0.107467 0.566868i −0.00418316 0.0220653i
\(661\) −9.97516 + 2.67284i −0.387989 + 0.103961i −0.447540 0.894264i \(-0.647700\pi\)
0.0595512 + 0.998225i \(0.481033\pi\)
\(662\) −8.46813 + 18.4682i −0.329123 + 0.717788i
\(663\) 0 0
\(664\) 7.66815 + 26.5631i 0.297582 + 1.03085i
\(665\) −0.899032 3.35523i −0.0348630 0.130110i
\(666\) 0.965000 + 1.35952i 0.0373930 + 0.0526805i
\(667\) −18.4525 31.9607i −0.714485 1.23753i
\(668\) −0.833940 + 11.1819i −0.0322661 + 0.432639i
\(669\) 15.4596 + 4.14239i 0.597704 + 0.160154i
\(670\) −0.535423 + 0.646466i −0.0206852 + 0.0249752i
\(671\) 7.36454 7.36454i 0.284305 0.284305i
\(672\) −0.701580 + 12.6957i −0.0270640 + 0.489748i
\(673\) −25.8030 14.8974i −0.994631 0.574251i −0.0879759 0.996123i \(-0.528040\pi\)
−0.906655 + 0.421872i \(0.861373\pi\)
\(674\) −3.39406 + 19.9977i −0.130734 + 0.770282i
\(675\) 22.1818 0.853776
\(676\) 0 0
\(677\) −29.1021 −1.11849 −0.559243 0.829004i \(-0.688908\pi\)
−0.559243 + 0.829004i \(0.688908\pi\)
\(678\) 0.915911 5.39651i 0.0351753 0.207252i
\(679\) −35.4334 20.4575i −1.35981 0.785085i
\(680\) −0.645779 + 0.671115i −0.0247645 + 0.0257361i
\(681\) −4.47188 + 4.47188i −0.171363 + 0.171363i
\(682\) −7.14003 + 8.62082i −0.273406 + 0.330108i
\(683\) −4.87499 1.30625i −0.186536 0.0499823i 0.164342 0.986404i \(-0.447450\pi\)
−0.350878 + 0.936421i \(0.614117\pi\)
\(684\) −25.3552 1.89098i −0.969480 0.0723035i
\(685\) −0.565743 0.979896i −0.0216159 0.0374399i
\(686\) −15.1687 21.3702i −0.579143 0.815917i
\(687\) 0.988544 + 3.68930i 0.0377153 + 0.140755i
\(688\) 5.45113 36.3424i 0.207822 1.38554i
\(689\) 0 0
\(690\) −1.03106 + 2.24866i −0.0392519 + 0.0856049i
\(691\) 10.7956 2.89268i 0.410685 0.110043i −0.0475604 0.998868i \(-0.515145\pi\)
0.458246 + 0.888826i \(0.348478\pi\)
\(692\) −4.24593 + 0.804948i −0.161406 + 0.0305995i
\(693\) −7.52106 + 4.34229i −0.285701 + 0.164950i
\(694\) −0.623535 + 0.231487i −0.0236691 + 0.00878711i
\(695\) 0.422743 1.57770i 0.0160355 0.0598455i
\(696\) −10.1453 + 0.195189i −0.384558 + 0.00739861i
\(697\) −5.73421 5.73421i −0.217199 0.217199i
\(698\) 39.8228 3.74150i 1.50731 0.141618i
\(699\) 5.66150 9.80601i 0.214138 0.370897i
\(700\) −14.7229 + 21.6112i −0.556474 + 0.816825i
\(701\) 27.1476i 1.02535i 0.858582 + 0.512676i \(0.171346\pi\)
−0.858582 + 0.512676i \(0.828654\pi\)
\(702\) 0 0
\(703\) 2.88950i 0.108980i
\(704\) 7.83802 8.46559i 0.295406 0.319059i
\(705\) 0.396511 0.686778i 0.0149335 0.0258656i
\(706\) 4.75603 + 50.6209i 0.178995 + 1.90514i
\(707\) 17.1544 + 17.1544i 0.645156 + 0.645156i
\(708\) 6.28930 + 13.0479i 0.236366 + 0.490371i
\(709\) 10.9821 40.9857i 0.412441 1.53925i −0.377465 0.926024i \(-0.623204\pi\)
0.789906 0.613228i \(-0.210129\pi\)
\(710\) −1.25914 3.39163i −0.0472547 0.127286i
\(711\) −16.7973 + 9.69790i −0.629946 + 0.363700i
\(712\) −18.2400 4.51320i −0.683573 0.169139i
\(713\) 46.3583 12.4217i 1.73613 0.465195i
\(714\) −4.04312 1.85387i −0.151310 0.0693792i
\(715\) 0 0
\(716\) 15.3560 13.2245i 0.573880 0.494221i
\(717\) 1.85637 + 6.92808i 0.0693275 + 0.258734i
\(718\) −19.1089 + 13.5636i −0.713139 + 0.506191i
\(719\) −8.21566 14.2299i −0.306392 0.530687i 0.671178 0.741296i \(-0.265789\pi\)
−0.977570 + 0.210609i \(0.932455\pi\)
\(720\) −1.27426 1.72398i −0.0474889 0.0642489i
\(721\) −27.8607 7.46526i −1.03759 0.278021i
\(722\) −13.2439 10.9690i −0.492885 0.408223i
\(723\) −9.29717 + 9.29717i −0.345765 + 0.345765i
\(724\) −9.14123 + 26.1542i −0.339731 + 0.972012i
\(725\) −18.0728 10.4343i −0.671205 0.387520i
\(726\) 10.5723 + 1.79436i 0.392374 + 0.0665948i
\(727\) −32.1429 −1.19211 −0.596057 0.802942i \(-0.703267\pi\)
−0.596057 + 0.802942i \(0.703267\pi\)
\(728\) 0 0
\(729\) −4.56452 −0.169056
\(730\) −2.34521 0.398036i −0.0868003 0.0147320i
\(731\) 11.1329 + 6.42759i 0.411765 + 0.237733i
\(732\) −4.05105 + 11.5905i −0.149731 + 0.428399i
\(733\) 19.2047 19.2047i 0.709343 0.709343i −0.257054 0.966397i \(-0.582752\pi\)
0.966397 + 0.257054i \(0.0827518\pi\)
\(734\) 11.0610 + 9.16110i 0.408270 + 0.338142i
\(735\) −0.00152663 0.000409059i −5.63106e−5 1.50884e-5i
\(736\) −48.4134 + 10.1467i −1.78454 + 0.374013i
\(737\) 1.81864 + 3.14998i 0.0669905 + 0.116031i
\(738\) 15.2214 10.8043i 0.560309 0.397711i
\(739\) −6.01290 22.4404i −0.221188 0.825485i −0.983896 0.178742i \(-0.942797\pi\)
0.762708 0.646743i \(-0.223869\pi\)
\(740\) −0.184609 + 0.158984i −0.00678637 + 0.00584438i
\(741\) 0 0
\(742\) −20.2072 9.26549i −0.741830 0.340147i
\(743\) −37.2749 + 9.98778i −1.36748 + 0.366416i −0.866559 0.499075i \(-0.833673\pi\)
−0.500925 + 0.865491i \(0.667007\pi\)
\(744\) 3.16957 12.8097i 0.116202 0.469628i
\(745\) 3.08908 1.78348i 0.113175 0.0653417i
\(746\) 7.39079 + 19.9079i 0.270596 + 0.728880i
\(747\) 5.76177 21.5032i 0.210812 0.786762i
\(748\) 1.75234 + 3.63545i 0.0640720 + 0.132925i
\(749\) −18.4296 18.4296i −0.673402 0.673402i
\(750\) 0.263165 + 2.80100i 0.00960942 + 0.102278i
\(751\) −0.646973 + 1.12059i −0.0236084 + 0.0408909i −0.877588 0.479415i \(-0.840849\pi\)
0.853980 + 0.520306i \(0.174182\pi\)
\(752\) 15.7562 1.78672i 0.574570 0.0651551i
\(753\) 23.3570i 0.851178i
\(754\) 0 0
\(755\) 0.160022i 0.00582380i
\(756\) 13.3575 19.6069i 0.485806 0.713095i
\(757\) 11.2800 19.5376i 0.409979 0.710104i −0.584908 0.811100i \(-0.698869\pi\)
0.994887 + 0.100995i \(0.0322027\pi\)
\(758\) 46.9668 4.41271i 1.70591 0.160277i
\(759\) 7.57969 + 7.57969i 0.275125 + 0.275125i
\(760\) −0.0714707 3.71484i −0.00259252 0.134751i
\(761\) 2.25142 8.40241i 0.0816138 0.304587i −0.913038 0.407875i \(-0.866270\pi\)
0.994651 + 0.103288i \(0.0329365\pi\)
\(762\) 6.02276 2.23594i 0.218182 0.0809997i
\(763\) −0.0787520 + 0.0454675i −0.00285101 + 0.00164603i
\(764\) 7.60549 1.44186i 0.275157 0.0521646i
\(765\) 0.724369 0.194094i 0.0261896 0.00701748i
\(766\) 12.3399 26.9123i 0.445860 0.972381i
\(767\) 0 0
\(768\) −3.99026 + 13.0022i −0.143986 + 0.469175i
\(769\) −2.50537 9.35018i −0.0903461 0.337176i 0.905927 0.423434i \(-0.139176\pi\)
−0.996273 + 0.0862584i \(0.972509\pi\)
\(770\) −0.734579 1.03490i −0.0264724 0.0372952i
\(771\) −11.8306 20.4912i −0.426068 0.737971i
\(772\) 16.4031 + 1.22334i 0.590361 + 0.0440289i
\(773\) −18.5456 4.96928i −0.667039 0.178732i −0.0906182 0.995886i \(-0.528884\pi\)
−0.576420 + 0.817153i \(0.695551\pi\)
\(774\) −18.8743 + 22.7887i −0.678423 + 0.819123i
\(775\) 19.1900 19.1900i 0.689327 0.689327i
\(776\) −31.5358 30.3452i −1.13207 1.08933i
\(777\) −1.00763 0.581756i −0.0361486 0.0208704i
\(778\) 2.27272 13.3908i 0.0814808 0.480082i
\(779\) 32.3513 1.15911
\(780\) 0 0
\(781\) −15.6767 −0.560955
\(782\) 2.89539 17.0595i 0.103539 0.610048i
\(783\) 16.3966 + 9.46660i 0.585968 + 0.338309i
\(784\) −0.0115670 0.0294103i −0.000413107 0.00105037i
\(785\) 0.982461 0.982461i 0.0350655 0.0350655i
\(786\) −8.60761 + 10.3928i −0.307023 + 0.370698i
\(787\) 28.8763 + 7.73737i 1.02933 + 0.275808i 0.733684 0.679491i \(-0.237799\pi\)
0.295644 + 0.955298i \(0.404466\pi\)
\(788\) 1.84158 24.6928i 0.0656037 0.879645i
\(789\) 10.1181 + 17.5250i 0.360213 + 0.623907i
\(790\) −1.64058 2.31131i −0.0583693 0.0822326i
\(791\) −3.11619 11.6298i −0.110799 0.413508i
\(792\) −8.92500 + 2.57644i −0.317136 + 0.0915498i
\(793\) 0 0
\(794\) 1.52237 3.32016i 0.0540270 0.117828i
\(795\) −1.14865 + 0.307779i −0.0407383 + 0.0109158i
\(796\) 0.906717 + 4.78274i 0.0321377 + 0.169520i
\(797\) −32.2562 + 18.6231i −1.14257 + 0.659665i −0.947067 0.321037i \(-0.895969\pi\)
−0.195507 + 0.980702i \(0.562635\pi\)
\(798\) 16.6348 6.17567i 0.588867 0.218616i
\(799\) −1.43567 + 5.35801i −0.0507905 + 0.189553i
\(800\) −20.8397 + 18.6570i −0.736793 + 0.659626i
\(801\) 10.6983 + 10.6983i 0.378004 + 0.378004i
\(802\) −38.0884 + 3.57855i −1.34495 + 0.126363i
\(803\) −5.15378 + 8.92661i −0.181873 + 0.315013i
\(804\) −3.54372 2.41421i −0.124977 0.0851426i
\(805\) 5.44136i 0.191783i
\(806\) 0 0
\(807\) 17.6060i 0.619759i
\(808\) 13.4047 + 22.2193i 0.471575 + 0.781671i
\(809\) −20.9090 + 36.2154i −0.735121 + 1.27327i 0.219550 + 0.975601i \(0.429541\pi\)
−0.954670 + 0.297665i \(0.903792\pi\)
\(810\) 0.0939844 + 1.00033i 0.00330228 + 0.0351479i
\(811\) 4.29617 + 4.29617i 0.150859 + 0.150859i 0.778502 0.627643i \(-0.215980\pi\)
−0.627643 + 0.778502i \(0.715980\pi\)
\(812\) −20.1062 + 9.69149i −0.705588 + 0.340105i
\(813\) −3.04046 + 11.3472i −0.106634 + 0.397962i
\(814\) 0.367425 + 0.989700i 0.0128782 + 0.0346890i
\(815\) −3.20637 + 1.85120i −0.112314 + 0.0648447i
\(816\) −3.72182 2.96369i −0.130290 0.103750i
\(817\) −49.5365 + 13.2733i −1.73306 + 0.464373i
\(818\) 6.16364 + 2.82618i 0.215506 + 0.0988149i
\(819\) 0 0
\(820\) 1.78001 + 2.06691i 0.0621607 + 0.0721798i
\(821\) 4.88681 + 18.2378i 0.170551 + 0.636505i 0.997267 + 0.0738852i \(0.0235398\pi\)
−0.826716 + 0.562620i \(0.809793\pi\)
\(822\) 4.71333 3.34556i 0.164396 0.116690i
\(823\) 6.80437 + 11.7855i 0.237185 + 0.410817i 0.959906 0.280324i \(-0.0904418\pi\)
−0.722720 + 0.691141i \(0.757108\pi\)
\(824\) −27.0108 14.9094i −0.940966 0.519394i
\(825\) 5.85487 + 1.56881i 0.203841 + 0.0546189i
\(826\) 24.5375 + 20.3227i 0.853768 + 0.707117i
\(827\) 17.0815 17.0815i 0.593982 0.593982i −0.344723 0.938705i \(-0.612027\pi\)
0.938705 + 0.344723i \(0.112027\pi\)
\(828\) 37.5987 + 13.1412i 1.30664 + 0.456690i
\(829\) 23.8014 + 13.7417i 0.826657 + 0.477270i 0.852707 0.522390i \(-0.174960\pi\)
−0.0260500 + 0.999661i \(0.508293\pi\)
\(830\) 3.20732 + 0.544355i 0.111328 + 0.0188948i
\(831\) −10.8241 −0.375485
\(832\) 0 0
\(833\) 0.0110551 0.000383038
\(834\) 8.22604 + 1.39615i 0.284844 + 0.0483446i
\(835\) 1.14261 + 0.659685i 0.0395416 + 0.0228294i
\(836\) −15.1985 5.31207i −0.525650 0.183722i
\(837\) −17.4103 + 17.4103i −0.601788 + 0.601788i
\(838\) 6.10476 + 5.05615i 0.210885 + 0.174662i
\(839\) 38.5731 + 10.3356i 1.33169 + 0.356825i 0.853345 0.521347i \(-0.174570\pi\)
0.478345 + 0.878172i \(0.341237\pi\)
\(840\) 1.30983 + 0.723001i 0.0451935 + 0.0249459i
\(841\) 5.59382 + 9.68878i 0.192890 + 0.334096i
\(842\) −5.79552 + 4.11370i −0.199727 + 0.141767i
\(843\) −4.80564 17.9349i −0.165515 0.617711i
\(844\) 5.46913 + 6.35064i 0.188255 + 0.218598i
\(845\) 0 0
\(846\) −11.6062 5.32172i −0.399029 0.182964i
\(847\) 22.7839 6.10491i 0.782862 0.209767i
\(848\) −18.6014 14.8123i −0.638774 0.508657i
\(849\) 15.2309 8.79359i 0.522725 0.301795i
\(850\) −3.40540 9.17283i −0.116804 0.314625i
\(851\) 1.17152 4.37216i 0.0401590 0.149876i
\(852\) 16.6479 8.02455i 0.570348 0.274916i
\(853\) 6.78242 + 6.78242i 0.232226 + 0.232226i 0.813621 0.581395i \(-0.197493\pi\)
−0.581395 + 0.813621i \(0.697493\pi\)
\(854\) 2.52630 + 26.8888i 0.0864482 + 0.920114i
\(855\) −1.49586 + 2.59090i −0.0511572 + 0.0886068i
\(856\) −14.4012 23.8710i −0.492221 0.815894i
\(857\) 25.7579i 0.879872i −0.898029 0.439936i \(-0.855001\pi\)
0.898029 0.439936i \(-0.144999\pi\)
\(858\) 0 0
\(859\) 51.8251i 1.76825i −0.467252 0.884124i \(-0.654756\pi\)
0.467252 0.884124i \(-0.345244\pi\)
\(860\) −3.57359 2.43456i −0.121858 0.0830177i
\(861\) −6.51343 + 11.2816i −0.221977 + 0.384476i
\(862\) −4.86850 + 0.457414i −0.165822 + 0.0155796i
\(863\) −35.1233 35.1233i −1.19561 1.19561i −0.975467 0.220144i \(-0.929347\pi\)
−0.220144 0.975467i \(-0.570653\pi\)
\(864\) 18.9069 16.9267i 0.643227 0.575859i
\(865\) −0.131609 + 0.491171i −0.00447483 + 0.0167003i
\(866\) 7.25558 2.69363i 0.246555 0.0915332i
\(867\) −11.0734 + 6.39322i −0.376072 + 0.217125i
\(868\) −5.40654 28.5184i −0.183510 0.967976i
\(869\) −11.8633 + 3.17877i −0.402436 + 0.107833i
\(870\) −0.497646 + 1.08532i −0.0168718 + 0.0367958i
\(871\) 0 0
\(872\) −0.0934525 + 0.0269775i −0.00316470 + 0.000913575i
\(873\) 9.12050 + 34.0382i 0.308682 + 1.15202i
\(874\) 39.9557 + 56.2910i 1.35152 + 1.90407i
\(875\) 3.09414 + 5.35921i 0.104601 + 0.181174i
\(876\) 0.903738 12.1178i 0.0305345 0.409421i
\(877\) 35.8746 + 9.61256i 1.21140 + 0.324593i 0.807310 0.590127i \(-0.200922\pi\)
0.404088 + 0.914720i \(0.367589\pi\)
\(878\) 27.5190 33.2262i 0.928720 1.12133i
\(879\) −13.8602 + 13.8602i −0.467493 + 0.467493i
\(880\) −0.496853 1.26330i −0.0167489 0.0425859i
\(881\) 1.73014 + 0.998897i 0.0582899 + 0.0336537i 0.528862 0.848708i \(-0.322619\pi\)
−0.470572 + 0.882362i \(0.655952\pi\)
\(882\) −0.00425798 + 0.0250879i −0.000143374 + 0.000844752i
\(883\) −16.1625 −0.543913 −0.271956 0.962310i \(-0.587671\pi\)
−0.271956 + 0.962310i \(0.587671\pi\)
\(884\) 0 0
\(885\) 1.70433 0.0572906
\(886\) −3.05251 + 17.9853i −0.102551 + 0.604228i
\(887\) −15.2472 8.80298i −0.511951 0.295575i 0.221684 0.975119i \(-0.428845\pi\)
−0.733635 + 0.679543i \(0.762178\pi\)
\(888\) −0.896794 0.862938i −0.0300944 0.0289583i
\(889\) 9.99232 9.99232i 0.335132 0.335132i
\(890\) −1.41027 + 1.70276i −0.0472725 + 0.0570765i
\(891\) 4.20534 + 1.12682i 0.140884 + 0.0377498i
\(892\) 37.5526 + 2.80066i 1.25735 + 0.0937730i
\(893\) −11.0645 19.1644i −0.370261 0.641311i
\(894\) 10.5467 + 14.8586i 0.352735 + 0.496945i
\(895\) −0.617167 2.30330i −0.0206296 0.0769908i
\(896\) 3.94203 + 29.6555i 0.131694 + 0.990721i
\(897\) 0 0
\(898\) 5.81779 12.6881i 0.194142 0.423407i
\(899\) 22.3750 5.99536i 0.746247 0.199956i
\(900\) 22.1279 4.19503i 0.737596 0.139834i
\(901\) 7.20357 4.15898i 0.239986 0.138556i
\(902\) 11.0808 4.11375i 0.368951 0.136973i
\(903\) 5.34473 19.9468i 0.177861 0.663788i
\(904\) −0.247729 12.8762i −0.00823935 0.428257i
\(905\) 2.30516 + 2.30516i 0.0766261 + 0.0766261i
\(906\) 0.813858 0.0764650i 0.0270386 0.00254038i
\(907\) −14.7054 + 25.4704i −0.488283 + 0.845731i −0.999909 0.0134769i \(-0.995710\pi\)
0.511626 + 0.859208i \(0.329043\pi\)
\(908\) −8.37763 + 12.2972i −0.278022 + 0.408097i
\(909\) 20.8944i 0.693024i
\(910\) 0 0
\(911\) 20.5091i 0.679495i −0.940517 0.339748i \(-0.889658\pi\)
0.940517 0.339748i \(-0.110342\pi\)
\(912\) 18.8592 2.13859i 0.624490 0.0708160i
\(913\) 7.04832 12.2080i 0.233265 0.404027i
\(914\) 1.37343 + 14.6182i 0.0454292 + 0.483527i
\(915\) 1.02156 + 1.02156i 0.0337718 + 0.0337718i
\(916\) 3.90198 + 8.09513i 0.128925 + 0.267471i
\(917\) −7.68245 + 28.6713i −0.253697 + 0.946810i
\(918\) 3.08958 + 8.32211i 0.101971 + 0.274671i
\(919\) 42.4137 24.4876i 1.39910 0.807770i 0.404800 0.914405i \(-0.367341\pi\)
0.994298 + 0.106635i \(0.0340077\pi\)
\(920\) −1.39799 + 5.64996i −0.0460905 + 0.186274i
\(921\) 18.9463 5.07665i 0.624302 0.167281i
\(922\) 36.9391 + 16.9375i 1.21652 + 0.557806i
\(923\) 0 0
\(924\) 4.91240 4.23053i 0.161606 0.139174i
\(925\) −0.662453 2.47231i −0.0217813 0.0812890i
\(926\) 9.60708 6.81917i 0.315708 0.224092i
\(927\) 12.4211 + 21.5139i 0.407962 + 0.706610i
\(928\) −23.3669 + 4.89734i −0.767056 + 0.160763i
\(929\) −6.61751 1.77316i −0.217113 0.0581754i 0.148623 0.988894i \(-0.452516\pi\)
−0.365736 + 0.930719i \(0.619183\pi\)
\(930\) −1.19583 0.990419i −0.0392127 0.0324771i
\(931\) −0.0311855 + 0.0311855i −0.00102206 + 0.00102206i
\(932\) 8.78997 25.1492i 0.287925 0.823788i
\(933\) 6.29067 + 3.63192i 0.205947 + 0.118904i
\(934\) 4.60576 + 0.781702i 0.150705 + 0.0255781i
\(935\) 0.474867 0.0155298
\(936\) 0 0
\(937\) 11.1107 0.362970 0.181485 0.983394i \(-0.441910\pi\)
0.181485 + 0.983394i \(0.441910\pi\)
\(938\) −9.29885 1.57823i −0.303618 0.0515309i
\(939\) 4.33139 + 2.50073i 0.141350 + 0.0816083i
\(940\) 0.615618 1.76136i 0.0200793 0.0574492i
\(941\) 20.5970 20.5970i 0.671442 0.671442i −0.286606 0.958048i \(-0.592527\pi\)
0.958048 + 0.286606i \(0.0925272\pi\)
\(942\) 5.46617 + 4.52725i 0.178098 + 0.147506i
\(943\) −48.9513 13.1165i −1.59407 0.427131i
\(944\) 20.2568 + 27.4059i 0.659304 + 0.891988i
\(945\) −1.39577 2.41755i −0.0454045 0.0786430i
\(946\) −15.2792 + 10.8453i −0.496770 + 0.352611i
\(947\) 7.59297 + 28.3374i 0.246739 + 0.920841i 0.972502 + 0.232896i \(0.0748202\pi\)
−0.725763 + 0.687945i \(0.758513\pi\)
\(948\) 10.9712 9.44830i 0.356327 0.306867i
\(949\) 0 0
\(950\) 35.4820 + 16.2694i 1.15119 + 0.527848i
\(951\) 19.1647 5.13516i 0.621457 0.166519i
\(952\) −10.1587 2.51361i −0.329246 0.0814667i
\(953\) 11.3638 6.56091i 0.368110 0.212529i −0.304522 0.952505i \(-0.598497\pi\)
0.672633 + 0.739977i \(0.265163\pi\)
\(954\) 6.66363 + 17.9492i 0.215743 + 0.581128i
\(955\) 0.235743 0.879806i 0.00762847 0.0284699i
\(956\) 7.32748 + 15.2017i 0.236987 + 0.491659i
\(957\) 3.65836 + 3.65836i 0.118258 + 0.118258i
\(958\) −3.67929 39.1607i −0.118873 1.26522i
\(959\) 6.35689 11.0105i 0.205275 0.355546i
\(960\) 1.17429 + 1.08724i 0.0379001 + 0.0350905i
\(961\) 0.875747i 0.0282499i
\(962\) 0 0
\(963\) 22.4477i 0.723365i
\(964\) −17.4173 + 25.5662i −0.560975 + 0.823432i
\(965\) 0.967718 1.67614i 0.0311519 0.0539568i
\(966\) −27.6743 + 2.60011i −0.890406 + 0.0836570i
\(967\) −13.0476 13.0476i −0.419581 0.419581i 0.465478 0.885059i \(-0.345882\pi\)
−0.885059 + 0.465478i \(0.845882\pi\)
\(968\) 25.2258 0.485325i 0.810787 0.0155989i
\(969\) −1.71841 + 6.41320i −0.0552033 + 0.206022i
\(970\) −4.82762 + 1.79225i −0.155006 + 0.0575457i
\(971\) −38.3512 + 22.1421i −1.23075 + 0.710573i −0.967186 0.254070i \(-0.918231\pi\)
−0.263562 + 0.964642i \(0.584897\pi\)
\(972\) −31.4879 + 5.96950i −1.00997 + 0.191472i
\(973\) 17.7276 4.75009i 0.568320 0.152281i
\(974\) −6.08146 + 13.2631i −0.194862 + 0.424978i
\(975\) 0 0
\(976\) −4.28511 + 28.5686i −0.137163 + 0.914459i
\(977\) 0.0641402 + 0.239374i 0.00205203 + 0.00765826i 0.966944 0.254988i \(-0.0820715\pi\)
−0.964892 + 0.262646i \(0.915405\pi\)
\(978\) −10.9472 15.4228i −0.350053 0.493166i
\(979\) 4.79020 + 8.29687i 0.153095 + 0.265169i
\(980\) −0.00370830 0.000276564i −0.000118457 8.83450e-6i
\(981\) 0.0756511 + 0.0202707i 0.00241535 + 0.000647192i
\(982\) −12.2906 + 14.8396i −0.392210 + 0.473551i
\(983\) −8.44991 + 8.44991i −0.269510 + 0.269510i −0.828903 0.559393i \(-0.811034\pi\)
0.559393 + 0.828903i \(0.311034\pi\)
\(984\) −9.66159 + 10.0406i −0.308000 + 0.320084i
\(985\) −2.52321 1.45678i −0.0803963 0.0464168i
\(986\) 1.39747 8.23384i 0.0445045 0.262219i
\(987\) 8.91069 0.283630
\(988\) 0 0
\(989\) 80.3360 2.55454
\(990\) −0.182899 + 1.07763i −0.00581291 + 0.0342494i
\(991\) 36.2254 + 20.9147i 1.15074 + 0.664379i 0.949067 0.315074i \(-0.102029\pi\)
0.201671 + 0.979453i \(0.435363\pi\)
\(992\) 1.71313 31.0007i 0.0543920 0.984272i
\(993\) −8.63520 + 8.63520i −0.274030 + 0.274030i
\(994\) 25.9298 31.3075i 0.822444 0.993013i
\(995\) 0.553269 + 0.148248i 0.0175398 + 0.00469978i
\(996\) −1.23595 + 16.5723i −0.0391627 + 0.525112i
\(997\) −6.38088 11.0520i −0.202085 0.350021i 0.747115 0.664694i \(-0.231438\pi\)
−0.949200 + 0.314674i \(0.898105\pi\)
\(998\) −12.9988 18.3132i −0.411471 0.579694i
\(999\) 0.601015 + 2.24302i 0.0190153 + 0.0709660i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.2.l.i.19.4 16
4.3 odd 2 inner 676.2.l.i.19.2 16
13.2 odd 12 676.2.l.m.427.3 16
13.3 even 3 676.2.l.k.587.1 16
13.4 even 6 676.2.f.h.239.6 16
13.5 odd 4 52.2.l.b.7.3 16
13.6 odd 12 676.2.f.h.99.1 16
13.7 odd 12 676.2.f.i.99.8 16
13.8 odd 4 676.2.l.k.319.2 16
13.9 even 3 676.2.f.i.239.3 16
13.10 even 6 52.2.l.b.15.4 yes 16
13.11 odd 12 inner 676.2.l.i.427.2 16
13.12 even 2 676.2.l.m.19.1 16
39.5 even 4 468.2.cb.f.163.2 16
39.23 odd 6 468.2.cb.f.379.1 16
52.3 odd 6 676.2.l.k.587.2 16
52.7 even 12 676.2.f.i.99.3 16
52.11 even 12 inner 676.2.l.i.427.4 16
52.15 even 12 676.2.l.m.427.1 16
52.19 even 12 676.2.f.h.99.6 16
52.23 odd 6 52.2.l.b.15.3 yes 16
52.31 even 4 52.2.l.b.7.4 yes 16
52.35 odd 6 676.2.f.i.239.8 16
52.43 odd 6 676.2.f.h.239.1 16
52.47 even 4 676.2.l.k.319.1 16
52.51 odd 2 676.2.l.m.19.3 16
104.5 odd 4 832.2.bu.n.319.2 16
104.75 odd 6 832.2.bu.n.639.2 16
104.83 even 4 832.2.bu.n.319.3 16
104.101 even 6 832.2.bu.n.639.3 16
156.23 even 6 468.2.cb.f.379.2 16
156.83 odd 4 468.2.cb.f.163.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.l.b.7.3 16 13.5 odd 4
52.2.l.b.7.4 yes 16 52.31 even 4
52.2.l.b.15.3 yes 16 52.23 odd 6
52.2.l.b.15.4 yes 16 13.10 even 6
468.2.cb.f.163.1 16 156.83 odd 4
468.2.cb.f.163.2 16 39.5 even 4
468.2.cb.f.379.1 16 39.23 odd 6
468.2.cb.f.379.2 16 156.23 even 6
676.2.f.h.99.1 16 13.6 odd 12
676.2.f.h.99.6 16 52.19 even 12
676.2.f.h.239.1 16 52.43 odd 6
676.2.f.h.239.6 16 13.4 even 6
676.2.f.i.99.3 16 52.7 even 12
676.2.f.i.99.8 16 13.7 odd 12
676.2.f.i.239.3 16 13.9 even 3
676.2.f.i.239.8 16 52.35 odd 6
676.2.l.i.19.2 16 4.3 odd 2 inner
676.2.l.i.19.4 16 1.1 even 1 trivial
676.2.l.i.427.2 16 13.11 odd 12 inner
676.2.l.i.427.4 16 52.11 even 12 inner
676.2.l.k.319.1 16 52.47 even 4
676.2.l.k.319.2 16 13.8 odd 4
676.2.l.k.587.1 16 13.3 even 3
676.2.l.k.587.2 16 52.3 odd 6
676.2.l.m.19.1 16 13.12 even 2
676.2.l.m.19.3 16 52.51 odd 2
676.2.l.m.427.1 16 52.15 even 12
676.2.l.m.427.3 16 13.2 odd 12
832.2.bu.n.319.2 16 104.5 odd 4
832.2.bu.n.319.3 16 104.83 even 4
832.2.bu.n.639.2 16 104.75 odd 6
832.2.bu.n.639.3 16 104.101 even 6