Properties

Label 270.2.m.a.197.2
Level $270$
Weight $2$
Character 270.197
Analytic conductor $2.156$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,2,Mod(17,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.m (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 197.2
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 270.197
Dual form 270.2.m.a.233.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 + 0.965926i) q^{2} +(-0.866025 + 0.500000i) q^{4} +(-2.20711 - 0.358719i) q^{5} +(-4.40508 + 1.18034i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-0.224745 - 2.22474i) q^{10} +(0.550510 + 0.317837i) q^{11} +(-3.34607 - 0.896575i) q^{13} +(-2.28024 - 3.94949i) q^{14} +(0.500000 - 0.866025i) q^{16} +(-0.317837 + 0.317837i) q^{17} +6.44949i q^{19} +(2.09077 - 0.792893i) q^{20} +(-0.164525 + 0.614014i) q^{22} +(0.258819 - 0.965926i) q^{23} +(4.74264 + 1.58346i) q^{25} -3.46410i q^{26} +(3.22474 - 3.22474i) q^{28} +(0.158919 - 0.275255i) q^{29} +(-0.224745 - 0.389270i) q^{31} +(0.965926 + 0.258819i) q^{32} +(-0.389270 - 0.224745i) q^{34} +(10.1459 - 1.02494i) q^{35} +(-3.00000 - 3.00000i) q^{37} +(-6.22973 + 1.66925i) q^{38} +(1.30701 + 1.81431i) q^{40} +(-6.39898 + 3.69445i) q^{41} +(-0.896575 - 3.34607i) q^{43} -0.635674 q^{44} +1.00000 q^{46} +(2.32937 + 8.69333i) q^{47} +(11.9494 - 6.89898i) q^{49} +(-0.302023 + 4.99087i) q^{50} +(3.34607 - 0.896575i) q^{52} +(-3.78194 - 3.78194i) q^{53} +(-1.10102 - 0.898979i) q^{55} +(3.94949 + 2.28024i) q^{56} +(0.307007 + 0.0822623i) q^{58} +(4.48905 + 7.77526i) q^{59} +(0.275255 - 0.476756i) q^{61} +(0.317837 - 0.317837i) q^{62} +1.00000i q^{64} +(7.06350 + 3.17914i) q^{65} +(-1.71089 + 6.38512i) q^{67} +(0.116337 - 0.434174i) q^{68} +(3.61597 + 9.53491i) q^{70} -6.29253i q^{71} +(-6.89898 + 6.89898i) q^{73} +(2.12132 - 3.67423i) q^{74} +(-3.22474 - 5.58542i) q^{76} +(-2.80020 - 0.750311i) q^{77} +(-2.12132 - 1.22474i) q^{79} +(-1.41421 + 1.73205i) q^{80} +(-5.22474 - 5.22474i) q^{82} +(-5.26380 + 1.41043i) q^{83} +(0.815515 - 0.587486i) q^{85} +(3.00000 - 1.73205i) q^{86} +(-0.164525 - 0.614014i) q^{88} +8.02458 q^{89} +15.7980 q^{91} +(0.258819 + 0.965926i) q^{92} +(-7.79423 + 4.50000i) q^{94} +(2.31356 - 14.2347i) q^{95} +(-2.59405 + 0.695075i) q^{97} +(9.75663 + 9.75663i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{5} - 8 q^{7} + 8 q^{10} + 24 q^{11} + 4 q^{16} - 8 q^{22} + 4 q^{25} + 16 q^{28} + 8 q^{31} - 24 q^{37} - 12 q^{38} + 4 q^{40} - 12 q^{41} + 8 q^{46} - 24 q^{50} - 48 q^{55} + 12 q^{56} - 4 q^{58}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.258819 + 0.965926i 0.183013 + 0.683013i
\(3\) 0 0
\(4\) −0.866025 + 0.500000i −0.433013 + 0.250000i
\(5\) −2.20711 0.358719i −0.987048 0.160424i
\(6\) 0 0
\(7\) −4.40508 + 1.18034i −1.66497 + 0.446126i −0.963746 0.266820i \(-0.914027\pi\)
−0.701219 + 0.712946i \(0.747360\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) −0.224745 2.22474i −0.0710706 0.703526i
\(11\) 0.550510 + 0.317837i 0.165985 + 0.0958315i 0.580691 0.814124i \(-0.302782\pi\)
−0.414706 + 0.909955i \(0.636116\pi\)
\(12\) 0 0
\(13\) −3.34607 0.896575i −0.928032 0.248665i −0.237016 0.971506i \(-0.576170\pi\)
−0.691015 + 0.722840i \(0.742836\pi\)
\(14\) −2.28024 3.94949i −0.609419 1.05555i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −0.317837 + 0.317837i −0.0770869 + 0.0770869i −0.744599 0.667512i \(-0.767359\pi\)
0.667512 + 0.744599i \(0.267359\pi\)
\(18\) 0 0
\(19\) 6.44949i 1.47961i 0.672819 + 0.739807i \(0.265083\pi\)
−0.672819 + 0.739807i \(0.734917\pi\)
\(20\) 2.09077 0.792893i 0.467510 0.177296i
\(21\) 0 0
\(22\) −0.164525 + 0.614014i −0.0350768 + 0.130908i
\(23\) 0.258819 0.965926i 0.0539675 0.201409i −0.933678 0.358113i \(-0.883420\pi\)
0.987646 + 0.156704i \(0.0500868\pi\)
\(24\) 0 0
\(25\) 4.74264 + 1.58346i 0.948528 + 0.316693i
\(26\) 3.46410i 0.679366i
\(27\) 0 0
\(28\) 3.22474 3.22474i 0.609419 0.609419i
\(29\) 0.158919 0.275255i 0.0295104 0.0511136i −0.850893 0.525339i \(-0.823939\pi\)
0.880403 + 0.474225i \(0.157272\pi\)
\(30\) 0 0
\(31\) −0.224745 0.389270i −0.0403654 0.0699149i 0.845137 0.534550i \(-0.179519\pi\)
−0.885502 + 0.464635i \(0.846186\pi\)
\(32\) 0.965926 + 0.258819i 0.170753 + 0.0457532i
\(33\) 0 0
\(34\) −0.389270 0.224745i −0.0667592 0.0385434i
\(35\) 10.1459 1.02494i 1.71497 0.173247i
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) −6.22973 + 1.66925i −1.01060 + 0.270788i
\(39\) 0 0
\(40\) 1.30701 + 1.81431i 0.206656 + 0.286868i
\(41\) −6.39898 + 3.69445i −0.999353 + 0.576977i −0.908057 0.418847i \(-0.862434\pi\)
−0.0912960 + 0.995824i \(0.529101\pi\)
\(42\) 0 0
\(43\) −0.896575 3.34607i −0.136726 0.510270i −0.999985 0.00550783i \(-0.998247\pi\)
0.863258 0.504762i \(-0.168420\pi\)
\(44\) −0.635674 −0.0958315
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) 2.32937 + 8.69333i 0.339774 + 1.26805i 0.898600 + 0.438768i \(0.144585\pi\)
−0.558827 + 0.829285i \(0.688748\pi\)
\(48\) 0 0
\(49\) 11.9494 6.89898i 1.70705 0.985568i
\(50\) −0.302023 + 4.99087i −0.0427126 + 0.705816i
\(51\) 0 0
\(52\) 3.34607 0.896575i 0.464016 0.124333i
\(53\) −3.78194 3.78194i −0.519489 0.519489i 0.397928 0.917417i \(-0.369730\pi\)
−0.917417 + 0.397928i \(0.869730\pi\)
\(54\) 0 0
\(55\) −1.10102 0.898979i −0.148462 0.121218i
\(56\) 3.94949 + 2.28024i 0.527773 + 0.304710i
\(57\) 0 0
\(58\) 0.307007 + 0.0822623i 0.0403120 + 0.0108016i
\(59\) 4.48905 + 7.77526i 0.584424 + 1.01225i 0.994947 + 0.100402i \(0.0320128\pi\)
−0.410523 + 0.911850i \(0.634654\pi\)
\(60\) 0 0
\(61\) 0.275255 0.476756i 0.0352428 0.0610423i −0.847866 0.530211i \(-0.822113\pi\)
0.883109 + 0.469168i \(0.155446\pi\)
\(62\) 0.317837 0.317837i 0.0403654 0.0403654i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 7.06350 + 3.17914i 0.876120 + 0.394323i
\(66\) 0 0
\(67\) −1.71089 + 6.38512i −0.209018 + 0.780067i 0.779169 + 0.626814i \(0.215642\pi\)
−0.988187 + 0.153253i \(0.951025\pi\)
\(68\) 0.116337 0.434174i 0.0141079 0.0526513i
\(69\) 0 0
\(70\) 3.61597 + 9.53491i 0.432191 + 1.13964i
\(71\) 6.29253i 0.746786i −0.927673 0.373393i \(-0.878194\pi\)
0.927673 0.373393i \(-0.121806\pi\)
\(72\) 0 0
\(73\) −6.89898 + 6.89898i −0.807464 + 0.807464i −0.984249 0.176785i \(-0.943430\pi\)
0.176785 + 0.984249i \(0.443430\pi\)
\(74\) 2.12132 3.67423i 0.246598 0.427121i
\(75\) 0 0
\(76\) −3.22474 5.58542i −0.369904 0.640692i
\(77\) −2.80020 0.750311i −0.319112 0.0855059i
\(78\) 0 0
\(79\) −2.12132 1.22474i −0.238667 0.137795i 0.375897 0.926662i \(-0.377335\pi\)
−0.614564 + 0.788867i \(0.710668\pi\)
\(80\) −1.41421 + 1.73205i −0.158114 + 0.193649i
\(81\) 0 0
\(82\) −5.22474 5.22474i −0.576977 0.576977i
\(83\) −5.26380 + 1.41043i −0.577777 + 0.154815i −0.535861 0.844306i \(-0.680013\pi\)
−0.0419163 + 0.999121i \(0.513346\pi\)
\(84\) 0 0
\(85\) 0.815515 0.587486i 0.0884550 0.0637218i
\(86\) 3.00000 1.73205i 0.323498 0.186772i
\(87\) 0 0
\(88\) −0.164525 0.614014i −0.0175384 0.0654542i
\(89\) 8.02458 0.850604 0.425302 0.905052i \(-0.360168\pi\)
0.425302 + 0.905052i \(0.360168\pi\)
\(90\) 0 0
\(91\) 15.7980 1.65608
\(92\) 0.258819 + 0.965926i 0.0269838 + 0.100705i
\(93\) 0 0
\(94\) −7.79423 + 4.50000i −0.803913 + 0.464140i
\(95\) 2.31356 14.2347i 0.237366 1.46045i
\(96\) 0 0
\(97\) −2.59405 + 0.695075i −0.263386 + 0.0705741i −0.388095 0.921619i \(-0.626867\pi\)
0.124709 + 0.992193i \(0.460200\pi\)
\(98\) 9.75663 + 9.75663i 0.985568 + 0.985568i
\(99\) 0 0
\(100\) −4.89898 + 1.00000i −0.489898 + 0.100000i
\(101\) −10.8990 6.29253i −1.08449 0.626130i −0.152385 0.988321i \(-0.548695\pi\)
−0.932104 + 0.362191i \(0.882029\pi\)
\(102\) 0 0
\(103\) 9.42418 + 2.52520i 0.928592 + 0.248816i 0.691254 0.722612i \(-0.257058\pi\)
0.237338 + 0.971427i \(0.423725\pi\)
\(104\) 1.73205 + 3.00000i 0.169842 + 0.294174i
\(105\) 0 0
\(106\) 2.67423 4.63191i 0.259745 0.449891i
\(107\) −13.6100 + 13.6100i −1.31573 + 1.31573i −0.398606 + 0.917122i \(0.630506\pi\)
−0.917122 + 0.398606i \(0.869494\pi\)
\(108\) 0 0
\(109\) 5.65153i 0.541318i −0.962675 0.270659i \(-0.912758\pi\)
0.962675 0.270659i \(-0.0872417\pi\)
\(110\) 0.583382 1.29618i 0.0556233 0.123586i
\(111\) 0 0
\(112\) −1.18034 + 4.40508i −0.111532 + 0.416241i
\(113\) 1.50062 5.60040i 0.141167 0.526841i −0.858729 0.512429i \(-0.828746\pi\)
0.999896 0.0144120i \(-0.00458763\pi\)
\(114\) 0 0
\(115\) −0.917738 + 2.03906i −0.0855795 + 0.190143i
\(116\) 0.317837i 0.0295104i
\(117\) 0 0
\(118\) −6.34847 + 6.34847i −0.584424 + 0.584424i
\(119\) 1.02494 1.77526i 0.0939565 0.162737i
\(120\) 0 0
\(121\) −5.29796 9.17633i −0.481633 0.834212i
\(122\) 0.531752 + 0.142483i 0.0481426 + 0.0128998i
\(123\) 0 0
\(124\) 0.389270 + 0.224745i 0.0349574 + 0.0201827i
\(125\) −9.89949 5.19615i −0.885438 0.464758i
\(126\) 0 0
\(127\) 1.87628 + 1.87628i 0.166493 + 0.166493i 0.785436 0.618943i \(-0.212439\pi\)
−0.618943 + 0.785436i \(0.712439\pi\)
\(128\) −0.965926 + 0.258819i −0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) −1.24264 + 7.64564i −0.108987 + 0.670567i
\(131\) 3.12372 1.80348i 0.272921 0.157571i −0.357293 0.933992i \(-0.616300\pi\)
0.630214 + 0.776421i \(0.282967\pi\)
\(132\) 0 0
\(133\) −7.61258 28.4105i −0.660095 2.46351i
\(134\) −6.61037 −0.571049
\(135\) 0 0
\(136\) 0.449490 0.0385434
\(137\) −5.64173 21.0552i −0.482005 1.79887i −0.593183 0.805068i \(-0.702129\pi\)
0.111178 0.993801i \(-0.464538\pi\)
\(138\) 0 0
\(139\) 2.68556 1.55051i 0.227786 0.131513i −0.381764 0.924260i \(-0.624683\pi\)
0.609550 + 0.792747i \(0.291350\pi\)
\(140\) −8.27414 + 5.96058i −0.699292 + 0.503761i
\(141\) 0 0
\(142\) 6.07812 1.62863i 0.510064 0.136671i
\(143\) −1.55708 1.55708i −0.130209 0.130209i
\(144\) 0 0
\(145\) −0.449490 + 0.550510i −0.0373281 + 0.0457174i
\(146\) −8.44949 4.87832i −0.699285 0.403732i
\(147\) 0 0
\(148\) 4.09808 + 1.09808i 0.336860 + 0.0902613i
\(149\) −2.20881 3.82577i −0.180952 0.313419i 0.761253 0.648455i \(-0.224585\pi\)
−0.942205 + 0.335036i \(0.891251\pi\)
\(150\) 0 0
\(151\) −8.79796 + 15.2385i −0.715968 + 1.24009i 0.246617 + 0.969113i \(0.420681\pi\)
−0.962585 + 0.270980i \(0.912652\pi\)
\(152\) 4.56048 4.56048i 0.369904 0.369904i
\(153\) 0 0
\(154\) 2.89898i 0.233606i
\(155\) 0.356397 + 0.939780i 0.0286265 + 0.0754849i
\(156\) 0 0
\(157\) −3.78780 + 14.1363i −0.302300 + 1.12820i 0.632945 + 0.774196i \(0.281846\pi\)
−0.935245 + 0.354001i \(0.884821\pi\)
\(158\) 0.633975 2.36603i 0.0504363 0.188231i
\(159\) 0 0
\(160\) −2.03906 0.917738i −0.161202 0.0725535i
\(161\) 4.56048i 0.359416i
\(162\) 0 0
\(163\) 4.44949 4.44949i 0.348511 0.348511i −0.511044 0.859555i \(-0.670741\pi\)
0.859555 + 0.511044i \(0.170741\pi\)
\(164\) 3.69445 6.39898i 0.288488 0.499676i
\(165\) 0 0
\(166\) −2.72474 4.71940i −0.211481 0.366296i
\(167\) 8.49818 + 2.27708i 0.657609 + 0.176206i 0.572167 0.820137i \(-0.306103\pi\)
0.0854420 + 0.996343i \(0.472770\pi\)
\(168\) 0 0
\(169\) −0.866025 0.500000i −0.0666173 0.0384615i
\(170\) 0.778539 + 0.635674i 0.0597112 + 0.0487540i
\(171\) 0 0
\(172\) 2.44949 + 2.44949i 0.186772 + 0.186772i
\(173\) 12.4595 3.33850i 0.947275 0.253822i 0.248069 0.968742i \(-0.420204\pi\)
0.699206 + 0.714921i \(0.253537\pi\)
\(174\) 0 0
\(175\) −22.7608 1.37737i −1.72055 0.104119i
\(176\) 0.550510 0.317837i 0.0414963 0.0239579i
\(177\) 0 0
\(178\) 2.07691 + 7.75115i 0.155671 + 0.580973i
\(179\) −10.6780 −0.798114 −0.399057 0.916926i \(-0.630662\pi\)
−0.399057 + 0.916926i \(0.630662\pi\)
\(180\) 0 0
\(181\) −15.4495 −1.14835 −0.574176 0.818732i \(-0.694677\pi\)
−0.574176 + 0.818732i \(0.694677\pi\)
\(182\) 4.08881 + 15.2597i 0.303083 + 1.13112i
\(183\) 0 0
\(184\) −0.866025 + 0.500000i −0.0638442 + 0.0368605i
\(185\) 5.54516 + 7.69748i 0.407688 + 0.565930i
\(186\) 0 0
\(187\) −0.275993 + 0.0739521i −0.0201826 + 0.00540792i
\(188\) −6.36396 6.36396i −0.464140 0.464140i
\(189\) 0 0
\(190\) 14.3485 1.44949i 1.04095 0.105157i
\(191\) 15.1237 + 8.73169i 1.09431 + 0.631803i 0.934722 0.355380i \(-0.115649\pi\)
0.159593 + 0.987183i \(0.448982\pi\)
\(192\) 0 0
\(193\) 16.7303 + 4.48288i 1.20428 + 0.322685i 0.804513 0.593934i \(-0.202426\pi\)
0.399762 + 0.916619i \(0.369093\pi\)
\(194\) −1.34278 2.32577i −0.0964061 0.166980i
\(195\) 0 0
\(196\) −6.89898 + 11.9494i −0.492784 + 0.853527i
\(197\) −6.92820 + 6.92820i −0.493614 + 0.493614i −0.909443 0.415829i \(-0.863492\pi\)
0.415829 + 0.909443i \(0.363492\pi\)
\(198\) 0 0
\(199\) 8.44949i 0.598968i 0.954101 + 0.299484i \(0.0968146\pi\)
−0.954101 + 0.299484i \(0.903185\pi\)
\(200\) −2.23388 4.47323i −0.157959 0.316305i
\(201\) 0 0
\(202\) 3.25725 12.1562i 0.229179 0.855310i
\(203\) −0.375156 + 1.40010i −0.0263308 + 0.0982677i
\(204\) 0 0
\(205\) 15.4485 5.85861i 1.07897 0.409183i
\(206\) 9.75663i 0.679777i
\(207\) 0 0
\(208\) −2.44949 + 2.44949i −0.169842 + 0.169842i
\(209\) −2.04989 + 3.55051i −0.141794 + 0.245594i
\(210\) 0 0
\(211\) −4.55051 7.88171i −0.313270 0.542600i 0.665798 0.746132i \(-0.268091\pi\)
−0.979068 + 0.203532i \(0.934758\pi\)
\(212\) 5.16622 + 1.38429i 0.354818 + 0.0950731i
\(213\) 0 0
\(214\) −16.6688 9.62372i −1.13945 0.657864i
\(215\) 0.778539 + 7.70674i 0.0530959 + 0.525595i
\(216\) 0 0
\(217\) 1.44949 + 1.44949i 0.0983978 + 0.0983978i
\(218\) 5.45896 1.46272i 0.369727 0.0990682i
\(219\) 0 0
\(220\) 1.40300 + 0.228029i 0.0945903 + 0.0153737i
\(221\) 1.34847 0.778539i 0.0907079 0.0523702i
\(222\) 0 0
\(223\) 6.63374 + 24.7575i 0.444228 + 1.65788i 0.717966 + 0.696078i \(0.245073\pi\)
−0.273738 + 0.961804i \(0.588260\pi\)
\(224\) −4.56048 −0.304710
\(225\) 0 0
\(226\) 5.79796 0.385674
\(227\) −6.44433 24.0506i −0.427725 1.59629i −0.757899 0.652372i \(-0.773774\pi\)
0.330174 0.943920i \(-0.392893\pi\)
\(228\) 0 0
\(229\) −1.43027 + 0.825765i −0.0945147 + 0.0545681i −0.546512 0.837451i \(-0.684045\pi\)
0.451998 + 0.892019i \(0.350712\pi\)
\(230\) −2.20711 0.358719i −0.145532 0.0236533i
\(231\) 0 0
\(232\) −0.307007 + 0.0822623i −0.0201560 + 0.00540079i
\(233\) 14.4600 + 14.4600i 0.947304 + 0.947304i 0.998679 0.0513751i \(-0.0163604\pi\)
−0.0513751 + 0.998679i \(0.516360\pi\)
\(234\) 0 0
\(235\) −2.02270 20.0227i −0.131947 1.30614i
\(236\) −7.77526 4.48905i −0.506126 0.292212i
\(237\) 0 0
\(238\) 1.98004 + 0.530550i 0.128347 + 0.0343905i
\(239\) 8.48528 + 14.6969i 0.548867 + 0.950666i 0.998353 + 0.0573782i \(0.0182741\pi\)
−0.449485 + 0.893288i \(0.648393\pi\)
\(240\) 0 0
\(241\) −9.50000 + 16.4545i −0.611949 + 1.05993i 0.378963 + 0.925412i \(0.376281\pi\)
−0.990912 + 0.134515i \(0.957053\pi\)
\(242\) 7.49245 7.49245i 0.481633 0.481633i
\(243\) 0 0
\(244\) 0.550510i 0.0352428i
\(245\) −28.8484 + 10.9403i −1.84305 + 0.698951i
\(246\) 0 0
\(247\) 5.78245 21.5804i 0.367929 1.37313i
\(248\) −0.116337 + 0.434174i −0.00738738 + 0.0275701i
\(249\) 0 0
\(250\) 2.45692 10.9070i 0.155389 0.689822i
\(251\) 2.68556i 0.169511i −0.996402 0.0847556i \(-0.972989\pi\)
0.996402 0.0847556i \(-0.0270110\pi\)
\(252\) 0 0
\(253\) 0.449490 0.449490i 0.0282592 0.0282592i
\(254\) −1.32673 + 2.29796i −0.0832463 + 0.144187i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 17.4305 + 4.67050i 1.08729 + 0.291337i 0.757578 0.652745i \(-0.226383\pi\)
0.329709 + 0.944083i \(0.393049\pi\)
\(258\) 0 0
\(259\) 16.7563 + 9.67423i 1.04118 + 0.601128i
\(260\) −7.70674 + 0.778539i −0.477952 + 0.0482829i
\(261\) 0 0
\(262\) 2.55051 + 2.55051i 0.157571 + 0.157571i
\(263\) −16.1280 + 4.32149i −0.994495 + 0.266474i −0.719138 0.694868i \(-0.755463\pi\)
−0.275358 + 0.961342i \(0.588796\pi\)
\(264\) 0 0
\(265\) 6.99049 + 9.70380i 0.429422 + 0.596100i
\(266\) 25.4722 14.7064i 1.56180 0.901706i
\(267\) 0 0
\(268\) −1.71089 6.38512i −0.104509 0.390033i
\(269\) 15.0956 0.920398 0.460199 0.887816i \(-0.347778\pi\)
0.460199 + 0.887816i \(0.347778\pi\)
\(270\) 0 0
\(271\) 28.0454 1.70364 0.851819 0.523837i \(-0.175500\pi\)
0.851819 + 0.523837i \(0.175500\pi\)
\(272\) 0.116337 + 0.434174i 0.00705394 + 0.0263257i
\(273\) 0 0
\(274\) 18.8776 10.8990i 1.14044 0.658431i
\(275\) 2.10759 + 2.37910i 0.127092 + 0.143465i
\(276\) 0 0
\(277\) 27.1825 7.28353i 1.63324 0.437625i 0.678386 0.734705i \(-0.262680\pi\)
0.954852 + 0.297080i \(0.0960129\pi\)
\(278\) 2.19275 + 2.19275i 0.131513 + 0.131513i
\(279\) 0 0
\(280\) −7.89898 6.44949i −0.472054 0.385431i
\(281\) 14.8485 + 8.57277i 0.885785 + 0.511408i 0.872562 0.488504i \(-0.162457\pi\)
0.0132238 + 0.999913i \(0.495791\pi\)
\(282\) 0 0
\(283\) −23.3914 6.26772i −1.39048 0.372577i −0.515561 0.856853i \(-0.672417\pi\)
−0.874916 + 0.484275i \(0.839083\pi\)
\(284\) 3.14626 + 5.44949i 0.186696 + 0.323368i
\(285\) 0 0
\(286\) 1.10102 1.90702i 0.0651047 0.112765i
\(287\) 23.8273 23.8273i 1.40648 1.40648i
\(288\) 0 0
\(289\) 16.7980i 0.988115i
\(290\) −0.648089 0.291691i −0.0380571 0.0171287i
\(291\) 0 0
\(292\) 2.52520 9.42418i 0.147776 0.551508i
\(293\) −5.70577 + 21.2942i −0.333335 + 1.24402i 0.572329 + 0.820024i \(0.306040\pi\)
−0.905663 + 0.423998i \(0.860626\pi\)
\(294\) 0 0
\(295\) −7.11867 18.7711i −0.414465 1.09290i
\(296\) 4.24264i 0.246598i
\(297\) 0 0
\(298\) 3.12372 3.12372i 0.180952 0.180952i
\(299\) −1.73205 + 3.00000i −0.100167 + 0.173494i
\(300\) 0 0
\(301\) 7.89898 + 13.6814i 0.455290 + 0.788585i
\(302\) −16.9964 4.55416i −0.978030 0.262062i
\(303\) 0 0
\(304\) 5.58542 + 3.22474i 0.320346 + 0.184952i
\(305\) −0.778539 + 0.953512i −0.0445790 + 0.0545979i
\(306\) 0 0
\(307\) −6.67423 6.67423i −0.380919 0.380919i 0.490514 0.871433i \(-0.336809\pi\)
−0.871433 + 0.490514i \(0.836809\pi\)
\(308\) 2.80020 0.750311i 0.159556 0.0427529i
\(309\) 0 0
\(310\) −0.815515 + 0.587486i −0.0463181 + 0.0333670i
\(311\) −23.8207 + 13.7529i −1.35075 + 0.779853i −0.988354 0.152172i \(-0.951373\pi\)
−0.362392 + 0.932026i \(0.618040\pi\)
\(312\) 0 0
\(313\) 3.09273 + 11.5422i 0.174811 + 0.652405i 0.996584 + 0.0825888i \(0.0263188\pi\)
−0.821772 + 0.569816i \(0.807015\pi\)
\(314\) −14.6349 −0.825898
\(315\) 0 0
\(316\) 2.44949 0.137795
\(317\) 2.82086 + 10.5276i 0.158435 + 0.591289i 0.998787 + 0.0492469i \(0.0156821\pi\)
−0.840351 + 0.542042i \(0.817651\pi\)
\(318\) 0 0
\(319\) 0.174973 0.101021i 0.00979659 0.00565606i
\(320\) 0.358719 2.20711i 0.0200530 0.123381i
\(321\) 0 0
\(322\) −4.40508 + 1.18034i −0.245486 + 0.0657777i
\(323\) −2.04989 2.04989i −0.114059 0.114059i
\(324\) 0 0
\(325\) −14.4495 9.55051i −0.801513 0.529767i
\(326\) 5.44949 + 3.14626i 0.301819 + 0.174255i
\(327\) 0 0
\(328\) 7.13713 + 1.91239i 0.394082 + 0.105594i
\(329\) −20.5222 35.5454i −1.13142 1.95968i
\(330\) 0 0
\(331\) −0.224745 + 0.389270i −0.0123531 + 0.0213962i −0.872136 0.489264i \(-0.837266\pi\)
0.859783 + 0.510660i \(0.170599\pi\)
\(332\) 3.85337 3.85337i 0.211481 0.211481i
\(333\) 0 0
\(334\) 8.79796i 0.481403i
\(335\) 6.06658 13.4789i 0.331453 0.736432i
\(336\) 0 0
\(337\) −0.806003 + 3.00804i −0.0439058 + 0.163859i −0.984398 0.175957i \(-0.943698\pi\)
0.940492 + 0.339816i \(0.110365\pi\)
\(338\) 0.258819 0.965926i 0.0140779 0.0525394i
\(339\) 0 0
\(340\) −0.412514 + 0.916536i −0.0223717 + 0.0497061i
\(341\) 0.285729i 0.0154731i
\(342\) 0 0
\(343\) −21.9217 + 21.9217i −1.18366 + 1.18366i
\(344\) −1.73205 + 3.00000i −0.0933859 + 0.161749i
\(345\) 0 0
\(346\) 6.44949 + 11.1708i 0.346727 + 0.600548i
\(347\) −22.9871 6.15937i −1.23401 0.330652i −0.417870 0.908507i \(-0.637223\pi\)
−0.816140 + 0.577855i \(0.803890\pi\)
\(348\) 0 0
\(349\) −25.1541 14.5227i −1.34647 0.777383i −0.358719 0.933446i \(-0.616786\pi\)
−0.987747 + 0.156063i \(0.950120\pi\)
\(350\) −4.56048 22.3417i −0.243768 1.19421i
\(351\) 0 0
\(352\) 0.449490 + 0.449490i 0.0239579 + 0.0239579i
\(353\) 33.1244 8.87564i 1.76303 0.472403i 0.775704 0.631097i \(-0.217395\pi\)
0.987328 + 0.158694i \(0.0507284\pi\)
\(354\) 0 0
\(355\) −2.25725 + 13.8883i −0.119803 + 0.737114i
\(356\) −6.94949 + 4.01229i −0.368322 + 0.212651i
\(357\) 0 0
\(358\) −2.76368 10.3142i −0.146065 0.545122i
\(359\) −3.32124 −0.175288 −0.0876441 0.996152i \(-0.527934\pi\)
−0.0876441 + 0.996152i \(0.527934\pi\)
\(360\) 0 0
\(361\) −22.5959 −1.18926
\(362\) −3.99862 14.9231i −0.210163 0.784339i
\(363\) 0 0
\(364\) −13.6814 + 7.89898i −0.717102 + 0.414019i
\(365\) 17.7016 12.7520i 0.926543 0.667469i
\(366\) 0 0
\(367\) 3.96008 1.06110i 0.206714 0.0553890i −0.153976 0.988075i \(-0.549208\pi\)
0.360690 + 0.932686i \(0.382541\pi\)
\(368\) −0.707107 0.707107i −0.0368605 0.0368605i
\(369\) 0 0
\(370\) −6.00000 + 7.34847i −0.311925 + 0.382029i
\(371\) 21.1237 + 12.1958i 1.09669 + 0.633174i
\(372\) 0 0
\(373\) 0.476018 + 0.127549i 0.0246473 + 0.00660422i 0.271122 0.962545i \(-0.412605\pi\)
−0.246474 + 0.969149i \(0.579272\pi\)
\(374\) −0.142865 0.247449i −0.00738735 0.0127953i
\(375\) 0 0
\(376\) 4.50000 7.79423i 0.232070 0.401957i
\(377\) −0.778539 + 0.778539i −0.0400968 + 0.0400968i
\(378\) 0 0
\(379\) 21.3485i 1.09660i −0.836283 0.548299i \(-0.815276\pi\)
0.836283 0.548299i \(-0.184724\pi\)
\(380\) 5.11376 + 13.4844i 0.262330 + 0.691735i
\(381\) 0 0
\(382\) −4.51985 + 16.8683i −0.231256 + 0.863058i
\(383\) 2.12284 7.92256i 0.108472 0.404824i −0.890244 0.455485i \(-0.849466\pi\)
0.998716 + 0.0506606i \(0.0161327\pi\)
\(384\) 0 0
\(385\) 5.91119 + 2.66050i 0.301262 + 0.135592i
\(386\) 17.3205i 0.881591i
\(387\) 0 0
\(388\) 1.89898 1.89898i 0.0964061 0.0964061i
\(389\) −18.4008 + 31.8712i −0.932959 + 1.61593i −0.154726 + 0.987957i \(0.549449\pi\)
−0.778233 + 0.627975i \(0.783884\pi\)
\(390\) 0 0
\(391\) 0.224745 + 0.389270i 0.0113658 + 0.0196862i
\(392\) −13.3278 3.57117i −0.673156 0.180372i
\(393\) 0 0
\(394\) −8.48528 4.89898i −0.427482 0.246807i
\(395\) 4.24264 + 3.46410i 0.213470 + 0.174298i
\(396\) 0 0
\(397\) 10.5505 + 10.5505i 0.529515 + 0.529515i 0.920428 0.390913i \(-0.127841\pi\)
−0.390913 + 0.920428i \(0.627841\pi\)
\(398\) −8.16158 + 2.18689i −0.409103 + 0.109619i
\(399\) 0 0
\(400\) 3.74264 3.31552i 0.187132 0.165776i
\(401\) −7.65153 + 4.41761i −0.382099 + 0.220605i −0.678731 0.734387i \(-0.737470\pi\)
0.296632 + 0.954992i \(0.404137\pi\)
\(402\) 0 0
\(403\) 0.403001 + 1.50402i 0.0200749 + 0.0749207i
\(404\) 12.5851 0.626130
\(405\) 0 0
\(406\) −1.44949 −0.0719370
\(407\) −0.698019 2.60504i −0.0345995 0.129127i
\(408\) 0 0
\(409\) −25.0273 + 14.4495i −1.23752 + 0.714481i −0.968586 0.248678i \(-0.920004\pi\)
−0.268932 + 0.963159i \(0.586671\pi\)
\(410\) 9.65735 + 13.4058i 0.476943 + 0.662065i
\(411\) 0 0
\(412\) −9.42418 + 2.52520i −0.464296 + 0.124408i
\(413\) −28.9521 28.9521i −1.42464 1.42464i
\(414\) 0 0
\(415\) 12.1237 1.22474i 0.595130 0.0601204i
\(416\) −3.00000 1.73205i −0.147087 0.0849208i
\(417\) 0 0
\(418\) −3.96008 1.06110i −0.193694 0.0519001i
\(419\) −2.51059 4.34847i −0.122650 0.212437i 0.798162 0.602443i \(-0.205806\pi\)
−0.920812 + 0.390007i \(0.872473\pi\)
\(420\) 0 0
\(421\) 2.55051 4.41761i 0.124304 0.215301i −0.797157 0.603773i \(-0.793663\pi\)
0.921461 + 0.388471i \(0.126997\pi\)
\(422\) 6.43539 6.43539i 0.313270 0.313270i
\(423\) 0 0
\(424\) 5.34847i 0.259745i
\(425\) −2.01067 + 1.00410i −0.0975319 + 0.0487062i
\(426\) 0 0
\(427\) −0.649788 + 2.42504i −0.0314455 + 0.117356i
\(428\) 4.98161 18.5916i 0.240795 0.898659i
\(429\) 0 0
\(430\) −7.24264 + 2.74666i −0.349271 + 0.132456i
\(431\) 15.5563i 0.749323i 0.927162 + 0.374661i \(0.122241\pi\)
−0.927162 + 0.374661i \(0.877759\pi\)
\(432\) 0 0
\(433\) 13.4495 13.4495i 0.646341 0.646341i −0.305766 0.952107i \(-0.598912\pi\)
0.952107 + 0.305766i \(0.0989124\pi\)
\(434\) −1.02494 + 1.77526i −0.0491989 + 0.0852150i
\(435\) 0 0
\(436\) 2.82577 + 4.89437i 0.135330 + 0.234398i
\(437\) 6.22973 + 1.66925i 0.298008 + 0.0798511i
\(438\) 0 0
\(439\) −25.8058 14.8990i −1.23164 0.711089i −0.264271 0.964449i \(-0.585131\pi\)
−0.967372 + 0.253359i \(0.918465\pi\)
\(440\) 0.142865 + 1.41421i 0.00681080 + 0.0674200i
\(441\) 0 0
\(442\) 1.10102 + 1.10102i 0.0523702 + 0.0523702i
\(443\) 5.26380 1.41043i 0.250091 0.0670116i −0.131596 0.991303i \(-0.542010\pi\)
0.381687 + 0.924292i \(0.375343\pi\)
\(444\) 0 0
\(445\) −17.7111 2.87857i −0.839587 0.136457i
\(446\) −22.1969 + 12.8154i −1.05106 + 0.606827i
\(447\) 0 0
\(448\) −1.18034 4.40508i −0.0557658 0.208121i
\(449\) −0.921404 −0.0434837 −0.0217419 0.999764i \(-0.506921\pi\)
−0.0217419 + 0.999764i \(0.506921\pi\)
\(450\) 0 0
\(451\) −4.69694 −0.221170
\(452\) 1.50062 + 5.60040i 0.0705833 + 0.263421i
\(453\) 0 0
\(454\) 21.5631 12.4495i 1.01201 0.584284i
\(455\) −34.8678 5.66704i −1.63463 0.265675i
\(456\) 0 0
\(457\) 14.1363 3.78780i 0.661267 0.177186i 0.0874492 0.996169i \(-0.472128\pi\)
0.573818 + 0.818983i \(0.305462\pi\)
\(458\) −1.16781 1.16781i −0.0545681 0.0545681i
\(459\) 0 0
\(460\) −0.224745 2.22474i −0.0104788 0.103729i
\(461\) −28.6237 16.5259i −1.33314 0.769689i −0.347360 0.937732i \(-0.612922\pi\)
−0.985780 + 0.168043i \(0.946255\pi\)
\(462\) 0 0
\(463\) 11.8182 + 3.16668i 0.549239 + 0.147168i 0.522758 0.852481i \(-0.324903\pi\)
0.0264810 + 0.999649i \(0.491570\pi\)
\(464\) −0.158919 0.275255i −0.00737761 0.0127784i
\(465\) 0 0
\(466\) −10.2247 + 17.7098i −0.473652 + 0.820390i
\(467\) −2.82843 + 2.82843i −0.130884 + 0.130884i −0.769514 0.638630i \(-0.779501\pi\)
0.638630 + 0.769514i \(0.279501\pi\)
\(468\) 0 0
\(469\) 30.1464i 1.39203i
\(470\) 18.8169 7.13604i 0.867960 0.329161i
\(471\) 0 0
\(472\) 2.32370 8.67217i 0.106957 0.399169i
\(473\) 0.569930 2.12701i 0.0262054 0.0977999i
\(474\) 0 0
\(475\) −10.2125 + 30.5876i −0.468583 + 1.40346i
\(476\) 2.04989i 0.0939565i
\(477\) 0 0
\(478\) −12.0000 + 12.0000i −0.548867 + 0.548867i
\(479\) 3.53553 6.12372i 0.161543 0.279800i −0.773879 0.633333i \(-0.781686\pi\)
0.935422 + 0.353533i \(0.115020\pi\)
\(480\) 0 0
\(481\) 7.34847 + 12.7279i 0.335061 + 0.580343i
\(482\) −18.3526 4.91756i −0.835938 0.223989i
\(483\) 0 0
\(484\) 9.17633 + 5.29796i 0.417106 + 0.240816i
\(485\) 5.97469 0.603566i 0.271297 0.0274065i
\(486\) 0 0
\(487\) −12.0000 12.0000i −0.543772 0.543772i 0.380861 0.924632i \(-0.375628\pi\)
−0.924632 + 0.380861i \(0.875628\pi\)
\(488\) −0.531752 + 0.142483i −0.0240713 + 0.00644988i
\(489\) 0 0
\(490\) −18.0340 25.0338i −0.814695 1.13091i
\(491\) 24.2474 13.9993i 1.09427 0.631778i 0.159561 0.987188i \(-0.448992\pi\)
0.934711 + 0.355410i \(0.115659\pi\)
\(492\) 0 0
\(493\) 0.0369761 + 0.137997i 0.00166532 + 0.00621505i
\(494\) 22.3417 1.00520
\(495\) 0 0
\(496\) −0.449490 −0.0201827
\(497\) 7.42731 + 27.7191i 0.333161 + 1.24337i
\(498\) 0 0
\(499\) 0.778539 0.449490i 0.0348522 0.0201219i −0.482473 0.875911i \(-0.660261\pi\)
0.517325 + 0.855789i \(0.326928\pi\)
\(500\) 11.1713 0.449747i 0.499595 0.0201133i
\(501\) 0 0
\(502\) 2.59405 0.695075i 0.115778 0.0310227i
\(503\) −4.02834 4.02834i −0.179615 0.179615i 0.611573 0.791188i \(-0.290537\pi\)
−0.791188 + 0.611573i \(0.790537\pi\)
\(504\) 0 0
\(505\) 21.7980 + 17.7980i 0.969996 + 0.791999i
\(506\) 0.550510 + 0.317837i 0.0244732 + 0.0141296i
\(507\) 0 0
\(508\) −2.56304 0.686765i −0.113717 0.0304702i
\(509\) 4.22659 + 7.32066i 0.187340 + 0.324483i 0.944363 0.328906i \(-0.106680\pi\)
−0.757022 + 0.653389i \(0.773347\pi\)
\(510\) 0 0
\(511\) 22.2474 38.5337i 0.984169 1.70463i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 18.0454i 0.795949i
\(515\) −19.8943 8.95403i −0.876649 0.394562i
\(516\) 0 0
\(517\) −1.48072 + 5.52613i −0.0651221 + 0.243039i
\(518\) −5.00775 + 18.6892i −0.220028 + 0.821156i
\(519\) 0 0
\(520\) −2.74666 7.24264i −0.120449 0.317611i
\(521\) 29.4449i 1.29000i −0.764181 0.645001i \(-0.776857\pi\)
0.764181 0.645001i \(-0.223143\pi\)
\(522\) 0 0
\(523\) 4.22474 4.22474i 0.184735 0.184735i −0.608680 0.793416i \(-0.708301\pi\)
0.793416 + 0.608680i \(0.208301\pi\)
\(524\) −1.80348 + 3.12372i −0.0787855 + 0.136461i
\(525\) 0 0
\(526\) −8.34847 14.4600i −0.364011 0.630485i
\(527\) 0.195157 + 0.0522921i 0.00850116 + 0.00227788i
\(528\) 0 0
\(529\) 19.0526 + 11.0000i 0.828372 + 0.478261i
\(530\) −7.56388 + 9.26382i −0.328554 + 0.402395i
\(531\) 0 0
\(532\) 20.7980 + 20.7980i 0.901706 + 0.901706i
\(533\) 24.7238 6.62471i 1.07090 0.286948i
\(534\) 0 0
\(535\) 34.9209 25.1566i 1.50976 1.08761i
\(536\) 5.72474 3.30518i 0.247271 0.142762i
\(537\) 0 0
\(538\) 3.90704 + 14.5813i 0.168444 + 0.628643i
\(539\) 8.77101 0.377794
\(540\) 0 0
\(541\) 27.9444 1.20142 0.600712 0.799466i \(-0.294884\pi\)
0.600712 + 0.799466i \(0.294884\pi\)
\(542\) 7.25869 + 27.0898i 0.311787 + 1.16361i
\(543\) 0 0
\(544\) −0.389270 + 0.224745i −0.0166898 + 0.00963586i
\(545\) −2.02731 + 12.4735i −0.0868406 + 0.534307i
\(546\) 0 0
\(547\) 3.92907 1.05279i 0.167995 0.0450140i −0.173841 0.984774i \(-0.555618\pi\)
0.341836 + 0.939760i \(0.388951\pi\)
\(548\) 15.4135 + 15.4135i 0.658431 + 0.658431i
\(549\) 0 0
\(550\) −1.75255 + 2.65153i −0.0747290 + 0.113062i
\(551\) 1.77526 + 1.02494i 0.0756284 + 0.0436641i
\(552\) 0 0
\(553\) 10.7902 + 2.89123i 0.458846 + 0.122947i
\(554\) 14.0707 + 24.3712i 0.597807 + 1.03543i
\(555\) 0 0
\(556\) −1.55051 + 2.68556i −0.0657563 + 0.113893i
\(557\) 7.88171 7.88171i 0.333959 0.333959i −0.520129 0.854088i \(-0.674116\pi\)
0.854088 + 0.520129i \(0.174116\pi\)
\(558\) 0 0
\(559\) 12.0000i 0.507546i
\(560\) 4.18532 9.29908i 0.176862 0.392958i
\(561\) 0 0
\(562\) −4.43759 + 16.5613i −0.187188 + 0.698597i
\(563\) −5.08619 + 18.9819i −0.214357 + 0.799993i 0.772034 + 0.635581i \(0.219239\pi\)
−0.986392 + 0.164412i \(0.947427\pi\)
\(564\) 0 0
\(565\) −5.32101 + 11.8224i −0.223856 + 0.497371i
\(566\) 24.2166i 1.01790i
\(567\) 0 0
\(568\) −4.44949 + 4.44949i −0.186696 + 0.186696i
\(569\) 9.58166 16.5959i 0.401684 0.695737i −0.592245 0.805758i \(-0.701758\pi\)
0.993929 + 0.110021i \(0.0350917\pi\)
\(570\) 0 0
\(571\) −18.4495 31.9555i −0.772087 1.33729i −0.936417 0.350889i \(-0.885880\pi\)
0.164330 0.986405i \(-0.447454\pi\)
\(572\) 2.12701 + 0.569930i 0.0889347 + 0.0238300i
\(573\) 0 0
\(574\) 29.1824 + 16.8485i 1.21805 + 0.703242i
\(575\) 2.75699 4.17121i 0.114975 0.173951i
\(576\) 0 0
\(577\) −17.0000 17.0000i −0.707719 0.707719i 0.258336 0.966055i \(-0.416826\pi\)
−0.966055 + 0.258336i \(0.916826\pi\)
\(578\) −16.2256 + 4.34763i −0.674895 + 0.180838i
\(579\) 0 0
\(580\) 0.114014 0.701501i 0.00473419 0.0291282i
\(581\) 21.5227 12.4261i 0.892912 0.515523i
\(582\) 0 0
\(583\) −0.879955 3.28404i −0.0364440 0.136011i
\(584\) 9.75663 0.403732
\(585\) 0 0
\(586\) −22.0454 −0.910687
\(587\) −3.37640 12.6009i −0.139359 0.520095i −0.999942 0.0107843i \(-0.996567\pi\)
0.860583 0.509310i \(-0.170099\pi\)
\(588\) 0 0
\(589\) 2.51059 1.44949i 0.103447 0.0597252i
\(590\) 16.2891 11.7344i 0.670610 0.483099i
\(591\) 0 0
\(592\) −4.09808 + 1.09808i −0.168430 + 0.0451307i
\(593\) 7.24604 + 7.24604i 0.297559 + 0.297559i 0.840057 0.542498i \(-0.182521\pi\)
−0.542498 + 0.840057i \(0.682521\pi\)
\(594\) 0 0
\(595\) −2.89898 + 3.55051i −0.118847 + 0.145557i
\(596\) 3.82577 + 2.20881i 0.156709 + 0.0904762i
\(597\) 0 0
\(598\) −3.34607 0.896575i −0.136831 0.0366637i
\(599\) −9.97093 17.2702i −0.407401 0.705639i 0.587197 0.809444i \(-0.300232\pi\)
−0.994598 + 0.103805i \(0.966898\pi\)
\(600\) 0 0
\(601\) −2.65153 + 4.59259i −0.108158 + 0.187335i −0.915024 0.403399i \(-0.867829\pi\)
0.806866 + 0.590735i \(0.201162\pi\)
\(602\) −11.1708 + 11.1708i −0.455290 + 0.455290i
\(603\) 0 0
\(604\) 17.5959i 0.715968i
\(605\) 8.40143 + 22.1536i 0.341567 + 0.900673i
\(606\) 0 0
\(607\) 3.04744 11.3732i 0.123692 0.461624i −0.876098 0.482133i \(-0.839862\pi\)
0.999790 + 0.0205092i \(0.00652872\pi\)
\(608\) −1.66925 + 6.22973i −0.0676971 + 0.252649i
\(609\) 0 0
\(610\) −1.12252 0.505224i −0.0454496 0.0204559i
\(611\) 31.1769i 1.26128i
\(612\) 0 0
\(613\) 6.79796 6.79796i 0.274567 0.274567i −0.556369 0.830936i \(-0.687806\pi\)
0.830936 + 0.556369i \(0.187806\pi\)
\(614\) 4.71940 8.17423i 0.190459 0.329885i
\(615\) 0 0
\(616\) 1.44949 + 2.51059i 0.0584016 + 0.101155i
\(617\) 16.3232 + 4.37378i 0.657146 + 0.176082i 0.571958 0.820283i \(-0.306184\pi\)
0.0851882 + 0.996365i \(0.472851\pi\)
\(618\) 0 0
\(619\) 42.2121 + 24.3712i 1.69665 + 0.979560i 0.948900 + 0.315578i \(0.102198\pi\)
0.747748 + 0.663982i \(0.231135\pi\)
\(620\) −0.778539 0.635674i −0.0312669 0.0255293i
\(621\) 0 0
\(622\) −19.4495 19.4495i −0.779853 0.779853i
\(623\) −35.3489 + 9.47172i −1.41623 + 0.379476i
\(624\) 0 0
\(625\) 19.9853 + 15.0196i 0.799411 + 0.600784i
\(626\) −10.3485 + 5.97469i −0.413608 + 0.238797i
\(627\) 0 0
\(628\) −3.78780 14.1363i −0.151150 0.564099i
\(629\) 1.90702 0.0760380
\(630\) 0 0
\(631\) −3.10102 −0.123450 −0.0617248 0.998093i \(-0.519660\pi\)
−0.0617248 + 0.998093i \(0.519660\pi\)
\(632\) 0.633975 + 2.36603i 0.0252182 + 0.0941154i
\(633\) 0 0
\(634\) −9.43879 + 5.44949i −0.374862 + 0.216427i
\(635\) −3.46808 4.81420i −0.137627 0.191046i
\(636\) 0 0
\(637\) −46.1689 + 12.3709i −1.82928 + 0.490153i
\(638\) 0.142865 + 0.142865i 0.00565606 + 0.00565606i
\(639\) 0 0
\(640\) 2.22474 0.224745i 0.0879408 0.00888382i
\(641\) −16.7474 9.66914i −0.661484 0.381908i 0.131358 0.991335i \(-0.458066\pi\)
−0.792842 + 0.609427i \(0.791400\pi\)
\(642\) 0 0
\(643\) −6.10913 1.63694i −0.240921 0.0645545i 0.136338 0.990662i \(-0.456467\pi\)
−0.377259 + 0.926108i \(0.623133\pi\)
\(644\) −2.28024 3.94949i −0.0898540 0.155632i
\(645\) 0 0
\(646\) 1.44949 2.51059i 0.0570294 0.0987778i
\(647\) −23.5416 + 23.5416i −0.925516 + 0.925516i −0.997412 0.0718961i \(-0.977095\pi\)
0.0718961 + 0.997412i \(0.477095\pi\)
\(648\) 0 0
\(649\) 5.70714i 0.224025i
\(650\) 5.48528 16.4290i 0.215150 0.644398i
\(651\) 0 0
\(652\) −1.62863 + 6.07812i −0.0637819 + 0.238037i
\(653\) −6.84563 + 25.5482i −0.267890 + 0.999780i 0.692567 + 0.721353i \(0.256480\pi\)
−0.960457 + 0.278427i \(0.910187\pi\)
\(654\) 0 0
\(655\) −7.54134 + 2.85994i −0.294664 + 0.111747i
\(656\) 7.38891i 0.288488i
\(657\) 0 0
\(658\) 29.0227 29.0227i 1.13142 1.13142i
\(659\) −5.65685 + 9.79796i −0.220360 + 0.381674i −0.954917 0.296872i \(-0.904056\pi\)
0.734557 + 0.678546i \(0.237390\pi\)
\(660\) 0 0
\(661\) 0.651531 + 1.12848i 0.0253416 + 0.0438930i 0.878418 0.477893i \(-0.158599\pi\)
−0.853076 + 0.521786i \(0.825266\pi\)
\(662\) −0.434174 0.116337i −0.0168746 0.00452155i
\(663\) 0 0
\(664\) 4.71940 + 2.72474i 0.183148 + 0.105741i
\(665\) 6.61037 + 65.4359i 0.256339 + 2.53749i
\(666\) 0 0
\(667\) −0.224745 0.224745i −0.00870216 0.00870216i
\(668\) −8.49818 + 2.27708i −0.328804 + 0.0881028i
\(669\) 0 0
\(670\) 14.5898 + 2.37127i 0.563653 + 0.0916100i
\(671\) 0.303062 0.174973i 0.0116996 0.00675474i
\(672\) 0 0
\(673\) −6.02093 22.4704i −0.232090 0.866171i −0.979439 0.201740i \(-0.935340\pi\)
0.747349 0.664431i \(-0.231326\pi\)
\(674\) −3.11416 −0.119953
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 11.8011 + 44.0423i 0.453553 + 1.69268i 0.692308 + 0.721602i \(0.256594\pi\)
−0.238755 + 0.971080i \(0.576739\pi\)
\(678\) 0 0
\(679\) 10.6066 6.12372i 0.407044 0.235007i
\(680\) −0.992072 0.161241i −0.0380442 0.00618330i
\(681\) 0 0
\(682\) 0.275993 0.0739521i 0.0105683 0.00283177i
\(683\) 13.8564 + 13.8564i 0.530201 + 0.530201i 0.920632 0.390431i \(-0.127674\pi\)
−0.390431 + 0.920632i \(0.627674\pi\)
\(684\) 0 0
\(685\) 4.89898 + 48.4949i 0.187180 + 1.85289i
\(686\) −26.8485 15.5010i −1.02508 0.591830i
\(687\) 0 0
\(688\) −3.34607 0.896575i −0.127568 0.0341816i
\(689\) 9.26382 + 16.0454i 0.352923 + 0.611281i
\(690\) 0 0
\(691\) 10.4722 18.1384i 0.398381 0.690016i −0.595145 0.803618i \(-0.702906\pi\)
0.993526 + 0.113602i \(0.0362388\pi\)
\(692\) −9.12096 + 9.12096i −0.346727 + 0.346727i
\(693\) 0 0
\(694\) 23.7980i 0.903358i
\(695\) −6.48352 + 2.45878i −0.245934 + 0.0932668i
\(696\) 0 0
\(697\) 0.859599 3.20807i 0.0325596 0.121514i
\(698\) 7.51750 28.0557i 0.284542 1.06192i
\(699\) 0 0
\(700\) 20.4001 10.1875i 0.771050 0.385053i
\(701\) 21.1024i 0.797028i 0.917162 + 0.398514i \(0.130474\pi\)
−0.917162 + 0.398514i \(0.869526\pi\)
\(702\) 0 0
\(703\) 19.3485 19.3485i 0.729741 0.729741i
\(704\) −0.317837 + 0.550510i −0.0119789 + 0.0207481i
\(705\) 0 0
\(706\) 17.1464 + 29.6985i 0.645314 + 1.11772i
\(707\) 55.4382 + 14.8546i 2.08497 + 0.558666i
\(708\) 0 0
\(709\) −25.6790 14.8258i −0.964394 0.556793i −0.0668716 0.997762i \(-0.521302\pi\)
−0.897523 + 0.440968i \(0.854635\pi\)
\(710\) −13.9993 + 1.41421i −0.525383 + 0.0530745i
\(711\) 0 0
\(712\) −5.67423 5.67423i −0.212651 0.212651i
\(713\) −0.434174 + 0.116337i −0.0162599 + 0.00435684i
\(714\) 0 0
\(715\) 2.87808 + 3.99519i 0.107634 + 0.149412i
\(716\) 9.24745 5.33902i 0.345593 0.199528i
\(717\) 0 0
\(718\) −0.859599 3.20807i −0.0320800 0.119724i
\(719\) −32.5269 −1.21305 −0.606525 0.795065i \(-0.707437\pi\)
−0.606525 + 0.795065i \(0.707437\pi\)
\(720\) 0 0
\(721\) −44.4949 −1.65708
\(722\) −5.84825 21.8260i −0.217649 0.812279i
\(723\) 0 0
\(724\) 13.3797 7.72474i 0.497251 0.287088i
\(725\) 1.18955 1.05379i 0.0441788 0.0391369i
\(726\) 0 0
\(727\) −46.6759 + 12.5068i −1.73111 + 0.463850i −0.980439 0.196822i \(-0.936938\pi\)
−0.750674 + 0.660673i \(0.770271\pi\)
\(728\) −11.1708 11.1708i −0.414019 0.414019i
\(729\) 0 0
\(730\) 16.8990 + 13.7980i 0.625459 + 0.510685i
\(731\) 1.34847 + 0.778539i 0.0498749 + 0.0287953i
\(732\) 0 0
\(733\) −32.9846 8.83821i −1.21832 0.326447i −0.408296 0.912850i \(-0.633877\pi\)
−0.810019 + 0.586403i \(0.800543\pi\)
\(734\) 2.04989 + 3.55051i 0.0756627 + 0.131052i
\(735\) 0 0
\(736\) 0.500000 0.866025i 0.0184302 0.0319221i
\(737\) −2.97129 + 2.97129i −0.109449 + 0.109449i
\(738\) 0 0
\(739\) 28.9444i 1.06474i 0.846513 + 0.532368i \(0.178698\pi\)
−0.846513 + 0.532368i \(0.821302\pi\)
\(740\) −8.65099 3.89363i −0.318017 0.143133i
\(741\) 0 0
\(742\) −6.31300 + 23.5605i −0.231758 + 0.864931i
\(743\) 2.56204 9.56168i 0.0939923 0.350784i −0.902872 0.429909i \(-0.858546\pi\)
0.996865 + 0.0791245i \(0.0252125\pi\)
\(744\) 0 0
\(745\) 3.50270 + 9.23621i 0.128329 + 0.338389i
\(746\) 0.492810i 0.0180431i
\(747\) 0 0
\(748\) 0.202041 0.202041i 0.00738735 0.00738735i
\(749\) 43.8888 76.0176i 1.60366 2.77762i
\(750\) 0 0
\(751\) −10.3485 17.9241i −0.377621 0.654059i 0.613095 0.790010i \(-0.289924\pi\)
−0.990716 + 0.135951i \(0.956591\pi\)
\(752\) 8.69333 + 2.32937i 0.317013 + 0.0849434i
\(753\) 0 0
\(754\) −0.953512 0.550510i −0.0347248 0.0200484i
\(755\) 24.8844 30.4770i 0.905636 1.10917i
\(756\) 0 0
\(757\) 22.0454 + 22.0454i 0.801254 + 0.801254i 0.983292 0.182038i \(-0.0582693\pi\)
−0.182038 + 0.983292i \(0.558269\pi\)
\(758\) 20.6210 5.52539i 0.748990 0.200691i
\(759\) 0 0
\(760\) −11.7014 + 8.42953i −0.424454 + 0.305771i
\(761\) 5.60102 3.23375i 0.203037 0.117223i −0.395034 0.918666i \(-0.629267\pi\)
0.598071 + 0.801443i \(0.295934\pi\)
\(762\) 0 0
\(763\) 6.67072 + 24.8955i 0.241496 + 0.901276i
\(764\) −17.4634 −0.631803
\(765\) 0 0
\(766\) 8.20204 0.296352
\(767\) −8.04954 30.0413i −0.290652 1.08473i
\(768\) 0 0
\(769\) −8.39780 + 4.84847i −0.302832 + 0.174840i −0.643715 0.765266i \(-0.722608\pi\)
0.340882 + 0.940106i \(0.389274\pi\)
\(770\) −1.03992 + 6.39836i −0.0374761 + 0.230581i
\(771\) 0 0
\(772\) −16.7303 + 4.48288i −0.602138 + 0.161342i
\(773\) −30.8270 30.8270i −1.10877 1.10877i −0.993313 0.115456i \(-0.963167\pi\)
−0.115456 0.993313i \(-0.536833\pi\)
\(774\) 0 0
\(775\) −0.449490 2.20204i −0.0161461 0.0790996i
\(776\) 2.32577 + 1.34278i 0.0834901 + 0.0482030i
\(777\) 0 0
\(778\) −35.5477 9.52497i −1.27445 0.341487i
\(779\) −23.8273 41.2702i −0.853703 1.47866i
\(780\) 0 0
\(781\) 2.00000 3.46410i 0.0715656 0.123955i
\(782\) −0.317837 + 0.317837i −0.0113658 + 0.0113658i
\(783\) 0 0
\(784\) 13.7980i 0.492784i
\(785\) 13.4310 29.8415i 0.479374 1.06509i
\(786\) 0 0
\(787\) −2.52520 + 9.42418i −0.0900137 + 0.335936i −0.996216 0.0869079i \(-0.972301\pi\)
0.906203 + 0.422844i \(0.138968\pi\)
\(788\) 2.53590 9.46410i 0.0903376 0.337145i
\(789\) 0 0
\(790\) −2.24799 + 4.99465i −0.0799799 + 0.177702i
\(791\) 26.4415i 0.940150i
\(792\) 0 0
\(793\) −1.34847 + 1.34847i −0.0478855 + 0.0478855i
\(794\) −7.46034 + 12.9217i −0.264757 + 0.458573i
\(795\) 0 0
\(796\) −4.22474 7.31747i −0.149742 0.259361i
\(797\) −38.4419 10.3005i −1.36168 0.364861i −0.497248 0.867609i \(-0.665656\pi\)
−0.864433 + 0.502747i \(0.832323\pi\)
\(798\) 0 0
\(799\) −3.50343 2.02270i −0.123942 0.0715581i
\(800\) 4.17121 + 2.75699i 0.147474 + 0.0974745i
\(801\) 0 0
\(802\) −6.24745 6.24745i −0.220605 0.220605i
\(803\) −5.99071 + 1.60521i −0.211408 + 0.0566465i
\(804\) 0 0
\(805\) 1.63593 10.0655i 0.0576590 0.354761i
\(806\) −1.34847 + 0.778539i −0.0474978 + 0.0274229i
\(807\) 0 0
\(808\) 3.25725 + 12.1562i 0.114590 + 0.427655i
\(809\) 19.4490 0.683792 0.341896 0.939738i \(-0.388931\pi\)
0.341896 + 0.939738i \(0.388931\pi\)
\(810\) 0 0
\(811\) −39.6413 −1.39200 −0.695998 0.718044i \(-0.745038\pi\)
−0.695998 + 0.718044i \(0.745038\pi\)
\(812\) −0.375156 1.40010i −0.0131654 0.0491339i
\(813\) 0 0
\(814\) 2.33562 1.34847i 0.0818633 0.0472638i
\(815\) −11.4166 + 8.22438i −0.399907 + 0.288087i
\(816\) 0 0
\(817\) 21.5804 5.78245i 0.755003 0.202302i
\(818\) −20.4347 20.4347i −0.714481 0.714481i
\(819\) 0 0
\(820\) −10.4495 + 12.7980i −0.364912 + 0.446924i
\(821\) −19.3207 11.1548i −0.674296 0.389305i 0.123407 0.992356i \(-0.460618\pi\)
−0.797702 + 0.603051i \(0.793951\pi\)
\(822\) 0 0
\(823\) −3.23908 0.867910i −0.112907 0.0302534i 0.201923 0.979401i \(-0.435281\pi\)
−0.314830 + 0.949148i \(0.601948\pi\)
\(824\) −4.87832 8.44949i −0.169944 0.294352i
\(825\) 0 0
\(826\) 20.4722 35.4589i 0.712319 1.23377i
\(827\) −31.5662 + 31.5662i −1.09766 + 1.09766i −0.102980 + 0.994683i \(0.532838\pi\)
−0.994683 + 0.102980i \(0.967162\pi\)
\(828\) 0 0
\(829\) 10.5505i 0.366434i −0.983072 0.183217i \(-0.941349\pi\)
0.983072 0.183217i \(-0.0586512\pi\)
\(830\) 4.32086 + 11.3936i 0.149979 + 0.395479i
\(831\) 0 0
\(832\) 0.896575 3.34607i 0.0310832 0.116004i
\(833\) −1.60521 + 5.99071i −0.0556171 + 0.207566i
\(834\) 0 0
\(835\) −17.9395 8.07422i −0.620824 0.279420i
\(836\) 4.09978i 0.141794i
\(837\) 0 0
\(838\) 3.55051 3.55051i 0.122650 0.122650i
\(839\) −0.246405 + 0.426786i −0.00850684 + 0.0147343i −0.870247 0.492615i \(-0.836041\pi\)
0.861741 + 0.507349i \(0.169375\pi\)
\(840\) 0 0
\(841\) 14.4495 + 25.0273i 0.498258 + 0.863009i
\(842\) 4.92721 + 1.32024i 0.169803 + 0.0454985i
\(843\) 0 0
\(844\) 7.88171 + 4.55051i 0.271300 + 0.156635i
\(845\) 1.73205 + 1.41421i 0.0595844 + 0.0486504i
\(846\) 0 0
\(847\) 34.1691 + 34.1691i 1.17407 + 1.17407i
\(848\) −5.16622 + 1.38429i −0.177409 + 0.0475366i
\(849\) 0 0
\(850\) −1.49029 1.68228i −0.0511165 0.0577017i
\(851\) −3.67423 + 2.12132i −0.125951 + 0.0727179i
\(852\) 0 0
\(853\) −0.641478 2.39403i −0.0219638 0.0819700i 0.954074 0.299571i \(-0.0968435\pi\)
−0.976038 + 0.217601i \(0.930177\pi\)
\(854\) −2.51059 −0.0859106
\(855\) 0 0
\(856\) 19.2474 0.657864
\(857\) −4.08881 15.2597i −0.139671 0.521260i −0.999935 0.0114106i \(-0.996368\pi\)
0.860264 0.509849i \(-0.170299\pi\)
\(858\) 0 0
\(859\) −40.2658 + 23.2474i −1.37385 + 0.793193i −0.991410 0.130788i \(-0.958249\pi\)
−0.382440 + 0.923980i \(0.624916\pi\)
\(860\) −4.52761 6.28497i −0.154390 0.214316i
\(861\) 0 0
\(862\) −15.0263 + 4.02628i −0.511797 + 0.137136i
\(863\) 20.7132 + 20.7132i 0.705085 + 0.705085i 0.965497 0.260413i \(-0.0838586\pi\)
−0.260413 + 0.965497i \(0.583859\pi\)
\(864\) 0 0
\(865\) −28.6969 + 2.89898i −0.975725 + 0.0985683i
\(866\) 16.4722 + 9.51023i 0.559748 + 0.323171i
\(867\) 0 0
\(868\) −1.98004 0.530550i −0.0672069 0.0180080i
\(869\) −0.778539 1.34847i −0.0264101 0.0457437i
\(870\) 0 0
\(871\) 11.4495 19.8311i 0.387951 0.671951i
\(872\) −3.99624 + 3.99624i −0.135330 + 0.135330i
\(873\) 0 0
\(874\) 6.44949i 0.218157i
\(875\) 49.7413 + 11.2047i 1.68156 + 0.378789i
\(876\) 0 0
\(877\) 11.0713 41.3188i 0.373852 1.39524i −0.481162 0.876632i \(-0.659785\pi\)
0.855014 0.518604i \(-0.173548\pi\)
\(878\) 7.71228 28.7826i 0.260277 0.971366i
\(879\) 0 0
\(880\) −1.32905 + 0.504022i −0.0448022 + 0.0169906i
\(881\) 54.8365i 1.84749i −0.383010 0.923744i \(-0.625113\pi\)
0.383010 0.923744i \(-0.374887\pi\)
\(882\) 0 0
\(883\) 6.27015 6.27015i 0.211007 0.211007i −0.593688 0.804695i \(-0.702329\pi\)
0.804695 + 0.593688i \(0.202329\pi\)
\(884\) −0.778539 + 1.34847i −0.0261851 + 0.0453539i
\(885\) 0 0
\(886\) 2.72474 + 4.71940i 0.0915396 + 0.158551i
\(887\) 7.92256 + 2.12284i 0.266014 + 0.0712781i 0.389360 0.921085i \(-0.372696\pi\)
−0.123347 + 0.992364i \(0.539363\pi\)
\(888\) 0 0
\(889\) −10.4798 6.05051i −0.351481 0.202928i
\(890\) −1.80348 17.8526i −0.0604529 0.598422i
\(891\) 0 0
\(892\) −18.1237 18.1237i −0.606827 0.606827i
\(893\) −56.0676 + 15.0233i −1.87623 + 0.502734i
\(894\) 0 0
\(895\) 23.5676 + 3.83042i 0.787777 + 0.128037i
\(896\) 3.94949 2.28024i 0.131943 0.0761774i
\(897\) 0 0
\(898\) −0.238477 0.890008i −0.00795807 0.0296999i
\(899\) −0.142865 −0.00476480
\(900\) 0 0
\(901\) 2.40408 0.0800916
\(902\) −1.21566 4.53689i −0.0404770 0.151062i
\(903\) 0 0
\(904\) −5.02118 + 2.89898i −0.167002 + 0.0964186i
\(905\) 34.0987 + 5.54203i 1.13348 + 0.184223i
\(906\) 0 0
\(907\) 3.65307 0.978838i 0.121298 0.0325018i −0.197659 0.980271i \(-0.563334\pi\)
0.318957 + 0.947769i \(0.396667\pi\)
\(908\) 17.6062 + 17.6062i 0.584284 + 0.584284i
\(909\) 0 0
\(910\) −3.55051 35.1464i −0.117698 1.16509i
\(911\) 6.12372 + 3.53553i 0.202888 + 0.117137i 0.598002 0.801495i \(-0.295962\pi\)
−0.395114 + 0.918632i \(0.629295\pi\)
\(912\) 0 0
\(913\) −3.34607 0.896575i −0.110739 0.0296723i
\(914\) 7.31747 + 12.6742i 0.242040 + 0.419226i
\(915\) 0 0
\(916\) 0.825765 1.43027i 0.0272841 0.0472574i
\(917\) −11.6315 + 11.6315i −0.384107 + 0.384107i
\(918\) 0 0
\(919\) 12.6515i 0.417335i 0.977987 + 0.208668i \(0.0669127\pi\)
−0.977987 + 0.208668i \(0.933087\pi\)
\(920\) 2.09077 0.792893i 0.0689307 0.0261409i
\(921\) 0 0
\(922\) 8.55444 31.9256i 0.281726 1.05141i
\(923\) −5.64173 + 21.0552i −0.185700 + 0.693041i
\(924\) 0 0
\(925\) −9.47753 18.9783i −0.311619 0.624003i
\(926\) 12.2351i 0.402071i
\(927\) 0 0
\(928\) 0.224745 0.224745i 0.00737761 0.00737761i
\(929\) −21.1024 + 36.5505i −0.692349 + 1.19918i 0.278717 + 0.960373i \(0.410091\pi\)
−0.971066 + 0.238810i \(0.923243\pi\)
\(930\) 0 0
\(931\) 44.4949 + 77.0674i 1.45826 + 2.52578i
\(932\) −19.7527 5.29272i −0.647021 0.173369i
\(933\) 0 0
\(934\) −3.46410 2.00000i −0.113349 0.0654420i
\(935\) 0.635674 0.0642162i 0.0207888 0.00210009i
\(936\) 0 0
\(937\) −3.10102 3.10102i −0.101306 0.101306i 0.654637 0.755943i \(-0.272821\pi\)
−0.755943 + 0.654637i \(0.772821\pi\)
\(938\) 29.1192 7.80247i 0.950776 0.254760i
\(939\) 0 0
\(940\) 11.7631 + 16.3288i 0.383669 + 0.532587i
\(941\) −27.5227 + 15.8902i −0.897215 + 0.518007i −0.876295 0.481774i \(-0.839993\pi\)
−0.0209191 + 0.999781i \(0.506659\pi\)
\(942\) 0 0
\(943\) 1.91239 + 7.13713i 0.0622760 + 0.232417i
\(944\) 8.97809 0.292212
\(945\) 0 0
\(946\) 2.20204 0.0715945
\(947\) −0.788210 2.94164i −0.0256134 0.0955904i 0.951936 0.306297i \(-0.0990901\pi\)
−0.977549 + 0.210707i \(0.932423\pi\)
\(948\) 0 0
\(949\) 29.2699 16.8990i 0.950141 0.548564i
\(950\) −32.1886 1.94790i −1.04433 0.0631981i
\(951\) 0 0
\(952\) −1.98004 + 0.530550i −0.0641735 + 0.0171952i
\(953\) 5.79972 + 5.79972i 0.187871 + 0.187871i 0.794775 0.606904i \(-0.207589\pi\)
−0.606904 + 0.794775i \(0.707589\pi\)
\(954\) 0 0
\(955\) −30.2474 24.6969i −0.978784 0.799174i
\(956\) −14.6969 8.48528i −0.475333 0.274434i
\(957\) 0 0
\(958\) 6.83013 + 1.83013i 0.220671 + 0.0591287i
\(959\) 49.7046 + 86.0908i 1.60504 + 2.78002i
\(960\) 0 0
\(961\) 15.3990 26.6718i 0.496741 0.860381i
\(962\) −10.3923 + 10.3923i −0.335061 + 0.335061i
\(963\) 0 0
\(964\) 19.0000i 0.611949i
\(965\) −35.3175 15.8957i −1.13691 0.511700i
\(966\) 0 0
\(967\) −10.3679 + 38.6937i −0.333411 + 1.24431i 0.572171 + 0.820134i \(0.306101\pi\)
−0.905582 + 0.424172i \(0.860565\pi\)
\(968\) −2.74243 + 10.2349i −0.0881449 + 0.328961i
\(969\) 0 0
\(970\) 2.12936 + 5.61489i 0.0683698 + 0.180283i
\(971\) 21.4989i 0.689934i 0.938615 + 0.344967i \(0.112110\pi\)
−0.938615 + 0.344967i \(0.887890\pi\)
\(972\) 0 0
\(973\) −10.0000 + 10.0000i −0.320585 + 0.320585i
\(974\) 8.48528 14.6969i 0.271886 0.470920i
\(975\) 0 0
\(976\) −0.275255 0.476756i −0.00881070 0.0152606i
\(977\) −6.27359 1.68100i −0.200710 0.0537801i 0.157063 0.987589i \(-0.449797\pi\)
−0.357773 + 0.933808i \(0.616464\pi\)
\(978\) 0 0
\(979\) 4.41761 + 2.55051i 0.141188 + 0.0815147i
\(980\) 19.5133 23.8988i 0.623328 0.763418i
\(981\) 0 0
\(982\) 19.7980 + 19.7980i 0.631778 + 0.631778i
\(983\) 26.2752 7.04041i 0.838047 0.224554i 0.185826 0.982583i \(-0.440504\pi\)
0.652221 + 0.758029i \(0.273837\pi\)
\(984\) 0 0
\(985\) 17.7766 12.8060i 0.566408 0.408033i
\(986\) −0.123724 + 0.0714323i −0.00394019 + 0.00227487i
\(987\) 0 0
\(988\) 5.78245 + 21.5804i 0.183964 + 0.686564i
\(989\) −3.46410 −0.110152
\(990\) 0 0
\(991\) 16.7423 0.531838 0.265919 0.963995i \(-0.414325\pi\)
0.265919 + 0.963995i \(0.414325\pi\)
\(992\) −0.116337 0.434174i −0.00369369 0.0137850i
\(993\) 0 0
\(994\) −24.8523 + 14.3485i −0.788266 + 0.455106i
\(995\) 3.03100 18.6489i 0.0960890 0.591211i
\(996\) 0 0
\(997\) 6.49211 1.73955i 0.205607 0.0550922i −0.154545 0.987986i \(-0.549391\pi\)
0.360153 + 0.932893i \(0.382725\pi\)
\(998\) 0.635674 + 0.635674i 0.0201219 + 0.0201219i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.2.m.a.197.2 8
3.2 odd 2 90.2.l.a.47.1 yes 8
5.2 odd 4 1350.2.q.g.143.1 8
5.3 odd 4 inner 270.2.m.a.143.2 8
5.4 even 2 1350.2.q.g.1007.1 8
9.2 odd 6 810.2.f.b.647.2 8
9.4 even 3 90.2.l.a.77.1 yes 8
9.5 odd 6 inner 270.2.m.a.17.2 8
9.7 even 3 810.2.f.b.647.3 8
12.11 even 2 720.2.cu.a.497.1 8
15.2 even 4 450.2.p.a.443.2 8
15.8 even 4 90.2.l.a.83.1 yes 8
15.14 odd 2 450.2.p.a.407.2 8
36.31 odd 6 720.2.cu.a.257.1 8
45.4 even 6 450.2.p.a.257.2 8
45.13 odd 12 90.2.l.a.23.1 8
45.14 odd 6 1350.2.q.g.557.1 8
45.22 odd 12 450.2.p.a.293.2 8
45.23 even 12 inner 270.2.m.a.233.2 8
45.32 even 12 1350.2.q.g.1043.1 8
45.38 even 12 810.2.f.b.323.4 8
45.43 odd 12 810.2.f.b.323.1 8
60.23 odd 4 720.2.cu.a.353.1 8
180.103 even 12 720.2.cu.a.113.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.l.a.23.1 8 45.13 odd 12
90.2.l.a.47.1 yes 8 3.2 odd 2
90.2.l.a.77.1 yes 8 9.4 even 3
90.2.l.a.83.1 yes 8 15.8 even 4
270.2.m.a.17.2 8 9.5 odd 6 inner
270.2.m.a.143.2 8 5.3 odd 4 inner
270.2.m.a.197.2 8 1.1 even 1 trivial
270.2.m.a.233.2 8 45.23 even 12 inner
450.2.p.a.257.2 8 45.4 even 6
450.2.p.a.293.2 8 45.22 odd 12
450.2.p.a.407.2 8 15.14 odd 2
450.2.p.a.443.2 8 15.2 even 4
720.2.cu.a.113.1 8 180.103 even 12
720.2.cu.a.257.1 8 36.31 odd 6
720.2.cu.a.353.1 8 60.23 odd 4
720.2.cu.a.497.1 8 12.11 even 2
810.2.f.b.323.1 8 45.43 odd 12
810.2.f.b.323.4 8 45.38 even 12
810.2.f.b.647.2 8 9.2 odd 6
810.2.f.b.647.3 8 9.7 even 3
1350.2.q.g.143.1 8 5.2 odd 4
1350.2.q.g.557.1 8 45.14 odd 6
1350.2.q.g.1007.1 8 5.4 even 2
1350.2.q.g.1043.1 8 45.32 even 12