Properties

Label 832.2.bu.n.319.2
Level $832$
Weight $2$
Character 832.319
Analytic conductor $6.644$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(63,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.bu (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: 16.0.102930383934669717504.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 5 x^{14} - 2 x^{13} + 5 x^{12} - 8 x^{11} - 12 x^{10} + 32 x^{9} - 36 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 319.2
Root \(1.08916 + 0.902074i\) of defining polynomial
Character \(\chi\) \(=\) 832.319
Dual form 832.2.bu.n.639.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.736159 - 0.425021i) q^{3} +(0.166404 + 0.166404i) q^{5} +(-0.684384 + 2.55416i) q^{7} +(-1.13871 - 1.97231i) q^{9} +(-1.39298 + 0.373247i) q^{11} +(0.406663 - 3.58254i) q^{13} +(-0.0517744 - 0.193225i) q^{15} +(1.21178 - 0.699622i) q^{17} +(5.39188 + 1.44475i) q^{19} +(1.58939 - 1.58939i) q^{21} +(4.37216 - 7.57279i) q^{23} -4.94462i q^{25} +4.48604i q^{27} +(2.11023 - 3.65503i) q^{29} +(-3.88100 + 3.88100i) q^{31} +(1.18409 + 0.317276i) q^{33} +(-0.538906 + 0.311137i) q^{35} +(0.133975 + 0.500000i) q^{37} +(-1.82203 + 2.46448i) q^{39} +(5.59808 - 1.50000i) q^{41} +(-4.59362 - 7.95638i) q^{43} +(0.138714 - 0.517686i) q^{45} +(2.80318 + 2.80318i) q^{47} +(0.00684229 + 0.00395040i) q^{49} -1.18942 q^{51} +5.94462 q^{53} +(-0.293906 - 0.169687i) q^{55} +(-3.35523 - 3.35523i) q^{57} +(2.20512 - 8.22961i) q^{59} +(-3.61102 - 6.25448i) q^{61} +(5.81691 - 1.55864i) q^{63} +(0.663819 - 0.528479i) q^{65} +(-0.652790 - 2.43624i) q^{67} +(-6.43720 + 3.71652i) q^{69} +(-10.5002 - 2.81352i) q^{71} +(5.05407 - 5.05407i) q^{73} +(-2.10157 + 3.64002i) q^{75} -3.81333i q^{77} -8.51654i q^{79} +(-1.50948 + 2.61449i) q^{81} +(-6.91195 + 6.91195i) q^{83} +(0.318065 + 0.0852251i) q^{85} +(-3.10694 + 1.79379i) q^{87} +(-1.71941 - 6.41693i) q^{89} +(8.87207 + 3.49052i) q^{91} +(4.50653 - 1.20752i) q^{93} +(0.656818 + 1.13764i) q^{95} +(-4.00474 + 14.9459i) q^{97} +(2.32236 + 2.32236i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{5} + 4 q^{9} + 12 q^{13} + 12 q^{17} + 28 q^{21} + 8 q^{29} - 20 q^{33} + 16 q^{37} + 48 q^{41} - 20 q^{45} + 60 q^{49} + 32 q^{53} + 12 q^{57} - 4 q^{61} - 8 q^{65} + 12 q^{69} + 20 q^{73}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.736159 0.425021i −0.425021 0.245386i 0.272202 0.962240i \(-0.412248\pi\)
−0.697223 + 0.716854i \(0.745581\pi\)
\(4\) 0 0
\(5\) 0.166404 + 0.166404i 0.0744180 + 0.0744180i 0.743336 0.668918i \(-0.233242\pi\)
−0.668918 + 0.743336i \(0.733242\pi\)
\(6\) 0 0
\(7\) −0.684384 + 2.55416i −0.258673 + 0.965381i 0.707337 + 0.706876i \(0.249896\pi\)
−0.966010 + 0.258504i \(0.916770\pi\)
\(8\) 0 0
\(9\) −1.13871 1.97231i −0.379571 0.657437i
\(10\) 0 0
\(11\) −1.39298 + 0.373247i −0.419998 + 0.112538i −0.462628 0.886553i \(-0.653093\pi\)
0.0426292 + 0.999091i \(0.486427\pi\)
\(12\) 0 0
\(13\) 0.406663 3.58254i 0.112788 0.993619i
\(14\) 0 0
\(15\) −0.0517744 0.193225i −0.0133681 0.0498904i
\(16\) 0 0
\(17\) 1.21178 0.699622i 0.293900 0.169683i −0.345799 0.938308i \(-0.612392\pi\)
0.639699 + 0.768625i \(0.279059\pi\)
\(18\) 0 0
\(19\) 5.39188 + 1.44475i 1.23698 + 0.331449i 0.817295 0.576220i \(-0.195473\pi\)
0.419688 + 0.907668i \(0.362139\pi\)
\(20\) 0 0
\(21\) 1.58939 1.58939i 0.346833 0.346833i
\(22\) 0 0
\(23\) 4.37216 7.57279i 0.911657 1.57904i 0.0999345 0.994994i \(-0.468137\pi\)
0.811723 0.584043i \(-0.198530\pi\)
\(24\) 0 0
\(25\) 4.94462i 0.988924i
\(26\) 0 0
\(27\) 4.48604i 0.863339i
\(28\) 0 0
\(29\) 2.11023 3.65503i 0.391861 0.678723i −0.600834 0.799374i \(-0.705165\pi\)
0.992695 + 0.120651i \(0.0384982\pi\)
\(30\) 0 0
\(31\) −3.88100 + 3.88100i −0.697047 + 0.697047i −0.963773 0.266725i \(-0.914058\pi\)
0.266725 + 0.963773i \(0.414058\pi\)
\(32\) 0 0
\(33\) 1.18409 + 0.317276i 0.206124 + 0.0552307i
\(34\) 0 0
\(35\) −0.538906 + 0.311137i −0.0910917 + 0.0525918i
\(36\) 0 0
\(37\) 0.133975 + 0.500000i 0.0220253 + 0.0821995i 0.976064 0.217485i \(-0.0697853\pi\)
−0.954038 + 0.299684i \(0.903119\pi\)
\(38\) 0 0
\(39\) −1.82203 + 2.46448i −0.291758 + 0.394633i
\(40\) 0 0
\(41\) 5.59808 1.50000i 0.874273 0.234261i 0.206338 0.978481i \(-0.433845\pi\)
0.667934 + 0.744220i \(0.267179\pi\)
\(42\) 0 0
\(43\) −4.59362 7.95638i −0.700520 1.21334i −0.968284 0.249852i \(-0.919618\pi\)
0.267764 0.963484i \(-0.413715\pi\)
\(44\) 0 0
\(45\) 0.138714 0.517686i 0.0206782 0.0771721i
\(46\) 0 0
\(47\) 2.80318 + 2.80318i 0.408886 + 0.408886i 0.881350 0.472464i \(-0.156635\pi\)
−0.472464 + 0.881350i \(0.656635\pi\)
\(48\) 0 0
\(49\) 0.00684229 + 0.00395040i 0.000977470 + 0.000564343i
\(50\) 0 0
\(51\) −1.18942 −0.166552
\(52\) 0 0
\(53\) 5.94462 0.816556 0.408278 0.912858i \(-0.366129\pi\)
0.408278 + 0.912858i \(0.366129\pi\)
\(54\) 0 0
\(55\) −0.293906 0.169687i −0.0396303 0.0228806i
\(56\) 0 0
\(57\) −3.35523 3.35523i −0.444411 0.444411i
\(58\) 0 0
\(59\) 2.20512 8.22961i 0.287082 1.07140i −0.660223 0.751070i \(-0.729538\pi\)
0.947305 0.320334i \(-0.103795\pi\)
\(60\) 0 0
\(61\) −3.61102 6.25448i −0.462344 0.800804i 0.536733 0.843752i \(-0.319658\pi\)
−0.999077 + 0.0429485i \(0.986325\pi\)
\(62\) 0 0
\(63\) 5.81691 1.55864i 0.732861 0.196370i
\(64\) 0 0
\(65\) 0.663819 0.528479i 0.0823366 0.0655497i
\(66\) 0 0
\(67\) −0.652790 2.43624i −0.0797510 0.297635i 0.914518 0.404546i \(-0.132571\pi\)
−0.994269 + 0.106912i \(0.965904\pi\)
\(68\) 0 0
\(69\) −6.43720 + 3.71652i −0.774948 + 0.447416i
\(70\) 0 0
\(71\) −10.5002 2.81352i −1.24614 0.333903i −0.425298 0.905053i \(-0.639831\pi\)
−0.820846 + 0.571150i \(0.806498\pi\)
\(72\) 0 0
\(73\) 5.05407 5.05407i 0.591534 0.591534i −0.346512 0.938046i \(-0.612634\pi\)
0.938046 + 0.346512i \(0.112634\pi\)
\(74\) 0 0
\(75\) −2.10157 + 3.64002i −0.242668 + 0.420314i
\(76\) 0 0
\(77\) 3.81333i 0.434569i
\(78\) 0 0
\(79\) 8.51654i 0.958186i −0.877764 0.479093i \(-0.840966\pi\)
0.877764 0.479093i \(-0.159034\pi\)
\(80\) 0 0
\(81\) −1.50948 + 2.61449i −0.167720 + 0.290499i
\(82\) 0 0
\(83\) −6.91195 + 6.91195i −0.758685 + 0.758685i −0.976083 0.217398i \(-0.930243\pi\)
0.217398 + 0.976083i \(0.430243\pi\)
\(84\) 0 0
\(85\) 0.318065 + 0.0852251i 0.0344989 + 0.00924396i
\(86\) 0 0
\(87\) −3.10694 + 1.79379i −0.333098 + 0.192314i
\(88\) 0 0
\(89\) −1.71941 6.41693i −0.182257 0.680193i −0.995201 0.0978511i \(-0.968803\pi\)
0.812944 0.582342i \(-0.197864\pi\)
\(90\) 0 0
\(91\) 8.87207 + 3.49052i 0.930045 + 0.365906i
\(92\) 0 0
\(93\) 4.50653 1.20752i 0.467306 0.125214i
\(94\) 0 0
\(95\) 0.656818 + 1.13764i 0.0673881 + 0.116720i
\(96\) 0 0
\(97\) −4.00474 + 14.9459i −0.406620 + 1.51753i 0.394429 + 0.918926i \(0.370942\pi\)
−0.801049 + 0.598599i \(0.795724\pi\)
\(98\) 0 0
\(99\) 2.32236 + 2.32236i 0.233406 + 0.233406i
\(100\) 0 0
\(101\) 7.94541 + 4.58728i 0.790598 + 0.456452i 0.840173 0.542319i \(-0.182453\pi\)
−0.0495752 + 0.998770i \(0.515787\pi\)
\(102\) 0 0
\(103\) 10.9080 1.07480 0.537398 0.843329i \(-0.319407\pi\)
0.537398 + 0.843329i \(0.319407\pi\)
\(104\) 0 0
\(105\) 0.528960 0.0516212
\(106\) 0 0
\(107\) 8.53605 + 4.92829i 0.825211 + 0.476436i 0.852210 0.523200i \(-0.175262\pi\)
−0.0269990 + 0.999635i \(0.508595\pi\)
\(108\) 0 0
\(109\) −0.0243171 0.0243171i −0.00232916 0.00232916i 0.705941 0.708270i \(-0.250524\pi\)
−0.708270 + 0.705941i \(0.750524\pi\)
\(110\) 0 0
\(111\) 0.113884 0.425021i 0.0108094 0.0403412i
\(112\) 0 0
\(113\) −2.27664 3.94325i −0.214168 0.370950i 0.738847 0.673873i \(-0.235371\pi\)
−0.953015 + 0.302923i \(0.902037\pi\)
\(114\) 0 0
\(115\) 1.98769 0.532599i 0.185353 0.0496651i
\(116\) 0 0
\(117\) −7.52896 + 3.27743i −0.696053 + 0.302998i
\(118\) 0 0
\(119\) 0.957620 + 3.57389i 0.0877849 + 0.327618i
\(120\) 0 0
\(121\) −7.72521 + 4.46015i −0.702292 + 0.405468i
\(122\) 0 0
\(123\) −4.75860 1.27506i −0.429069 0.114969i
\(124\) 0 0
\(125\) 1.65482 1.65482i 0.148012 0.148012i
\(126\) 0 0
\(127\) −2.67207 + 4.62816i −0.237108 + 0.410683i −0.959883 0.280400i \(-0.909533\pi\)
0.722775 + 0.691083i \(0.242866\pi\)
\(128\) 0 0
\(129\) 7.80954i 0.687592i
\(130\) 0 0
\(131\) 11.2254i 0.980764i −0.871508 0.490382i \(-0.836857\pi\)
0.871508 0.490382i \(-0.163143\pi\)
\(132\) 0 0
\(133\) −7.38024 + 12.7830i −0.639948 + 1.10842i
\(134\) 0 0
\(135\) −0.746494 + 0.746494i −0.0642480 + 0.0642480i
\(136\) 0 0
\(137\) 4.64424 + 1.24442i 0.396784 + 0.106318i 0.451693 0.892173i \(-0.350820\pi\)
−0.0549089 + 0.998491i \(0.517487\pi\)
\(138\) 0 0
\(139\) −6.01080 + 3.47034i −0.509830 + 0.294350i −0.732764 0.680483i \(-0.761770\pi\)
0.222934 + 0.974834i \(0.428437\pi\)
\(140\) 0 0
\(141\) −0.872175 3.25500i −0.0734504 0.274121i
\(142\) 0 0
\(143\) 0.770702 + 5.14219i 0.0644494 + 0.430011i
\(144\) 0 0
\(145\) 0.959363 0.257060i 0.0796707 0.0213477i
\(146\) 0 0
\(147\) −0.00335801 0.00581624i −0.000276964 0.000479715i
\(148\) 0 0
\(149\) −3.92298 + 14.6408i −0.321383 + 1.19942i 0.596515 + 0.802602i \(0.296552\pi\)
−0.917898 + 0.396817i \(0.870115\pi\)
\(150\) 0 0
\(151\) 0.480824 + 0.480824i 0.0391289 + 0.0391289i 0.726401 0.687272i \(-0.241192\pi\)
−0.687272 + 0.726401i \(0.741192\pi\)
\(152\) 0 0
\(153\) −2.75974 1.59334i −0.223112 0.128814i
\(154\) 0 0
\(155\) −1.29162 −0.103746
\(156\) 0 0
\(157\) −5.90408 −0.471197 −0.235598 0.971851i \(-0.575705\pi\)
−0.235598 + 0.971851i \(0.575705\pi\)
\(158\) 0 0
\(159\) −4.37618 2.52659i −0.347054 0.200372i
\(160\) 0 0
\(161\) 16.3499 + 16.3499i 1.28855 + 1.28855i
\(162\) 0 0
\(163\) −4.07194 + 15.1967i −0.318939 + 1.19030i 0.601327 + 0.799003i \(0.294639\pi\)
−0.920266 + 0.391294i \(0.872028\pi\)
\(164\) 0 0
\(165\) 0.144241 + 0.249833i 0.0112292 + 0.0194495i
\(166\) 0 0
\(167\) −5.41542 + 1.45106i −0.419058 + 0.112286i −0.462185 0.886783i \(-0.652935\pi\)
0.0431274 + 0.999070i \(0.486268\pi\)
\(168\) 0 0
\(169\) −12.6693 2.91377i −0.974558 0.224137i
\(170\) 0 0
\(171\) −3.29032 12.2796i −0.251617 0.939046i
\(172\) 0 0
\(173\) −1.87129 + 1.08039i −0.142272 + 0.0821405i −0.569446 0.822029i \(-0.692842\pi\)
0.427175 + 0.904169i \(0.359509\pi\)
\(174\) 0 0
\(175\) 12.6293 + 3.38402i 0.954688 + 0.255808i
\(176\) 0 0
\(177\) −5.12108 + 5.12108i −0.384924 + 0.384924i
\(178\) 0 0
\(179\) 5.06638 8.77523i 0.378679 0.655892i −0.612191 0.790710i \(-0.709712\pi\)
0.990870 + 0.134818i \(0.0430450\pi\)
\(180\) 0 0
\(181\) 13.8528i 1.02967i 0.857289 + 0.514836i \(0.172147\pi\)
−0.857289 + 0.514836i \(0.827853\pi\)
\(182\) 0 0
\(183\) 6.13905i 0.453812i
\(184\) 0 0
\(185\) −0.0609080 + 0.105496i −0.00447805 + 0.00775620i
\(186\) 0 0
\(187\) −1.42685 + 1.42685i −0.104342 + 0.104342i
\(188\) 0 0
\(189\) −11.4580 3.07017i −0.833450 0.223322i
\(190\) 0 0
\(191\) 3.35193 1.93524i 0.242537 0.140029i −0.373805 0.927507i \(-0.621947\pi\)
0.616342 + 0.787478i \(0.288614\pi\)
\(192\) 0 0
\(193\) 2.12861 + 7.94409i 0.153221 + 0.571828i 0.999251 + 0.0386934i \(0.0123196\pi\)
−0.846030 + 0.533135i \(0.821014\pi\)
\(194\) 0 0
\(195\) −0.713291 + 0.106907i −0.0510798 + 0.00765576i
\(196\) 0 0
\(197\) 11.9588 3.20436i 0.852032 0.228301i 0.193730 0.981055i \(-0.437942\pi\)
0.658302 + 0.752754i \(0.271275\pi\)
\(198\) 0 0
\(199\) −1.21698 2.10788i −0.0862696 0.149423i 0.819662 0.572848i \(-0.194161\pi\)
−0.905932 + 0.423424i \(0.860828\pi\)
\(200\) 0 0
\(201\) −0.554899 + 2.07091i −0.0391396 + 0.146071i
\(202\) 0 0
\(203\) 7.89132 + 7.89132i 0.553862 + 0.553862i
\(204\) 0 0
\(205\) 1.18115 + 0.681935i 0.0824949 + 0.0476284i
\(206\) 0 0
\(207\) −19.9145 −1.38416
\(208\) 0 0
\(209\) −8.05002 −0.556831
\(210\) 0 0
\(211\) −3.62910 2.09526i −0.249838 0.144244i 0.369852 0.929091i \(-0.379408\pi\)
−0.619690 + 0.784847i \(0.712742\pi\)
\(212\) 0 0
\(213\) 6.53401 + 6.53401i 0.447703 + 0.447703i
\(214\) 0 0
\(215\) 0.559576 2.08837i 0.0381628 0.142425i
\(216\) 0 0
\(217\) −7.25658 12.5688i −0.492609 0.853223i
\(218\) 0 0
\(219\) −5.86868 + 1.57251i −0.396569 + 0.106260i
\(220\) 0 0
\(221\) −2.01364 4.62577i −0.135452 0.311163i
\(222\) 0 0
\(223\) −4.87316 18.1869i −0.326331 1.21788i −0.912967 0.408033i \(-0.866215\pi\)
0.586636 0.809850i \(-0.300452\pi\)
\(224\) 0 0
\(225\) −9.75232 + 5.63051i −0.650155 + 0.375367i
\(226\) 0 0
\(227\) −7.18635 1.92558i −0.476974 0.127805i 0.0123190 0.999924i \(-0.496079\pi\)
−0.489293 + 0.872119i \(0.662745\pi\)
\(228\) 0 0
\(229\) 3.17720 3.17720i 0.209955 0.209955i −0.594293 0.804248i \(-0.702568\pi\)
0.804248 + 0.594293i \(0.202568\pi\)
\(230\) 0 0
\(231\) −1.62075 + 2.80721i −0.106637 + 0.184701i
\(232\) 0 0
\(233\) 13.3205i 0.872655i 0.899788 + 0.436328i \(0.143721\pi\)
−0.899788 + 0.436328i \(0.856279\pi\)
\(234\) 0 0
\(235\) 0.932921i 0.0608571i
\(236\) 0 0
\(237\) −3.61971 + 6.26953i −0.235126 + 0.407250i
\(238\) 0 0
\(239\) 5.96641 5.96641i 0.385935 0.385935i −0.487300 0.873235i \(-0.662018\pi\)
0.873235 + 0.487300i \(0.162018\pi\)
\(240\) 0 0
\(241\) −14.9406 4.00333i −0.962410 0.257877i −0.256790 0.966467i \(-0.582665\pi\)
−0.705620 + 0.708590i \(0.749332\pi\)
\(242\) 0 0
\(243\) 13.8775 8.01218i 0.890242 0.513982i
\(244\) 0 0
\(245\) 0.000481222 0.00179594i 3.07441e−5 0.000114739i
\(246\) 0 0
\(247\) 7.36856 18.7291i 0.468851 1.19171i
\(248\) 0 0
\(249\) 8.02602 2.15056i 0.508628 0.136287i
\(250\) 0 0
\(251\) 13.7387 + 23.7962i 0.867182 + 1.50200i 0.864865 + 0.502005i \(0.167404\pi\)
0.00231697 + 0.999997i \(0.499262\pi\)
\(252\) 0 0
\(253\) −3.26379 + 12.1806i −0.205193 + 0.765789i
\(254\) 0 0
\(255\) −0.197923 0.197923i −0.0123944 0.0123944i
\(256\) 0 0
\(257\) 24.1060 + 13.9176i 1.50369 + 0.868157i 0.999991 + 0.00427985i \(0.00136232\pi\)
0.503702 + 0.863878i \(0.331971\pi\)
\(258\) 0 0
\(259\) −1.36877 −0.0850511
\(260\) 0 0
\(261\) −9.61181 −0.594956
\(262\) 0 0
\(263\) 20.6166 + 11.9030i 1.27128 + 0.733972i 0.975228 0.221201i \(-0.0709978\pi\)
0.296048 + 0.955173i \(0.404331\pi\)
\(264\) 0 0
\(265\) 0.989207 + 0.989207i 0.0607665 + 0.0607665i
\(266\) 0 0
\(267\) −1.46157 + 5.45466i −0.0894468 + 0.333820i
\(268\) 0 0
\(269\) −10.3559 17.9370i −0.631412 1.09364i −0.987263 0.159095i \(-0.949142\pi\)
0.355851 0.934543i \(-0.384191\pi\)
\(270\) 0 0
\(271\) −13.3489 + 3.57684i −0.810890 + 0.217277i −0.640360 0.768075i \(-0.721215\pi\)
−0.170530 + 0.985352i \(0.554548\pi\)
\(272\) 0 0
\(273\) −5.04770 6.34039i −0.305501 0.383738i
\(274\) 0 0
\(275\) 1.84556 + 6.88774i 0.111292 + 0.415346i
\(276\) 0 0
\(277\) −11.0276 + 6.36681i −0.662587 + 0.382545i −0.793262 0.608880i \(-0.791619\pi\)
0.130675 + 0.991425i \(0.458286\pi\)
\(278\) 0 0
\(279\) 12.0739 + 3.23518i 0.722844 + 0.193685i
\(280\) 0 0
\(281\) 15.4454 15.4454i 0.921396 0.921396i −0.0757324 0.997128i \(-0.524129\pi\)
0.997128 + 0.0757324i \(0.0241295\pi\)
\(282\) 0 0
\(283\) 10.3449 17.9178i 0.614939 1.06511i −0.375456 0.926840i \(-0.622514\pi\)
0.990395 0.138265i \(-0.0441527\pi\)
\(284\) 0 0
\(285\) 1.11665i 0.0661445i
\(286\) 0 0
\(287\) 15.3249i 0.904603i
\(288\) 0 0
\(289\) −7.52106 + 13.0269i −0.442415 + 0.766286i
\(290\) 0 0
\(291\) 9.30045 9.30045i 0.545202 0.545202i
\(292\) 0 0
\(293\) 22.2734 + 5.96815i 1.30123 + 0.348663i 0.841914 0.539611i \(-0.181429\pi\)
0.459314 + 0.888274i \(0.348095\pi\)
\(294\) 0 0
\(295\) 1.73638 1.00250i 0.101096 0.0583677i
\(296\) 0 0
\(297\) −1.67440 6.24895i −0.0971586 0.362601i
\(298\) 0 0
\(299\) −25.3519 18.7430i −1.46614 1.08394i
\(300\) 0 0
\(301\) 23.4656 6.28760i 1.35254 0.362411i
\(302\) 0 0
\(303\) −3.89939 6.75394i −0.224014 0.388004i
\(304\) 0 0
\(305\) 0.439881 1.64166i 0.0251875 0.0940010i
\(306\) 0 0
\(307\) −16.3164 16.3164i −0.931228 0.931228i 0.0665547 0.997783i \(-0.478799\pi\)
−0.997783 + 0.0665547i \(0.978799\pi\)
\(308\) 0 0
\(309\) −8.03001 4.63613i −0.456811 0.263740i
\(310\) 0 0
\(311\) −8.54527 −0.484558 −0.242279 0.970207i \(-0.577895\pi\)
−0.242279 + 0.970207i \(0.577895\pi\)
\(312\) 0 0
\(313\) 5.88378 0.332571 0.166285 0.986078i \(-0.446823\pi\)
0.166285 + 0.986078i \(0.446823\pi\)
\(314\) 0 0
\(315\) 1.22732 + 0.708592i 0.0691515 + 0.0399247i
\(316\) 0 0
\(317\) 16.5045 + 16.5045i 0.926984 + 0.926984i 0.997510 0.0705258i \(-0.0224677\pi\)
−0.0705258 + 0.997510i \(0.522468\pi\)
\(318\) 0 0
\(319\) −1.57528 + 5.87902i −0.0881986 + 0.329162i
\(320\) 0 0
\(321\) −4.18926 7.25601i −0.233822 0.404991i
\(322\) 0 0
\(323\) 7.54456 2.02156i 0.419790 0.112483i
\(324\) 0 0
\(325\) −17.7143 2.01079i −0.982614 0.111539i
\(326\) 0 0
\(327\) 0.00756596 + 0.0282365i 0.000418399 + 0.00156148i
\(328\) 0 0
\(329\) −9.07823 + 5.24132i −0.500499 + 0.288963i
\(330\) 0 0
\(331\) −13.8768 3.71829i −0.762740 0.204375i −0.143578 0.989639i \(-0.545861\pi\)
−0.619162 + 0.785264i \(0.712527\pi\)
\(332\) 0 0
\(333\) 0.833596 0.833596i 0.0456808 0.0456808i
\(334\) 0 0
\(335\) 0.296774 0.514027i 0.0162145 0.0280843i
\(336\) 0 0
\(337\) 14.3427i 0.781297i −0.920540 0.390649i \(-0.872251\pi\)
0.920540 0.390649i \(-0.127749\pi\)
\(338\) 0 0
\(339\) 3.87048i 0.210216i
\(340\) 0 0
\(341\) 3.95757 6.85471i 0.214314 0.371203i
\(342\) 0 0
\(343\) −13.1032 + 13.1032i −0.707505 + 0.707505i
\(344\) 0 0
\(345\) −1.68962 0.452732i −0.0909659 0.0243743i
\(346\) 0 0
\(347\) 0.407300 0.235155i 0.0218650 0.0126238i −0.489028 0.872268i \(-0.662648\pi\)
0.510893 + 0.859645i \(0.329315\pi\)
\(348\) 0 0
\(349\) −7.32017 27.3192i −0.391840 1.46237i −0.827097 0.562059i \(-0.810009\pi\)
0.435257 0.900306i \(-0.356657\pi\)
\(350\) 0 0
\(351\) 16.0714 + 1.82431i 0.857830 + 0.0973742i
\(352\) 0 0
\(353\) 34.7270 9.30507i 1.84833 0.495259i 0.848887 0.528574i \(-0.177273\pi\)
0.999445 + 0.0333153i \(0.0106066\pi\)
\(354\) 0 0
\(355\) −1.27909 2.21545i −0.0678872 0.117584i
\(356\) 0 0
\(357\) 0.814018 3.03796i 0.0430824 0.160786i
\(358\) 0 0
\(359\) −11.7167 11.7167i −0.618383 0.618383i 0.326733 0.945117i \(-0.394052\pi\)
−0.945117 + 0.326733i \(0.894052\pi\)
\(360\) 0 0
\(361\) 10.5306 + 6.07986i 0.554244 + 0.319993i
\(362\) 0 0
\(363\) 7.58264 0.397985
\(364\) 0 0
\(365\) 1.68203 0.0880416
\(366\) 0 0
\(367\) 8.79501 + 5.07780i 0.459096 + 0.265059i 0.711664 0.702520i \(-0.247942\pi\)
−0.252568 + 0.967579i \(0.581275\pi\)
\(368\) 0 0
\(369\) −9.33307 9.33307i −0.485860 0.485860i
\(370\) 0 0
\(371\) −4.06840 + 15.1835i −0.211221 + 0.788288i
\(372\) 0 0
\(373\) −7.50790 13.0041i −0.388744 0.673325i 0.603537 0.797335i \(-0.293758\pi\)
−0.992281 + 0.124010i \(0.960424\pi\)
\(374\) 0 0
\(375\) −1.92155 + 0.514877i −0.0992283 + 0.0265881i
\(376\) 0 0
\(377\) −12.2362 9.04638i −0.630195 0.465912i
\(378\) 0 0
\(379\) 8.63337 + 32.2202i 0.443467 + 1.65504i 0.719953 + 0.694022i \(0.244163\pi\)
−0.276487 + 0.961018i \(0.589170\pi\)
\(380\) 0 0
\(381\) 3.93413 2.27137i 0.201552 0.116366i
\(382\) 0 0
\(383\) −20.2216 5.41837i −1.03328 0.276866i −0.297953 0.954581i \(-0.596304\pi\)
−0.735325 + 0.677715i \(0.762970\pi\)
\(384\) 0 0
\(385\) 0.634552 0.634552i 0.0323398 0.0323398i
\(386\) 0 0
\(387\) −10.4616 + 18.1201i −0.531794 + 0.921095i
\(388\) 0 0
\(389\) 9.60410i 0.486947i −0.969908 0.243474i \(-0.921713\pi\)
0.969908 0.243474i \(-0.0782870\pi\)
\(390\) 0 0
\(391\) 12.2354i 0.618772i
\(392\) 0 0
\(393\) −4.77101 + 8.26364i −0.240666 + 0.416846i
\(394\) 0 0
\(395\) 1.41718 1.41718i 0.0713063 0.0713063i
\(396\) 0 0
\(397\) −2.49473 0.668462i −0.125207 0.0335492i 0.195671 0.980670i \(-0.437311\pi\)
−0.320878 + 0.947120i \(0.603978\pi\)
\(398\) 0 0
\(399\) 10.8661 6.27352i 0.543983 0.314069i
\(400\) 0 0
\(401\) −7.00137 26.1295i −0.349632 1.30484i −0.887107 0.461563i \(-0.847289\pi\)
0.537476 0.843279i \(-0.319378\pi\)
\(402\) 0 0
\(403\) 12.3256 + 15.4821i 0.613981 + 0.771218i
\(404\) 0 0
\(405\) −0.686244 + 0.183879i −0.0340998 + 0.00913700i
\(406\) 0 0
\(407\) −0.373247 0.646483i −0.0185012 0.0320450i
\(408\) 0 0
\(409\) 1.24095 4.63129i 0.0613611 0.229003i −0.928435 0.371496i \(-0.878845\pi\)
0.989796 + 0.142493i \(0.0455118\pi\)
\(410\) 0 0
\(411\) −2.88999 2.88999i −0.142553 0.142553i
\(412\) 0 0
\(413\) 19.5106 + 11.2644i 0.960053 + 0.554287i
\(414\) 0 0
\(415\) −2.30035 −0.112920
\(416\) 0 0
\(417\) 5.89987 0.288918
\(418\) 0 0
\(419\) −4.85410 2.80251i −0.237138 0.136912i 0.376723 0.926326i \(-0.377051\pi\)
−0.613861 + 0.789414i \(0.710384\pi\)
\(420\) 0 0
\(421\) −3.55354 3.55354i −0.173189 0.173189i 0.615190 0.788379i \(-0.289079\pi\)
−0.788379 + 0.615190i \(0.789079\pi\)
\(422\) 0 0
\(423\) 2.33672 8.72077i 0.113615 0.424018i
\(424\) 0 0
\(425\) −3.45936 5.99179i −0.167804 0.290645i
\(426\) 0 0
\(427\) 18.4462 4.94266i 0.892676 0.239192i
\(428\) 0 0
\(429\) 1.61818 4.11303i 0.0781265 0.198579i
\(430\) 0 0
\(431\) 0.894922 + 3.33989i 0.0431069 + 0.160877i 0.984124 0.177482i \(-0.0567950\pi\)
−0.941017 + 0.338359i \(0.890128\pi\)
\(432\) 0 0
\(433\) −4.73943 + 2.73631i −0.227762 + 0.131499i −0.609539 0.792756i \(-0.708646\pi\)
0.381777 + 0.924254i \(0.375312\pi\)
\(434\) 0 0
\(435\) −0.815499 0.218512i −0.0391002 0.0104769i
\(436\) 0 0
\(437\) 34.5150 34.5150i 1.65107 1.65107i
\(438\) 0 0
\(439\) −15.2532 + 26.4193i −0.727994 + 1.26092i 0.229736 + 0.973253i \(0.426214\pi\)
−0.957730 + 0.287669i \(0.907120\pi\)
\(440\) 0 0
\(441\) 0.0179935i 0.000856833i
\(442\) 0 0
\(443\) 12.8994i 0.612869i −0.951892 0.306434i \(-0.900864\pi\)
0.951892 0.306434i \(-0.0991360\pi\)
\(444\) 0 0
\(445\) 0.781685 1.35392i 0.0370554 0.0641819i
\(446\) 0 0
\(447\) 9.11058 9.11058i 0.430916 0.430916i
\(448\) 0 0
\(449\) 9.53370 + 2.55455i 0.449923 + 0.120557i 0.476663 0.879086i \(-0.341846\pi\)
−0.0267403 + 0.999642i \(0.508513\pi\)
\(450\) 0 0
\(451\) −7.23812 + 4.17893i −0.340830 + 0.196778i
\(452\) 0 0
\(453\) −0.149602 0.558323i −0.00702893 0.0262323i
\(454\) 0 0
\(455\) 0.895510 + 2.05718i 0.0419822 + 0.0964421i
\(456\) 0 0
\(457\) 10.0284 2.68710i 0.469108 0.125697i −0.0165184 0.999864i \(-0.505258\pi\)
0.485626 + 0.874166i \(0.338592\pi\)
\(458\) 0 0
\(459\) 3.13853 + 5.43609i 0.146494 + 0.253735i
\(460\) 0 0
\(461\) −7.43710 + 27.7556i −0.346380 + 1.29271i 0.544611 + 0.838689i \(0.316677\pi\)
−0.890991 + 0.454021i \(0.849989\pi\)
\(462\) 0 0
\(463\) 5.89061 + 5.89061i 0.273760 + 0.273760i 0.830612 0.556852i \(-0.187991\pi\)
−0.556852 + 0.830612i \(0.687991\pi\)
\(464\) 0 0
\(465\) 0.950841 + 0.548968i 0.0440942 + 0.0254578i
\(466\) 0 0
\(467\) 3.30334 0.152860 0.0764301 0.997075i \(-0.475648\pi\)
0.0764301 + 0.997075i \(0.475648\pi\)
\(468\) 0 0
\(469\) 6.66931 0.307960
\(470\) 0 0
\(471\) 4.34634 + 2.50936i 0.200269 + 0.115625i
\(472\) 0 0
\(473\) 9.36849 + 9.36849i 0.430764 + 0.430764i
\(474\) 0 0
\(475\) 7.14374 26.6608i 0.327777 1.22328i
\(476\) 0 0
\(477\) −6.76922 11.7246i −0.309941 0.536834i
\(478\) 0 0
\(479\) 26.8650 7.19847i 1.22750 0.328906i 0.413892 0.910326i \(-0.364169\pi\)
0.813604 + 0.581420i \(0.197503\pi\)
\(480\) 0 0
\(481\) 1.84575 0.276639i 0.0841592 0.0126136i
\(482\) 0 0
\(483\) −5.08705 18.9851i −0.231469 0.863854i
\(484\) 0 0
\(485\) −3.15346 + 1.82065i −0.143191 + 0.0826714i
\(486\) 0 0
\(487\) 9.96577 + 2.67032i 0.451592 + 0.121004i 0.477444 0.878662i \(-0.341563\pi\)
−0.0258522 + 0.999666i \(0.508230\pi\)
\(488\) 0 0
\(489\) 9.45652 9.45652i 0.427638 0.427638i
\(490\) 0 0
\(491\) −6.81243 + 11.7995i −0.307441 + 0.532503i −0.977802 0.209532i \(-0.932806\pi\)
0.670361 + 0.742035i \(0.266139\pi\)
\(492\) 0 0
\(493\) 5.90546i 0.265969i
\(494\) 0 0
\(495\) 0.772899i 0.0347392i
\(496\) 0 0
\(497\) 14.3723 24.8936i 0.644688 1.11663i
\(498\) 0 0
\(499\) 11.2288 11.2288i 0.502670 0.502670i −0.409597 0.912267i \(-0.634331\pi\)
0.912267 + 0.409597i \(0.134331\pi\)
\(500\) 0 0
\(501\) 4.60334 + 1.23346i 0.205662 + 0.0551070i
\(502\) 0 0
\(503\) −19.7978 + 11.4303i −0.882739 + 0.509650i −0.871561 0.490288i \(-0.836892\pi\)
−0.0111787 + 0.999938i \(0.503558\pi\)
\(504\) 0 0
\(505\) 0.558805 + 2.08549i 0.0248665 + 0.0928030i
\(506\) 0 0
\(507\) 8.08816 + 7.52970i 0.359208 + 0.334406i
\(508\) 0 0
\(509\) 9.52759 2.55291i 0.422303 0.113156i −0.0414078 0.999142i \(-0.513184\pi\)
0.463711 + 0.885987i \(0.346518\pi\)
\(510\) 0 0
\(511\) 9.44995 + 16.3678i 0.418041 + 0.724069i
\(512\) 0 0
\(513\) −6.48121 + 24.1882i −0.286152 + 1.06794i
\(514\) 0 0
\(515\) 1.81513 + 1.81513i 0.0799842 + 0.0799842i
\(516\) 0 0
\(517\) −4.95105 2.85849i −0.217747 0.125716i
\(518\) 0 0
\(519\) 1.83676 0.0806246
\(520\) 0 0
\(521\) 15.9204 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(522\) 0 0
\(523\) 1.86869 + 1.07889i 0.0817122 + 0.0471766i 0.540299 0.841473i \(-0.318311\pi\)
−0.458587 + 0.888649i \(0.651644\pi\)
\(524\) 0 0
\(525\) −7.85891 7.85891i −0.342991 0.342991i
\(526\) 0 0
\(527\) −1.98769 + 7.41814i −0.0865849 + 0.323139i
\(528\) 0 0
\(529\) −26.7315 46.3003i −1.16224 2.01306i
\(530\) 0 0
\(531\) −18.7423 + 5.02200i −0.813348 + 0.217936i
\(532\) 0 0
\(533\) −3.09729 20.6654i −0.134158 0.895116i
\(534\) 0 0
\(535\) 0.600345 + 2.24052i 0.0259552 + 0.0968660i
\(536\) 0 0
\(537\) −7.45933 + 4.30664i −0.321894 + 0.185845i
\(538\) 0 0
\(539\) −0.0110056 0.00294895i −0.000474046 0.000127020i
\(540\) 0 0
\(541\) −8.15947 + 8.15947i −0.350803 + 0.350803i −0.860408 0.509605i \(-0.829791\pi\)
0.509605 + 0.860408i \(0.329791\pi\)
\(542\) 0 0
\(543\) 5.88774 10.1979i 0.252667 0.437632i
\(544\) 0 0
\(545\) 0.00809292i 0.000346663i
\(546\) 0 0
\(547\) 8.11076i 0.346791i 0.984852 + 0.173396i \(0.0554739\pi\)
−0.984852 + 0.173396i \(0.944526\pi\)
\(548\) 0 0
\(549\) −8.22384 + 14.2441i −0.350985 + 0.607924i
\(550\) 0 0
\(551\) 16.6588 16.6588i 0.709687 0.709687i
\(552\) 0 0
\(553\) 21.7526 + 5.82859i 0.925014 + 0.247857i
\(554\) 0 0
\(555\) 0.0896759 0.0517744i 0.00380653 0.00219770i
\(556\) 0 0
\(557\) 0.887873 + 3.31359i 0.0376204 + 0.140401i 0.982182 0.187934i \(-0.0601791\pi\)
−0.944561 + 0.328335i \(0.893512\pi\)
\(558\) 0 0
\(559\) −30.3721 + 13.2213i −1.28460 + 0.559200i
\(560\) 0 0
\(561\) 1.65683 0.443946i 0.0699514 0.0187434i
\(562\) 0 0
\(563\) −3.12130 5.40625i −0.131547 0.227846i 0.792726 0.609578i \(-0.208661\pi\)
−0.924273 + 0.381732i \(0.875328\pi\)
\(564\) 0 0
\(565\) 0.277331 1.03501i 0.0116674 0.0435434i
\(566\) 0 0
\(567\) −5.64476 5.64476i −0.237058 0.237058i
\(568\) 0 0
\(569\) −27.8969 16.1063i −1.16950 0.675211i −0.215937 0.976407i \(-0.569281\pi\)
−0.953562 + 0.301197i \(0.902614\pi\)
\(570\) 0 0
\(571\) −41.4189 −1.73333 −0.866663 0.498894i \(-0.833740\pi\)
−0.866663 + 0.498894i \(0.833740\pi\)
\(572\) 0 0
\(573\) −3.29007 −0.137445
\(574\) 0 0
\(575\) −37.4446 21.6186i −1.56155 0.901560i
\(576\) 0 0
\(577\) 12.3408 + 12.3408i 0.513753 + 0.513753i 0.915674 0.401921i \(-0.131657\pi\)
−0.401921 + 0.915674i \(0.631657\pi\)
\(578\) 0 0
\(579\) 1.80941 6.75282i 0.0751966 0.280638i
\(580\) 0 0
\(581\) −12.9238 22.3846i −0.536168 0.928671i
\(582\) 0 0
\(583\) −8.28072 + 2.21881i −0.342952 + 0.0918938i
\(584\) 0 0
\(585\) −1.79822 0.707471i −0.0743474 0.0292503i
\(586\) 0 0
\(587\) −5.98011 22.3181i −0.246825 0.921165i −0.972457 0.233082i \(-0.925119\pi\)
0.725632 0.688083i \(-0.241548\pi\)
\(588\) 0 0
\(589\) −26.5330 + 15.3188i −1.09327 + 0.631200i
\(590\) 0 0
\(591\) −10.1655 2.72384i −0.418154 0.112044i
\(592\) 0 0
\(593\) 11.0244 11.0244i 0.452717 0.452717i −0.443538 0.896255i \(-0.646277\pi\)
0.896255 + 0.443538i \(0.146277\pi\)
\(594\) 0 0
\(595\) −0.435357 + 0.754060i −0.0178479 + 0.0309134i
\(596\) 0 0
\(597\) 2.06898i 0.0846775i
\(598\) 0 0
\(599\) 10.6090i 0.433471i −0.976230 0.216735i \(-0.930459\pi\)
0.976230 0.216735i \(-0.0695409\pi\)
\(600\) 0 0
\(601\) −14.1251 + 24.4655i −0.576177 + 0.997967i 0.419736 + 0.907646i \(0.362123\pi\)
−0.995913 + 0.0903210i \(0.971211\pi\)
\(602\) 0 0
\(603\) −4.06169 + 4.06169i −0.165405 + 0.165405i
\(604\) 0 0
\(605\) −2.02769 0.543318i −0.0824373 0.0220890i
\(606\) 0 0
\(607\) 8.89476 5.13539i 0.361027 0.208439i −0.308504 0.951223i \(-0.599828\pi\)
0.669531 + 0.742784i \(0.266495\pi\)
\(608\) 0 0
\(609\) −2.45528 9.16324i −0.0994931 0.371313i
\(610\) 0 0
\(611\) 11.1825 8.90258i 0.452395 0.360160i
\(612\) 0 0
\(613\) 34.2262 9.17089i 1.38238 0.370409i 0.510397 0.859939i \(-0.329498\pi\)
0.871986 + 0.489530i \(0.162832\pi\)
\(614\) 0 0
\(615\) −0.579674 1.00403i −0.0233747 0.0404862i
\(616\) 0 0
\(617\) −10.8473 + 40.4828i −0.436697 + 1.62978i 0.300275 + 0.953853i \(0.402922\pi\)
−0.736972 + 0.675923i \(0.763745\pi\)
\(618\) 0 0
\(619\) 12.0880 + 12.0880i 0.485858 + 0.485858i 0.906996 0.421138i \(-0.138369\pi\)
−0.421138 + 0.906996i \(0.638369\pi\)
\(620\) 0 0
\(621\) 33.9719 + 19.6137i 1.36324 + 0.787069i
\(622\) 0 0
\(623\) 17.5666 0.703790
\(624\) 0 0
\(625\) −24.1724 −0.966894
\(626\) 0 0
\(627\) 5.92609 + 3.42143i 0.236665 + 0.136639i
\(628\) 0 0
\(629\) 0.512159 + 0.512159i 0.0204211 + 0.0204211i
\(630\) 0 0
\(631\) 3.12081 11.6470i 0.124237 0.463660i −0.875574 0.483084i \(-0.839517\pi\)
0.999811 + 0.0194238i \(0.00618318\pi\)
\(632\) 0 0
\(633\) 1.78106 + 3.08489i 0.0707909 + 0.122613i
\(634\) 0 0
\(635\) −1.21479 + 0.325501i −0.0482073 + 0.0129171i
\(636\) 0 0
\(637\) 0.0169350 0.0229063i 0.000670988 0.000907582i
\(638\) 0 0
\(639\) 6.40759 + 23.9134i 0.253480 + 0.946001i
\(640\) 0 0
\(641\) −1.81632 + 1.04865i −0.0717404 + 0.0414193i −0.535441 0.844573i \(-0.679855\pi\)
0.463701 + 0.885992i \(0.346521\pi\)
\(642\) 0 0
\(643\) 40.9391 + 10.9696i 1.61448 + 0.432599i 0.949374 0.314148i \(-0.101719\pi\)
0.665108 + 0.746747i \(0.268386\pi\)
\(644\) 0 0
\(645\) −1.29954 + 1.29954i −0.0511692 + 0.0511692i
\(646\) 0 0
\(647\) 21.5400 37.3083i 0.846824 1.46674i −0.0372042 0.999308i \(-0.511845\pi\)
0.884028 0.467434i \(-0.154821\pi\)
\(648\) 0 0
\(649\) 12.2867i 0.482296i
\(650\) 0 0
\(651\) 12.3368i 0.483518i
\(652\) 0 0
\(653\) −5.56059 + 9.63123i −0.217603 + 0.376899i −0.954075 0.299569i \(-0.903157\pi\)
0.736472 + 0.676468i \(0.236490\pi\)
\(654\) 0 0
\(655\) 1.86794 1.86794i 0.0729865 0.0729865i
\(656\) 0 0
\(657\) −15.7233 4.21305i −0.613425 0.164367i
\(658\) 0 0
\(659\) −13.2010 + 7.62162i −0.514239 + 0.296896i −0.734575 0.678528i \(-0.762618\pi\)
0.220335 + 0.975424i \(0.429285\pi\)
\(660\) 0 0
\(661\) 2.67284 + 9.97516i 0.103961 + 0.387989i 0.998225 0.0595512i \(-0.0189669\pi\)
−0.894264 + 0.447540i \(0.852300\pi\)
\(662\) 0 0
\(663\) −0.483691 + 4.26114i −0.0187850 + 0.165489i
\(664\) 0 0
\(665\) −3.35523 + 0.899032i −0.130110 + 0.0348630i
\(666\) 0 0
\(667\) −18.4525 31.9607i −0.714485 1.23753i
\(668\) 0 0
\(669\) −4.14239 + 15.4596i −0.160154 + 0.597704i
\(670\) 0 0
\(671\) 7.36454 + 7.36454i 0.284305 + 0.284305i
\(672\) 0 0
\(673\) 25.8030 + 14.8974i 0.994631 + 0.574251i 0.906655 0.421872i \(-0.138627\pi\)
0.0879759 + 0.996123i \(0.471960\pi\)
\(674\) 0 0
\(675\) 22.1818 0.853776
\(676\) 0 0
\(677\) 29.1021 1.11849 0.559243 0.829004i \(-0.311092\pi\)
0.559243 + 0.829004i \(0.311092\pi\)
\(678\) 0 0
\(679\) −35.4334 20.4575i −1.35981 0.785085i
\(680\) 0 0
\(681\) 4.47188 + 4.47188i 0.171363 + 0.171363i
\(682\) 0 0
\(683\) −1.30625 + 4.87499i −0.0499823 + 0.186536i −0.986404 0.164342i \(-0.947450\pi\)
0.936421 + 0.350878i \(0.114117\pi\)
\(684\) 0 0
\(685\) 0.565743 + 0.979896i 0.0216159 + 0.0374399i
\(686\) 0 0
\(687\) −3.68930 + 0.988544i −0.140755 + 0.0377153i
\(688\) 0 0
\(689\) 2.41746 21.2969i 0.0920977 0.811346i
\(690\) 0 0
\(691\) 2.89268 + 10.7956i 0.110043 + 0.410685i 0.998868 0.0475604i \(-0.0151447\pi\)
−0.888826 + 0.458246i \(0.848478\pi\)
\(692\) 0 0
\(693\) −7.52106 + 4.34229i −0.285701 + 0.164950i
\(694\) 0 0
\(695\) −1.57770 0.422743i −0.0598455 0.0160355i
\(696\) 0 0
\(697\) 5.73421 5.73421i 0.217199 0.217199i
\(698\) 0 0
\(699\) 5.66150 9.80601i 0.214138 0.370897i
\(700\) 0 0
\(701\) 27.1476i 1.02535i 0.858582 + 0.512676i \(0.171346\pi\)
−0.858582 + 0.512676i \(0.828654\pi\)
\(702\) 0 0
\(703\) 2.88950i 0.108980i
\(704\) 0 0
\(705\) 0.396511 0.686778i 0.0149335 0.0258656i
\(706\) 0 0
\(707\) −17.1544 + 17.1544i −0.645156 + 0.645156i
\(708\) 0 0
\(709\) −40.9857 10.9821i −1.53925 0.412441i −0.613228 0.789906i \(-0.710129\pi\)
−0.926024 + 0.377465i \(0.876796\pi\)
\(710\) 0 0
\(711\) −16.7973 + 9.69790i −0.629946 + 0.363700i
\(712\) 0 0
\(713\) 12.4217 + 46.3583i 0.465195 + 1.73613i
\(714\) 0 0
\(715\) −0.727432 + 0.983927i −0.0272044 + 0.0367968i
\(716\) 0 0
\(717\) −6.92808 + 1.85637i −0.258734 + 0.0693275i
\(718\) 0 0
\(719\) 8.21566 + 14.2299i 0.306392 + 0.530687i 0.977570 0.210609i \(-0.0675447\pi\)
−0.671178 + 0.741296i \(0.734211\pi\)
\(720\) 0 0
\(721\) −7.46526 + 27.8607i −0.278021 + 1.03759i
\(722\) 0 0
\(723\) 9.29717 + 9.29717i 0.345765 + 0.345765i
\(724\) 0 0
\(725\) −18.0728 10.4343i −0.671205 0.387520i
\(726\) 0 0
\(727\) 32.1429 1.19211 0.596057 0.802942i \(-0.296733\pi\)
0.596057 + 0.802942i \(0.296733\pi\)
\(728\) 0 0
\(729\) −4.56452 −0.169056
\(730\) 0 0
\(731\) −11.1329 6.42759i −0.411765 0.237733i
\(732\) 0 0
\(733\) 19.2047 + 19.2047i 0.709343 + 0.709343i 0.966397 0.257054i \(-0.0827518\pi\)
−0.257054 + 0.966397i \(0.582752\pi\)
\(734\) 0 0
\(735\) 0.000409059 0.00152663i 1.50884e−5 5.63106e-5i
\(736\) 0 0
\(737\) 1.81864 + 3.14998i 0.0669905 + 0.116031i
\(738\) 0 0
\(739\) −22.4404 + 6.01290i −0.825485 + 0.221188i −0.646743 0.762708i \(-0.723869\pi\)
−0.178742 + 0.983896i \(0.557203\pi\)
\(740\) 0 0
\(741\) −13.3847 + 10.6558i −0.491700 + 0.391451i
\(742\) 0 0
\(743\) 9.98778 + 37.2749i 0.366416 + 1.36748i 0.865491 + 0.500925i \(0.167007\pi\)
−0.499075 + 0.866559i \(0.666327\pi\)
\(744\) 0 0
\(745\) −3.08908 + 1.78348i −0.113175 + 0.0653417i
\(746\) 0 0
\(747\) 21.5032 + 5.76177i 0.786762 + 0.210812i
\(748\) 0 0
\(749\) −18.4296 + 18.4296i −0.673402 + 0.673402i
\(750\) 0 0
\(751\) 0.646973 1.12059i 0.0236084 0.0408909i −0.853980 0.520306i \(-0.825818\pi\)
0.877588 + 0.479415i \(0.159151\pi\)
\(752\) 0 0
\(753\) 23.3570i 0.851178i
\(754\) 0 0
\(755\) 0.160022i 0.00582380i
\(756\) 0 0
\(757\) −11.2800 + 19.5376i −0.409979 + 0.710104i −0.994887 0.100995i \(-0.967797\pi\)
0.584908 + 0.811100i \(0.301131\pi\)
\(758\) 0 0
\(759\) 7.57969 7.57969i 0.275125 0.275125i
\(760\) 0 0
\(761\) 8.40241 + 2.25142i 0.304587 + 0.0816138i 0.407875 0.913038i \(-0.366270\pi\)
−0.103288 + 0.994651i \(0.532936\pi\)
\(762\) 0 0
\(763\) 0.0787520 0.0454675i 0.00285101 0.00164603i
\(764\) 0 0
\(765\) −0.194094 0.724369i −0.00701748 0.0261896i
\(766\) 0 0
\(767\) −28.5862 11.2466i −1.03219 0.406092i
\(768\) 0 0
\(769\) −9.35018 + 2.50537i −0.337176 + 0.0903461i −0.423434 0.905927i \(-0.639176\pi\)
0.0862584 + 0.996273i \(0.472509\pi\)
\(770\) 0 0
\(771\) −11.8306 20.4912i −0.426068 0.737971i
\(772\) 0 0
\(773\) 4.96928 18.5456i 0.178732 0.667039i −0.817153 0.576420i \(-0.804449\pi\)
0.995886 0.0906182i \(-0.0288843\pi\)
\(774\) 0 0
\(775\) 19.1900 + 19.1900i 0.689327 + 0.689327i
\(776\) 0 0
\(777\) 1.00763 + 0.581756i 0.0361486 + 0.0208704i
\(778\) 0 0
\(779\) 32.3513 1.15911
\(780\) 0 0
\(781\) 15.6767 0.560955
\(782\) 0 0
\(783\) 16.3966 + 9.46660i 0.585968 + 0.338309i
\(784\) 0 0
\(785\) −0.982461 0.982461i −0.0350655 0.0350655i
\(786\) 0 0
\(787\) 7.73737 28.8763i 0.275808 1.02933i −0.679491 0.733684i \(-0.737799\pi\)
0.955298 0.295644i \(-0.0955341\pi\)
\(788\) 0 0
\(789\) −10.1181 17.5250i −0.360213 0.623907i
\(790\) 0 0
\(791\) 11.6298 3.11619i 0.413508 0.110799i
\(792\) 0 0
\(793\) −23.8754 + 10.3932i −0.847841 + 0.369073i
\(794\) 0 0
\(795\) −0.307779 1.14865i −0.0109158 0.0407383i
\(796\) 0 0
\(797\) −32.2562 + 18.6231i −1.14257 + 0.659665i −0.947067 0.321037i \(-0.895969\pi\)
−0.195507 + 0.980702i \(0.562635\pi\)
\(798\) 0 0
\(799\) 5.35801 + 1.43567i 0.189553 + 0.0507905i
\(800\) 0 0
\(801\) −10.6983 + 10.6983i −0.378004 + 0.378004i
\(802\) 0 0
\(803\) −5.15378 + 8.92661i −0.181873 + 0.315013i
\(804\) 0 0
\(805\) 5.44136i 0.191783i
\(806\) 0 0
\(807\) 17.6060i 0.619759i
\(808\) 0 0
\(809\) −20.9090 + 36.2154i −0.735121 + 1.27327i 0.219550 + 0.975601i \(0.429541\pi\)
−0.954670 + 0.297665i \(0.903792\pi\)
\(810\) 0 0
\(811\) −4.29617 + 4.29617i −0.150859 + 0.150859i −0.778502 0.627643i \(-0.784020\pi\)
0.627643 + 0.778502i \(0.284020\pi\)
\(812\) 0 0
\(813\) 11.3472 + 3.04046i 0.397962 + 0.106634i
\(814\) 0 0
\(815\) −3.20637 + 1.85120i −0.112314 + 0.0648447i
\(816\) 0 0
\(817\) −13.2733 49.5365i −0.464373 1.73306i
\(818\) 0 0
\(819\) −3.21836 21.4732i −0.112459 0.750333i
\(820\) 0 0
\(821\) −18.2378 + 4.88681i −0.636505 + 0.170551i −0.562620 0.826716i \(-0.690207\pi\)
−0.0738852 + 0.997267i \(0.523540\pi\)
\(822\) 0 0
\(823\) −6.80437 11.7855i −0.237185 0.410817i 0.722720 0.691141i \(-0.242892\pi\)
−0.959906 + 0.280324i \(0.909558\pi\)
\(824\) 0 0
\(825\) 1.56881 5.85487i 0.0546189 0.203841i
\(826\) 0 0
\(827\) −17.0815 17.0815i −0.593982 0.593982i 0.344723 0.938705i \(-0.387973\pi\)
−0.938705 + 0.344723i \(0.887973\pi\)
\(828\) 0 0
\(829\) 23.8014 + 13.7417i 0.826657 + 0.477270i 0.852707 0.522390i \(-0.174960\pi\)
−0.0260500 + 0.999661i \(0.508293\pi\)
\(830\) 0 0
\(831\) 10.8241 0.375485
\(832\) 0 0
\(833\) 0.0110551 0.000383038
\(834\) 0 0
\(835\) −1.14261 0.659685i −0.0395416 0.0228294i
\(836\) 0 0
\(837\) −17.4103 17.4103i −0.601788 0.601788i
\(838\) 0 0
\(839\) −10.3356 + 38.5731i −0.356825 + 1.33169i 0.521347 + 0.853345i \(0.325430\pi\)
−0.878172 + 0.478345i \(0.841237\pi\)
\(840\) 0 0
\(841\) 5.59382 + 9.68878i 0.192890 + 0.334096i
\(842\) 0 0
\(843\) −17.9349 + 4.80564i −0.617711 + 0.165515i
\(844\) 0 0
\(845\) −1.62335 2.59307i −0.0558449 0.0892045i
\(846\) 0 0
\(847\) −6.10491 22.7839i −0.209767 0.782862i
\(848\) 0 0
\(849\) −15.2309 + 8.79359i −0.522725 + 0.301795i
\(850\) 0 0
\(851\) 4.37216 + 1.17152i 0.149876 + 0.0401590i
\(852\) 0 0
\(853\) 6.78242 6.78242i 0.232226 0.232226i −0.581395 0.813621i \(-0.697493\pi\)
0.813621 + 0.581395i \(0.197493\pi\)
\(854\) 0 0
\(855\) 1.49586 2.59090i 0.0511572 0.0886068i
\(856\) 0 0
\(857\) 25.7579i 0.879872i 0.898029 + 0.439936i \(0.144999\pi\)
−0.898029 + 0.439936i \(0.855001\pi\)
\(858\) 0 0
\(859\) 51.8251i 1.76825i 0.467252 + 0.884124i \(0.345244\pi\)
−0.467252 + 0.884124i \(0.654756\pi\)
\(860\) 0 0
\(861\) 6.51343 11.2816i 0.221977 0.384476i
\(862\) 0 0
\(863\) −35.1233 + 35.1233i −1.19561 + 1.19561i −0.220144 + 0.975467i \(0.570653\pi\)
−0.975467 + 0.220144i \(0.929347\pi\)
\(864\) 0 0
\(865\) −0.491171 0.131609i −0.0167003 0.00447483i
\(866\) 0 0
\(867\) 11.0734 6.39322i 0.376072 0.217125i
\(868\) 0 0
\(869\) 3.17877 + 11.8633i 0.107833 + 0.402436i
\(870\) 0 0
\(871\) −8.99342 + 1.34792i −0.304730 + 0.0456725i
\(872\) 0 0
\(873\) 34.0382 9.12050i 1.15202 0.308682i
\(874\) 0 0
\(875\) 3.09414 + 5.35921i 0.104601 + 0.181174i
\(876\) 0 0
\(877\) −9.61256 + 35.8746i −0.324593 + 1.21140i 0.590127 + 0.807310i \(0.299078\pi\)
−0.914720 + 0.404088i \(0.867589\pi\)
\(878\) 0 0
\(879\) −13.8602 13.8602i −0.467493 0.467493i
\(880\) 0 0
\(881\) −1.73014 0.998897i −0.0582899 0.0336537i 0.470572 0.882362i \(-0.344048\pi\)
−0.528862 + 0.848708i \(0.677381\pi\)
\(882\) 0 0
\(883\) −16.1625 −0.543913 −0.271956 0.962310i \(-0.587671\pi\)
−0.271956 + 0.962310i \(0.587671\pi\)
\(884\) 0 0
\(885\) −1.70433 −0.0572906
\(886\) 0 0
\(887\) −15.2472 8.80298i −0.511951 0.295575i 0.221684 0.975119i \(-0.428845\pi\)
−0.733635 + 0.679543i \(0.762178\pi\)
\(888\) 0 0
\(889\) −9.99232 9.99232i −0.335132 0.335132i
\(890\) 0 0
\(891\) 1.12682 4.20534i 0.0377498 0.140884i
\(892\) 0 0
\(893\) 11.0645 + 19.1644i 0.370261 + 0.641311i
\(894\) 0 0
\(895\) 2.30330 0.617167i 0.0769908 0.0206296i
\(896\) 0 0
\(897\) 10.6968 + 24.5729i 0.357157 + 0.820466i
\(898\) 0 0
\(899\) 5.99536 + 22.3750i 0.199956 + 0.746247i
\(900\) 0 0
\(901\) 7.20357 4.15898i 0.239986 0.138556i
\(902\) 0 0
\(903\) −19.9468 5.34473i −0.663788 0.177861i
\(904\) 0 0
\(905\) −2.30516 + 2.30516i −0.0766261 + 0.0766261i
\(906\) 0 0
\(907\) −14.7054 + 25.4704i −0.488283 + 0.845731i −0.999909 0.0134769i \(-0.995710\pi\)
0.511626 + 0.859208i \(0.329043\pi\)
\(908\) 0 0
\(909\) 20.8944i 0.693024i
\(910\) 0 0
\(911\) 20.5091i 0.679495i −0.940517 0.339748i \(-0.889658\pi\)
0.940517 0.339748i \(-0.110342\pi\)
\(912\) 0 0
\(913\) 7.04832 12.2080i 0.233265 0.404027i
\(914\) 0 0
\(915\) −1.02156 + 1.02156i −0.0337718 + 0.0337718i
\(916\) 0 0
\(917\) 28.6713 + 7.68245i 0.946810 + 0.253697i
\(918\) 0 0
\(919\) 42.4137 24.4876i 1.39910 0.807770i 0.404800 0.914405i \(-0.367341\pi\)
0.994298 + 0.106635i \(0.0340077\pi\)
\(920\) 0 0
\(921\) 5.07665 + 18.9463i 0.167281 + 0.624302i
\(922\) 0 0
\(923\) −14.3496 + 36.4733i −0.472323 + 1.20053i
\(924\) 0 0
\(925\) 2.47231 0.662453i 0.0812890 0.0217813i
\(926\) 0 0
\(927\) −12.4211 21.5139i −0.407962 0.706610i
\(928\) 0 0
\(929\) −1.77316 + 6.61751i −0.0581754 + 0.217113i −0.988894 0.148623i \(-0.952516\pi\)
0.930719 + 0.365736i \(0.119183\pi\)
\(930\) 0 0
\(931\) 0.0311855 + 0.0311855i 0.00102206 + 0.00102206i
\(932\) 0 0
\(933\) 6.29067 + 3.63192i 0.205947 + 0.118904i
\(934\) 0 0
\(935\) −0.474867 −0.0155298
\(936\) 0 0
\(937\) 11.1107 0.362970 0.181485 0.983394i \(-0.441910\pi\)
0.181485 + 0.983394i \(0.441910\pi\)
\(938\) 0 0
\(939\) −4.33139 2.50073i −0.141350 0.0816083i
\(940\) 0 0
\(941\) 20.5970 + 20.5970i 0.671442 + 0.671442i 0.958048 0.286606i \(-0.0925272\pi\)
−0.286606 + 0.958048i \(0.592527\pi\)
\(942\) 0 0
\(943\) 13.1165 48.9513i 0.427131 1.59407i
\(944\) 0 0
\(945\) −1.39577 2.41755i −0.0454045 0.0786430i
\(946\) 0 0
\(947\) 28.3374 7.59297i 0.920841 0.246739i 0.232896 0.972502i \(-0.425180\pi\)
0.687945 + 0.725763i \(0.258513\pi\)
\(948\) 0 0
\(949\) −16.0511 20.1617i −0.521041 0.654477i
\(950\) 0 0
\(951\) −5.13516 19.1647i −0.166519 0.621457i
\(952\) 0 0
\(953\) −11.3638 + 6.56091i −0.368110 + 0.212529i −0.672633 0.739977i \(-0.734837\pi\)
0.304522 + 0.952505i \(0.401503\pi\)
\(954\) 0 0
\(955\) 0.879806 + 0.235743i 0.0284699 + 0.00762847i
\(956\) 0 0
\(957\) 3.65836 3.65836i 0.118258 0.118258i
\(958\) 0 0
\(959\) −6.35689 + 11.0105i −0.205275 + 0.355546i
\(960\) 0 0
\(961\) 0.875747i 0.0282499i
\(962\) 0 0
\(963\) 22.4477i 0.723365i
\(964\) 0 0
\(965\) −0.967718 + 1.67614i −0.0311519 + 0.0539568i
\(966\) 0 0
\(967\) −13.0476 + 13.0476i −0.419581 + 0.419581i −0.885059 0.465478i \(-0.845882\pi\)
0.465478 + 0.885059i \(0.345882\pi\)
\(968\) 0 0
\(969\) −6.41320 1.71841i −0.206022 0.0552033i
\(970\) 0 0
\(971\) 38.3512 22.1421i 1.23075 0.710573i 0.263562 0.964642i \(-0.415103\pi\)
0.967186 + 0.254070i \(0.0817692\pi\)
\(972\) 0 0
\(973\) −4.75009 17.7276i −0.152281 0.568320i
\(974\) 0 0
\(975\) 12.1859 + 9.00923i 0.390262 + 0.288526i
\(976\) 0 0
\(977\) 0.239374 0.0641402i 0.00765826 0.00205203i −0.254988 0.966944i \(-0.582071\pi\)
0.262646 + 0.964892i \(0.415405\pi\)
\(978\) 0 0
\(979\) 4.79020 + 8.29687i 0.153095 + 0.265169i
\(980\) 0 0
\(981\) −0.0202707 + 0.0756511i −0.000647192 + 0.00241535i
\(982\) 0 0
\(983\) −8.44991 8.44991i −0.269510 0.269510i 0.559393 0.828903i \(-0.311034\pi\)
−0.828903 + 0.559393i \(0.811034\pi\)
\(984\) 0 0
\(985\) 2.52321 + 1.45678i 0.0803963 + 0.0464168i
\(986\) 0 0
\(987\) 8.91069 0.283630
\(988\) 0 0
\(989\) −80.3360 −2.55454
\(990\) 0 0
\(991\) 36.2254 + 20.9147i 1.15074 + 0.664379i 0.949067 0.315074i \(-0.102029\pi\)
0.201671 + 0.979453i \(0.435363\pi\)
\(992\) 0 0
\(993\) 8.63520 + 8.63520i 0.274030 + 0.274030i
\(994\) 0 0
\(995\) 0.148248 0.553269i 0.00469978 0.0175398i
\(996\) 0 0
\(997\) 6.38088 + 11.0520i 0.202085 + 0.350021i 0.949200 0.314674i \(-0.101895\pi\)
−0.747115 + 0.664694i \(0.768562\pi\)
\(998\) 0 0
\(999\) −2.24302 + 0.601015i −0.0709660 + 0.0190153i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.bu.n.319.2 16
4.3 odd 2 inner 832.2.bu.n.319.3 16
8.3 odd 2 52.2.l.b.7.4 yes 16
8.5 even 2 52.2.l.b.7.3 16
13.2 odd 12 inner 832.2.bu.n.639.3 16
24.5 odd 2 468.2.cb.f.163.2 16
24.11 even 2 468.2.cb.f.163.1 16
52.15 even 12 inner 832.2.bu.n.639.2 16
104.3 odd 6 676.2.l.m.427.1 16
104.5 odd 4 676.2.l.m.19.1 16
104.11 even 12 676.2.l.k.587.2 16
104.19 even 12 676.2.f.h.239.1 16
104.21 odd 4 676.2.l.i.19.4 16
104.29 even 6 676.2.l.m.427.3 16
104.35 odd 6 676.2.f.h.99.6 16
104.37 odd 12 676.2.l.k.587.1 16
104.43 odd 6 676.2.f.i.99.3 16
104.45 odd 12 676.2.f.h.239.6 16
104.51 odd 2 676.2.l.k.319.1 16
104.59 even 12 676.2.f.i.239.8 16
104.61 even 6 676.2.f.h.99.1 16
104.67 even 12 52.2.l.b.15.3 yes 16
104.69 even 6 676.2.f.i.99.8 16
104.75 odd 6 676.2.l.i.427.4 16
104.77 even 2 676.2.l.k.319.2 16
104.83 even 4 676.2.l.m.19.3 16
104.85 odd 12 676.2.f.i.239.3 16
104.93 odd 12 52.2.l.b.15.4 yes 16
104.99 even 4 676.2.l.i.19.2 16
104.101 even 6 676.2.l.i.427.2 16
312.197 even 12 468.2.cb.f.379.1 16
312.275 odd 12 468.2.cb.f.379.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.l.b.7.3 16 8.5 even 2
52.2.l.b.7.4 yes 16 8.3 odd 2
52.2.l.b.15.3 yes 16 104.67 even 12
52.2.l.b.15.4 yes 16 104.93 odd 12
468.2.cb.f.163.1 16 24.11 even 2
468.2.cb.f.163.2 16 24.5 odd 2
468.2.cb.f.379.1 16 312.197 even 12
468.2.cb.f.379.2 16 312.275 odd 12
676.2.f.h.99.1 16 104.61 even 6
676.2.f.h.99.6 16 104.35 odd 6
676.2.f.h.239.1 16 104.19 even 12
676.2.f.h.239.6 16 104.45 odd 12
676.2.f.i.99.3 16 104.43 odd 6
676.2.f.i.99.8 16 104.69 even 6
676.2.f.i.239.3 16 104.85 odd 12
676.2.f.i.239.8 16 104.59 even 12
676.2.l.i.19.2 16 104.99 even 4
676.2.l.i.19.4 16 104.21 odd 4
676.2.l.i.427.2 16 104.101 even 6
676.2.l.i.427.4 16 104.75 odd 6
676.2.l.k.319.1 16 104.51 odd 2
676.2.l.k.319.2 16 104.77 even 2
676.2.l.k.587.1 16 104.37 odd 12
676.2.l.k.587.2 16 104.11 even 12
676.2.l.m.19.1 16 104.5 odd 4
676.2.l.m.19.3 16 104.83 even 4
676.2.l.m.427.1 16 104.3 odd 6
676.2.l.m.427.3 16 104.29 even 6
832.2.bu.n.319.2 16 1.1 even 1 trivial
832.2.bu.n.319.3 16 4.3 odd 2 inner
832.2.bu.n.639.2 16 52.15 even 12 inner
832.2.bu.n.639.3 16 13.2 odd 12 inner