Properties

Label 720.2.cu.a.257.1
Level $720$
Weight $2$
Character 720.257
Analytic conductor $5.749$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(113,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 0, 10, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.113");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.cu (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 257.1
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 720.257
Dual form 720.2.cu.a.353.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.599900 + 1.62484i) q^{3} +(0.792893 + 2.09077i) q^{5} +(-1.18034 + 4.40508i) q^{7} +(-2.28024 - 1.94949i) q^{9} +(0.550510 - 0.317837i) q^{11} +(0.896575 + 3.34607i) q^{13} +(-3.87283 + 0.0340742i) q^{15} +(-0.317837 + 0.317837i) q^{17} -6.44949i q^{19} +(-6.44949 - 4.56048i) q^{21} +(0.965926 - 0.258819i) q^{23} +(-3.74264 + 3.31552i) q^{25} +(4.53553 - 2.53553i) q^{27} +(0.158919 + 0.275255i) q^{29} +(0.224745 - 0.389270i) q^{31} +(0.186185 + 1.08516i) q^{33} +(-10.1459 + 1.02494i) q^{35} +(-3.00000 - 3.00000i) q^{37} +(-5.97469 - 0.550510i) q^{39} +(6.39898 + 3.69445i) q^{41} +(-3.34607 - 0.896575i) q^{43} +(2.26795 - 6.31319i) q^{45} +(8.69333 + 2.32937i) q^{47} +(-11.9494 - 6.89898i) q^{49} +(-0.325765 - 0.707107i) q^{51} +(-3.78194 - 3.78194i) q^{53} +(1.10102 + 0.898979i) q^{55} +(10.4794 + 3.86905i) q^{57} +(-4.48905 + 7.77526i) q^{59} +(0.275255 + 0.476756i) q^{61} +(11.2791 - 7.74358i) q^{63} +(-6.28497 + 4.52761i) q^{65} +(-6.38512 + 1.71089i) q^{67} +(-0.158919 + 1.72474i) q^{69} +6.29253i q^{71} +(-6.89898 + 6.89898i) q^{73} +(-3.14198 - 8.07019i) q^{75} +(0.750311 + 2.80020i) q^{77} +(-2.12132 + 1.22474i) q^{79} +(1.39898 + 8.89060i) q^{81} +(-1.41043 + 5.26380i) q^{83} +(-0.916536 - 0.412514i) q^{85} +(-0.542582 + 0.0930924i) q^{87} +8.02458 q^{89} -15.7980 q^{91} +(0.497678 + 0.598698i) q^{93} +(13.4844 - 5.11376i) q^{95} +(0.695075 - 2.59405i) q^{97} +(-1.87492 - 0.348469i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 12 q^{5} + 8 q^{7} + 24 q^{11} - 16 q^{15} - 32 q^{21} + 4 q^{25} + 8 q^{27} - 8 q^{31} + 16 q^{33} - 24 q^{37} + 12 q^{41} + 32 q^{45} - 32 q^{51} + 48 q^{55} + 28 q^{57} + 12 q^{61} + 32 q^{63}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.599900 + 1.62484i −0.346353 + 0.938104i
\(4\) 0 0
\(5\) 0.792893 + 2.09077i 0.354593 + 0.935021i
\(6\) 0 0
\(7\) −1.18034 + 4.40508i −0.446126 + 1.66497i 0.266820 + 0.963746i \(0.414027\pi\)
−0.712946 + 0.701219i \(0.752640\pi\)
\(8\) 0 0
\(9\) −2.28024 1.94949i −0.760080 0.649830i
\(10\) 0 0
\(11\) 0.550510 0.317837i 0.165985 0.0958315i −0.414706 0.909955i \(-0.636116\pi\)
0.580691 + 0.814124i \(0.302782\pi\)
\(12\) 0 0
\(13\) 0.896575 + 3.34607i 0.248665 + 0.928032i 0.971506 + 0.237016i \(0.0761695\pi\)
−0.722840 + 0.691015i \(0.757164\pi\)
\(14\) 0 0
\(15\) −3.87283 + 0.0340742i −0.999961 + 0.00879791i
\(16\) 0 0
\(17\) −0.317837 + 0.317837i −0.0770869 + 0.0770869i −0.744599 0.667512i \(-0.767359\pi\)
0.667512 + 0.744599i \(0.267359\pi\)
\(18\) 0 0
\(19\) 6.44949i 1.47961i −0.672819 0.739807i \(-0.734917\pi\)
0.672819 0.739807i \(-0.265083\pi\)
\(20\) 0 0
\(21\) −6.44949 4.56048i −1.40739 0.995178i
\(22\) 0 0
\(23\) 0.965926 0.258819i 0.201409 0.0539675i −0.156704 0.987646i \(-0.550087\pi\)
0.358113 + 0.933678i \(0.383420\pi\)
\(24\) 0 0
\(25\) −3.74264 + 3.31552i −0.748528 + 0.663103i
\(26\) 0 0
\(27\) 4.53553 2.53553i 0.872864 0.487964i
\(28\) 0 0
\(29\) 0.158919 + 0.275255i 0.0295104 + 0.0511136i 0.880403 0.474225i \(-0.157272\pi\)
−0.850893 + 0.525339i \(0.823939\pi\)
\(30\) 0 0
\(31\) 0.224745 0.389270i 0.0403654 0.0699149i −0.845137 0.534550i \(-0.820481\pi\)
0.885502 + 0.464635i \(0.153814\pi\)
\(32\) 0 0
\(33\) 0.186185 + 1.08516i 0.0324106 + 0.188903i
\(34\) 0 0
\(35\) −10.1459 + 1.02494i −1.71497 + 0.173247i
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) 0 0
\(39\) −5.97469 0.550510i −0.956716 0.0881522i
\(40\) 0 0
\(41\) 6.39898 + 3.69445i 0.999353 + 0.576977i 0.908057 0.418847i \(-0.137566\pi\)
0.0912960 + 0.995824i \(0.470899\pi\)
\(42\) 0 0
\(43\) −3.34607 0.896575i −0.510270 0.136726i −0.00550783 0.999985i \(-0.501753\pi\)
−0.504762 + 0.863258i \(0.668420\pi\)
\(44\) 0 0
\(45\) 2.26795 6.31319i 0.338086 0.941115i
\(46\) 0 0
\(47\) 8.69333 + 2.32937i 1.26805 + 0.339774i 0.829285 0.558827i \(-0.188748\pi\)
0.438768 + 0.898600i \(0.355415\pi\)
\(48\) 0 0
\(49\) −11.9494 6.89898i −1.70705 0.985568i
\(50\) 0 0
\(51\) −0.325765 0.707107i −0.0456163 0.0990148i
\(52\) 0 0
\(53\) −3.78194 3.78194i −0.519489 0.519489i 0.397928 0.917417i \(-0.369730\pi\)
−0.917417 + 0.397928i \(0.869730\pi\)
\(54\) 0 0
\(55\) 1.10102 + 0.898979i 0.148462 + 0.121218i
\(56\) 0 0
\(57\) 10.4794 + 3.86905i 1.38803 + 0.512468i
\(58\) 0 0
\(59\) −4.48905 + 7.77526i −0.584424 + 1.01225i 0.410523 + 0.911850i \(0.365346\pi\)
−0.994947 + 0.100402i \(0.967987\pi\)
\(60\) 0 0
\(61\) 0.275255 + 0.476756i 0.0352428 + 0.0610423i 0.883109 0.469168i \(-0.155446\pi\)
−0.847866 + 0.530211i \(0.822113\pi\)
\(62\) 0 0
\(63\) 11.2791 7.74358i 1.42104 0.975600i
\(64\) 0 0
\(65\) −6.28497 + 4.52761i −0.779554 + 0.561580i
\(66\) 0 0
\(67\) −6.38512 + 1.71089i −0.780067 + 0.209018i −0.626814 0.779169i \(-0.715642\pi\)
−0.153253 + 0.988187i \(0.548975\pi\)
\(68\) 0 0
\(69\) −0.158919 + 1.72474i −0.0191316 + 0.207635i
\(70\) 0 0
\(71\) 6.29253i 0.746786i 0.927673 + 0.373393i \(0.121806\pi\)
−0.927673 + 0.373393i \(0.878194\pi\)
\(72\) 0 0
\(73\) −6.89898 + 6.89898i −0.807464 + 0.807464i −0.984249 0.176785i \(-0.943430\pi\)
0.176785 + 0.984249i \(0.443430\pi\)
\(74\) 0 0
\(75\) −3.14198 8.07019i −0.362805 0.931865i
\(76\) 0 0
\(77\) 0.750311 + 2.80020i 0.0855059 + 0.319112i
\(78\) 0 0
\(79\) −2.12132 + 1.22474i −0.238667 + 0.137795i −0.614564 0.788867i \(-0.710668\pi\)
0.375897 + 0.926662i \(0.377335\pi\)
\(80\) 0 0
\(81\) 1.39898 + 8.89060i 0.155442 + 0.987845i
\(82\) 0 0
\(83\) −1.41043 + 5.26380i −0.154815 + 0.577777i 0.844306 + 0.535861i \(0.180013\pi\)
−0.999121 + 0.0419163i \(0.986654\pi\)
\(84\) 0 0
\(85\) −0.916536 0.412514i −0.0994123 0.0447434i
\(86\) 0 0
\(87\) −0.542582 + 0.0930924i −0.0581709 + 0.00998055i
\(88\) 0 0
\(89\) 8.02458 0.850604 0.425302 0.905052i \(-0.360168\pi\)
0.425302 + 0.905052i \(0.360168\pi\)
\(90\) 0 0
\(91\) −15.7980 −1.65608
\(92\) 0 0
\(93\) 0.497678 + 0.598698i 0.0516068 + 0.0620821i
\(94\) 0 0
\(95\) 13.4844 5.11376i 1.38347 0.524660i
\(96\) 0 0
\(97\) 0.695075 2.59405i 0.0705741 0.263386i −0.921619 0.388095i \(-0.873133\pi\)
0.992193 + 0.124709i \(0.0397998\pi\)
\(98\) 0 0
\(99\) −1.87492 0.348469i −0.188436 0.0350225i
\(100\) 0 0
\(101\) 10.8990 6.29253i 1.08449 0.626130i 0.152385 0.988321i \(-0.451305\pi\)
0.932104 + 0.362191i \(0.117971\pi\)
\(102\) 0 0
\(103\) 2.52520 + 9.42418i 0.248816 + 0.928592i 0.971427 + 0.237338i \(0.0762749\pi\)
−0.722612 + 0.691254i \(0.757058\pi\)
\(104\) 0 0
\(105\) 4.42116 17.1004i 0.431461 1.66883i
\(106\) 0 0
\(107\) 13.6100 13.6100i 1.31573 1.31573i 0.398606 0.917122i \(-0.369494\pi\)
0.917122 0.398606i \(-0.130506\pi\)
\(108\) 0 0
\(109\) 5.65153i 0.541318i −0.962675 0.270659i \(-0.912758\pi\)
0.962675 0.270659i \(-0.0872417\pi\)
\(110\) 0 0
\(111\) 6.67423 3.07483i 0.633490 0.291850i
\(112\) 0 0
\(113\) −5.60040 + 1.50062i −0.526841 + 0.141167i −0.512429 0.858729i \(-0.671254\pi\)
−0.0144120 + 0.999896i \(0.504588\pi\)
\(114\) 0 0
\(115\) 1.30701 + 1.81431i 0.121879 + 0.169186i
\(116\) 0 0
\(117\) 4.47871 9.37769i 0.414057 0.866968i
\(118\) 0 0
\(119\) −1.02494 1.77526i −0.0939565 0.162737i
\(120\) 0 0
\(121\) −5.29796 + 9.17633i −0.481633 + 0.834212i
\(122\) 0 0
\(123\) −9.84166 + 8.18104i −0.887393 + 0.737660i
\(124\) 0 0
\(125\) −9.89949 5.19615i −0.885438 0.464758i
\(126\) 0 0
\(127\) −1.87628 1.87628i −0.166493 0.166493i 0.618943 0.785436i \(-0.287561\pi\)
−0.785436 + 0.618943i \(0.787561\pi\)
\(128\) 0 0
\(129\) 3.46410 4.89898i 0.304997 0.431331i
\(130\) 0 0
\(131\) 3.12372 + 1.80348i 0.272921 + 0.157571i 0.630214 0.776421i \(-0.282967\pi\)
−0.357293 + 0.933992i \(0.616300\pi\)
\(132\) 0 0
\(133\) 28.4105 + 7.61258i 2.46351 + 0.660095i
\(134\) 0 0
\(135\) 8.89741 + 7.47235i 0.765767 + 0.643118i
\(136\) 0 0
\(137\) 21.0552 + 5.64173i 1.79887 + 0.482005i 0.993801 0.111178i \(-0.0354623\pi\)
0.805068 + 0.593183i \(0.202129\pi\)
\(138\) 0 0
\(139\) 2.68556 + 1.55051i 0.227786 + 0.131513i 0.609550 0.792747i \(-0.291350\pi\)
−0.381764 + 0.924260i \(0.624683\pi\)
\(140\) 0 0
\(141\) −9.00000 + 12.7279i −0.757937 + 1.07188i
\(142\) 0 0
\(143\) 1.55708 + 1.55708i 0.130209 + 0.130209i
\(144\) 0 0
\(145\) −0.449490 + 0.550510i −0.0373281 + 0.0457174i
\(146\) 0 0
\(147\) 18.3782 15.2772i 1.51581 1.26004i
\(148\) 0 0
\(149\) −2.20881 + 3.82577i −0.180952 + 0.313419i −0.942205 0.335036i \(-0.891251\pi\)
0.761253 + 0.648455i \(0.224585\pi\)
\(150\) 0 0
\(151\) 8.79796 + 15.2385i 0.715968 + 1.24009i 0.962585 + 0.270980i \(0.0873476\pi\)
−0.246617 + 0.969113i \(0.579319\pi\)
\(152\) 0 0
\(153\) 1.34437 0.105124i 0.108685 0.00849881i
\(154\) 0 0
\(155\) 0.992072 + 0.161241i 0.0796851 + 0.0129512i
\(156\) 0 0
\(157\) 14.1363 3.78780i 1.12820 0.302300i 0.354001 0.935245i \(-0.384821\pi\)
0.774196 + 0.632945i \(0.218154\pi\)
\(158\) 0 0
\(159\) 8.41385 3.87628i 0.667262 0.307409i
\(160\) 0 0
\(161\) 4.56048i 0.359416i
\(162\) 0 0
\(163\) −4.44949 + 4.44949i −0.348511 + 0.348511i −0.859555 0.511044i \(-0.829259\pi\)
0.511044 + 0.859555i \(0.329259\pi\)
\(164\) 0 0
\(165\) −2.12120 + 1.24969i −0.165136 + 0.0972881i
\(166\) 0 0
\(167\) 2.27708 + 8.49818i 0.176206 + 0.657609i 0.996343 + 0.0854420i \(0.0272302\pi\)
−0.820137 + 0.572167i \(0.806103\pi\)
\(168\) 0 0
\(169\) 0.866025 0.500000i 0.0666173 0.0384615i
\(170\) 0 0
\(171\) −12.5732 + 14.7064i −0.961498 + 1.12462i
\(172\) 0 0
\(173\) −3.33850 + 12.4595i −0.253822 + 0.947275i 0.714921 + 0.699206i \(0.246463\pi\)
−0.968742 + 0.248069i \(0.920204\pi\)
\(174\) 0 0
\(175\) −10.1875 20.4001i −0.770105 1.54210i
\(176\) 0 0
\(177\) −9.94060 11.9584i −0.747181 0.898847i
\(178\) 0 0
\(179\) 10.6780 0.798114 0.399057 0.916926i \(-0.369338\pi\)
0.399057 + 0.916926i \(0.369338\pi\)
\(180\) 0 0
\(181\) −15.4495 −1.14835 −0.574176 0.818732i \(-0.694677\pi\)
−0.574176 + 0.818732i \(0.694677\pi\)
\(182\) 0 0
\(183\) −0.939780 + 0.161241i −0.0694705 + 0.0119193i
\(184\) 0 0
\(185\) 3.89363 8.65099i 0.286265 0.636033i
\(186\) 0 0
\(187\) −0.0739521 + 0.275993i −0.00540792 + 0.0201826i
\(188\) 0 0
\(189\) 5.81577 + 22.9722i 0.423035 + 1.67098i
\(190\) 0 0
\(191\) 15.1237 8.73169i 1.09431 0.631803i 0.159593 0.987183i \(-0.448982\pi\)
0.934722 + 0.355380i \(0.115649\pi\)
\(192\) 0 0
\(193\) −4.48288 16.7303i −0.322685 1.20428i −0.916619 0.399762i \(-0.869093\pi\)
0.593934 0.804513i \(-0.297574\pi\)
\(194\) 0 0
\(195\) −3.58630 12.9282i −0.256820 0.925808i
\(196\) 0 0
\(197\) −6.92820 + 6.92820i −0.493614 + 0.493614i −0.909443 0.415829i \(-0.863492\pi\)
0.415829 + 0.909443i \(0.363492\pi\)
\(198\) 0 0
\(199\) 8.44949i 0.598968i −0.954101 0.299484i \(-0.903185\pi\)
0.954101 0.299484i \(-0.0968146\pi\)
\(200\) 0 0
\(201\) 1.05051 11.4012i 0.0740973 0.804178i
\(202\) 0 0
\(203\) −1.40010 + 0.375156i −0.0982677 + 0.0263308i
\(204\) 0 0
\(205\) −2.65054 + 16.3081i −0.185122 + 1.13901i
\(206\) 0 0
\(207\) −2.70711 1.29289i −0.188157 0.0898623i
\(208\) 0 0
\(209\) −2.04989 3.55051i −0.141794 0.245594i
\(210\) 0 0
\(211\) 4.55051 7.88171i 0.313270 0.542600i −0.665798 0.746132i \(-0.731909\pi\)
0.979068 + 0.203532i \(0.0652422\pi\)
\(212\) 0 0
\(213\) −10.2244 3.77489i −0.700563 0.258651i
\(214\) 0 0
\(215\) −0.778539 7.70674i −0.0530959 0.525595i
\(216\) 0 0
\(217\) 1.44949 + 1.44949i 0.0983978 + 0.0983978i
\(218\) 0 0
\(219\) −7.07107 15.3485i −0.477818 1.03715i
\(220\) 0 0
\(221\) −1.34847 0.778539i −0.0907079 0.0523702i
\(222\) 0 0
\(223\) 24.7575 + 6.63374i 1.65788 + 0.444228i 0.961804 0.273738i \(-0.0882600\pi\)
0.696078 + 0.717966i \(0.254927\pi\)
\(224\) 0 0
\(225\) 14.9977 0.263927i 0.999845 0.0175951i
\(226\) 0 0
\(227\) −24.0506 6.44433i −1.59629 0.427725i −0.652372 0.757899i \(-0.726226\pi\)
−0.943920 + 0.330174i \(0.892893\pi\)
\(228\) 0 0
\(229\) 1.43027 + 0.825765i 0.0945147 + 0.0545681i 0.546512 0.837451i \(-0.315955\pi\)
−0.451998 + 0.892019i \(0.649288\pi\)
\(230\) 0 0
\(231\) −5.00000 0.460702i −0.328976 0.0303120i
\(232\) 0 0
\(233\) 14.4600 + 14.4600i 0.947304 + 0.947304i 0.998679 0.0513751i \(-0.0163604\pi\)
−0.0513751 + 0.998679i \(0.516360\pi\)
\(234\) 0 0
\(235\) 2.02270 + 20.0227i 0.131947 + 1.30614i
\(236\) 0 0
\(237\) −0.717439 4.18154i −0.0466027 0.271620i
\(238\) 0 0
\(239\) −8.48528 + 14.6969i −0.548867 + 0.950666i 0.449485 + 0.893288i \(0.351607\pi\)
−0.998353 + 0.0573782i \(0.981726\pi\)
\(240\) 0 0
\(241\) −9.50000 16.4545i −0.611949 1.05993i −0.990912 0.134515i \(-0.957053\pi\)
0.378963 0.925412i \(-0.376281\pi\)
\(242\) 0 0
\(243\) −15.2851 3.06035i −0.980540 0.196322i
\(244\) 0 0
\(245\) 4.94960 30.4536i 0.316218 1.94561i
\(246\) 0 0
\(247\) 21.5804 5.78245i 1.37313 0.367929i
\(248\) 0 0
\(249\) −7.70674 5.44949i −0.488395 0.345347i
\(250\) 0 0
\(251\) 2.68556i 0.169511i 0.996402 + 0.0847556i \(0.0270110\pi\)
−0.996402 + 0.0847556i \(0.972989\pi\)
\(252\) 0 0
\(253\) 0.449490 0.449490i 0.0282592 0.0282592i
\(254\) 0 0
\(255\) 1.22010 1.24176i 0.0764057 0.0777621i
\(256\) 0 0
\(257\) −4.67050 17.4305i −0.291337 1.08729i −0.944083 0.329709i \(-0.893049\pi\)
0.652745 0.757578i \(-0.273617\pi\)
\(258\) 0 0
\(259\) 16.7563 9.67423i 1.04118 0.601128i
\(260\) 0 0
\(261\) 0.174235 0.937458i 0.0107849 0.0580272i
\(262\) 0 0
\(263\) −4.32149 + 16.1280i −0.266474 + 0.994495i 0.694868 + 0.719138i \(0.255463\pi\)
−0.961342 + 0.275358i \(0.911204\pi\)
\(264\) 0 0
\(265\) 4.90849 10.9058i 0.301526 0.669940i
\(266\) 0 0
\(267\) −4.81395 + 13.0387i −0.294609 + 0.797955i
\(268\) 0 0
\(269\) 15.0956 0.920398 0.460199 0.887816i \(-0.347778\pi\)
0.460199 + 0.887816i \(0.347778\pi\)
\(270\) 0 0
\(271\) −28.0454 −1.70364 −0.851819 0.523837i \(-0.824500\pi\)
−0.851819 + 0.523837i \(0.824500\pi\)
\(272\) 0 0
\(273\) 9.47720 25.6692i 0.573586 1.55357i
\(274\) 0 0
\(275\) −1.00657 + 3.01478i −0.0606983 + 0.181798i
\(276\) 0 0
\(277\) −7.28353 + 27.1825i −0.437625 + 1.63324i 0.297080 + 0.954852i \(0.403987\pi\)
−0.734705 + 0.678386i \(0.762680\pi\)
\(278\) 0 0
\(279\) −1.27135 + 0.449490i −0.0761137 + 0.0269102i
\(280\) 0 0
\(281\) −14.8485 + 8.57277i −0.885785 + 0.511408i −0.872562 0.488504i \(-0.837543\pi\)
−0.0132238 + 0.999913i \(0.504209\pi\)
\(282\) 0 0
\(283\) −6.26772 23.3914i −0.372577 1.39048i −0.856853 0.515561i \(-0.827583\pi\)
0.484275 0.874916i \(-0.339083\pi\)
\(284\) 0 0
\(285\) 0.219761 + 24.9778i 0.0130175 + 1.47956i
\(286\) 0 0
\(287\) −23.8273 + 23.8273i −1.40648 + 1.40648i
\(288\) 0 0
\(289\) 16.7980i 0.988115i
\(290\) 0 0
\(291\) 3.79796 + 2.68556i 0.222640 + 0.157430i
\(292\) 0 0
\(293\) 21.2942 5.70577i 1.24402 0.333335i 0.423998 0.905663i \(-0.360626\pi\)
0.820024 + 0.572329i \(0.193960\pi\)
\(294\) 0 0
\(295\) −19.8156 3.22062i −1.15371 0.187512i
\(296\) 0 0
\(297\) 1.69097 2.83740i 0.0981201 0.164643i
\(298\) 0 0
\(299\) 1.73205 + 3.00000i 0.100167 + 0.173494i
\(300\) 0 0
\(301\) 7.89898 13.6814i 0.455290 0.788585i
\(302\) 0 0
\(303\) 3.68608 + 21.4840i 0.211760 + 1.23423i
\(304\) 0 0
\(305\) −0.778539 + 0.953512i −0.0445790 + 0.0545979i
\(306\) 0 0
\(307\) 6.67423 + 6.67423i 0.380919 + 0.380919i 0.871433 0.490514i \(-0.163191\pi\)
−0.490514 + 0.871433i \(0.663191\pi\)
\(308\) 0 0
\(309\) −16.8277 1.55051i −0.957294 0.0882054i
\(310\) 0 0
\(311\) −23.8207 13.7529i −1.35075 0.779853i −0.362392 0.932026i \(-0.618040\pi\)
−0.988354 + 0.152172i \(0.951373\pi\)
\(312\) 0 0
\(313\) −11.5422 3.09273i −0.652405 0.174811i −0.0825888 0.996584i \(-0.526319\pi\)
−0.569816 + 0.821772i \(0.692985\pi\)
\(314\) 0 0
\(315\) 25.1332 + 17.4422i 1.41610 + 0.982757i
\(316\) 0 0
\(317\) −10.5276 2.82086i −0.591289 0.158435i −0.0492469 0.998787i \(-0.515682\pi\)
−0.542042 + 0.840351i \(0.682349\pi\)
\(318\) 0 0
\(319\) 0.174973 + 0.101021i 0.00979659 + 0.00565606i
\(320\) 0 0
\(321\) 13.9495 + 30.2788i 0.778585 + 1.69000i
\(322\) 0 0
\(323\) 2.04989 + 2.04989i 0.114059 + 0.114059i
\(324\) 0 0
\(325\) −14.4495 9.55051i −0.801513 0.529767i
\(326\) 0 0
\(327\) 9.18286 + 3.39036i 0.507813 + 0.187487i
\(328\) 0 0
\(329\) −20.5222 + 35.5454i −1.13142 + 1.95968i
\(330\) 0 0
\(331\) 0.224745 + 0.389270i 0.0123531 + 0.0213962i 0.872136 0.489264i \(-0.162734\pi\)
−0.859783 + 0.510660i \(0.829401\pi\)
\(332\) 0 0
\(333\) 0.992248 + 12.6892i 0.0543748 + 0.695363i
\(334\) 0 0
\(335\) −8.63980 11.9933i −0.472042 0.655263i
\(336\) 0 0
\(337\) 3.00804 0.806003i 0.163859 0.0439058i −0.175957 0.984398i \(-0.556302\pi\)
0.339816 + 0.940492i \(0.389635\pi\)
\(338\) 0 0
\(339\) 0.921404 10.0000i 0.0500438 0.543125i
\(340\) 0 0
\(341\) 0.285729i 0.0154731i
\(342\) 0 0
\(343\) 21.9217 21.9217i 1.18366 1.18366i
\(344\) 0 0
\(345\) −3.73205 + 1.03528i −0.200927 + 0.0557374i
\(346\) 0 0
\(347\) −6.15937 22.9871i −0.330652 1.23401i −0.908507 0.417870i \(-0.862777\pi\)
0.577855 0.816140i \(-0.303890\pi\)
\(348\) 0 0
\(349\) 25.1541 14.5227i 1.34647 0.777383i 0.358719 0.933446i \(-0.383214\pi\)
0.987747 + 0.156063i \(0.0498803\pi\)
\(350\) 0 0
\(351\) 12.5505 + 12.9029i 0.669897 + 0.688706i
\(352\) 0 0
\(353\) −8.87564 + 33.1244i −0.472403 + 1.76303i 0.158694 + 0.987328i \(0.449272\pi\)
−0.631097 + 0.775704i \(0.717395\pi\)
\(354\) 0 0
\(355\) −13.1562 + 4.98930i −0.698260 + 0.264805i
\(356\) 0 0
\(357\) 3.49938 0.600398i 0.185207 0.0317764i
\(358\) 0 0
\(359\) 3.32124 0.175288 0.0876441 0.996152i \(-0.472066\pi\)
0.0876441 + 0.996152i \(0.472066\pi\)
\(360\) 0 0
\(361\) −22.5959 −1.18926
\(362\) 0 0
\(363\) −11.7319 14.1132i −0.615763 0.740753i
\(364\) 0 0
\(365\) −19.8943 8.95403i −1.04132 0.468675i
\(366\) 0 0
\(367\) 1.06110 3.96008i 0.0553890 0.206714i −0.932686 0.360690i \(-0.882541\pi\)
0.988075 + 0.153976i \(0.0492078\pi\)
\(368\) 0 0
\(369\) −7.38891 20.8990i −0.384651 1.08796i
\(370\) 0 0
\(371\) 21.1237 12.1958i 1.09669 0.633174i
\(372\) 0 0
\(373\) −0.127549 0.476018i −0.00660422 0.0246473i 0.962545 0.271122i \(-0.0873946\pi\)
−0.969149 + 0.246474i \(0.920728\pi\)
\(374\) 0 0
\(375\) 14.3817 12.9680i 0.742665 0.669663i
\(376\) 0 0
\(377\) −0.778539 + 0.778539i −0.0400968 + 0.0400968i
\(378\) 0 0
\(379\) 21.3485i 1.09660i 0.836283 + 0.548299i \(0.184724\pi\)
−0.836283 + 0.548299i \(0.815276\pi\)
\(380\) 0 0
\(381\) 4.17423 1.92308i 0.213853 0.0985222i
\(382\) 0 0
\(383\) 7.92256 2.12284i 0.404824 0.108472i −0.0506606 0.998716i \(-0.516133\pi\)
0.455485 + 0.890244i \(0.349466\pi\)
\(384\) 0 0
\(385\) −5.25966 + 3.78899i −0.268057 + 0.193105i
\(386\) 0 0
\(387\) 5.88196 + 8.56753i 0.298997 + 0.435512i
\(388\) 0 0
\(389\) −18.4008 31.8712i −0.932959 1.61593i −0.778233 0.627975i \(-0.783884\pi\)
−0.154726 0.987957i \(-0.549449\pi\)
\(390\) 0 0
\(391\) −0.224745 + 0.389270i −0.0113658 + 0.0196862i
\(392\) 0 0
\(393\) −4.80430 + 3.99366i −0.242345 + 0.201453i
\(394\) 0 0
\(395\) −4.24264 3.46410i −0.213470 0.174298i
\(396\) 0 0
\(397\) 10.5505 + 10.5505i 0.529515 + 0.529515i 0.920428 0.390913i \(-0.127841\pi\)
−0.390913 + 0.920428i \(0.627841\pi\)
\(398\) 0 0
\(399\) −29.4128 + 41.5959i −1.47248 + 2.08240i
\(400\) 0 0
\(401\) 7.65153 + 4.41761i 0.382099 + 0.220605i 0.678731 0.734387i \(-0.262530\pi\)
−0.296632 + 0.954992i \(0.595863\pi\)
\(402\) 0 0
\(403\) 1.50402 + 0.403001i 0.0749207 + 0.0200749i
\(404\) 0 0
\(405\) −17.4790 + 9.97425i −0.868537 + 0.495624i
\(406\) 0 0
\(407\) −2.60504 0.698019i −0.129127 0.0345995i
\(408\) 0 0
\(409\) 25.0273 + 14.4495i 1.23752 + 0.714481i 0.968586 0.248678i \(-0.0799961\pi\)
0.268932 + 0.963159i \(0.413329\pi\)
\(410\) 0 0
\(411\) −21.7980 + 30.8270i −1.07521 + 1.52058i
\(412\) 0 0
\(413\) −28.9521 28.9521i −1.42464 1.42464i
\(414\) 0 0
\(415\) −12.1237 + 1.22474i −0.595130 + 0.0601204i
\(416\) 0 0
\(417\) −4.13041 + 3.43347i −0.202267 + 0.168138i
\(418\) 0 0
\(419\) 2.51059 4.34847i 0.122650 0.212437i −0.798162 0.602443i \(-0.794194\pi\)
0.920812 + 0.390007i \(0.127527\pi\)
\(420\) 0 0
\(421\) 2.55051 + 4.41761i 0.124304 + 0.215301i 0.921461 0.388471i \(-0.126997\pi\)
−0.797157 + 0.603773i \(0.793663\pi\)
\(422\) 0 0
\(423\) −15.2818 22.2591i −0.743026 1.08227i
\(424\) 0 0
\(425\) 0.135756 2.24334i 0.00658515 0.108818i
\(426\) 0 0
\(427\) −2.42504 + 0.649788i −0.117356 + 0.0314455i
\(428\) 0 0
\(429\) −3.46410 + 1.59592i −0.167248 + 0.0770516i
\(430\) 0 0
\(431\) 15.5563i 0.749323i −0.927162 0.374661i \(-0.877759\pi\)
0.927162 0.374661i \(-0.122241\pi\)
\(432\) 0 0
\(433\) 13.4495 13.4495i 0.646341 0.646341i −0.305766 0.952107i \(-0.598912\pi\)
0.952107 + 0.305766i \(0.0989124\pi\)
\(434\) 0 0
\(435\) −0.624844 1.06060i −0.0299590 0.0508520i
\(436\) 0 0
\(437\) −1.66925 6.22973i −0.0798511 0.298008i
\(438\) 0 0
\(439\) −25.8058 + 14.8990i −1.23164 + 0.711089i −0.967372 0.253359i \(-0.918465\pi\)
−0.264271 + 0.964449i \(0.585131\pi\)
\(440\) 0 0
\(441\) 13.7980 + 39.0265i 0.657046 + 1.85841i
\(442\) 0 0
\(443\) 1.41043 5.26380i 0.0670116 0.250091i −0.924292 0.381687i \(-0.875343\pi\)
0.991303 + 0.131596i \(0.0420101\pi\)
\(444\) 0 0
\(445\) 6.36263 + 16.7776i 0.301618 + 0.795332i
\(446\) 0 0
\(447\) −4.89121 5.88405i −0.231346 0.278306i
\(448\) 0 0
\(449\) −0.921404 −0.0434837 −0.0217419 0.999764i \(-0.506921\pi\)
−0.0217419 + 0.999764i \(0.506921\pi\)
\(450\) 0 0
\(451\) 4.69694 0.221170
\(452\) 0 0
\(453\) −30.0381 + 5.15373i −1.41131 + 0.242143i
\(454\) 0 0
\(455\) −12.5261 33.0299i −0.587232 1.54847i
\(456\) 0 0
\(457\) −3.78780 + 14.1363i −0.177186 + 0.661267i 0.818983 + 0.573818i \(0.194538\pi\)
−0.996169 + 0.0874492i \(0.972128\pi\)
\(458\) 0 0
\(459\) −0.635674 + 2.24745i −0.0296707 + 0.104902i
\(460\) 0 0
\(461\) 28.6237 16.5259i 1.33314 0.769689i 0.347360 0.937732i \(-0.387078\pi\)
0.985780 + 0.168043i \(0.0537448\pi\)
\(462\) 0 0
\(463\) 3.16668 + 11.8182i 0.147168 + 0.549239i 0.999649 + 0.0264810i \(0.00843014\pi\)
−0.852481 + 0.522758i \(0.824903\pi\)
\(464\) 0 0
\(465\) −0.857135 + 1.51523i −0.0397487 + 0.0702673i
\(466\) 0 0
\(467\) 2.82843 2.82843i 0.130884 0.130884i −0.638630 0.769514i \(-0.720499\pi\)
0.769514 + 0.638630i \(0.220499\pi\)
\(468\) 0 0
\(469\) 30.1464i 1.39203i
\(470\) 0 0
\(471\) −2.32577 + 25.2415i −0.107166 + 1.16307i
\(472\) 0 0
\(473\) −2.12701 + 0.569930i −0.0977999 + 0.0262054i
\(474\) 0 0
\(475\) 21.3834 + 24.1381i 0.981137 + 1.10753i
\(476\) 0 0
\(477\) 1.25087 + 15.9966i 0.0572736 + 0.732433i
\(478\) 0 0
\(479\) −3.53553 6.12372i −0.161543 0.279800i 0.773879 0.633333i \(-0.218314\pi\)
−0.935422 + 0.353533i \(0.884980\pi\)
\(480\) 0 0
\(481\) 7.34847 12.7279i 0.335061 0.580343i
\(482\) 0 0
\(483\) −7.41007 2.73583i −0.337170 0.124485i
\(484\) 0 0
\(485\) 5.97469 0.603566i 0.271297 0.0274065i
\(486\) 0 0
\(487\) 12.0000 + 12.0000i 0.543772 + 0.543772i 0.924632 0.380861i \(-0.124372\pi\)
−0.380861 + 0.924632i \(0.624372\pi\)
\(488\) 0 0
\(489\) −4.56048 9.89898i −0.206232 0.447647i
\(490\) 0 0
\(491\) 24.2474 + 13.9993i 1.09427 + 0.631778i 0.934711 0.355410i \(-0.115659\pi\)
0.159561 + 0.987188i \(0.448992\pi\)
\(492\) 0 0
\(493\) −0.137997 0.0369761i −0.00621505 0.00166532i
\(494\) 0 0
\(495\) −0.758039 4.19632i −0.0340713 0.188610i
\(496\) 0 0
\(497\) −27.7191 7.42731i −1.24337 0.333161i
\(498\) 0 0
\(499\) 0.778539 + 0.449490i 0.0348522 + 0.0201219i 0.517325 0.855789i \(-0.326928\pi\)
−0.482473 + 0.875911i \(0.660261\pi\)
\(500\) 0 0
\(501\) −15.1742 1.39816i −0.677935 0.0624652i
\(502\) 0 0
\(503\) 4.02834 + 4.02834i 0.179615 + 0.179615i 0.791188 0.611573i \(-0.209463\pi\)
−0.611573 + 0.791188i \(0.709463\pi\)
\(504\) 0 0
\(505\) 21.7980 + 17.7980i 0.969996 + 0.791999i
\(506\) 0 0
\(507\) 0.292893 + 1.70711i 0.0130078 + 0.0758153i
\(508\) 0 0
\(509\) 4.22659 7.32066i 0.187340 0.324483i −0.757022 0.653389i \(-0.773347\pi\)
0.944363 + 0.328906i \(0.106680\pi\)
\(510\) 0 0
\(511\) −22.2474 38.5337i −0.984169 1.70463i
\(512\) 0 0
\(513\) −16.3529 29.2519i −0.721998 1.29150i
\(514\) 0 0
\(515\) −17.7016 + 12.7520i −0.780025 + 0.561920i
\(516\) 0 0
\(517\) 5.52613 1.48072i 0.243039 0.0651221i
\(518\) 0 0
\(519\) −18.2419 12.8990i −0.800731 0.566202i
\(520\) 0 0
\(521\) 29.4449i 1.29000i −0.764181 0.645001i \(-0.776857\pi\)
0.764181 0.645001i \(-0.223143\pi\)
\(522\) 0 0
\(523\) −4.22474 + 4.22474i −0.184735 + 0.184735i −0.793416 0.608680i \(-0.791699\pi\)
0.608680 + 0.793416i \(0.291699\pi\)
\(524\) 0 0
\(525\) 39.2585 4.31515i 1.71338 0.188329i
\(526\) 0 0
\(527\) 0.0522921 + 0.195157i 0.00227788 + 0.00850116i
\(528\) 0 0
\(529\) −19.0526 + 11.0000i −0.828372 + 0.478261i
\(530\) 0 0
\(531\) 25.3939 8.97809i 1.10200 0.389616i
\(532\) 0 0
\(533\) −6.62471 + 24.7238i −0.286948 + 1.07090i
\(534\) 0 0
\(535\) 39.2467 + 17.6641i 1.69678 + 0.763686i
\(536\) 0 0
\(537\) −6.40576 + 17.3501i −0.276429 + 0.748714i
\(538\) 0 0
\(539\) −8.77101 −0.377794
\(540\) 0 0
\(541\) 27.9444 1.20142 0.600712 0.799466i \(-0.294884\pi\)
0.600712 + 0.799466i \(0.294884\pi\)
\(542\) 0 0
\(543\) 9.26816 25.1030i 0.397735 1.07727i
\(544\) 0 0
\(545\) 11.8161 4.48106i 0.506144 0.191948i
\(546\) 0 0
\(547\) 1.05279 3.92907i 0.0450140 0.167995i −0.939760 0.341836i \(-0.888951\pi\)
0.984774 + 0.173841i \(0.0556180\pi\)
\(548\) 0 0
\(549\) 0.301783 1.62372i 0.0128798 0.0692989i
\(550\) 0 0
\(551\) 1.77526 1.02494i 0.0756284 0.0436641i
\(552\) 0 0
\(553\) −2.89123 10.7902i −0.122947 0.458846i
\(554\) 0 0
\(555\) 11.7207 + 11.5163i 0.497517 + 0.488839i
\(556\) 0 0
\(557\) 7.88171 7.88171i 0.333959 0.333959i −0.520129 0.854088i \(-0.674116\pi\)
0.854088 + 0.520129i \(0.174116\pi\)
\(558\) 0 0
\(559\) 12.0000i 0.507546i
\(560\) 0 0
\(561\) −0.404082 0.285729i −0.0170604 0.0120635i
\(562\) 0 0
\(563\) −18.9819 + 5.08619i −0.799993 + 0.214357i −0.635581 0.772034i \(-0.719239\pi\)
−0.164412 + 0.986392i \(0.552573\pi\)
\(564\) 0 0
\(565\) −7.57797 10.5193i −0.318808 0.442551i
\(566\) 0 0
\(567\) −40.8151 4.33130i −1.71407 0.181898i
\(568\) 0 0
\(569\) 9.58166 + 16.5959i 0.401684 + 0.695737i 0.993929 0.110021i \(-0.0350917\pi\)
−0.592245 + 0.805758i \(0.701758\pi\)
\(570\) 0 0
\(571\) 18.4495 31.9555i 0.772087 1.33729i −0.164330 0.986405i \(-0.552546\pi\)
0.936417 0.350889i \(-0.114120\pi\)
\(572\) 0 0
\(573\) 5.11490 + 29.8118i 0.213678 + 1.24541i
\(574\) 0 0
\(575\) −2.75699 + 4.17121i −0.114975 + 0.173951i
\(576\) 0 0
\(577\) −17.0000 17.0000i −0.707719 0.707719i 0.258336 0.966055i \(-0.416826\pi\)
−0.966055 + 0.258336i \(0.916826\pi\)
\(578\) 0 0
\(579\) 29.8735 + 2.75255i 1.24150 + 0.114392i
\(580\) 0 0
\(581\) −21.5227 12.4261i −0.892912 0.515523i
\(582\) 0 0
\(583\) −3.28404 0.879955i −0.136011 0.0364440i
\(584\) 0 0
\(585\) 23.1577 + 1.92845i 0.957455 + 0.0797317i
\(586\) 0 0
\(587\) −12.6009 3.37640i −0.520095 0.139359i −0.0107843 0.999942i \(-0.503433\pi\)
−0.509310 + 0.860583i \(0.670099\pi\)
\(588\) 0 0
\(589\) −2.51059 1.44949i −0.103447 0.0597252i
\(590\) 0 0
\(591\) −7.10102 15.4135i −0.292097 0.634026i
\(592\) 0 0
\(593\) 7.24604 + 7.24604i 0.297559 + 0.297559i 0.840057 0.542498i \(-0.182521\pi\)
−0.542498 + 0.840057i \(0.682521\pi\)
\(594\) 0 0
\(595\) 2.89898 3.55051i 0.118847 0.145557i
\(596\) 0 0
\(597\) 13.7291 + 5.06885i 0.561895 + 0.207454i
\(598\) 0 0
\(599\) 9.97093 17.2702i 0.407401 0.705639i −0.587197 0.809444i \(-0.699768\pi\)
0.994598 + 0.103805i \(0.0331018\pi\)
\(600\) 0 0
\(601\) −2.65153 4.59259i −0.108158 0.187335i 0.806866 0.590735i \(-0.201162\pi\)
−0.915024 + 0.403399i \(0.867829\pi\)
\(602\) 0 0
\(603\) 17.8950 + 8.54650i 0.728739 + 0.348040i
\(604\) 0 0
\(605\) −23.3863 3.80096i −0.950789 0.154531i
\(606\) 0 0
\(607\) 11.3732 3.04744i 0.461624 0.123692i −0.0205092 0.999790i \(-0.506529\pi\)
0.482133 + 0.876098i \(0.339862\pi\)
\(608\) 0 0
\(609\) 0.230351 2.50000i 0.00933429 0.101305i
\(610\) 0 0
\(611\) 31.1769i 1.26128i
\(612\) 0 0
\(613\) 6.79796 6.79796i 0.274567 0.274567i −0.556369 0.830936i \(-0.687806\pi\)
0.830936 + 0.556369i \(0.187806\pi\)
\(614\) 0 0
\(615\) −24.9081 14.0900i −1.00439 0.568162i
\(616\) 0 0
\(617\) −4.37378 16.3232i −0.176082 0.657146i −0.996365 0.0851882i \(-0.972851\pi\)
0.820283 0.571958i \(-0.193816\pi\)
\(618\) 0 0
\(619\) 42.2121 24.3712i 1.69665 0.979560i 0.747748 0.663982i \(-0.231135\pi\)
0.948900 0.315578i \(-0.102198\pi\)
\(620\) 0 0
\(621\) 3.72474 3.62302i 0.149469 0.145387i
\(622\) 0 0
\(623\) −9.47172 + 35.3489i −0.379476 + 1.41623i
\(624\) 0 0
\(625\) 3.01472 24.8176i 0.120589 0.992703i
\(626\) 0 0
\(627\) 6.99876 1.20080i 0.279503 0.0479552i
\(628\) 0 0
\(629\) 1.90702 0.0760380
\(630\) 0 0
\(631\) 3.10102 0.123450 0.0617248 0.998093i \(-0.480340\pi\)
0.0617248 + 0.998093i \(0.480340\pi\)
\(632\) 0 0
\(633\) 10.0767 + 12.1221i 0.400513 + 0.481811i
\(634\) 0 0
\(635\) 2.43518 5.41055i 0.0966370 0.214711i
\(636\) 0 0
\(637\) 12.3709 46.1689i 0.490153 1.82928i
\(638\) 0 0
\(639\) 12.2672 14.3485i 0.485284 0.567617i
\(640\) 0 0
\(641\) 16.7474 9.66914i 0.661484 0.381908i −0.131358 0.991335i \(-0.541934\pi\)
0.792842 + 0.609427i \(0.208600\pi\)
\(642\) 0 0
\(643\) −1.63694 6.10913i −0.0645545 0.240921i 0.926108 0.377259i \(-0.123133\pi\)
−0.990662 + 0.136338i \(0.956467\pi\)
\(644\) 0 0
\(645\) 12.9893 + 3.35827i 0.511453 + 0.132232i
\(646\) 0 0
\(647\) 23.5416 23.5416i 0.925516 0.925516i −0.0718961 0.997412i \(-0.522905\pi\)
0.997412 + 0.0718961i \(0.0229050\pi\)
\(648\) 0 0
\(649\) 5.70714i 0.224025i
\(650\) 0 0
\(651\) −3.22474 + 1.48565i −0.126388 + 0.0582271i
\(652\) 0 0
\(653\) 25.5482 6.84563i 0.999780 0.267890i 0.278427 0.960457i \(-0.410187\pi\)
0.721353 + 0.692567i \(0.243520\pi\)
\(654\) 0 0
\(655\) −1.29389 + 7.96096i −0.0505564 + 0.311060i
\(656\) 0 0
\(657\) 29.1808 2.28183i 1.13845 0.0890227i
\(658\) 0 0
\(659\) 5.65685 + 9.79796i 0.220360 + 0.381674i 0.954917 0.296872i \(-0.0959435\pi\)
−0.734557 + 0.678546i \(0.762610\pi\)
\(660\) 0 0
\(661\) 0.651531 1.12848i 0.0253416 0.0438930i −0.853076 0.521786i \(-0.825266\pi\)
0.878418 + 0.477893i \(0.158599\pi\)
\(662\) 0 0
\(663\) 2.07395 1.72401i 0.0805456 0.0669549i
\(664\) 0 0
\(665\) 6.61037 + 65.4359i 0.256339 + 2.53749i
\(666\) 0 0
\(667\) 0.224745 + 0.224745i 0.00870216 + 0.00870216i
\(668\) 0 0
\(669\) −25.6308 + 36.2474i −0.990945 + 1.40141i
\(670\) 0 0
\(671\) 0.303062 + 0.174973i 0.0116996 + 0.00675474i
\(672\) 0 0
\(673\) 22.4704 + 6.02093i 0.866171 + 0.232090i 0.664431 0.747349i \(-0.268674\pi\)
0.201740 + 0.979439i \(0.435340\pi\)
\(674\) 0 0
\(675\) −8.56827 + 24.5272i −0.329793 + 0.944053i
\(676\) 0 0
\(677\) −44.0423 11.8011i −1.69268 0.453553i −0.721602 0.692308i \(-0.756594\pi\)
−0.971080 + 0.238755i \(0.923261\pi\)
\(678\) 0 0
\(679\) 10.6066 + 6.12372i 0.407044 + 0.235007i
\(680\) 0 0
\(681\) 24.8990 35.2125i 0.954131 1.34934i
\(682\) 0 0
\(683\) −13.8564 13.8564i −0.530201 0.530201i 0.390431 0.920632i \(-0.372326\pi\)
−0.920632 + 0.390431i \(0.872326\pi\)
\(684\) 0 0
\(685\) 4.89898 + 48.4949i 0.187180 + 1.85289i
\(686\) 0 0
\(687\) −2.19976 + 1.82859i −0.0839260 + 0.0697649i
\(688\) 0 0
\(689\) 9.26382 16.0454i 0.352923 0.611281i
\(690\) 0 0
\(691\) −10.4722 18.1384i −0.398381 0.690016i 0.595145 0.803618i \(-0.297094\pi\)
−0.993526 + 0.113602i \(0.963761\pi\)
\(692\) 0 0
\(693\) 3.74807 7.84785i 0.142377 0.298115i
\(694\) 0 0
\(695\) −1.11240 + 6.84428i −0.0421956 + 0.259618i
\(696\) 0 0
\(697\) −3.20807 + 0.859599i −0.121514 + 0.0325596i
\(698\) 0 0
\(699\) −32.1698 + 14.8207i −1.21677 + 0.560569i
\(700\) 0 0
\(701\) 21.1024i 0.797028i 0.917162 + 0.398514i \(0.130474\pi\)
−0.917162 + 0.398514i \(0.869526\pi\)
\(702\) 0 0
\(703\) −19.3485 + 19.3485i −0.729741 + 0.729741i
\(704\) 0 0
\(705\) −33.7472 8.72505i −1.27099 0.328604i
\(706\) 0 0
\(707\) 14.8546 + 55.4382i 0.558666 + 2.08497i
\(708\) 0 0
\(709\) 25.6790 14.8258i 0.964394 0.556793i 0.0668716 0.997762i \(-0.478698\pi\)
0.897523 + 0.440968i \(0.145365\pi\)
\(710\) 0 0
\(711\) 7.22474 + 1.34278i 0.270949 + 0.0503582i
\(712\) 0 0
\(713\) 0.116337 0.434174i 0.00435684 0.0162599i
\(714\) 0 0
\(715\) −2.02090 + 4.49009i −0.0755772 + 0.167920i
\(716\) 0 0
\(717\) −18.7899 22.6040i −0.701722 0.844160i
\(718\) 0 0
\(719\) 32.5269 1.21305 0.606525 0.795065i \(-0.292563\pi\)
0.606525 + 0.795065i \(0.292563\pi\)
\(720\) 0 0
\(721\) −44.4949 −1.65708
\(722\) 0 0
\(723\) 32.4350 5.56497i 1.20627 0.206964i
\(724\) 0 0
\(725\) −1.50739 0.503284i −0.0559830 0.0186915i
\(726\) 0 0
\(727\) −12.5068 + 46.6759i −0.463850 + 1.73111i 0.196822 + 0.980439i \(0.436938\pi\)
−0.660673 + 0.750674i \(0.729729\pi\)
\(728\) 0 0
\(729\) 14.1421 23.0000i 0.523783 0.851852i
\(730\) 0 0
\(731\) 1.34847 0.778539i 0.0498749 0.0287953i
\(732\) 0 0
\(733\) 8.83821 + 32.9846i 0.326447 + 1.21832i 0.912850 + 0.408296i \(0.133877\pi\)
−0.586403 + 0.810019i \(0.699457\pi\)
\(734\) 0 0
\(735\) 46.5130 + 26.3114i 1.71566 + 0.970512i
\(736\) 0 0
\(737\) −2.97129 + 2.97129i −0.109449 + 0.109449i
\(738\) 0 0
\(739\) 28.9444i 1.06474i −0.846513 0.532368i \(-0.821302\pi\)
0.846513 0.532368i \(-0.178698\pi\)
\(740\) 0 0
\(741\) −3.55051 + 38.5337i −0.130431 + 1.41557i
\(742\) 0 0
\(743\) 9.56168 2.56204i 0.350784 0.0939923i −0.0791245 0.996865i \(-0.525212\pi\)
0.429909 + 0.902872i \(0.358546\pi\)
\(744\) 0 0
\(745\) −9.75014 1.58468i −0.357218 0.0580583i
\(746\) 0 0
\(747\) 13.4779 9.25311i 0.493129 0.338553i
\(748\) 0 0
\(749\) 43.8888 + 76.0176i 1.60366 + 2.77762i
\(750\) 0 0
\(751\) 10.3485 17.9241i 0.377621 0.654059i −0.613095 0.790010i \(-0.710076\pi\)
0.990716 + 0.135951i \(0.0434089\pi\)
\(752\) 0 0
\(753\) −4.36362 1.61107i −0.159019 0.0587107i
\(754\) 0 0
\(755\) −24.8844 + 30.4770i −0.905636 + 1.10917i
\(756\) 0 0
\(757\) 22.0454 + 22.0454i 0.801254 + 0.801254i 0.983292 0.182038i \(-0.0582693\pi\)
−0.182038 + 0.983292i \(0.558269\pi\)
\(758\) 0 0
\(759\) 0.460702 + 1.00000i 0.0167224 + 0.0362977i
\(760\) 0 0
\(761\) −5.60102 3.23375i −0.203037 0.117223i 0.395034 0.918666i \(-0.370733\pi\)
−0.598071 + 0.801443i \(0.704066\pi\)
\(762\) 0 0
\(763\) 24.8955 + 6.67072i 0.901276 + 0.241496i
\(764\) 0 0
\(765\) 1.28573 + 2.72741i 0.0464856 + 0.0986096i
\(766\) 0 0
\(767\) −30.0413 8.04954i −1.08473 0.290652i
\(768\) 0 0
\(769\) 8.39780 + 4.84847i 0.302832 + 0.174840i 0.643715 0.765266i \(-0.277392\pi\)
−0.340882 + 0.940106i \(0.610726\pi\)
\(770\) 0 0
\(771\) 31.1237 + 2.86775i 1.12089 + 0.103280i
\(772\) 0 0
\(773\) −30.8270 30.8270i −1.10877 1.10877i −0.993313 0.115456i \(-0.963167\pi\)
−0.115456 0.993313i \(-0.536833\pi\)
\(774\) 0 0
\(775\) 0.449490 + 2.20204i 0.0161461 + 0.0790996i
\(776\) 0 0
\(777\) 5.66704 + 33.0299i 0.203304 + 1.18494i
\(778\) 0 0
\(779\) 23.8273 41.2702i 0.853703 1.47866i
\(780\) 0 0
\(781\) 2.00000 + 3.46410i 0.0715656 + 0.123955i
\(782\) 0 0
\(783\) 1.41870 + 0.845485i 0.0507002 + 0.0302152i
\(784\) 0 0
\(785\) 19.1280 + 26.5524i 0.682707 + 0.947695i
\(786\) 0 0
\(787\) −9.42418 + 2.52520i −0.335936 + 0.0900137i −0.422844 0.906203i \(-0.638968\pi\)
0.0869079 + 0.996216i \(0.472301\pi\)
\(788\) 0 0
\(789\) −23.6130 16.6969i −0.840646 0.594427i
\(790\) 0 0
\(791\) 26.4415i 0.940150i
\(792\) 0 0
\(793\) −1.34847 + 1.34847i −0.0478855 + 0.0478855i
\(794\) 0 0
\(795\) 14.7757 + 14.5180i 0.524040 + 0.514899i
\(796\) 0 0
\(797\) 10.3005 + 38.4419i 0.364861 + 1.36168i 0.867609 + 0.497248i \(0.165656\pi\)
−0.502747 + 0.864433i \(0.667677\pi\)
\(798\) 0 0
\(799\) −3.50343 + 2.02270i −0.123942 + 0.0715581i
\(800\) 0 0
\(801\) −18.2980 15.6438i −0.646527 0.552748i
\(802\) 0 0
\(803\) −1.60521 + 5.99071i −0.0566465 + 0.211408i
\(804\) 0 0
\(805\) −9.53491 + 3.61597i −0.336061 + 0.127446i
\(806\) 0 0
\(807\) −9.05589 + 24.5281i −0.318782 + 0.863429i
\(808\) 0 0
\(809\) 19.4490 0.683792 0.341896 0.939738i \(-0.388931\pi\)
0.341896 + 0.939738i \(0.388931\pi\)
\(810\) 0 0
\(811\) 39.6413 1.39200 0.695998 0.718044i \(-0.254962\pi\)
0.695998 + 0.718044i \(0.254962\pi\)
\(812\) 0 0
\(813\) 16.8245 45.5694i 0.590059 1.59819i
\(814\) 0 0
\(815\) −12.8308 5.77489i −0.449444 0.202286i
\(816\) 0 0
\(817\) −5.78245 + 21.5804i −0.202302 + 0.755003i
\(818\) 0 0
\(819\) 36.0231 + 30.7980i 1.25875 + 1.07617i
\(820\) 0 0
\(821\) 19.3207 11.1548i 0.674296 0.389305i −0.123407 0.992356i \(-0.539382\pi\)
0.797702 + 0.603051i \(0.206049\pi\)
\(822\) 0 0
\(823\) −0.867910 3.23908i −0.0302534 0.112907i 0.949148 0.314830i \(-0.101948\pi\)
−0.979401 + 0.201923i \(0.935281\pi\)
\(824\) 0 0
\(825\) −4.29470 3.44408i −0.149522 0.119908i
\(826\) 0 0
\(827\) 31.5662 31.5662i 1.09766 1.09766i 0.102980 0.994683i \(-0.467162\pi\)
0.994683 0.102980i \(-0.0328379\pi\)
\(828\) 0 0
\(829\) 10.5505i 0.366434i −0.983072 0.183217i \(-0.941349\pi\)
0.983072 0.183217i \(-0.0586512\pi\)
\(830\) 0 0
\(831\) −39.7980 28.1414i −1.38058 0.976215i
\(832\) 0 0
\(833\) 5.99071 1.60521i 0.207566 0.0556171i
\(834\) 0 0
\(835\) −15.9623 + 11.4990i −0.552397 + 0.397939i
\(836\) 0 0
\(837\) 0.0323319 2.33539i 0.00111755 0.0807230i
\(838\) 0 0
\(839\) 0.246405 + 0.426786i 0.00850684 + 0.0147343i 0.870247 0.492615i \(-0.163959\pi\)
−0.861741 + 0.507349i \(0.830625\pi\)
\(840\) 0 0
\(841\) 14.4495 25.0273i 0.498258 0.863009i
\(842\) 0 0
\(843\) −5.02181 29.2693i −0.172960 1.00809i
\(844\) 0 0
\(845\) 1.73205 + 1.41421i 0.0595844 + 0.0486504i
\(846\) 0 0
\(847\) −34.1691 34.1691i −1.17407 1.17407i
\(848\) 0 0
\(849\) 41.7675 + 3.84847i 1.43346 + 0.132079i
\(850\) 0 0
\(851\) −3.67423 2.12132i −0.125951 0.0727179i
\(852\) 0 0
\(853\) 2.39403 + 0.641478i 0.0819700 + 0.0219638i 0.299571 0.954074i \(-0.403156\pi\)
−0.217601 + 0.976038i \(0.569823\pi\)
\(854\) 0 0
\(855\) −40.7169 14.6271i −1.39249 0.500237i
\(856\) 0 0
\(857\) 15.2597 + 4.08881i 0.521260 + 0.139671i 0.509849 0.860264i \(-0.329701\pi\)
0.0114106 + 0.999935i \(0.496368\pi\)
\(858\) 0 0
\(859\) −40.2658 23.2474i −1.37385 0.793193i −0.382440 0.923980i \(-0.624916\pi\)
−0.991410 + 0.130788i \(0.958249\pi\)
\(860\) 0 0
\(861\) −24.4217 53.0097i −0.832289 1.80657i
\(862\) 0 0
\(863\) −20.7132 20.7132i −0.705085 0.705085i 0.260413 0.965497i \(-0.416141\pi\)
−0.965497 + 0.260413i \(0.916141\pi\)
\(864\) 0 0
\(865\) −28.6969 + 2.89898i −0.975725 + 0.0985683i
\(866\) 0 0
\(867\) −27.2941 10.0771i −0.926955 0.342236i
\(868\) 0 0
\(869\) −0.778539 + 1.34847i −0.0264101 + 0.0457437i
\(870\) 0 0
\(871\) −11.4495 19.8311i −0.387951 0.671951i
\(872\) 0 0
\(873\) −6.64202 + 4.56002i −0.224798 + 0.154333i
\(874\) 0 0
\(875\) 34.5742 37.4749i 1.16882 1.26688i
\(876\) 0 0
\(877\) −41.3188 + 11.0713i −1.39524 + 0.373852i −0.876632 0.481162i \(-0.840215\pi\)
−0.518604 + 0.855014i \(0.673548\pi\)
\(878\) 0 0
\(879\) −3.50343 + 38.0227i −0.118168 + 1.28247i
\(880\) 0 0
\(881\) 54.8365i 1.84749i −0.383010 0.923744i \(-0.625113\pi\)
0.383010 0.923744i \(-0.374887\pi\)
\(882\) 0 0
\(883\) −6.27015 + 6.27015i −0.211007 + 0.211007i −0.804695 0.593688i \(-0.797671\pi\)
0.593688 + 0.804695i \(0.297671\pi\)
\(884\) 0 0
\(885\) 17.1204 30.2652i 0.575496 1.01735i
\(886\) 0 0
\(887\) 2.12284 + 7.92256i 0.0712781 + 0.266014i 0.992364 0.123347i \(-0.0393627\pi\)
−0.921085 + 0.389360i \(0.872696\pi\)
\(888\) 0 0
\(889\) 10.4798 6.05051i 0.351481 0.202928i
\(890\) 0 0
\(891\) 3.59592 + 4.44972i 0.120468 + 0.149071i
\(892\) 0 0
\(893\) 15.0233 56.0676i 0.502734 1.87623i
\(894\) 0 0
\(895\) 8.46654 + 22.3253i 0.283005 + 0.746253i
\(896\) 0 0
\(897\) −5.91359 + 1.01461i −0.197449 + 0.0338769i
\(898\) 0 0
\(899\) 0.142865 0.00476480
\(900\) 0 0
\(901\) 2.40408 0.0800916
\(902\) 0 0
\(903\) 17.4916 + 21.0421i 0.582084 + 0.700238i
\(904\) 0 0
\(905\) −12.2498 32.3013i −0.407197 1.07373i
\(906\) 0 0
\(907\) 0.978838 3.65307i 0.0325018 0.121298i −0.947769 0.318957i \(-0.896667\pi\)
0.980271 + 0.197659i \(0.0633339\pi\)
\(908\) 0 0
\(909\) −37.1195 6.89898i −1.23118 0.228825i
\(910\) 0 0
\(911\) 6.12372 3.53553i 0.202888 0.117137i −0.395114 0.918632i \(-0.629295\pi\)
0.598002 + 0.801495i \(0.295962\pi\)
\(912\) 0 0
\(913\) 0.896575 + 3.34607i 0.0296723 + 0.110739i
\(914\) 0 0
\(915\) −1.08226 1.83702i −0.0357785 0.0607299i
\(916\) 0 0
\(917\) −11.6315 + 11.6315i −0.384107 + 0.384107i
\(918\) 0 0
\(919\) 12.6515i 0.417335i −0.977987 0.208668i \(-0.933087\pi\)
0.977987 0.208668i \(-0.0669127\pi\)
\(920\) 0 0
\(921\) −14.8485 + 6.84072i −0.489274 + 0.225409i
\(922\) 0 0
\(923\) −21.0552 + 5.64173i −0.693041 + 0.185700i
\(924\) 0 0
\(925\) 21.1745 + 1.28138i 0.696212 + 0.0421314i
\(926\) 0 0
\(927\) 12.6143 26.4122i 0.414307 0.867492i
\(928\) 0 0
\(929\) −21.1024 36.5505i −0.692349 1.19918i −0.971066 0.238810i \(-0.923243\pi\)
0.278717 0.960373i \(-0.410091\pi\)
\(930\) 0 0
\(931\) −44.4949 + 77.0674i −1.45826 + 2.52578i
\(932\) 0 0
\(933\) 36.6363 30.4545i 1.19942 0.997036i
\(934\) 0 0
\(935\) −0.635674 + 0.0642162i −0.0207888 + 0.00210009i
\(936\) 0 0
\(937\) −3.10102 3.10102i −0.101306 0.101306i 0.654637 0.755943i \(-0.272821\pi\)
−0.755943 + 0.654637i \(0.772821\pi\)
\(938\) 0 0
\(939\) 11.9494 16.8990i 0.389953 0.551477i
\(940\) 0 0
\(941\) 27.5227 + 15.8902i 0.897215 + 0.518007i 0.876295 0.481774i \(-0.160007\pi\)
0.0209191 + 0.999781i \(0.493341\pi\)
\(942\) 0 0
\(943\) 7.13713 + 1.91239i 0.232417 + 0.0622760i
\(944\) 0 0
\(945\) −43.4183 + 30.3739i −1.41240 + 0.988064i
\(946\) 0 0
\(947\) −2.94164 0.788210i −0.0955904 0.0256134i 0.210707 0.977549i \(-0.432423\pi\)
−0.306297 + 0.951936i \(0.599090\pi\)
\(948\) 0 0
\(949\) −29.2699 16.8990i −0.950141 0.548564i
\(950\) 0 0
\(951\) 10.8990 15.4135i 0.353424 0.499816i
\(952\) 0 0
\(953\) 5.79972 + 5.79972i 0.187871 + 0.187871i 0.794775 0.606904i \(-0.207589\pi\)
−0.606904 + 0.794775i \(0.707589\pi\)
\(954\) 0 0
\(955\) 30.2474 + 24.6969i 0.978784 + 0.799174i
\(956\) 0 0
\(957\) −0.269109 + 0.223701i −0.00869905 + 0.00723123i
\(958\) 0 0
\(959\) −49.7046 + 86.0908i −1.60504 + 2.78002i
\(960\) 0 0
\(961\) 15.3990 + 26.6718i 0.496741 + 0.860381i
\(962\) 0 0
\(963\) −57.5666 + 4.50150i −1.85506 + 0.145059i
\(964\) 0 0
\(965\) 31.4248 22.6380i 1.01160 0.728744i
\(966\) 0 0
\(967\) −38.6937 + 10.3679i −1.24431 + 0.333411i −0.820134 0.572171i \(-0.806101\pi\)
−0.424172 + 0.905582i \(0.639435\pi\)
\(968\) 0 0
\(969\) −4.56048 + 2.10102i −0.146504 + 0.0674945i
\(970\) 0 0
\(971\) 21.4989i 0.689934i −0.938615 0.344967i \(-0.887890\pi\)
0.938615 0.344967i \(-0.112110\pi\)
\(972\) 0 0
\(973\) −10.0000 + 10.0000i −0.320585 + 0.320585i
\(974\) 0 0
\(975\) 24.1863 17.7488i 0.774583 0.568417i
\(976\) 0 0
\(977\) 1.68100 + 6.27359i 0.0537801 + 0.200710i 0.987589 0.157063i \(-0.0502027\pi\)
−0.933808 + 0.357773i \(0.883536\pi\)
\(978\) 0 0
\(979\) 4.41761 2.55051i 0.141188 0.0815147i
\(980\) 0 0
\(981\) −11.0176 + 12.8868i −0.351765 + 0.411445i
\(982\) 0 0
\(983\) 7.04041 26.2752i 0.224554 0.838047i −0.758029 0.652221i \(-0.773837\pi\)
0.982583 0.185826i \(-0.0594961\pi\)
\(984\) 0 0
\(985\) −19.9786 8.99196i −0.636571 0.286508i
\(986\) 0 0
\(987\) −45.4445 54.6690i −1.44651 1.74013i
\(988\) 0 0
\(989\) −3.46410 −0.110152
\(990\) 0 0
\(991\) −16.7423 −0.531838 −0.265919 0.963995i \(-0.585675\pi\)
−0.265919 + 0.963995i \(0.585675\pi\)
\(992\) 0 0
\(993\) −0.767327 + 0.131652i −0.0243504 + 0.00417787i
\(994\) 0 0
\(995\) 17.6659 6.69954i 0.560048 0.212390i
\(996\) 0 0
\(997\) −1.73955 + 6.49211i −0.0550922 + 0.205607i −0.987986 0.154545i \(-0.950609\pi\)
0.932893 + 0.360153i \(0.117275\pi\)
\(998\) 0 0
\(999\) −21.2132 6.00000i −0.671156 0.189832i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.cu.a.257.1 8
4.3 odd 2 90.2.l.a.77.1 yes 8
5.3 odd 4 inner 720.2.cu.a.113.1 8
9.2 odd 6 inner 720.2.cu.a.497.1 8
12.11 even 2 270.2.m.a.17.2 8
20.3 even 4 90.2.l.a.23.1 8
20.7 even 4 450.2.p.a.293.2 8
20.19 odd 2 450.2.p.a.257.2 8
36.7 odd 6 270.2.m.a.197.2 8
36.11 even 6 90.2.l.a.47.1 yes 8
36.23 even 6 810.2.f.b.647.2 8
36.31 odd 6 810.2.f.b.647.3 8
45.38 even 12 inner 720.2.cu.a.353.1 8
60.23 odd 4 270.2.m.a.233.2 8
60.47 odd 4 1350.2.q.g.1043.1 8
60.59 even 2 1350.2.q.g.557.1 8
180.7 even 12 1350.2.q.g.143.1 8
180.23 odd 12 810.2.f.b.323.4 8
180.43 even 12 270.2.m.a.143.2 8
180.47 odd 12 450.2.p.a.443.2 8
180.79 odd 6 1350.2.q.g.1007.1 8
180.83 odd 12 90.2.l.a.83.1 yes 8
180.103 even 12 810.2.f.b.323.1 8
180.119 even 6 450.2.p.a.407.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.l.a.23.1 8 20.3 even 4
90.2.l.a.47.1 yes 8 36.11 even 6
90.2.l.a.77.1 yes 8 4.3 odd 2
90.2.l.a.83.1 yes 8 180.83 odd 12
270.2.m.a.17.2 8 12.11 even 2
270.2.m.a.143.2 8 180.43 even 12
270.2.m.a.197.2 8 36.7 odd 6
270.2.m.a.233.2 8 60.23 odd 4
450.2.p.a.257.2 8 20.19 odd 2
450.2.p.a.293.2 8 20.7 even 4
450.2.p.a.407.2 8 180.119 even 6
450.2.p.a.443.2 8 180.47 odd 12
720.2.cu.a.113.1 8 5.3 odd 4 inner
720.2.cu.a.257.1 8 1.1 even 1 trivial
720.2.cu.a.353.1 8 45.38 even 12 inner
720.2.cu.a.497.1 8 9.2 odd 6 inner
810.2.f.b.323.1 8 180.103 even 12
810.2.f.b.323.4 8 180.23 odd 12
810.2.f.b.647.2 8 36.23 even 6
810.2.f.b.647.3 8 36.31 odd 6
1350.2.q.g.143.1 8 180.7 even 12
1350.2.q.g.557.1 8 60.59 even 2
1350.2.q.g.1007.1 8 180.79 odd 6
1350.2.q.g.1043.1 8 60.47 odd 4