Properties

Label 676.2.f.h.99.6
Level $676$
Weight $2$
Character 676.99
Analytic conductor $5.398$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(99,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.102930383934669717504.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 5 x^{14} - 2 x^{13} + 5 x^{12} - 8 x^{11} - 12 x^{10} + 32 x^{9} - 36 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 99.6
Root \(1.08916 + 0.902074i\) of defining polynomial
Character \(\chi\) \(=\) 676.99
Dual form 676.2.f.h.239.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.492201 - 1.32580i) q^{2} +0.850043i q^{3} +(-1.51548 - 1.30512i) q^{4} +(-0.166404 - 0.166404i) q^{5} +(1.12698 + 0.418392i) q^{6} +(1.86977 + 1.86977i) q^{7} +(-2.47624 + 1.36683i) q^{8} +2.27743 q^{9} +(-0.302522 + 0.138714i) q^{10} +(1.01973 + 1.01973i) q^{11} +(1.10941 - 1.28822i) q^{12} +(3.39924 - 1.55864i) q^{14} +(0.141450 - 0.141450i) q^{15} +(0.593337 + 3.95575i) q^{16} +1.39924i q^{17} +(1.12095 - 3.01941i) q^{18} +(-3.94713 + 3.94713i) q^{19} +(0.0350045 + 0.469358i) q^{20} +(-1.58939 + 1.58939i) q^{21} +(1.85387 - 0.850043i) q^{22} +8.74431 q^{23} +(-1.16187 - 2.10491i) q^{24} -4.94462i q^{25} +4.48604i q^{27} +(-0.393323 - 5.27387i) q^{28} +4.22047 q^{29} +(-0.117912 - 0.257157i) q^{30} +(3.88100 - 3.88100i) q^{31} +(5.53656 + 1.16038i) q^{32} +(-0.866814 + 0.866814i) q^{33} +(1.85511 + 0.688709i) q^{34} -0.622275i q^{35} +(-3.45139 - 2.97231i) q^{36} +(-0.366025 + 0.366025i) q^{37} +(3.29032 + 7.17588i) q^{38} +(0.639502 + 0.184609i) q^{40} +(-4.09808 - 4.09808i) q^{41} +(1.32491 + 2.88950i) q^{42} +9.18723 q^{43} +(-0.214509 - 2.87624i) q^{44} +(-0.378973 - 0.378973i) q^{45} +(4.30396 - 11.5932i) q^{46} +(-2.80318 - 2.80318i) q^{47} +(-3.36256 + 0.504362i) q^{48} -0.00790080i q^{49} +(-6.55556 - 2.43375i) q^{50} -1.18942 q^{51} -5.94462 q^{53} +(5.94758 + 2.20803i) q^{54} -0.339374i q^{55} +(-7.18567 - 2.07434i) q^{56} +(-3.35523 - 3.35523i) q^{57} +(2.07732 - 5.59549i) q^{58} +(6.02449 + 6.02449i) q^{59} +(-0.398974 + 0.0297554i) q^{60} -7.22205 q^{61} +(-3.23518 - 7.05564i) q^{62} +(4.25827 + 4.25827i) q^{63} +(4.26353 - 6.76922i) q^{64} +(0.722573 + 1.57587i) q^{66} +(-1.78345 + 1.78345i) q^{67} +(1.82618 - 2.12052i) q^{68} +7.43304i q^{69} +(-0.825010 - 0.306284i) q^{70} +(-7.68668 + 7.68668i) q^{71} +(-5.63946 + 3.11287i) q^{72} +(5.05407 - 5.05407i) q^{73} +(0.305117 + 0.665434i) q^{74} +4.20314 q^{75} +(11.1333 - 0.830315i) q^{76} +3.81333i q^{77} +8.51654i q^{79} +(0.559518 - 0.756985i) q^{80} +3.01896 q^{81} +(-7.45030 + 3.41614i) q^{82} +(-6.91195 + 6.91195i) q^{83} +(4.48301 - 0.334342i) q^{84} +(0.232839 - 0.232839i) q^{85} +(4.52197 - 12.1804i) q^{86} +3.58758i q^{87} +(-3.91890 - 1.13129i) q^{88} +(-4.69752 + 4.69752i) q^{89} +(-0.688971 + 0.315910i) q^{90} +(-13.2518 - 11.4124i) q^{92} +(3.29901 + 3.29901i) q^{93} +(-5.09618 + 2.33672i) q^{94} +1.31364 q^{95} +(-0.986372 + 4.70632i) q^{96} +(-10.9412 - 10.9412i) q^{97} +(-0.0104749 - 0.00388878i) q^{98} +(2.32236 + 2.32236i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 12 q^{5} + 4 q^{6} + 10 q^{8} - 8 q^{9} + 8 q^{14} + 4 q^{16} - 6 q^{18} - 22 q^{20} - 28 q^{21} + 4 q^{24} - 36 q^{28} + 16 q^{29} - 2 q^{32} + 28 q^{33} + 14 q^{34} + 8 q^{37} - 40 q^{40}+ \cdots + 70 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.492201 1.32580i 0.348039 0.937480i
\(3\) 0.850043i 0.490772i 0.969425 + 0.245386i \(0.0789148\pi\)
−0.969425 + 0.245386i \(0.921085\pi\)
\(4\) −1.51548 1.30512i −0.757738 0.652559i
\(5\) −0.166404 0.166404i −0.0744180 0.0744180i 0.668918 0.743336i \(-0.266758\pi\)
−0.743336 + 0.668918i \(0.766758\pi\)
\(6\) 1.12698 + 0.418392i 0.460089 + 0.170808i
\(7\) 1.86977 + 1.86977i 0.706708 + 0.706708i 0.965841 0.259134i \(-0.0834371\pi\)
−0.259134 + 0.965841i \(0.583437\pi\)
\(8\) −2.47624 + 1.36683i −0.875483 + 0.483249i
\(9\) 2.27743 0.759142
\(10\) −0.302522 + 0.138714i −0.0956658 + 0.0438651i
\(11\) 1.01973 + 1.01973i 0.307460 + 0.307460i 0.843924 0.536463i \(-0.180240\pi\)
−0.536463 + 0.843924i \(0.680240\pi\)
\(12\) 1.10941 1.28822i 0.320258 0.371877i
\(13\) 0 0
\(14\) 3.39924 1.55864i 0.908486 0.416563i
\(15\) 0.141450 0.141450i 0.0365223 0.0365223i
\(16\) 0.593337 + 3.95575i 0.148334 + 0.988937i
\(17\) 1.39924i 0.339366i 0.985499 + 0.169683i \(0.0542744\pi\)
−0.985499 + 0.169683i \(0.945726\pi\)
\(18\) 1.12095 3.01941i 0.264211 0.711681i
\(19\) −3.94713 + 3.94713i −0.905535 + 0.905535i −0.995908 0.0903734i \(-0.971194\pi\)
0.0903734 + 0.995908i \(0.471194\pi\)
\(20\) 0.0350045 + 0.469358i 0.00782725 + 0.104952i
\(21\) −1.58939 + 1.58939i −0.346833 + 0.346833i
\(22\) 1.85387 0.850043i 0.395246 0.181230i
\(23\) 8.74431 1.82331 0.911657 0.410951i \(-0.134803\pi\)
0.911657 + 0.410951i \(0.134803\pi\)
\(24\) −1.16187 2.10491i −0.237165 0.429663i
\(25\) 4.94462i 0.988924i
\(26\) 0 0
\(27\) 4.48604i 0.863339i
\(28\) −0.393323 5.27387i −0.0743311 0.996668i
\(29\) 4.22047 0.783722 0.391861 0.920025i \(-0.371831\pi\)
0.391861 + 0.920025i \(0.371831\pi\)
\(30\) −0.117912 0.257157i −0.0215278 0.0469501i
\(31\) 3.88100 3.88100i 0.697047 0.697047i −0.266725 0.963773i \(-0.585942\pi\)
0.963773 + 0.266725i \(0.0859416\pi\)
\(32\) 5.53656 + 1.16038i 0.978735 + 0.205128i
\(33\) −0.866814 + 0.866814i −0.150893 + 0.150893i
\(34\) 1.85511 + 0.688709i 0.318149 + 0.118113i
\(35\) 0.622275i 0.105184i
\(36\) −3.45139 2.97231i −0.575231 0.495385i
\(37\) −0.366025 + 0.366025i −0.0601742 + 0.0601742i −0.736553 0.676379i \(-0.763548\pi\)
0.676379 + 0.736553i \(0.263548\pi\)
\(38\) 3.29032 + 7.17588i 0.533760 + 1.16408i
\(39\) 0 0
\(40\) 0.639502 + 0.184609i 0.101114 + 0.0291893i
\(41\) −4.09808 4.09808i −0.640012 0.640012i 0.310546 0.950558i \(-0.399488\pi\)
−0.950558 + 0.310546i \(0.899488\pi\)
\(42\) 1.32491 + 2.88950i 0.204438 + 0.445860i
\(43\) 9.18723 1.40104 0.700520 0.713633i \(-0.252951\pi\)
0.700520 + 0.713633i \(0.252951\pi\)
\(44\) −0.214509 2.87624i −0.0323385 0.433610i
\(45\) −0.378973 0.378973i −0.0564939 0.0564939i
\(46\) 4.30396 11.5932i 0.634584 1.70932i
\(47\) −2.80318 2.80318i −0.408886 0.408886i 0.472464 0.881350i \(-0.343365\pi\)
−0.881350 + 0.472464i \(0.843365\pi\)
\(48\) −3.36256 + 0.504362i −0.485343 + 0.0727984i
\(49\) 0.00790080i 0.00112869i
\(50\) −6.55556 2.43375i −0.927097 0.344184i
\(51\) −1.18942 −0.166552
\(52\) 0 0
\(53\) −5.94462 −0.816556 −0.408278 0.912858i \(-0.633871\pi\)
−0.408278 + 0.912858i \(0.633871\pi\)
\(54\) 5.94758 + 2.20803i 0.809363 + 0.300475i
\(55\) 0.339374i 0.0457612i
\(56\) −7.18567 2.07434i −0.960226 0.277195i
\(57\) −3.35523 3.35523i −0.444411 0.444411i
\(58\) 2.07732 5.59549i 0.272765 0.734723i
\(59\) 6.02449 + 6.02449i 0.784322 + 0.784322i 0.980557 0.196235i \(-0.0628714\pi\)
−0.196235 + 0.980557i \(0.562871\pi\)
\(60\) −0.398974 + 0.0297554i −0.0515073 + 0.00384140i
\(61\) −7.22205 −0.924688 −0.462344 0.886701i \(-0.652992\pi\)
−0.462344 + 0.886701i \(0.652992\pi\)
\(62\) −3.23518 7.05564i −0.410869 0.896068i
\(63\) 4.25827 + 4.25827i 0.536492 + 0.536492i
\(64\) 4.26353 6.76922i 0.532941 0.846152i
\(65\) 0 0
\(66\) 0.722573 + 1.57587i 0.0889426 + 0.193976i
\(67\) −1.78345 + 1.78345i −0.217884 + 0.217884i −0.807606 0.589722i \(-0.799237\pi\)
0.589722 + 0.807606i \(0.299237\pi\)
\(68\) 1.82618 2.12052i 0.221456 0.257151i
\(69\) 7.43304i 0.894833i
\(70\) −0.825010 0.306284i −0.0986075 0.0366080i
\(71\) −7.68668 + 7.68668i −0.912241 + 0.912241i −0.996448 0.0842073i \(-0.973164\pi\)
0.0842073 + 0.996448i \(0.473164\pi\)
\(72\) −5.63946 + 3.11287i −0.664616 + 0.366855i
\(73\) 5.05407 5.05407i 0.591534 0.591534i −0.346512 0.938046i \(-0.612634\pi\)
0.938046 + 0.346512i \(0.112634\pi\)
\(74\) 0.305117 + 0.665434i 0.0354692 + 0.0773551i
\(75\) 4.20314 0.485337
\(76\) 11.1333 0.830315i 1.27707 0.0952437i
\(77\) 3.81333i 0.434569i
\(78\) 0 0
\(79\) 8.51654i 0.958186i 0.877764 + 0.479093i \(0.159034\pi\)
−0.877764 + 0.479093i \(0.840966\pi\)
\(80\) 0.559518 0.756985i 0.0625560 0.0846335i
\(81\) 3.01896 0.335440
\(82\) −7.45030 + 3.41614i −0.822747 + 0.377250i
\(83\) −6.91195 + 6.91195i −0.758685 + 0.758685i −0.976083 0.217398i \(-0.930243\pi\)
0.217398 + 0.976083i \(0.430243\pi\)
\(84\) 4.48301 0.334342i 0.489137 0.0364797i
\(85\) 0.232839 0.232839i 0.0252550 0.0252550i
\(86\) 4.52197 12.1804i 0.487616 1.31345i
\(87\) 3.58758i 0.384629i
\(88\) −3.91890 1.13129i −0.417756 0.120596i
\(89\) −4.69752 + 4.69752i −0.497936 + 0.497936i −0.910795 0.412859i \(-0.864530\pi\)
0.412859 + 0.910795i \(0.364530\pi\)
\(90\) −0.688971 + 0.315910i −0.0726240 + 0.0332998i
\(91\) 0 0
\(92\) −13.2518 11.4124i −1.38160 1.18982i
\(93\) 3.29901 + 3.29901i 0.342092 + 0.342092i
\(94\) −5.09618 + 2.33672i −0.525631 + 0.241015i
\(95\) 1.31364 0.134776
\(96\) −0.986372 + 4.70632i −0.100671 + 0.480336i
\(97\) −10.9412 10.9412i −1.11091 1.11091i −0.993028 0.117877i \(-0.962391\pi\)
−0.117877 0.993028i \(-0.537609\pi\)
\(98\) −0.0104749 0.00388878i −0.00105812 0.000392826i
\(99\) 2.32236 + 2.32236i 0.233406 + 0.233406i
\(100\) −6.45331 + 7.49345i −0.645331 + 0.749345i
\(101\) 9.17457i 0.912904i 0.889748 + 0.456452i \(0.150880\pi\)
−0.889748 + 0.456452i \(0.849120\pi\)
\(102\) −0.585432 + 1.57693i −0.0579664 + 0.156139i
\(103\) −10.9080 −1.07480 −0.537398 0.843329i \(-0.680593\pi\)
−0.537398 + 0.843329i \(0.680593\pi\)
\(104\) 0 0
\(105\) 0.528960 0.0516212
\(106\) −2.92595 + 7.88136i −0.284193 + 0.765505i
\(107\) 9.85658i 0.952872i −0.879209 0.476436i \(-0.841928\pi\)
0.879209 0.476436i \(-0.158072\pi\)
\(108\) 5.85481 6.79849i 0.563379 0.654185i
\(109\) 0.0243171 + 0.0243171i 0.00232916 + 0.00232916i 0.708270 0.705941i \(-0.249476\pi\)
−0.705941 + 0.708270i \(0.749476\pi\)
\(110\) −0.449941 0.167040i −0.0429002 0.0159267i
\(111\) −0.311137 0.311137i −0.0295318 0.0295318i
\(112\) −6.28695 + 8.50576i −0.594061 + 0.803718i
\(113\) 4.55328 0.428336 0.214168 0.976797i \(-0.431296\pi\)
0.214168 + 0.976797i \(0.431296\pi\)
\(114\) −6.09981 + 2.79691i −0.571299 + 0.261955i
\(115\) −1.45509 1.45509i −0.135688 0.135688i
\(116\) −6.39602 5.50821i −0.593856 0.511424i
\(117\) 0 0
\(118\) 10.9525 5.02200i 1.00826 0.462312i
\(119\) −2.61627 + 2.61627i −0.239833 + 0.239833i
\(120\) −0.156926 + 0.543604i −0.0143253 + 0.0496241i
\(121\) 8.92030i 0.810937i
\(122\) −3.55470 + 9.57497i −0.321827 + 0.866877i
\(123\) 3.48354 3.48354i 0.314100 0.314100i
\(124\) −10.9467 + 0.816402i −0.983044 + 0.0733151i
\(125\) −1.65482 + 1.65482i −0.148012 + 0.148012i
\(126\) 7.74153 3.54968i 0.689670 0.316230i
\(127\) −5.34414 −0.474216 −0.237108 0.971483i \(-0.576199\pi\)
−0.237108 + 0.971483i \(0.576199\pi\)
\(128\) −6.87610 8.98439i −0.607767 0.794115i
\(129\) 7.80954i 0.687592i
\(130\) 0 0
\(131\) 11.2254i 0.980764i −0.871508 0.490382i \(-0.836857\pi\)
0.871508 0.490382i \(-0.163143\pi\)
\(132\) 2.44493 0.182342i 0.212804 0.0158708i
\(133\) −14.7605 −1.27990
\(134\) 1.48668 + 3.24232i 0.128430 + 0.280094i
\(135\) 0.746494 0.746494i 0.0642480 0.0642480i
\(136\) −1.91253 3.46486i −0.163998 0.297109i
\(137\) −3.39982 + 3.39982i −0.290466 + 0.290466i −0.837264 0.546798i \(-0.815846\pi\)
0.546798 + 0.837264i \(0.315846\pi\)
\(138\) 9.85470 + 3.65855i 0.838888 + 0.311436i
\(139\) 6.94068i 0.588700i −0.955698 0.294350i \(-0.904897\pi\)
0.955698 0.294350i \(-0.0951032\pi\)
\(140\) −0.812141 + 0.943042i −0.0686385 + 0.0797016i
\(141\) 2.38283 2.38283i 0.200670 0.200670i
\(142\) 6.40759 + 13.9744i 0.537713 + 1.17270i
\(143\) 0 0
\(144\) 1.35128 + 9.00893i 0.112607 + 0.750744i
\(145\) −0.702302 0.702302i −0.0583230 0.0583230i
\(146\) −4.21305 9.18828i −0.348674 0.760428i
\(147\) 0.00671601 0.000553928
\(148\) 1.03241 0.0769967i 0.0848635 0.00632909i
\(149\) 10.7178 + 10.7178i 0.878035 + 0.878035i 0.993331 0.115296i \(-0.0367816\pi\)
−0.115296 + 0.993331i \(0.536782\pi\)
\(150\) 2.06879 5.57251i 0.168916 0.454993i
\(151\) −0.480824 0.480824i −0.0391289 0.0391289i 0.687272 0.726401i \(-0.258808\pi\)
−0.726401 + 0.687272i \(0.758808\pi\)
\(152\) 4.37897 15.1691i 0.355182 1.23038i
\(153\) 3.18667i 0.257627i
\(154\) 5.05570 + 1.87692i 0.407400 + 0.151247i
\(155\) −1.29162 −0.103746
\(156\) 0 0
\(157\) 5.90408 0.471197 0.235598 0.971851i \(-0.424295\pi\)
0.235598 + 0.971851i \(0.424295\pi\)
\(158\) 11.2912 + 4.19185i 0.898280 + 0.333486i
\(159\) 5.05318i 0.400743i
\(160\) −0.728214 1.11440i −0.0575703 0.0881008i
\(161\) 16.3499 + 16.3499i 1.28855 + 1.28855i
\(162\) 1.48593 4.00252i 0.116746 0.314468i
\(163\) −11.1248 11.1248i −0.871358 0.871358i 0.121263 0.992620i \(-0.461306\pi\)
−0.992620 + 0.121263i \(0.961306\pi\)
\(164\) 0.862067 + 11.5590i 0.0673161 + 0.902607i
\(165\) 0.288482 0.0224583
\(166\) 5.76177 + 12.5659i 0.447200 + 0.975304i
\(167\) −3.96436 3.96436i −0.306772 0.306772i 0.536884 0.843656i \(-0.319601\pi\)
−0.843656 + 0.536884i \(0.819601\pi\)
\(168\) 1.76327 6.10813i 0.136040 0.471253i
\(169\) 0 0
\(170\) −0.194094 0.423302i −0.0148863 0.0324658i
\(171\) −8.98931 + 8.98931i −0.687430 + 0.687430i
\(172\) −13.9230 11.9904i −1.06162 0.914261i
\(173\) 2.16078i 0.164281i 0.996621 + 0.0821405i \(0.0261756\pi\)
−0.996621 + 0.0821405i \(0.973824\pi\)
\(174\) 4.75640 + 1.76581i 0.360582 + 0.133866i
\(175\) 9.24531 9.24531i 0.698880 0.698880i
\(176\) −3.42875 + 4.63884i −0.258452 + 0.349666i
\(177\) −5.12108 + 5.12108i −0.384924 + 0.384924i
\(178\) 3.91583 + 8.54008i 0.293504 + 0.640106i
\(179\) −10.1328 −0.757359 −0.378679 0.925528i \(-0.623622\pi\)
−0.378679 + 0.925528i \(0.623622\pi\)
\(180\) 0.0797203 + 1.06893i 0.00594200 + 0.0796732i
\(181\) 13.8528i 1.02967i −0.857289 0.514836i \(-0.827853\pi\)
0.857289 0.514836i \(-0.172147\pi\)
\(182\) 0 0
\(183\) 6.13905i 0.453812i
\(184\) −21.6530 + 11.9520i −1.59628 + 0.881115i
\(185\) 0.121816 0.00895609
\(186\) 5.99760 2.75004i 0.439765 0.201643i
\(187\) −1.42685 + 1.42685i −0.104342 + 0.104342i
\(188\) 0.589675 + 7.90664i 0.0430065 + 0.576651i
\(189\) −8.38787 + 8.38787i −0.610128 + 0.610128i
\(190\) 0.646573 1.74162i 0.0469073 0.126350i
\(191\) 3.87048i 0.280058i −0.990147 0.140029i \(-0.955280\pi\)
0.990147 0.140029i \(-0.0447196\pi\)
\(192\) 5.75413 + 3.62418i 0.415268 + 0.261553i
\(193\) 5.81548 5.81548i 0.418607 0.418607i −0.466116 0.884724i \(-0.654347\pi\)
0.884724 + 0.466116i \(0.154347\pi\)
\(194\) −19.8910 + 9.12050i −1.42809 + 0.654814i
\(195\) 0 0
\(196\) −0.0103115 + 0.0119735i −0.000736533 + 0.000855248i
\(197\) 8.75448 + 8.75448i 0.623731 + 0.623731i 0.946483 0.322753i \(-0.104608\pi\)
−0.322753 + 0.946483i \(0.604608\pi\)
\(198\) 4.22205 1.93591i 0.300048 0.137579i
\(199\) −2.43397 −0.172539 −0.0862696 0.996272i \(-0.527495\pi\)
−0.0862696 + 0.996272i \(0.527495\pi\)
\(200\) 6.75848 + 12.2441i 0.477896 + 0.865786i
\(201\) −1.51601 1.51601i −0.106931 0.106931i
\(202\) 12.1636 + 4.51573i 0.855829 + 0.317726i
\(203\) 7.89132 + 7.89132i 0.553862 + 0.553862i
\(204\) 1.80253 + 1.55233i 0.126203 + 0.108685i
\(205\) 1.36387i 0.0952569i
\(206\) −5.36892 + 14.4618i −0.374071 + 1.00760i
\(207\) 19.9145 1.38416
\(208\) 0 0
\(209\) −8.05002 −0.556831
\(210\) 0.260355 0.701294i 0.0179662 0.0483939i
\(211\) 4.19052i 0.288488i 0.989542 + 0.144244i \(0.0460750\pi\)
−0.989542 + 0.144244i \(0.953925\pi\)
\(212\) 9.00893 + 7.75843i 0.618736 + 0.532851i
\(213\) −6.53401 6.53401i −0.447703 0.447703i
\(214\) −13.0678 4.85142i −0.893298 0.331636i
\(215\) −1.52879 1.52879i −0.104263 0.104263i
\(216\) −6.13167 11.1085i −0.417207 0.755838i
\(217\) 14.5132 0.985217
\(218\) 0.0442085 0.0202707i 0.00299418 0.00137290i
\(219\) 4.29617 + 4.29617i 0.290308 + 0.290308i
\(220\) −0.442923 + 0.514313i −0.0298618 + 0.0346750i
\(221\) 0 0
\(222\) −0.565647 + 0.259363i −0.0379637 + 0.0174073i
\(223\) 13.3137 13.3137i 0.891553 0.891553i −0.103117 0.994669i \(-0.532882\pi\)
0.994669 + 0.103117i \(0.0328815\pi\)
\(224\) 8.18247 + 12.5218i 0.546714 + 0.836645i
\(225\) 11.2610i 0.750734i
\(226\) 2.24113 6.03672i 0.149078 0.401557i
\(227\) 5.26077 5.26077i 0.349170 0.349170i −0.510631 0.859800i \(-0.670588\pi\)
0.859800 + 0.510631i \(0.170588\pi\)
\(228\) 0.705803 + 9.46375i 0.0467430 + 0.626752i
\(229\) −3.17720 + 3.17720i −0.209955 + 0.209955i −0.804248 0.594293i \(-0.797432\pi\)
0.594293 + 0.804248i \(0.297432\pi\)
\(230\) −2.64534 + 1.21295i −0.174429 + 0.0799799i
\(231\) −3.24149 −0.213274
\(232\) −10.4509 + 5.76868i −0.686135 + 0.378733i
\(233\) 13.3205i 0.872655i 0.899788 + 0.436328i \(0.143721\pi\)
−0.899788 + 0.436328i \(0.856279\pi\)
\(234\) 0 0
\(235\) 0.932921i 0.0608571i
\(236\) −1.26731 16.9927i −0.0824946 1.10613i
\(237\) −7.23943 −0.470251
\(238\) 2.18091 + 4.75637i 0.141367 + 0.308310i
\(239\) −5.96641 + 5.96641i −0.385935 + 0.385935i −0.873235 0.487300i \(-0.837982\pi\)
0.487300 + 0.873235i \(0.337982\pi\)
\(240\) 0.643470 + 0.475614i 0.0415358 + 0.0307008i
\(241\) 10.9373 10.9373i 0.704533 0.704533i −0.260847 0.965380i \(-0.584002\pi\)
0.965380 + 0.260847i \(0.0840018\pi\)
\(242\) −11.8265 4.39058i −0.760237 0.282237i
\(243\) 16.0244i 1.02796i
\(244\) 10.9448 + 9.42562i 0.700672 + 0.603413i
\(245\) −0.00131472 + 0.00131472i −8.39945e−5 + 8.39945e-5i
\(246\) −2.90387 6.33307i −0.185144 0.403782i
\(247\) 0 0
\(248\) −4.30560 + 14.9150i −0.273406 + 0.947101i
\(249\) −5.87545 5.87545i −0.372342 0.372342i
\(250\) 1.37945 + 3.00846i 0.0872443 + 0.190272i
\(251\) −27.4775 −1.73436 −0.867182 0.497992i \(-0.834071\pi\)
−0.867182 + 0.497992i \(0.834071\pi\)
\(252\) −0.895766 12.0109i −0.0564279 0.756613i
\(253\) 8.91683 + 8.91683i 0.560597 + 0.560597i
\(254\) −2.63039 + 7.08524i −0.165045 + 0.444568i
\(255\) 0.197923 + 0.197923i 0.0123944 + 0.0123944i
\(256\) −15.2959 + 4.69419i −0.955994 + 0.293387i
\(257\) 27.8352i 1.73631i −0.496289 0.868157i \(-0.665304\pi\)
0.496289 0.868157i \(-0.334696\pi\)
\(258\) 10.3539 + 3.84386i 0.644604 + 0.239309i
\(259\) −1.36877 −0.0850511
\(260\) 0 0
\(261\) 9.61181 0.594956
\(262\) −14.8825 5.52513i −0.919446 0.341344i
\(263\) 23.8060i 1.46794i 0.679180 + 0.733972i \(0.262336\pi\)
−0.679180 + 0.733972i \(0.737664\pi\)
\(264\) 0.961648 3.33123i 0.0591854 0.205023i
\(265\) 0.989207 + 0.989207i 0.0607665 + 0.0607665i
\(266\) −7.26513 + 19.5694i −0.445453 + 1.19988i
\(267\) −3.99309 3.99309i −0.244373 0.244373i
\(268\) 5.03040 0.375166i 0.307281 0.0229169i
\(269\) −20.7119 −1.26282 −0.631412 0.775448i \(-0.717524\pi\)
−0.631412 + 0.775448i \(0.717524\pi\)
\(270\) −0.622275 1.35712i −0.0378704 0.0825920i
\(271\) −9.77210 9.77210i −0.593613 0.593613i 0.344993 0.938605i \(-0.387881\pi\)
−0.938605 + 0.344993i \(0.887881\pi\)
\(272\) −5.53506 + 0.830223i −0.335612 + 0.0503397i
\(273\) 0 0
\(274\) 2.83408 + 6.18087i 0.171213 + 0.373400i
\(275\) 5.04218 5.04218i 0.304055 0.304055i
\(276\) 9.70099 11.2646i 0.583931 0.678049i
\(277\) 12.7336i 0.765090i 0.923937 + 0.382545i \(0.124952\pi\)
−0.923937 + 0.382545i \(0.875048\pi\)
\(278\) −9.20193 3.41621i −0.551895 0.204891i
\(279\) 8.83868 8.83868i 0.529158 0.529158i
\(280\) 0.850546 + 1.54090i 0.0508299 + 0.0920865i
\(281\) 15.4454 15.4454i 0.921396 0.921396i −0.0757324 0.997128i \(-0.524129\pi\)
0.997128 + 0.0757324i \(0.0241295\pi\)
\(282\) −1.98632 4.33197i −0.118283 0.257965i
\(283\) −20.6898 −1.22988 −0.614939 0.788575i \(-0.710819\pi\)
−0.614939 + 0.788575i \(0.710819\pi\)
\(284\) 21.6810 1.61696i 1.28653 0.0959490i
\(285\) 1.11665i 0.0661445i
\(286\) 0 0
\(287\) 15.3249i 0.904603i
\(288\) 12.6091 + 2.64268i 0.742999 + 0.155721i
\(289\) 15.0421 0.884830
\(290\) −1.27678 + 0.585436i −0.0749753 + 0.0343780i
\(291\) 9.30045 9.30045i 0.545202 0.545202i
\(292\) −14.2555 + 1.06317i −0.834238 + 0.0622172i
\(293\) 16.3053 16.3053i 0.952565 0.952565i −0.0463600 0.998925i \(-0.514762\pi\)
0.998925 + 0.0463600i \(0.0147621\pi\)
\(294\) 0.00330563 0.00890407i 0.000192788 0.000519296i
\(295\) 2.00500i 0.116735i
\(296\) 0.406071 1.40666i 0.0236024 0.0817606i
\(297\) −4.57455 + 4.57455i −0.265442 + 0.265442i
\(298\) 19.4849 8.93431i 1.12873 0.517551i
\(299\) 0 0
\(300\) −6.36976 5.48559i −0.367758 0.316711i
\(301\) 17.1780 + 17.1780i 0.990126 + 0.990126i
\(302\) −0.874138 + 0.400813i −0.0503010 + 0.0230642i
\(303\) −7.79878 −0.448028
\(304\) −17.9559 13.2719i −1.02984 0.761195i
\(305\) 1.20178 + 1.20178i 0.0688135 + 0.0688135i
\(306\) 4.22488 + 1.56848i 0.241521 + 0.0896643i
\(307\) −16.3164 16.3164i −0.931228 0.931228i 0.0665547 0.997783i \(-0.478799\pi\)
−0.997783 + 0.0665547i \(0.978799\pi\)
\(308\) 4.97684 5.77900i 0.283582 0.329289i
\(309\) 9.27226i 0.527480i
\(310\) −0.635739 + 1.71243i −0.0361076 + 0.0972596i
\(311\) 8.54527 0.484558 0.242279 0.970207i \(-0.422105\pi\)
0.242279 + 0.970207i \(0.422105\pi\)
\(312\) 0 0
\(313\) 5.88378 0.332571 0.166285 0.986078i \(-0.446823\pi\)
0.166285 + 0.986078i \(0.446823\pi\)
\(314\) 2.90599 7.82761i 0.163995 0.441738i
\(315\) 1.41718i 0.0798493i
\(316\) 11.1151 12.9066i 0.625272 0.726054i
\(317\) −16.5045 16.5045i −0.926984 0.926984i 0.0705258 0.997510i \(-0.477532\pi\)
−0.997510 + 0.0705258i \(0.977532\pi\)
\(318\) −6.69949 2.48718i −0.375689 0.139474i
\(319\) 4.30374 + 4.30374i 0.240963 + 0.240963i
\(320\) −1.83589 + 0.416956i −0.102629 + 0.0233086i
\(321\) 8.37852 0.467643
\(322\) 29.7240 13.6292i 1.65646 0.759525i
\(323\) −5.52300 5.52300i −0.307308 0.307308i
\(324\) −4.57516 3.94009i −0.254175 0.218894i
\(325\) 0 0
\(326\) −20.2248 + 9.27355i −1.12015 + 0.513614i
\(327\) −0.0206706 + 0.0206706i −0.00114309 + 0.00114309i
\(328\) 15.7492 + 4.54643i 0.869605 + 0.251035i
\(329\) 10.4826i 0.577926i
\(330\) 0.141991 0.382469i 0.00781636 0.0210542i
\(331\) 10.1585 10.1585i 0.558364 0.558364i −0.370477 0.928842i \(-0.620806\pi\)
0.928842 + 0.370477i \(0.120806\pi\)
\(332\) 19.4958 1.45399i 1.06997 0.0797981i
\(333\) −0.833596 + 0.833596i −0.0456808 + 0.0456808i
\(334\) −7.20721 + 3.30468i −0.394361 + 0.180824i
\(335\) 0.593547 0.0324290
\(336\) −7.23026 5.34417i −0.394443 0.291549i
\(337\) 14.3427i 0.781297i −0.920540 0.390649i \(-0.872251\pi\)
0.920540 0.390649i \(-0.127749\pi\)
\(338\) 0 0
\(339\) 3.87048i 0.210216i
\(340\) −0.656745 + 0.0489799i −0.0356170 + 0.00265631i
\(341\) 7.91513 0.428629
\(342\) 7.49345 + 16.3425i 0.405200 + 0.883704i
\(343\) 13.1032 13.1032i 0.707505 0.707505i
\(344\) −22.7498 + 12.5574i −1.22659 + 0.677051i
\(345\) 1.23689 1.23689i 0.0665917 0.0665917i
\(346\) 2.86476 + 1.06354i 0.154010 + 0.0571762i
\(347\) 0.470309i 0.0252475i 0.999920 + 0.0126238i \(0.00401838\pi\)
−0.999920 + 0.0126238i \(0.995982\pi\)
\(348\) 4.68221 5.43689i 0.250993 0.291448i
\(349\) 19.9991 19.9991i 1.07053 1.07053i 0.0732091 0.997317i \(-0.476676\pi\)
0.997317 0.0732091i \(-0.0233240\pi\)
\(350\) −7.70686 16.8080i −0.411949 0.898423i
\(351\) 0 0
\(352\) 4.46252 + 6.82907i 0.237853 + 0.363991i
\(353\) −25.4219 25.4219i −1.35307 1.35307i −0.882202 0.470871i \(-0.843940\pi\)
−0.470871 0.882202i \(-0.656060\pi\)
\(354\) 4.26891 + 9.31011i 0.226890 + 0.494827i
\(355\) 2.55819 0.135774
\(356\) 13.2498 0.988165i 0.702238 0.0523726i
\(357\) −2.22394 2.22394i −0.117703 0.117703i
\(358\) −4.98736 + 13.4340i −0.263590 + 0.710009i
\(359\) 11.7167 + 11.7167i 0.618383 + 0.618383i 0.945117 0.326733i \(-0.105948\pi\)
−0.326733 + 0.945117i \(0.605948\pi\)
\(360\) 1.45642 + 0.420434i 0.0767601 + 0.0221588i
\(361\) 12.1597i 0.639986i
\(362\) −18.3660 6.81837i −0.965297 0.358366i
\(363\) 7.58264 0.397985
\(364\) 0 0
\(365\) −1.68203 −0.0880416
\(366\) −8.13913 3.02165i −0.425439 0.157944i
\(367\) 10.1556i 0.530118i 0.964232 + 0.265059i \(0.0853914\pi\)
−0.964232 + 0.265059i \(0.914609\pi\)
\(368\) 5.18832 + 34.5903i 0.270460 + 1.80314i
\(369\) −9.33307 9.33307i −0.485860 0.485860i
\(370\) 0.0599580 0.161503i 0.00311707 0.00839616i
\(371\) −11.1151 11.1151i −0.577067 0.577067i
\(372\) −0.693977 9.30517i −0.0359810 0.482451i
\(373\) −15.0158 −0.777489 −0.388744 0.921346i \(-0.627091\pi\)
−0.388744 + 0.921346i \(0.627091\pi\)
\(374\) 1.18942 + 2.59401i 0.0615033 + 0.134133i
\(375\) −1.40667 1.40667i −0.0726401 0.0726401i
\(376\) 10.7728 + 3.10987i 0.555567 + 0.160379i
\(377\) 0 0
\(378\) 6.99210 + 15.2491i 0.359635 + 0.784331i
\(379\) 23.5868 23.5868i 1.21157 1.21157i 0.241064 0.970509i \(-0.422504\pi\)
0.970509 0.241064i \(-0.0774965\pi\)
\(380\) −1.99078 1.71445i −0.102125 0.0879494i
\(381\) 4.54275i 0.232732i
\(382\) −5.13147 1.90505i −0.262549 0.0974711i
\(383\) −14.8033 + 14.8033i −0.756412 + 0.756412i −0.975667 0.219256i \(-0.929637\pi\)
0.219256 + 0.975667i \(0.429637\pi\)
\(384\) 7.63712 5.84498i 0.389730 0.298275i
\(385\) 0.634552 0.634552i 0.0323398 0.0323398i
\(386\) −4.84776 10.5725i −0.246745 0.538128i
\(387\) 20.9233 1.06359
\(388\) 2.30157 + 30.8605i 0.116844 + 1.56671i
\(389\) 9.60410i 0.486947i 0.969908 + 0.243474i \(0.0782870\pi\)
−0.969908 + 0.243474i \(0.921713\pi\)
\(390\) 0 0
\(391\) 12.2354i 0.618772i
\(392\) 0.0107991 + 0.0195643i 0.000545436 + 0.000988145i
\(393\) 9.54203 0.481332
\(394\) 15.9156 7.29770i 0.801817 0.367653i
\(395\) 1.41718 1.41718i 0.0713063 0.0713063i
\(396\) −0.488529 6.55043i −0.0245495 0.329172i
\(397\) −1.82627 + 1.82627i −0.0916580 + 0.0916580i −0.751449 0.659791i \(-0.770645\pi\)
0.659791 + 0.751449i \(0.270645\pi\)
\(398\) −1.19800 + 3.22694i −0.0600503 + 0.161752i
\(399\) 12.5470i 0.628138i
\(400\) 19.5597 2.93383i 0.977984 0.146691i
\(401\) −19.1281 + 19.1281i −0.955211 + 0.955211i −0.999039 0.0438280i \(-0.986045\pi\)
0.0438280 + 0.999039i \(0.486045\pi\)
\(402\) −2.75611 + 1.26374i −0.137462 + 0.0630298i
\(403\) 0 0
\(404\) 11.9739 13.9038i 0.595723 0.691742i
\(405\) −0.502366 0.502366i −0.0249628 0.0249628i
\(406\) 14.3464 6.57817i 0.712000 0.326469i
\(407\) −0.746494 −0.0370023
\(408\) 2.94528 1.62574i 0.145813 0.0804859i
\(409\) 3.39034 + 3.39034i 0.167642 + 0.167642i 0.785942 0.618300i \(-0.212178\pi\)
−0.618300 + 0.785942i \(0.712178\pi\)
\(410\) 1.80822 + 0.671299i 0.0893014 + 0.0331531i
\(411\) −2.88999 2.88999i −0.142553 0.142553i
\(412\) 16.5308 + 14.2362i 0.814414 + 0.701368i
\(413\) 22.5289i 1.10857i
\(414\) 9.80195 26.4026i 0.481740 1.29762i
\(415\) 2.30035 0.112920
\(416\) 0 0
\(417\) 5.89987 0.288918
\(418\) −3.96223 + 10.6727i −0.193799 + 0.522018i
\(419\) 5.60503i 0.273824i 0.990583 + 0.136912i \(0.0437177\pi\)
−0.990583 + 0.136912i \(0.956282\pi\)
\(420\) −0.801626 0.690355i −0.0391154 0.0336859i
\(421\) 3.55354 + 3.55354i 0.173189 + 0.173189i 0.788379 0.615190i \(-0.210921\pi\)
−0.615190 + 0.788379i \(0.710921\pi\)
\(422\) 5.55579 + 2.06258i 0.270451 + 0.100405i
\(423\) −6.38405 6.38405i −0.310403 0.310403i
\(424\) 14.7203 8.12531i 0.714881 0.394600i
\(425\) 6.91873 0.335607
\(426\) −11.8788 + 5.44672i −0.575530 + 0.263895i
\(427\) −13.5036 13.5036i −0.653484 0.653484i
\(428\) −12.8640 + 14.9374i −0.621805 + 0.722027i
\(429\) 0 0
\(430\) −2.77934 + 1.27439i −0.134032 + 0.0614567i
\(431\) −2.44497 + 2.44497i −0.117770 + 0.117770i −0.763536 0.645766i \(-0.776538\pi\)
0.645766 + 0.763536i \(0.276538\pi\)
\(432\) −17.7456 + 2.66173i −0.853788 + 0.128063i
\(433\) 5.47262i 0.262997i −0.991316 0.131499i \(-0.958021\pi\)
0.991316 0.131499i \(-0.0419789\pi\)
\(434\) 7.14339 19.2415i 0.342894 0.923622i
\(435\) 0.596987 0.596987i 0.0286233 0.0286233i
\(436\) −0.00511532 0.0685887i −0.000244980 0.00328480i
\(437\) −34.5150 + 34.5150i −1.65107 + 1.65107i
\(438\) 7.81043 3.58127i 0.373197 0.171120i
\(439\) −30.5063 −1.45599 −0.727994 0.685584i \(-0.759547\pi\)
−0.727994 + 0.685584i \(0.759547\pi\)
\(440\) 0.463868 + 0.840371i 0.0221140 + 0.0400631i
\(441\) 0.0179935i 0.000856833i
\(442\) 0 0
\(443\) 12.8994i 0.612869i −0.951892 0.306434i \(-0.900864\pi\)
0.951892 0.306434i \(-0.0991360\pi\)
\(444\) 0.0654505 + 0.877592i 0.00310614 + 0.0416487i
\(445\) 1.56337 0.0741108
\(446\) −11.0983 24.2043i −0.525518 1.14611i
\(447\) −9.11058 + 9.11058i −0.430916 + 0.430916i
\(448\) 20.6287 4.68507i 0.974616 0.221349i
\(449\) −6.97915 + 6.97915i −0.329367 + 0.329367i −0.852346 0.522979i \(-0.824821\pi\)
0.522979 + 0.852346i \(0.324821\pi\)
\(450\) −14.9298 5.54268i −0.703798 0.261284i
\(451\) 8.35786i 0.393556i
\(452\) −6.90038 5.94256i −0.324567 0.279515i
\(453\) 0.408721 0.408721i 0.0192034 0.0192034i
\(454\) −4.38536 9.56407i −0.205815 0.448864i
\(455\) 0 0
\(456\) 12.8944 + 3.72231i 0.603836 + 0.174313i
\(457\) −7.34129 7.34129i −0.343411 0.343411i 0.514237 0.857648i \(-0.328075\pi\)
−0.857648 + 0.514237i \(0.828075\pi\)
\(458\) 2.64850 + 5.77614i 0.123756 + 0.269901i
\(459\) −6.27706 −0.292988
\(460\) 0.306091 + 4.10421i 0.0142715 + 0.191360i
\(461\) 20.3185 + 20.3185i 0.946329 + 0.946329i 0.998631 0.0523023i \(-0.0166559\pi\)
−0.0523023 + 0.998631i \(0.516656\pi\)
\(462\) −1.59546 + 4.29756i −0.0742277 + 0.199941i
\(463\) −5.89061 5.89061i −0.273760 0.273760i 0.556852 0.830612i \(-0.312009\pi\)
−0.830612 + 0.556852i \(0.812009\pi\)
\(464\) 2.50416 + 16.6951i 0.116253 + 0.775051i
\(465\) 1.09794i 0.0509156i
\(466\) 17.6603 + 6.55637i 0.818097 + 0.303718i
\(467\) 3.30334 0.152860 0.0764301 0.997075i \(-0.475648\pi\)
0.0764301 + 0.997075i \(0.475648\pi\)
\(468\) 0 0
\(469\) −6.66931 −0.307960
\(470\) 1.23686 + 0.459185i 0.0570523 + 0.0211806i
\(471\) 5.01872i 0.231250i
\(472\) −23.1526 6.68361i −1.06568 0.307638i
\(473\) 9.36849 + 9.36849i 0.430764 + 0.430764i
\(474\) −3.56325 + 9.59801i −0.163666 + 0.440851i
\(475\) 19.5171 + 19.5171i 0.895505 + 0.895505i
\(476\) 7.37943 0.550355i 0.338235 0.0252255i
\(477\) −13.5384 −0.619882
\(478\) 4.97358 + 10.8469i 0.227486 + 0.496127i
\(479\) 19.6666 + 19.6666i 0.898589 + 0.898589i 0.995311 0.0967224i \(-0.0308359\pi\)
−0.0967224 + 0.995311i \(0.530836\pi\)
\(480\) 0.947285 0.619013i 0.0432374 0.0282539i
\(481\) 0 0
\(482\) −9.11729 19.8840i −0.415281 0.905691i
\(483\) −13.8981 + 13.8981i −0.632385 + 0.632385i
\(484\) −11.6420 + 13.5185i −0.529184 + 0.614478i
\(485\) 3.64130i 0.165343i
\(486\) 21.2451 + 7.88721i 0.963695 + 0.357771i
\(487\) 7.29545 7.29545i 0.330588 0.330588i −0.522222 0.852810i \(-0.674897\pi\)
0.852810 + 0.522222i \(0.174897\pi\)
\(488\) 17.8835 9.87134i 0.809549 0.446855i
\(489\) 9.45652 9.45652i 0.427638 0.427638i
\(490\) 0.00109595 + 0.00239016i 4.95099e−5 + 0.000107977i
\(491\) 13.6249 0.614881 0.307441 0.951567i \(-0.400527\pi\)
0.307441 + 0.951567i \(0.400527\pi\)
\(492\) −9.82565 + 0.732794i −0.442975 + 0.0330369i
\(493\) 5.90546i 0.265969i
\(494\) 0 0
\(495\) 0.772899i 0.0347392i
\(496\) 17.6550 + 13.0495i 0.792732 + 0.585940i
\(497\) −28.7447 −1.28938
\(498\) −10.6816 + 4.89775i −0.478652 + 0.219474i
\(499\) 11.2288 11.2288i 0.502670 0.502670i −0.409597 0.912267i \(-0.634331\pi\)
0.912267 + 0.409597i \(0.134331\pi\)
\(500\) 4.66758 0.348107i 0.208741 0.0155678i
\(501\) 3.36988 3.36988i 0.150555 0.150555i
\(502\) −13.5244 + 36.4296i −0.603625 + 1.62593i
\(503\) 22.8605i 1.01930i 0.860382 + 0.509650i \(0.170225\pi\)
−0.860382 + 0.509650i \(0.829775\pi\)
\(504\) −16.3649 4.72415i −0.728948 0.210430i
\(505\) 1.52668 1.52668i 0.0679365 0.0679365i
\(506\) 16.2108 7.43304i 0.720657 0.330439i
\(507\) 0 0
\(508\) 8.09892 + 6.97473i 0.359331 + 0.309454i
\(509\) 6.97468 + 6.97468i 0.309147 + 0.309147i 0.844579 0.535431i \(-0.179851\pi\)
−0.535431 + 0.844579i \(0.679851\pi\)
\(510\) 0.359824 0.164988i 0.0159333 0.00730580i
\(511\) 18.8999 0.836083
\(512\) −1.30512 + 22.5897i −0.0576787 + 0.998335i
\(513\) −17.7070 17.7070i −0.781783 0.781783i
\(514\) −36.9039 13.7005i −1.62776 0.604305i
\(515\) 1.81513 + 1.81513i 0.0799842 + 0.0799842i
\(516\) 10.1924 11.8352i 0.448694 0.521015i
\(517\) 5.71698i 0.251433i
\(518\) −0.673709 + 1.81471i −0.0296011 + 0.0797338i
\(519\) −1.83676 −0.0806246
\(520\) 0 0
\(521\) 15.9204 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(522\) 4.73094 12.7433i 0.207068 0.557760i
\(523\) 2.15778i 0.0943532i −0.998887 0.0471766i \(-0.984978\pi\)
0.998887 0.0471766i \(-0.0150224\pi\)
\(524\) −14.6504 + 17.0118i −0.640006 + 0.743162i
\(525\) 7.85891 + 7.85891i 0.342991 + 0.342991i
\(526\) 31.5620 + 11.7174i 1.37617 + 0.510901i
\(527\) 5.43046 + 5.43046i 0.236554 + 0.236554i
\(528\) −3.94321 2.91459i −0.171606 0.126841i
\(529\) 53.4630 2.32448
\(530\) 1.79838 0.824599i 0.0781165 0.0358183i
\(531\) 13.7203 + 13.7203i 0.595412 + 0.595412i
\(532\) 22.3692 + 19.2642i 0.969826 + 0.835207i
\(533\) 0 0
\(534\) −7.25943 + 3.32863i −0.314146 + 0.144044i
\(535\) −1.64017 + 1.64017i −0.0709109 + 0.0709109i
\(536\) 1.97857 6.85395i 0.0854614 0.296045i
\(537\) 8.61329i 0.371691i
\(538\) −10.1944 + 27.4597i −0.439512 + 1.18387i
\(539\) 0.00805668 0.00805668i 0.000347026 0.000347026i
\(540\) −2.10556 + 0.157032i −0.0906087 + 0.00675757i
\(541\) 8.15947 8.15947i 0.350803 0.350803i −0.509605 0.860408i \(-0.670209\pi\)
0.860408 + 0.509605i \(0.170209\pi\)
\(542\) −17.7657 + 8.14598i −0.763100 + 0.349900i
\(543\) 11.7755 0.505334
\(544\) −1.62365 + 7.74700i −0.0696135 + 0.332150i
\(545\) 0.00809292i 0.000346663i
\(546\) 0 0
\(547\) 8.11076i 0.346791i 0.984852 + 0.173396i \(0.0554739\pi\)
−0.984852 + 0.173396i \(0.944526\pi\)
\(548\) 9.58951 0.715183i 0.409644 0.0305511i
\(549\) −16.4477 −0.701970
\(550\) −4.20314 9.16667i −0.179222 0.390868i
\(551\) −16.6588 + 16.6588i −0.709687 + 0.709687i
\(552\) −10.1597 18.4060i −0.432427 0.783411i
\(553\) −15.9240 + 15.9240i −0.677157 + 0.677157i
\(554\) 16.8822 + 6.26750i 0.717256 + 0.266281i
\(555\) 0.103549i 0.00439540i
\(556\) −9.05840 + 10.5184i −0.384162 + 0.446081i
\(557\) −2.42571 + 2.42571i −0.102781 + 0.102781i −0.756627 0.653846i \(-0.773154\pi\)
0.653846 + 0.756627i \(0.273154\pi\)
\(558\) −7.36789 16.0687i −0.311908 0.680243i
\(559\) 0 0
\(560\) 2.46156 0.369219i 0.104020 0.0156023i
\(561\) −1.21288 1.21288i −0.0512080 0.0512080i
\(562\) −12.8752 28.0797i −0.543109 1.18447i
\(563\) 6.24260 0.263094 0.131547 0.991310i \(-0.458006\pi\)
0.131547 + 0.991310i \(0.458006\pi\)
\(564\) −6.72099 + 0.501249i −0.283005 + 0.0211064i
\(565\) −0.757683 0.757683i −0.0318759 0.0318759i
\(566\) −10.1835 + 27.4304i −0.428045 + 1.15299i
\(567\) 5.64476 + 5.64476i 0.237058 + 0.237058i
\(568\) 8.52765 29.5405i 0.357812 1.23949i
\(569\) 32.2126i 1.35042i 0.737625 + 0.675211i \(0.235947\pi\)
−0.737625 + 0.675211i \(0.764053\pi\)
\(570\) 1.48045 + 0.549615i 0.0620091 + 0.0230208i
\(571\) −41.4189 −1.73333 −0.866663 0.498894i \(-0.833740\pi\)
−0.866663 + 0.498894i \(0.833740\pi\)
\(572\) 0 0
\(573\) 3.29007 0.137445
\(574\) −20.3178 7.54295i −0.848047 0.314837i
\(575\) 43.2373i 1.80312i
\(576\) 9.70988 15.4164i 0.404578 0.642350i
\(577\) 12.3408 + 12.3408i 0.513753 + 0.513753i 0.915674 0.401921i \(-0.131657\pi\)
−0.401921 + 0.915674i \(0.631657\pi\)
\(578\) 7.40375 19.9428i 0.307955 0.829511i
\(579\) 4.94341 + 4.94341i 0.205441 + 0.205441i
\(580\) 0.147736 + 1.98091i 0.00613439 + 0.0822528i
\(581\) −25.8475 −1.07234
\(582\) −7.75282 16.9082i −0.321365 0.700867i
\(583\) −6.06191 6.06191i −0.251058 0.251058i
\(584\) −5.60701 + 19.4231i −0.232020 + 0.803736i
\(585\) 0 0
\(586\) −13.5920 29.6430i −0.561481 1.22454i
\(587\) −16.3380 + 16.3380i −0.674340 + 0.674340i −0.958713 0.284374i \(-0.908214\pi\)
0.284374 + 0.958713i \(0.408214\pi\)
\(588\) −0.0101780 0.00876519i −0.000419732 0.000361470i
\(589\) 30.6376i 1.26240i
\(590\) −2.65822 0.986862i −0.109437 0.0406285i
\(591\) −7.44168 + 7.44168i −0.306110 + 0.306110i
\(592\) −1.66508 1.23073i −0.0684344 0.0505826i
\(593\) 11.0244 11.0244i 0.452717 0.452717i −0.443538 0.896255i \(-0.646277\pi\)
0.896255 + 0.443538i \(0.146277\pi\)
\(594\) 3.81333 + 8.31652i 0.156463 + 0.341231i
\(595\) 0.870713 0.0356958
\(596\) −2.25458 30.2305i −0.0923513 1.23829i
\(597\) 2.06898i 0.0846775i
\(598\) 0 0
\(599\) 10.6090i 0.433471i 0.976230 + 0.216735i \(0.0695409\pi\)
−0.976230 + 0.216735i \(0.930459\pi\)
\(600\) −10.4080 + 5.74499i −0.424904 + 0.234538i
\(601\) 28.2503 1.15235 0.576177 0.817325i \(-0.304544\pi\)
0.576177 + 0.817325i \(0.304544\pi\)
\(602\) 31.2296 14.3195i 1.27283 0.583621i
\(603\) −4.06169 + 4.06169i −0.165405 + 0.165405i
\(604\) 0.101146 + 1.35621i 0.00411556 + 0.0551834i
\(605\) −1.48437 + 1.48437i −0.0603483 + 0.0603483i
\(606\) −3.83856 + 10.3396i −0.155931 + 0.420017i
\(607\) 10.2708i 0.416878i −0.978035 0.208439i \(-0.933162\pi\)
0.978035 0.208439i \(-0.0668383\pi\)
\(608\) −26.4337 + 17.2734i −1.07203 + 0.700528i
\(609\) −6.70796 + 6.70796i −0.271820 + 0.271820i
\(610\) 2.18483 1.00180i 0.0884610 0.0405615i
\(611\) 0 0
\(612\) 4.15898 4.82933i 0.168117 0.195214i
\(613\) 25.0553 + 25.0553i 1.01198 + 1.01198i 0.999927 + 0.0120477i \(0.00383501\pi\)
0.0120477 + 0.999927i \(0.496165\pi\)
\(614\) −29.6632 + 13.6013i −1.19711 + 0.548905i
\(615\) −1.15935 −0.0467495
\(616\) −5.21218 9.44271i −0.210005 0.380458i
\(617\) −29.6355 29.6355i −1.19308 1.19308i −0.976198 0.216881i \(-0.930412\pi\)
−0.216881 0.976198i \(-0.569588\pi\)
\(618\) −12.2931 4.56381i −0.494502 0.183584i
\(619\) 12.0880 + 12.0880i 0.485858 + 0.485858i 0.906996 0.421138i \(-0.138369\pi\)
−0.421138 + 0.906996i \(0.638369\pi\)
\(620\) 1.95743 + 1.68572i 0.0786122 + 0.0677002i
\(621\) 39.2273i 1.57414i
\(622\) 4.20599 11.3293i 0.168645 0.454263i
\(623\) −17.5666 −0.703790
\(624\) 0 0
\(625\) −24.1724 −0.966894
\(626\) 2.89600 7.80069i 0.115747 0.311778i
\(627\) 6.84286i 0.273278i
\(628\) −8.94749 7.70552i −0.357044 0.307484i
\(629\) −0.512159 0.512159i −0.0204211 0.0204211i
\(630\) −1.87890 0.697540i −0.0748572 0.0277907i
\(631\) −8.52621 8.52621i −0.339423 0.339423i 0.516727 0.856150i \(-0.327150\pi\)
−0.856150 + 0.516727i \(0.827150\pi\)
\(632\) −11.6407 21.0890i −0.463042 0.838875i
\(633\) −3.56213 −0.141582
\(634\) −30.0051 + 13.7581i −1.19166 + 0.546403i
\(635\) 0.889285 + 0.889285i 0.0352902 + 0.0352902i
\(636\) −6.59499 + 7.65798i −0.261509 + 0.303659i
\(637\) 0 0
\(638\) 7.82419 3.58758i 0.309763 0.142034i
\(639\) −17.5059 + 17.5059i −0.692521 + 0.692521i
\(640\) −0.350828 + 2.63925i −0.0138677 + 0.104325i
\(641\) 2.09731i 0.0828386i −0.999142 0.0414193i \(-0.986812\pi\)
0.999142 0.0414193i \(-0.0131880\pi\)
\(642\) 4.12391 11.1082i 0.162758 0.438406i
\(643\) −29.9695 + 29.9695i −1.18188 + 1.18188i −0.202627 + 0.979256i \(0.564948\pi\)
−0.979256 + 0.202627i \(0.935052\pi\)
\(644\) −3.43934 46.1163i −0.135529 1.81724i
\(645\) 1.29954 1.29954i 0.0511692 0.0511692i
\(646\) −10.0408 + 4.60395i −0.395050 + 0.181140i
\(647\) 43.0799 1.69365 0.846824 0.531874i \(-0.178512\pi\)
0.846824 + 0.531874i \(0.178512\pi\)
\(648\) −7.47566 + 4.12641i −0.293672 + 0.162101i
\(649\) 12.2867i 0.482296i
\(650\) 0 0
\(651\) 12.3368i 0.483518i
\(652\) 2.34019 + 31.3784i 0.0916490 + 1.22887i
\(653\) −11.1212 −0.435206 −0.217603 0.976037i \(-0.569824\pi\)
−0.217603 + 0.976037i \(0.569824\pi\)
\(654\) 0.0172309 + 0.0375791i 0.000673782 + 0.00146946i
\(655\) −1.86794 + 1.86794i −0.0729865 + 0.0729865i
\(656\) 13.7794 18.6425i 0.537996 0.727867i
\(657\) 11.5103 11.5103i 0.449058 0.449058i
\(658\) −13.8978 5.15956i −0.541795 0.201141i
\(659\) 15.2432i 0.593792i −0.954910 0.296896i \(-0.904048\pi\)
0.954910 0.296896i \(-0.0959515\pi\)
\(660\) −0.437188 0.376503i −0.0170175 0.0146554i
\(661\) −7.30232 + 7.30232i −0.284027 + 0.284027i −0.834713 0.550685i \(-0.814366\pi\)
0.550685 + 0.834713i \(0.314366\pi\)
\(662\) −8.46813 18.4682i −0.329123 0.717788i
\(663\) 0 0
\(664\) 7.66815 26.5631i 0.297582 1.03085i
\(665\) 2.45620 + 2.45620i 0.0952474 + 0.0952474i
\(666\) 0.694883 + 1.51548i 0.0269262 + 0.0587235i
\(667\) 36.9051 1.42897
\(668\) 0.833940 + 11.1819i 0.0322661 + 0.432639i
\(669\) 11.3172 + 11.3172i 0.437549 + 0.437549i
\(670\) 0.292145 0.786923i 0.0112865 0.0304015i
\(671\) −7.36454 7.36454i −0.284305 0.284305i
\(672\) −10.6440 + 6.95545i −0.410602 + 0.268312i
\(673\) 29.7947i 1.14850i −0.818680 0.574251i \(-0.805293\pi\)
0.818680 0.574251i \(-0.194707\pi\)
\(674\) −19.0155 7.05950i −0.732451 0.271922i
\(675\) 22.1818 0.853776
\(676\) 0 0
\(677\) −29.1021 −1.11849 −0.559243 0.829004i \(-0.688908\pi\)
−0.559243 + 0.829004i \(0.688908\pi\)
\(678\) 5.13147 + 1.90505i 0.197073 + 0.0731632i
\(679\) 40.9149i 1.57017i
\(680\) −0.258313 + 0.894819i −0.00990586 + 0.0343147i
\(681\) 4.47188 + 4.47188i 0.171363 + 0.171363i
\(682\) 3.89584 10.4939i 0.149179 0.401831i
\(683\) −3.56874 3.56874i −0.136554 0.136554i 0.635526 0.772080i \(-0.280783\pi\)
−0.772080 + 0.635526i \(0.780783\pi\)
\(684\) 25.3552 1.89098i 0.969480 0.0723035i
\(685\) 1.13149 0.0432319
\(686\) −10.9228 23.8216i −0.417033 0.909511i
\(687\) −2.70075 2.70075i −0.103040 0.103040i
\(688\) 5.45113 + 36.3424i 0.207822 + 1.38554i
\(689\) 0 0
\(690\) −1.03106 2.24866i −0.0392519 0.0856049i
\(691\) 7.90295 7.90295i 0.300642 0.300642i −0.540623 0.841265i \(-0.681811\pi\)
0.841265 + 0.540623i \(0.181811\pi\)
\(692\) 2.82007 3.27461i 0.107203 0.124482i
\(693\) 8.68457i 0.329900i
\(694\) 0.623535 + 0.231487i 0.0236691 + 0.00878711i
\(695\) −1.15495 + 1.15495i −0.0438099 + 0.0438099i
\(696\) −4.90363 8.88371i −0.185872 0.336736i
\(697\) 5.73421 5.73421i 0.217199 0.217199i
\(698\) −16.6711 36.3583i −0.631012 1.37618i
\(699\) −11.3230 −0.428275
\(700\) −26.0773 + 1.94483i −0.985628 + 0.0735078i
\(701\) 27.1476i 1.02535i −0.858582 0.512676i \(-0.828654\pi\)
0.858582 0.512676i \(-0.171346\pi\)
\(702\) 0 0
\(703\) 2.88950i 0.108980i
\(704\) 11.2504 2.55513i 0.424016 0.0963000i
\(705\) −0.793023 −0.0298670
\(706\) −46.2170 + 21.1916i −1.73940 + 0.797557i
\(707\) −17.1544 + 17.1544i −0.645156 + 0.645156i
\(708\) 14.4445 1.07726i 0.542857 0.0404861i
\(709\) −30.0036 + 30.0036i −1.12681 + 1.12681i −0.136118 + 0.990693i \(0.543463\pi\)
−0.990693 + 0.136118i \(0.956537\pi\)
\(710\) 1.25914 3.39163i 0.0472547 0.127286i
\(711\) 19.3958i 0.727399i
\(712\) 5.21145 18.0529i 0.195307 0.676561i
\(713\) 33.9366 33.9366i 1.27094 1.27094i
\(714\) −4.04312 + 1.85387i −0.151310 + 0.0693792i
\(715\) 0 0
\(716\) 15.3560 + 13.2245i 0.573880 + 0.494221i
\(717\) −5.07171 5.07171i −0.189406 0.189406i
\(718\) 21.3009 9.76699i 0.794943 0.364501i
\(719\) 16.4313 0.612785 0.306392 0.951905i \(-0.400878\pi\)
0.306392 + 0.951905i \(0.400878\pi\)
\(720\) 1.27426 1.72398i 0.0474889 0.0642489i
\(721\) −20.3955 20.3955i −0.759567 0.759567i
\(722\) −16.1213 5.98503i −0.599974 0.222740i
\(723\) 9.29717 + 9.29717i 0.345765 + 0.345765i
\(724\) −18.0795 + 20.9936i −0.671921 + 0.780221i
\(725\) 20.8686i 0.775041i
\(726\) 3.73218 10.0530i 0.138514 0.373103i
\(727\) −32.1429 −1.19211 −0.596057 0.802942i \(-0.703267\pi\)
−0.596057 + 0.802942i \(0.703267\pi\)
\(728\) 0 0
\(729\) −4.56452 −0.169056
\(730\) −0.827898 + 2.23003i −0.0306419 + 0.0825372i
\(731\) 12.8552i 0.475466i
\(732\) −8.01218 + 9.30358i −0.296139 + 0.343870i
\(733\) −19.2047 19.2047i −0.709343 0.709343i 0.257054 0.966397i \(-0.417248\pi\)
−0.966397 + 0.257054i \(0.917248\pi\)
\(734\) 13.4643 + 4.99860i 0.496975 + 0.184502i
\(735\) −0.00111757 0.00111757i −4.12222e−5 4.12222e-5i
\(736\) 48.4134 + 10.1467i 1.78454 + 0.374013i
\(737\) −3.63728 −0.133981
\(738\) −16.9675 + 7.78001i −0.624582 + 0.286386i
\(739\) 16.4275 + 16.4275i 0.604297 + 0.604297i 0.941450 0.337153i \(-0.109464\pi\)
−0.337153 + 0.941450i \(0.609464\pi\)
\(740\) −0.184609 0.158984i −0.00678637 0.00584438i
\(741\) 0 0
\(742\) −20.2072 + 9.26549i −0.741830 + 0.340147i
\(743\) −27.2871 + 27.2871i −1.00107 + 1.00107i −0.00106799 + 0.999999i \(0.500340\pi\)
−0.999999 + 0.00106799i \(0.999660\pi\)
\(744\) −12.6783 3.65994i −0.464811 0.134180i
\(745\) 3.56696i 0.130683i
\(746\) −7.39079 + 19.9079i −0.270596 + 0.728880i
\(747\) −15.7415 + 15.7415i −0.575950 + 0.575950i
\(748\) 4.02456 0.300151i 0.147153 0.0109746i
\(749\) 18.4296 18.4296i 0.673402 0.673402i
\(750\) −2.55732 + 1.17259i −0.0933803 + 0.0428171i
\(751\) 1.29395 0.0472168 0.0236084 0.999721i \(-0.492485\pi\)
0.0236084 + 0.999721i \(0.492485\pi\)
\(752\) 9.42546 12.7519i 0.343711 0.465015i
\(753\) 23.3570i 0.851178i
\(754\) 0 0
\(755\) 0.160022i 0.00582380i
\(756\) 23.6588 1.76446i 0.860462 0.0641730i
\(757\) −22.5600 −0.819958 −0.409979 0.912095i \(-0.634464\pi\)
−0.409979 + 0.912095i \(0.634464\pi\)
\(758\) −19.6619 42.8808i −0.714152 1.55750i
\(759\) −7.57969 + 7.57969i −0.275125 + 0.275125i
\(760\) −3.25288 + 1.79552i −0.117994 + 0.0651305i
\(761\) −6.15099 + 6.15099i −0.222973 + 0.222973i −0.809749 0.586776i \(-0.800397\pi\)
0.586776 + 0.809749i \(0.300397\pi\)
\(762\) −6.02276 2.23594i −0.218182 0.0809997i
\(763\) 0.0909349i 0.00329207i
\(764\) −5.05143 + 5.86562i −0.182754 + 0.212211i
\(765\) 0.530275 0.530275i 0.0191721 0.0191721i
\(766\) 12.3399 + 26.9123i 0.445860 + 0.972381i
\(767\) 0 0
\(768\) −3.99026 13.0022i −0.143986 0.469175i
\(769\) 6.84481 + 6.84481i 0.246830 + 0.246830i 0.819668 0.572838i \(-0.194158\pi\)
−0.572838 + 0.819668i \(0.694158\pi\)
\(770\) −0.528960 1.15361i −0.0190624 0.0415734i
\(771\) 23.6611 0.852135
\(772\) −16.4031 + 1.22334i −0.590361 + 0.0440289i
\(773\) −13.5763 13.5763i −0.488306 0.488306i 0.419465 0.907771i \(-0.362218\pi\)
−0.907771 + 0.419465i \(0.862218\pi\)
\(774\) 10.2984 27.7400i 0.370170 0.997093i
\(775\) −19.1900 19.1900i −0.689327 0.689327i
\(776\) 42.0477 + 12.1382i 1.50942 + 0.435735i
\(777\) 1.16351i 0.0417408i
\(778\) 12.7331 + 4.72715i 0.456504 + 0.169477i
\(779\) 32.3513 1.15911
\(780\) 0 0
\(781\) −15.6767 −0.560955
\(782\) 16.2217 + 6.02228i 0.580086 + 0.215356i
\(783\) 18.9332i 0.676617i
\(784\) 0.0312536 0.00468784i 0.00111620 0.000167423i
\(785\) −0.982461 0.982461i −0.0350655 0.0350655i
\(786\) 4.69660 12.6508i 0.167522 0.451239i
\(787\) 21.1389 + 21.1389i 0.753520 + 0.753520i 0.975134 0.221614i \(-0.0711325\pi\)
−0.221614 + 0.975134i \(0.571133\pi\)
\(788\) −1.84158 24.6928i −0.0656037 0.879645i
\(789\) −20.2362 −0.720426
\(790\) −1.18136 2.57644i −0.0420309 0.0916656i
\(791\) 8.51359 + 8.51359i 0.302709 + 0.302709i
\(792\) −8.92500 2.57644i −0.317136 0.0915498i
\(793\) 0 0
\(794\) 1.52237 + 3.32016i 0.0540270 + 0.117828i
\(795\) −0.840869 + 0.840869i −0.0298225 + 0.0298225i
\(796\) 3.68862 + 3.17661i 0.130740 + 0.112592i
\(797\) 37.2463i 1.31933i 0.751559 + 0.659665i \(0.229302\pi\)
−0.751559 + 0.659665i \(0.770698\pi\)
\(798\) −16.6348 6.17567i −0.588867 0.218616i
\(799\) 3.92234 3.92234i 0.138762 0.138762i
\(800\) 5.73763 27.3762i 0.202856 0.967895i
\(801\) −10.6983 + 10.6983i −0.378004 + 0.378004i
\(802\) 15.9451 + 34.7748i 0.563041 + 1.22794i
\(803\) 10.3076 0.363746
\(804\) 0.318907 + 4.27606i 0.0112470 + 0.150805i
\(805\) 5.44136i 0.191783i
\(806\) 0 0
\(807\) 17.6060i 0.619759i
\(808\) −12.5401 22.7184i −0.441160 0.799232i
\(809\) 41.8180 1.47024 0.735121 0.677936i \(-0.237125\pi\)
0.735121 + 0.677936i \(0.237125\pi\)
\(810\) −0.913300 + 0.418770i −0.0320901 + 0.0147141i
\(811\) −4.29617 + 4.29617i −0.150859 + 0.150859i −0.778502 0.627643i \(-0.784020\pi\)
0.627643 + 0.778502i \(0.284020\pi\)
\(812\) −1.66001 22.2582i −0.0582549 0.781110i
\(813\) 8.30670 8.30670i 0.291329 0.291329i
\(814\) −0.367425 + 0.989700i −0.0128782 + 0.0346890i
\(815\) 3.70240i 0.129689i
\(816\) −0.705725 4.70503i −0.0247053 0.164709i
\(817\) −36.2632 + 36.2632i −1.26869 + 1.26869i
\(818\) 6.16364 2.82618i 0.215506 0.0988149i
\(819\) 0 0
\(820\) 1.78001 2.06691i 0.0621607 0.0721798i
\(821\) −13.3510 13.3510i −0.465954 0.465954i 0.434647 0.900601i \(-0.356873\pi\)
−0.900601 + 0.434647i \(0.856873\pi\)
\(822\) −5.25400 + 2.40909i −0.183254 + 0.0840266i
\(823\) −13.6087 −0.474371 −0.237185 0.971464i \(-0.576225\pi\)
−0.237185 + 0.971464i \(0.576225\pi\)
\(824\) 27.0108 14.9094i 0.940966 0.519394i
\(825\) 4.28607 + 4.28607i 0.149222 + 0.149222i
\(826\) 29.8687 + 11.0887i 1.03927 + 0.385826i
\(827\) −17.0815 17.0815i −0.593982 0.593982i 0.344723 0.938705i \(-0.387973\pi\)
−0.938705 + 0.344723i \(0.887973\pi\)
\(828\) −30.1800 25.9908i −1.04883 0.903243i
\(829\) 27.4835i 0.954541i 0.878757 + 0.477270i \(0.158374\pi\)
−0.878757 + 0.477270i \(0.841626\pi\)
\(830\) 1.13223 3.04980i 0.0393004 0.105860i
\(831\) −10.8241 −0.375485
\(832\) 0 0
\(833\) 0.0110551 0.000383038
\(834\) 2.90392 7.82203i 0.100555 0.270855i
\(835\) 1.31937i 0.0456587i
\(836\) 12.1996 + 10.5062i 0.421932 + 0.363365i
\(837\) 17.4103 + 17.4103i 0.601788 + 0.601788i
\(838\) 7.43113 + 2.75880i 0.256704 + 0.0953012i
\(839\) 28.2374 + 28.2374i 0.974865 + 0.974865i 0.999692 0.0248272i \(-0.00790354\pi\)
−0.0248272 + 0.999692i \(0.507904\pi\)
\(840\) −1.30983 + 0.723001i −0.0451935 + 0.0249459i
\(841\) −11.1876 −0.385781
\(842\) 6.46033 2.96222i 0.222638 0.102085i
\(843\) 13.1293 + 13.1293i 0.452196 + 0.452196i
\(844\) 5.46913 6.35064i 0.188255 0.218598i
\(845\) 0 0
\(846\) −11.6062 + 5.32172i −0.399029 + 0.182964i
\(847\) 16.6789 16.6789i 0.573095 0.573095i
\(848\) −3.52716 23.5154i −0.121123 0.807523i
\(849\) 17.5872i 0.603590i
\(850\) 3.40540 9.17283i 0.116804 0.314625i
\(851\) −3.20064 + 3.20064i −0.109717 + 0.109717i
\(852\) 1.37449 + 18.4298i 0.0470891 + 0.631394i
\(853\) −6.78242 + 6.78242i −0.232226 + 0.232226i −0.813621 0.581395i \(-0.802507\pi\)
0.581395 + 0.813621i \(0.302507\pi\)
\(854\) −24.5495 + 11.2565i −0.840066 + 0.385191i
\(855\) 2.99171 0.102314
\(856\) 13.4723 + 24.4073i 0.460474 + 0.834223i
\(857\) 25.7579i 0.879872i 0.898029 + 0.439936i \(0.144999\pi\)
−0.898029 + 0.439936i \(0.855001\pi\)
\(858\) 0 0
\(859\) 51.8251i 1.76825i 0.467252 + 0.884124i \(0.345244\pi\)
−0.467252 + 0.884124i \(0.654756\pi\)
\(860\) 0.321595 + 4.31210i 0.0109663 + 0.147041i
\(861\) 13.0269 0.443954
\(862\) 2.03812 + 4.44495i 0.0694186 + 0.151396i
\(863\) 35.1233 35.1233i 1.19561 1.19561i 0.220144 0.975467i \(-0.429347\pi\)
0.975467 0.220144i \(-0.0706527\pi\)
\(864\) −5.20550 + 24.8372i −0.177095 + 0.844980i
\(865\) 0.359562 0.359562i 0.0122255 0.0122255i
\(866\) −7.25558 2.69363i −0.246555 0.0915332i
\(867\) 12.7864i 0.434250i
\(868\) −21.9943 18.9414i −0.746537 0.642912i
\(869\) −8.68457 + 8.68457i −0.294604 + 0.294604i
\(870\) −0.497646 1.08532i −0.0168718 0.0367958i
\(871\) 0 0
\(872\) −0.0934525 0.0269775i −0.00316470 0.000913575i
\(873\) −24.9177 24.9177i −0.843335 0.843335i
\(874\) 28.7715 + 62.7481i 0.973212 + 2.12249i
\(875\) −6.18828 −0.209202
\(876\) −0.903738 12.1178i −0.0305345 0.409421i
\(877\) 26.2620 + 26.2620i 0.886805 + 0.886805i 0.994215 0.107410i \(-0.0342557\pi\)
−0.107410 + 0.994215i \(0.534256\pi\)
\(878\) −15.0152 + 40.4452i −0.506740 + 1.36496i
\(879\) 13.8602 + 13.8602i 0.467493 + 0.467493i
\(880\) 1.34248 0.201363i 0.0452549 0.00678795i
\(881\) 1.99779i 0.0673074i 0.999434 + 0.0336537i \(0.0107143\pi\)
−0.999434 + 0.0336537i \(0.989286\pi\)
\(882\) −0.0238557 0.00885641i −0.000803264 0.000298211i
\(883\) −16.1625 −0.543913 −0.271956 0.962310i \(-0.587671\pi\)
−0.271956 + 0.962310i \(0.587671\pi\)
\(884\) 0 0
\(885\) 1.70433 0.0572906
\(886\) −17.1020 6.34909i −0.574552 0.213302i
\(887\) 17.6060i 0.591150i −0.955319 0.295575i \(-0.904489\pi\)
0.955319 0.295575i \(-0.0955113\pi\)
\(888\) 1.19572 + 0.345177i 0.0401259 + 0.0115834i
\(889\) −9.99232 9.99232i −0.335132 0.335132i
\(890\) 0.769492 2.07271i 0.0257934 0.0694774i
\(891\) 3.07852 + 3.07852i 0.103134 + 0.103134i
\(892\) −37.5526 + 2.80066i −1.25735 + 0.0937730i
\(893\) 22.1291 0.740522
\(894\) 7.59454 + 16.5630i 0.254000 + 0.553950i
\(895\) 1.68613 + 1.68613i 0.0563611 + 0.0563611i
\(896\) 3.94203 29.6555i 0.131694 0.990721i
\(897\) 0 0
\(898\) 5.81779 + 12.6881i 0.194142 + 0.423407i
\(899\) 16.3796 16.3796i 0.546291 0.546291i
\(900\) −14.6969 + 17.0658i −0.489898 + 0.568860i
\(901\) 8.31797i 0.277112i
\(902\) −11.0808 4.11375i −0.368951 0.136973i
\(903\) −14.6021 + 14.6021i −0.485926 + 0.485926i
\(904\) −11.2750 + 6.22358i −0.375001 + 0.206993i
\(905\) −2.30516 + 2.30516i −0.0766261 + 0.0766261i
\(906\) −0.340708 0.743054i −0.0113193 0.0246863i
\(907\) 29.4107 0.976567 0.488283 0.872685i \(-0.337623\pi\)
0.488283 + 0.872685i \(0.337623\pi\)
\(908\) −14.8385 + 1.10665i −0.492433 + 0.0367255i
\(909\) 20.8944i 0.693024i
\(910\) 0 0
\(911\) 20.5091i 0.679495i 0.940517 + 0.339748i \(0.110342\pi\)
−0.940517 + 0.339748i \(0.889658\pi\)
\(912\) 11.2817 15.2632i 0.373574 0.505416i
\(913\) −14.0966 −0.466531
\(914\) −13.3464 + 6.11967i −0.441461 + 0.202421i
\(915\) −1.02156 + 1.02156i −0.0337718 + 0.0337718i
\(916\) 8.96158 0.668352i 0.296099 0.0220830i
\(917\) 20.9889 20.9889i 0.693113 0.693113i
\(918\) −3.08958 + 8.32211i −0.101971 + 0.274671i
\(919\) 48.9751i 1.61554i −0.589498 0.807770i \(-0.700674\pi\)
0.589498 0.807770i \(-0.299326\pi\)
\(920\) 5.59201 + 1.61428i 0.184363 + 0.0532213i
\(921\) 13.8697 13.8697i 0.457021 0.457021i
\(922\) 36.9391 16.9375i 1.21652 0.557806i
\(923\) 0 0
\(924\) 4.91240 + 4.23053i 0.161606 + 0.139174i
\(925\) 1.80986 + 1.80986i 0.0595077 + 0.0595077i
\(926\) −10.7091 + 4.91039i −0.351923 + 0.161365i
\(927\) −24.8422 −0.815923
\(928\) 23.3669 + 4.89734i 0.767056 + 0.160763i
\(929\) −4.84435 4.84435i −0.158938 0.158938i 0.623158 0.782096i \(-0.285849\pi\)
−0.782096 + 0.623158i \(0.785849\pi\)
\(930\) −1.45564 0.540405i −0.0477324 0.0177206i
\(931\) 0.0311855 + 0.0311855i 0.00102206 + 0.00102206i
\(932\) 17.3848 20.1869i 0.569459 0.661244i
\(933\) 7.26384i 0.237808i
\(934\) 1.62591 4.37956i 0.0532013 0.143303i
\(935\) 0.474867 0.0155298
\(936\) 0 0
\(937\) 11.1107 0.362970 0.181485 0.983394i \(-0.441910\pi\)
0.181485 + 0.983394i \(0.441910\pi\)
\(938\) −3.28264 + 8.84215i −0.107182 + 0.288706i
\(939\) 5.00146i 0.163217i
\(940\) 1.21757 1.41382i 0.0397128 0.0461137i
\(941\) −20.5970 20.5970i −0.671442 0.671442i 0.286606 0.958048i \(-0.407473\pi\)
−0.958048 + 0.286606i \(0.907473\pi\)
\(942\) 6.65380 + 2.47022i 0.216793 + 0.0804841i
\(943\) −35.8348 35.8348i −1.16694 1.16694i
\(944\) −20.2568 + 27.4059i −0.659304 + 0.891988i
\(945\) 2.79155 0.0908091
\(946\) 17.0319 7.80954i 0.553755 0.253910i
\(947\) −20.7444 20.7444i −0.674102 0.674102i 0.284557 0.958659i \(-0.408154\pi\)
−0.958659 + 0.284557i \(0.908154\pi\)
\(948\) 10.9712 + 9.44830i 0.356327 + 0.306867i
\(949\) 0 0
\(950\) 35.4820 16.2694i 1.15119 0.527848i
\(951\) 14.0295 14.0295i 0.454938 0.454938i
\(952\) 2.90250 10.0545i 0.0940706 0.325868i
\(953\) 13.1218i 0.425057i −0.977155 0.212529i \(-0.931830\pi\)
0.977155 0.212529i \(-0.0681699\pi\)
\(954\) −6.66363 + 17.9492i −0.215743 + 0.581128i
\(955\) −0.644063 + 0.644063i −0.0208414 + 0.0208414i
\(956\) 16.8288 1.25509i 0.544283 0.0405925i
\(957\) −3.65836 + 3.65836i −0.118258 + 0.118258i
\(958\) 35.7538 16.3940i 1.15515 0.529666i
\(959\) −12.7138 −0.410549
\(960\) −0.354431 1.56059i −0.0114392 0.0503677i
\(961\) 0.875747i 0.0282499i
\(962\) 0 0
\(963\) 22.4477i 0.723365i
\(964\) −30.8497 + 2.30076i −0.993601 + 0.0741024i
\(965\) −1.93544 −0.0623039
\(966\) 11.5854 + 25.2667i 0.372754 + 0.812943i
\(967\) 13.0476 13.0476i 0.419581 0.419581i −0.465478 0.885059i \(-0.654118\pi\)
0.885059 + 0.465478i \(0.154118\pi\)
\(968\) 12.1926 + 22.0888i 0.391884 + 0.709961i
\(969\) 4.69479 4.69479i 0.150818 0.150818i
\(970\) 4.82762 + 1.79225i 0.155006 + 0.0575457i
\(971\) 44.2841i 1.42115i 0.703624 + 0.710573i \(0.251564\pi\)
−0.703624 + 0.710573i \(0.748436\pi\)
\(972\) 20.9137 24.2845i 0.670806 0.778927i
\(973\) 12.9775 12.9775i 0.416039 0.416039i
\(974\) −6.08146 13.2631i −0.194862 0.424978i
\(975\) 0 0
\(976\) −4.28511 28.5686i −0.137163 0.914459i
\(977\) −0.175234 0.175234i −0.00560624 0.00560624i 0.704298 0.709904i \(-0.251262\pi\)
−0.709904 + 0.704298i \(0.751262\pi\)
\(978\) −7.88292 17.1919i −0.252068 0.549737i
\(979\) −9.58040 −0.306191
\(980\) 0.00370830 0.000276564i 0.000118457 8.83450e-6i
\(981\) 0.0553805 + 0.0553805i 0.00176816 + 0.00176816i
\(982\) 6.70617 18.0638i 0.214002 0.576439i
\(983\) 8.44991 + 8.44991i 0.269510 + 0.269510i 0.828903 0.559393i \(-0.188966\pi\)
−0.559393 + 0.828903i \(0.688966\pi\)
\(984\) −3.86466 + 13.3875i −0.123201 + 0.426778i
\(985\) 2.91356i 0.0928336i
\(986\) 7.82945 + 2.90667i 0.249340 + 0.0925674i
\(987\) 8.91069 0.283630
\(988\) 0 0
\(989\) 80.3360 2.55454
\(990\) −1.02471 0.380422i −0.0325673 0.0120906i
\(991\) 41.8295i 1.32876i 0.747396 + 0.664379i \(0.231304\pi\)
−0.747396 + 0.664379i \(0.768696\pi\)
\(992\) 25.9908 16.9839i 0.825209 0.539241i
\(993\) 8.63520 + 8.63520i 0.274030 + 0.274030i
\(994\) −14.1482 + 38.1096i −0.448752 + 1.20876i
\(995\) 0.405021 + 0.405021i 0.0128400 + 0.0128400i
\(996\) 1.23595 + 16.5723i 0.0391627 + 0.525112i
\(997\) 12.7618 0.404169 0.202085 0.979368i \(-0.435228\pi\)
0.202085 + 0.979368i \(0.435228\pi\)
\(998\) −9.36028 20.4139i −0.296294 0.646191i
\(999\) −1.64200 1.64200i −0.0519507 0.0519507i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.2.f.h.99.6 16
4.3 odd 2 inner 676.2.f.h.99.1 16
13.2 odd 12 676.2.l.m.19.3 16
13.3 even 3 52.2.l.b.7.4 yes 16
13.4 even 6 676.2.l.i.427.4 16
13.5 odd 4 inner 676.2.f.h.239.1 16
13.6 odd 12 52.2.l.b.15.3 yes 16
13.7 odd 12 676.2.l.k.587.2 16
13.8 odd 4 676.2.f.i.239.8 16
13.9 even 3 676.2.l.m.427.1 16
13.10 even 6 676.2.l.k.319.1 16
13.11 odd 12 676.2.l.i.19.2 16
13.12 even 2 676.2.f.i.99.3 16
39.29 odd 6 468.2.cb.f.163.1 16
39.32 even 12 468.2.cb.f.379.2 16
52.3 odd 6 52.2.l.b.7.3 16
52.7 even 12 676.2.l.k.587.1 16
52.11 even 12 676.2.l.i.19.4 16
52.15 even 12 676.2.l.m.19.1 16
52.19 even 12 52.2.l.b.15.4 yes 16
52.23 odd 6 676.2.l.k.319.2 16
52.31 even 4 inner 676.2.f.h.239.6 16
52.35 odd 6 676.2.l.m.427.3 16
52.43 odd 6 676.2.l.i.427.2 16
52.47 even 4 676.2.f.i.239.3 16
52.51 odd 2 676.2.f.i.99.8 16
104.3 odd 6 832.2.bu.n.319.2 16
104.19 even 12 832.2.bu.n.639.3 16
104.29 even 6 832.2.bu.n.319.3 16
104.45 odd 12 832.2.bu.n.639.2 16
156.71 odd 12 468.2.cb.f.379.1 16
156.107 even 6 468.2.cb.f.163.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.l.b.7.3 16 52.3 odd 6
52.2.l.b.7.4 yes 16 13.3 even 3
52.2.l.b.15.3 yes 16 13.6 odd 12
52.2.l.b.15.4 yes 16 52.19 even 12
468.2.cb.f.163.1 16 39.29 odd 6
468.2.cb.f.163.2 16 156.107 even 6
468.2.cb.f.379.1 16 156.71 odd 12
468.2.cb.f.379.2 16 39.32 even 12
676.2.f.h.99.1 16 4.3 odd 2 inner
676.2.f.h.99.6 16 1.1 even 1 trivial
676.2.f.h.239.1 16 13.5 odd 4 inner
676.2.f.h.239.6 16 52.31 even 4 inner
676.2.f.i.99.3 16 13.12 even 2
676.2.f.i.99.8 16 52.51 odd 2
676.2.f.i.239.3 16 52.47 even 4
676.2.f.i.239.8 16 13.8 odd 4
676.2.l.i.19.2 16 13.11 odd 12
676.2.l.i.19.4 16 52.11 even 12
676.2.l.i.427.2 16 52.43 odd 6
676.2.l.i.427.4 16 13.4 even 6
676.2.l.k.319.1 16 13.10 even 6
676.2.l.k.319.2 16 52.23 odd 6
676.2.l.k.587.1 16 52.7 even 12
676.2.l.k.587.2 16 13.7 odd 12
676.2.l.m.19.1 16 52.15 even 12
676.2.l.m.19.3 16 13.2 odd 12
676.2.l.m.427.1 16 13.9 even 3
676.2.l.m.427.3 16 52.35 odd 6
832.2.bu.n.319.2 16 104.3 odd 6
832.2.bu.n.319.3 16 104.29 even 6
832.2.bu.n.639.2 16 104.45 odd 12
832.2.bu.n.639.3 16 104.19 even 12