Properties

Label 270.2.m.a.17.2
Level $270$
Weight $2$
Character 270.17
Analytic conductor $2.156$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,2,Mod(17,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.m (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.2
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 270.17
Dual form 270.2.m.a.143.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 + 0.258819i) q^{2} +(0.866025 + 0.500000i) q^{4} +(-0.792893 - 2.09077i) q^{5} +(1.18034 - 4.40508i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-0.224745 - 2.22474i) q^{10} +(0.550510 - 0.317837i) q^{11} +(0.896575 + 3.34607i) q^{13} +(2.28024 - 3.94949i) q^{14} +(0.500000 + 0.866025i) q^{16} +(0.317837 - 0.317837i) q^{17} +6.44949i q^{19} +(0.358719 - 2.20711i) q^{20} +(0.614014 - 0.164525i) q^{22} +(0.965926 - 0.258819i) q^{23} +(-3.74264 + 3.31552i) q^{25} +3.46410i q^{26} +(3.22474 - 3.22474i) q^{28} +(-0.158919 - 0.275255i) q^{29} +(-0.224745 + 0.389270i) q^{31} +(0.258819 + 0.965926i) q^{32} +(0.389270 - 0.224745i) q^{34} +(-10.1459 + 1.02494i) q^{35} +(-3.00000 - 3.00000i) q^{37} +(-1.66925 + 6.22973i) q^{38} +(0.917738 - 2.03906i) q^{40} +(-6.39898 - 3.69445i) q^{41} +(3.34607 + 0.896575i) q^{43} +0.635674 q^{44} +1.00000 q^{46} +(8.69333 + 2.32937i) q^{47} +(-11.9494 - 6.89898i) q^{49} +(-4.47323 + 2.23388i) q^{50} +(-0.896575 + 3.34607i) q^{52} +(3.78194 + 3.78194i) q^{53} +(-1.10102 - 0.898979i) q^{55} +(3.94949 - 2.28024i) q^{56} +(-0.0822623 - 0.307007i) q^{58} +(-4.48905 + 7.77526i) q^{59} +(0.275255 + 0.476756i) q^{61} +(-0.317837 + 0.317837i) q^{62} +1.00000i q^{64} +(6.28497 - 4.52761i) q^{65} +(6.38512 - 1.71089i) q^{67} +(0.434174 - 0.116337i) q^{68} +(-10.0655 - 1.63593i) q^{70} +6.29253i q^{71} +(-6.89898 + 6.89898i) q^{73} +(-2.12132 - 3.67423i) q^{74} +(-3.22474 + 5.58542i) q^{76} +(-0.750311 - 2.80020i) q^{77} +(2.12132 - 1.22474i) q^{79} +(1.41421 - 1.73205i) q^{80} +(-5.22474 - 5.22474i) q^{82} +(-1.41043 + 5.26380i) q^{83} +(-0.916536 - 0.412514i) q^{85} +(3.00000 + 1.73205i) q^{86} +(0.614014 + 0.164525i) q^{88} -8.02458 q^{89} +15.7980 q^{91} +(0.965926 + 0.258819i) q^{92} +(7.79423 + 4.50000i) q^{94} +(13.4844 - 5.11376i) q^{95} +(0.695075 - 2.59405i) q^{97} +(-9.75663 - 9.75663i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{5} - 8 q^{7} + 8 q^{10} + 24 q^{11} + 4 q^{16} - 8 q^{22} + 4 q^{25} + 16 q^{28} + 8 q^{31} - 24 q^{37} - 12 q^{38} + 4 q^{40} - 12 q^{41} + 8 q^{46} - 24 q^{50} - 48 q^{55} + 12 q^{56} - 4 q^{58}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965926 + 0.258819i 0.683013 + 0.183013i
\(3\) 0 0
\(4\) 0.866025 + 0.500000i 0.433013 + 0.250000i
\(5\) −0.792893 2.09077i −0.354593 0.935021i
\(6\) 0 0
\(7\) 1.18034 4.40508i 0.446126 1.66497i −0.266820 0.963746i \(-0.585973\pi\)
0.712946 0.701219i \(-0.247360\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) −0.224745 2.22474i −0.0710706 0.703526i
\(11\) 0.550510 0.317837i 0.165985 0.0958315i −0.414706 0.909955i \(-0.636116\pi\)
0.580691 + 0.814124i \(0.302782\pi\)
\(12\) 0 0
\(13\) 0.896575 + 3.34607i 0.248665 + 0.928032i 0.971506 + 0.237016i \(0.0761695\pi\)
−0.722840 + 0.691015i \(0.757164\pi\)
\(14\) 2.28024 3.94949i 0.609419 1.05555i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 0.317837 0.317837i 0.0770869 0.0770869i −0.667512 0.744599i \(-0.732641\pi\)
0.744599 + 0.667512i \(0.232641\pi\)
\(18\) 0 0
\(19\) 6.44949i 1.47961i 0.672819 + 0.739807i \(0.265083\pi\)
−0.672819 + 0.739807i \(0.734917\pi\)
\(20\) 0.358719 2.20711i 0.0802121 0.493524i
\(21\) 0 0
\(22\) 0.614014 0.164525i 0.130908 0.0350768i
\(23\) 0.965926 0.258819i 0.201409 0.0539675i −0.156704 0.987646i \(-0.550087\pi\)
0.358113 + 0.933678i \(0.383420\pi\)
\(24\) 0 0
\(25\) −3.74264 + 3.31552i −0.748528 + 0.663103i
\(26\) 3.46410i 0.679366i
\(27\) 0 0
\(28\) 3.22474 3.22474i 0.609419 0.609419i
\(29\) −0.158919 0.275255i −0.0295104 0.0511136i 0.850893 0.525339i \(-0.176061\pi\)
−0.880403 + 0.474225i \(0.842728\pi\)
\(30\) 0 0
\(31\) −0.224745 + 0.389270i −0.0403654 + 0.0699149i −0.885502 0.464635i \(-0.846186\pi\)
0.845137 + 0.534550i \(0.179519\pi\)
\(32\) 0.258819 + 0.965926i 0.0457532 + 0.170753i
\(33\) 0 0
\(34\) 0.389270 0.224745i 0.0667592 0.0385434i
\(35\) −10.1459 + 1.02494i −1.71497 + 0.173247i
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) −1.66925 + 6.22973i −0.270788 + 1.01060i
\(39\) 0 0
\(40\) 0.917738 2.03906i 0.145107 0.322403i
\(41\) −6.39898 3.69445i −0.999353 0.576977i −0.0912960 0.995824i \(-0.529101\pi\)
−0.908057 + 0.418847i \(0.862434\pi\)
\(42\) 0 0
\(43\) 3.34607 + 0.896575i 0.510270 + 0.136726i 0.504762 0.863258i \(-0.331580\pi\)
0.00550783 + 0.999985i \(0.498247\pi\)
\(44\) 0.635674 0.0958315
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) 8.69333 + 2.32937i 1.26805 + 0.339774i 0.829285 0.558827i \(-0.188748\pi\)
0.438768 + 0.898600i \(0.355415\pi\)
\(48\) 0 0
\(49\) −11.9494 6.89898i −1.70705 0.985568i
\(50\) −4.47323 + 2.23388i −0.632611 + 0.315918i
\(51\) 0 0
\(52\) −0.896575 + 3.34607i −0.124333 + 0.464016i
\(53\) 3.78194 + 3.78194i 0.519489 + 0.519489i 0.917417 0.397928i \(-0.130270\pi\)
−0.397928 + 0.917417i \(0.630270\pi\)
\(54\) 0 0
\(55\) −1.10102 0.898979i −0.148462 0.121218i
\(56\) 3.94949 2.28024i 0.527773 0.304710i
\(57\) 0 0
\(58\) −0.0822623 0.307007i −0.0108016 0.0403120i
\(59\) −4.48905 + 7.77526i −0.584424 + 1.01225i 0.410523 + 0.911850i \(0.365346\pi\)
−0.994947 + 0.100402i \(0.967987\pi\)
\(60\) 0 0
\(61\) 0.275255 + 0.476756i 0.0352428 + 0.0610423i 0.883109 0.469168i \(-0.155446\pi\)
−0.847866 + 0.530211i \(0.822113\pi\)
\(62\) −0.317837 + 0.317837i −0.0403654 + 0.0403654i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 6.28497 4.52761i 0.779554 0.561580i
\(66\) 0 0
\(67\) 6.38512 1.71089i 0.780067 0.209018i 0.153253 0.988187i \(-0.451025\pi\)
0.626814 + 0.779169i \(0.284358\pi\)
\(68\) 0.434174 0.116337i 0.0526513 0.0141079i
\(69\) 0 0
\(70\) −10.0655 1.63593i −1.20305 0.195531i
\(71\) 6.29253i 0.746786i 0.927673 + 0.373393i \(0.121806\pi\)
−0.927673 + 0.373393i \(0.878194\pi\)
\(72\) 0 0
\(73\) −6.89898 + 6.89898i −0.807464 + 0.807464i −0.984249 0.176785i \(-0.943430\pi\)
0.176785 + 0.984249i \(0.443430\pi\)
\(74\) −2.12132 3.67423i −0.246598 0.427121i
\(75\) 0 0
\(76\) −3.22474 + 5.58542i −0.369904 + 0.640692i
\(77\) −0.750311 2.80020i −0.0855059 0.319112i
\(78\) 0 0
\(79\) 2.12132 1.22474i 0.238667 0.137795i −0.375897 0.926662i \(-0.622665\pi\)
0.614564 + 0.788867i \(0.289332\pi\)
\(80\) 1.41421 1.73205i 0.158114 0.193649i
\(81\) 0 0
\(82\) −5.22474 5.22474i −0.576977 0.576977i
\(83\) −1.41043 + 5.26380i −0.154815 + 0.577777i 0.844306 + 0.535861i \(0.180013\pi\)
−0.999121 + 0.0419163i \(0.986654\pi\)
\(84\) 0 0
\(85\) −0.916536 0.412514i −0.0994123 0.0447434i
\(86\) 3.00000 + 1.73205i 0.323498 + 0.186772i
\(87\) 0 0
\(88\) 0.614014 + 0.164525i 0.0654542 + 0.0175384i
\(89\) −8.02458 −0.850604 −0.425302 0.905052i \(-0.639832\pi\)
−0.425302 + 0.905052i \(0.639832\pi\)
\(90\) 0 0
\(91\) 15.7980 1.65608
\(92\) 0.965926 + 0.258819i 0.100705 + 0.0269838i
\(93\) 0 0
\(94\) 7.79423 + 4.50000i 0.803913 + 0.464140i
\(95\) 13.4844 5.11376i 1.38347 0.524660i
\(96\) 0 0
\(97\) 0.695075 2.59405i 0.0705741 0.263386i −0.921619 0.388095i \(-0.873133\pi\)
0.992193 + 0.124709i \(0.0397998\pi\)
\(98\) −9.75663 9.75663i −0.985568 0.985568i
\(99\) 0 0
\(100\) −4.89898 + 1.00000i −0.489898 + 0.100000i
\(101\) −10.8990 + 6.29253i −1.08449 + 0.626130i −0.932104 0.362191i \(-0.882029\pi\)
−0.152385 + 0.988321i \(0.548695\pi\)
\(102\) 0 0
\(103\) −2.52520 9.42418i −0.248816 0.928592i −0.971427 0.237338i \(-0.923725\pi\)
0.722612 0.691254i \(-0.242942\pi\)
\(104\) −1.73205 + 3.00000i −0.169842 + 0.294174i
\(105\) 0 0
\(106\) 2.67423 + 4.63191i 0.259745 + 0.449891i
\(107\) 13.6100 13.6100i 1.31573 1.31573i 0.398606 0.917122i \(-0.369494\pi\)
0.917122 0.398606i \(-0.130506\pi\)
\(108\) 0 0
\(109\) 5.65153i 0.541318i −0.962675 0.270659i \(-0.912758\pi\)
0.962675 0.270659i \(-0.0872417\pi\)
\(110\) −0.830831 1.15331i −0.0792166 0.109964i
\(111\) 0 0
\(112\) 4.40508 1.18034i 0.416241 0.111532i
\(113\) 5.60040 1.50062i 0.526841 0.141167i 0.0144120 0.999896i \(-0.495412\pi\)
0.512429 + 0.858729i \(0.328746\pi\)
\(114\) 0 0
\(115\) −1.30701 1.81431i −0.121879 0.169186i
\(116\) 0.317837i 0.0295104i
\(117\) 0 0
\(118\) −6.34847 + 6.34847i −0.584424 + 0.584424i
\(119\) −1.02494 1.77526i −0.0939565 0.162737i
\(120\) 0 0
\(121\) −5.29796 + 9.17633i −0.481633 + 0.834212i
\(122\) 0.142483 + 0.531752i 0.0128998 + 0.0481426i
\(123\) 0 0
\(124\) −0.389270 + 0.224745i −0.0349574 + 0.0201827i
\(125\) 9.89949 + 5.19615i 0.885438 + 0.464758i
\(126\) 0 0
\(127\) 1.87628 + 1.87628i 0.166493 + 0.166493i 0.785436 0.618943i \(-0.212439\pi\)
−0.618943 + 0.785436i \(0.712439\pi\)
\(128\) −0.258819 + 0.965926i −0.0228766 + 0.0853766i
\(129\) 0 0
\(130\) 7.24264 2.74666i 0.635222 0.240898i
\(131\) 3.12372 + 1.80348i 0.272921 + 0.157571i 0.630214 0.776421i \(-0.282967\pi\)
−0.357293 + 0.933992i \(0.616300\pi\)
\(132\) 0 0
\(133\) 28.4105 + 7.61258i 2.46351 + 0.660095i
\(134\) 6.61037 0.571049
\(135\) 0 0
\(136\) 0.449490 0.0385434
\(137\) −21.0552 5.64173i −1.79887 0.482005i −0.805068 0.593183i \(-0.797871\pi\)
−0.993801 + 0.111178i \(0.964538\pi\)
\(138\) 0 0
\(139\) −2.68556 1.55051i −0.227786 0.131513i 0.381764 0.924260i \(-0.375317\pi\)
−0.609550 + 0.792747i \(0.708650\pi\)
\(140\) −9.29908 4.18532i −0.785916 0.353724i
\(141\) 0 0
\(142\) −1.62863 + 6.07812i −0.136671 + 0.510064i
\(143\) 1.55708 + 1.55708i 0.130209 + 0.130209i
\(144\) 0 0
\(145\) −0.449490 + 0.550510i −0.0373281 + 0.0457174i
\(146\) −8.44949 + 4.87832i −0.699285 + 0.403732i
\(147\) 0 0
\(148\) −1.09808 4.09808i −0.0902613 0.336860i
\(149\) 2.20881 3.82577i 0.180952 0.313419i −0.761253 0.648455i \(-0.775415\pi\)
0.942205 + 0.335036i \(0.108749\pi\)
\(150\) 0 0
\(151\) −8.79796 15.2385i −0.715968 1.24009i −0.962585 0.270980i \(-0.912652\pi\)
0.246617 0.969113i \(-0.420681\pi\)
\(152\) −4.56048 + 4.56048i −0.369904 + 0.369904i
\(153\) 0 0
\(154\) 2.89898i 0.233606i
\(155\) 0.992072 + 0.161241i 0.0796851 + 0.0129512i
\(156\) 0 0
\(157\) 14.1363 3.78780i 1.12820 0.302300i 0.354001 0.935245i \(-0.384821\pi\)
0.774196 + 0.632945i \(0.218154\pi\)
\(158\) 2.36603 0.633975i 0.188231 0.0504363i
\(159\) 0 0
\(160\) 1.81431 1.30701i 0.143434 0.103328i
\(161\) 4.56048i 0.359416i
\(162\) 0 0
\(163\) 4.44949 4.44949i 0.348511 0.348511i −0.511044 0.859555i \(-0.670741\pi\)
0.859555 + 0.511044i \(0.170741\pi\)
\(164\) −3.69445 6.39898i −0.288488 0.499676i
\(165\) 0 0
\(166\) −2.72474 + 4.71940i −0.211481 + 0.366296i
\(167\) 2.27708 + 8.49818i 0.176206 + 0.657609i 0.996343 + 0.0854420i \(0.0272302\pi\)
−0.820137 + 0.572167i \(0.806103\pi\)
\(168\) 0 0
\(169\) 0.866025 0.500000i 0.0666173 0.0384615i
\(170\) −0.778539 0.635674i −0.0597112 0.0487540i
\(171\) 0 0
\(172\) 2.44949 + 2.44949i 0.186772 + 0.186772i
\(173\) 3.33850 12.4595i 0.253822 0.947275i −0.714921 0.699206i \(-0.753537\pi\)
0.968742 0.248069i \(-0.0797961\pi\)
\(174\) 0 0
\(175\) 10.1875 + 20.4001i 0.770105 + 1.54210i
\(176\) 0.550510 + 0.317837i 0.0414963 + 0.0239579i
\(177\) 0 0
\(178\) −7.75115 2.07691i −0.580973 0.155671i
\(179\) 10.6780 0.798114 0.399057 0.916926i \(-0.369338\pi\)
0.399057 + 0.916926i \(0.369338\pi\)
\(180\) 0 0
\(181\) −15.4495 −1.14835 −0.574176 0.818732i \(-0.694677\pi\)
−0.574176 + 0.818732i \(0.694677\pi\)
\(182\) 15.2597 + 4.08881i 1.13112 + 0.303083i
\(183\) 0 0
\(184\) 0.866025 + 0.500000i 0.0638442 + 0.0368605i
\(185\) −3.89363 + 8.65099i −0.286265 + 0.636033i
\(186\) 0 0
\(187\) 0.0739521 0.275993i 0.00540792 0.0201826i
\(188\) 6.36396 + 6.36396i 0.464140 + 0.464140i
\(189\) 0 0
\(190\) 14.3485 1.44949i 1.04095 0.105157i
\(191\) 15.1237 8.73169i 1.09431 0.631803i 0.159593 0.987183i \(-0.448982\pi\)
0.934722 + 0.355380i \(0.115649\pi\)
\(192\) 0 0
\(193\) −4.48288 16.7303i −0.322685 1.20428i −0.916619 0.399762i \(-0.869093\pi\)
0.593934 0.804513i \(-0.297574\pi\)
\(194\) 1.34278 2.32577i 0.0964061 0.166980i
\(195\) 0 0
\(196\) −6.89898 11.9494i −0.492784 0.853527i
\(197\) 6.92820 6.92820i 0.493614 0.493614i −0.415829 0.909443i \(-0.636508\pi\)
0.909443 + 0.415829i \(0.136508\pi\)
\(198\) 0 0
\(199\) 8.44949i 0.598968i 0.954101 + 0.299484i \(0.0968146\pi\)
−0.954101 + 0.299484i \(0.903185\pi\)
\(200\) −4.99087 0.302023i −0.352908 0.0213563i
\(201\) 0 0
\(202\) −12.1562 + 3.25725i −0.855310 + 0.229179i
\(203\) −1.40010 + 0.375156i −0.0982677 + 0.0263308i
\(204\) 0 0
\(205\) −2.65054 + 16.3081i −0.185122 + 1.13901i
\(206\) 9.75663i 0.679777i
\(207\) 0 0
\(208\) −2.44949 + 2.44949i −0.169842 + 0.169842i
\(209\) 2.04989 + 3.55051i 0.141794 + 0.245594i
\(210\) 0 0
\(211\) −4.55051 + 7.88171i −0.313270 + 0.542600i −0.979068 0.203532i \(-0.934758\pi\)
0.665798 + 0.746132i \(0.268091\pi\)
\(212\) 1.38429 + 5.16622i 0.0950731 + 0.354818i
\(213\) 0 0
\(214\) 16.6688 9.62372i 1.13945 0.657864i
\(215\) −0.778539 7.70674i −0.0530959 0.525595i
\(216\) 0 0
\(217\) 1.44949 + 1.44949i 0.0983978 + 0.0983978i
\(218\) 1.46272 5.45896i 0.0990682 0.369727i
\(219\) 0 0
\(220\) −0.504022 1.32905i −0.0339812 0.0896045i
\(221\) 1.34847 + 0.778539i 0.0907079 + 0.0523702i
\(222\) 0 0
\(223\) −24.7575 6.63374i −1.65788 0.444228i −0.696078 0.717966i \(-0.745073\pi\)
−0.961804 + 0.273738i \(0.911740\pi\)
\(224\) 4.56048 0.304710
\(225\) 0 0
\(226\) 5.79796 0.385674
\(227\) −24.0506 6.44433i −1.59629 0.427725i −0.652372 0.757899i \(-0.726226\pi\)
−0.943920 + 0.330174i \(0.892893\pi\)
\(228\) 0 0
\(229\) 1.43027 + 0.825765i 0.0945147 + 0.0545681i 0.546512 0.837451i \(-0.315955\pi\)
−0.451998 + 0.892019i \(0.649288\pi\)
\(230\) −0.792893 2.09077i −0.0522818 0.137861i
\(231\) 0 0
\(232\) 0.0822623 0.307007i 0.00540079 0.0201560i
\(233\) −14.4600 14.4600i −0.947304 0.947304i 0.0513751 0.998679i \(-0.483640\pi\)
−0.998679 + 0.0513751i \(0.983640\pi\)
\(234\) 0 0
\(235\) −2.02270 20.0227i −0.131947 1.30614i
\(236\) −7.77526 + 4.48905i −0.506126 + 0.292212i
\(237\) 0 0
\(238\) −0.530550 1.98004i −0.0343905 0.128347i
\(239\) −8.48528 + 14.6969i −0.548867 + 0.950666i 0.449485 + 0.893288i \(0.351607\pi\)
−0.998353 + 0.0573782i \(0.981726\pi\)
\(240\) 0 0
\(241\) −9.50000 16.4545i −0.611949 1.05993i −0.990912 0.134515i \(-0.957053\pi\)
0.378963 0.925412i \(-0.376281\pi\)
\(242\) −7.49245 + 7.49245i −0.481633 + 0.481633i
\(243\) 0 0
\(244\) 0.550510i 0.0352428i
\(245\) −4.94960 + 30.4536i −0.316218 + 1.94561i
\(246\) 0 0
\(247\) −21.5804 + 5.78245i −1.37313 + 0.367929i
\(248\) −0.434174 + 0.116337i −0.0275701 + 0.00738738i
\(249\) 0 0
\(250\) 8.21731 + 7.58128i 0.519709 + 0.479482i
\(251\) 2.68556i 0.169511i 0.996402 + 0.0847556i \(0.0270110\pi\)
−0.996402 + 0.0847556i \(0.972989\pi\)
\(252\) 0 0
\(253\) 0.449490 0.449490i 0.0282592 0.0282592i
\(254\) 1.32673 + 2.29796i 0.0832463 + 0.144187i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 4.67050 + 17.4305i 0.291337 + 1.08729i 0.944083 + 0.329709i \(0.106951\pi\)
−0.652745 + 0.757578i \(0.726383\pi\)
\(258\) 0 0
\(259\) −16.7563 + 9.67423i −1.04118 + 0.601128i
\(260\) 7.70674 0.778539i 0.477952 0.0482829i
\(261\) 0 0
\(262\) 2.55051 + 2.55051i 0.157571 + 0.157571i
\(263\) −4.32149 + 16.1280i −0.266474 + 0.994495i 0.694868 + 0.719138i \(0.255463\pi\)
−0.961342 + 0.275358i \(0.911204\pi\)
\(264\) 0 0
\(265\) 4.90849 10.9058i 0.301526 0.669940i
\(266\) 25.4722 + 14.7064i 1.56180 + 0.901706i
\(267\) 0 0
\(268\) 6.38512 + 1.71089i 0.390033 + 0.104509i
\(269\) −15.0956 −0.920398 −0.460199 0.887816i \(-0.652222\pi\)
−0.460199 + 0.887816i \(0.652222\pi\)
\(270\) 0 0
\(271\) 28.0454 1.70364 0.851819 0.523837i \(-0.175500\pi\)
0.851819 + 0.523837i \(0.175500\pi\)
\(272\) 0.434174 + 0.116337i 0.0263257 + 0.00705394i
\(273\) 0 0
\(274\) −18.8776 10.8990i −1.14044 0.658431i
\(275\) −1.00657 + 3.01478i −0.0606983 + 0.181798i
\(276\) 0 0
\(277\) −7.28353 + 27.1825i −0.437625 + 1.63324i 0.297080 + 0.954852i \(0.403987\pi\)
−0.734705 + 0.678386i \(0.762680\pi\)
\(278\) −2.19275 2.19275i −0.131513 0.131513i
\(279\) 0 0
\(280\) −7.89898 6.44949i −0.472054 0.385431i
\(281\) 14.8485 8.57277i 0.885785 0.511408i 0.0132238 0.999913i \(-0.495791\pi\)
0.872562 + 0.488504i \(0.162457\pi\)
\(282\) 0 0
\(283\) 6.26772 + 23.3914i 0.372577 + 1.39048i 0.856853 + 0.515561i \(0.172417\pi\)
−0.484275 + 0.874916i \(0.660917\pi\)
\(284\) −3.14626 + 5.44949i −0.186696 + 0.323368i
\(285\) 0 0
\(286\) 1.10102 + 1.90702i 0.0651047 + 0.112765i
\(287\) −23.8273 + 23.8273i −1.40648 + 1.40648i
\(288\) 0 0
\(289\) 16.7980i 0.988115i
\(290\) −0.576656 + 0.415416i −0.0338624 + 0.0243940i
\(291\) 0 0
\(292\) −9.42418 + 2.52520i −0.551508 + 0.147776i
\(293\) −21.2942 + 5.70577i −1.24402 + 0.333335i −0.820024 0.572329i \(-0.806040\pi\)
−0.423998 + 0.905663i \(0.639374\pi\)
\(294\) 0 0
\(295\) 19.8156 + 3.22062i 1.15371 + 0.187512i
\(296\) 4.24264i 0.246598i
\(297\) 0 0
\(298\) 3.12372 3.12372i 0.180952 0.180952i
\(299\) 1.73205 + 3.00000i 0.100167 + 0.173494i
\(300\) 0 0
\(301\) 7.89898 13.6814i 0.455290 0.788585i
\(302\) −4.55416 16.9964i −0.262062 0.978030i
\(303\) 0 0
\(304\) −5.58542 + 3.22474i −0.320346 + 0.184952i
\(305\) 0.778539 0.953512i 0.0445790 0.0545979i
\(306\) 0 0
\(307\) −6.67423 6.67423i −0.380919 0.380919i 0.490514 0.871433i \(-0.336809\pi\)
−0.871433 + 0.490514i \(0.836809\pi\)
\(308\) 0.750311 2.80020i 0.0427529 0.159556i
\(309\) 0 0
\(310\) 0.916536 + 0.412514i 0.0520557 + 0.0234292i
\(311\) −23.8207 13.7529i −1.35075 0.779853i −0.362392 0.932026i \(-0.618040\pi\)
−0.988354 + 0.152172i \(0.951373\pi\)
\(312\) 0 0
\(313\) −11.5422 3.09273i −0.652405 0.174811i −0.0825888 0.996584i \(-0.526319\pi\)
−0.569816 + 0.821772i \(0.692985\pi\)
\(314\) 14.6349 0.825898
\(315\) 0 0
\(316\) 2.44949 0.137795
\(317\) 10.5276 + 2.82086i 0.591289 + 0.158435i 0.542042 0.840351i \(-0.317651\pi\)
0.0492469 + 0.998787i \(0.484318\pi\)
\(318\) 0 0
\(319\) −0.174973 0.101021i −0.00979659 0.00565606i
\(320\) 2.09077 0.792893i 0.116878 0.0443241i
\(321\) 0 0
\(322\) 1.18034 4.40508i 0.0657777 0.245486i
\(323\) 2.04989 + 2.04989i 0.114059 + 0.114059i
\(324\) 0 0
\(325\) −14.4495 9.55051i −0.801513 0.529767i
\(326\) 5.44949 3.14626i 0.301819 0.174255i
\(327\) 0 0
\(328\) −1.91239 7.13713i −0.105594 0.394082i
\(329\) 20.5222 35.5454i 1.13142 1.95968i
\(330\) 0 0
\(331\) −0.224745 0.389270i −0.0123531 0.0213962i 0.859783 0.510660i \(-0.170599\pi\)
−0.872136 + 0.489264i \(0.837266\pi\)
\(332\) −3.85337 + 3.85337i −0.211481 + 0.211481i
\(333\) 0 0
\(334\) 8.79796i 0.481403i
\(335\) −8.63980 11.9933i −0.472042 0.655263i
\(336\) 0 0
\(337\) 3.00804 0.806003i 0.163859 0.0439058i −0.175957 0.984398i \(-0.556302\pi\)
0.339816 + 0.940492i \(0.389635\pi\)
\(338\) 0.965926 0.258819i 0.0525394 0.0140779i
\(339\) 0 0
\(340\) −0.587486 0.815515i −0.0318609 0.0442275i
\(341\) 0.285729i 0.0154731i
\(342\) 0 0
\(343\) −21.9217 + 21.9217i −1.18366 + 1.18366i
\(344\) 1.73205 + 3.00000i 0.0933859 + 0.161749i
\(345\) 0 0
\(346\) 6.44949 11.1708i 0.346727 0.600548i
\(347\) −6.15937 22.9871i −0.330652 1.23401i −0.908507 0.417870i \(-0.862777\pi\)
0.577855 0.816140i \(-0.303890\pi\)
\(348\) 0 0
\(349\) 25.1541 14.5227i 1.34647 0.777383i 0.358719 0.933446i \(-0.383214\pi\)
0.987747 + 0.156063i \(0.0498803\pi\)
\(350\) 4.56048 + 22.3417i 0.243768 + 1.19421i
\(351\) 0 0
\(352\) 0.449490 + 0.449490i 0.0239579 + 0.0239579i
\(353\) 8.87564 33.1244i 0.472403 1.76303i −0.158694 0.987328i \(-0.550728\pi\)
0.631097 0.775704i \(-0.282605\pi\)
\(354\) 0 0
\(355\) 13.1562 4.98930i 0.698260 0.264805i
\(356\) −6.94949 4.01229i −0.368322 0.212651i
\(357\) 0 0
\(358\) 10.3142 + 2.76368i 0.545122 + 0.146065i
\(359\) 3.32124 0.175288 0.0876441 0.996152i \(-0.472066\pi\)
0.0876441 + 0.996152i \(0.472066\pi\)
\(360\) 0 0
\(361\) −22.5959 −1.18926
\(362\) −14.9231 3.99862i −0.784339 0.210163i
\(363\) 0 0
\(364\) 13.6814 + 7.89898i 0.717102 + 0.414019i
\(365\) 19.8943 + 8.95403i 1.04132 + 0.468675i
\(366\) 0 0
\(367\) −1.06110 + 3.96008i −0.0553890 + 0.206714i −0.988075 0.153976i \(-0.950792\pi\)
0.932686 + 0.360690i \(0.117459\pi\)
\(368\) 0.707107 + 0.707107i 0.0368605 + 0.0368605i
\(369\) 0 0
\(370\) −6.00000 + 7.34847i −0.311925 + 0.382029i
\(371\) 21.1237 12.1958i 1.09669 0.633174i
\(372\) 0 0
\(373\) −0.127549 0.476018i −0.00660422 0.0246473i 0.962545 0.271122i \(-0.0873946\pi\)
−0.969149 + 0.246474i \(0.920728\pi\)
\(374\) 0.142865 0.247449i 0.00738735 0.0127953i
\(375\) 0 0
\(376\) 4.50000 + 7.79423i 0.232070 + 0.401957i
\(377\) 0.778539 0.778539i 0.0400968 0.0400968i
\(378\) 0 0
\(379\) 21.3485i 1.09660i −0.836283 0.548299i \(-0.815276\pi\)
0.836283 0.548299i \(-0.184724\pi\)
\(380\) 14.2347 + 2.31356i 0.730225 + 0.118683i
\(381\) 0 0
\(382\) 16.8683 4.51985i 0.863058 0.231256i
\(383\) 7.92256 2.12284i 0.404824 0.108472i −0.0506606 0.998716i \(-0.516133\pi\)
0.455485 + 0.890244i \(0.349466\pi\)
\(384\) 0 0
\(385\) −5.25966 + 3.78899i −0.268057 + 0.193105i
\(386\) 17.3205i 0.881591i
\(387\) 0 0
\(388\) 1.89898 1.89898i 0.0964061 0.0964061i
\(389\) 18.4008 + 31.8712i 0.932959 + 1.61593i 0.778233 + 0.627975i \(0.216116\pi\)
0.154726 + 0.987957i \(0.450551\pi\)
\(390\) 0 0
\(391\) 0.224745 0.389270i 0.0113658 0.0196862i
\(392\) −3.57117 13.3278i −0.180372 0.673156i
\(393\) 0 0
\(394\) 8.48528 4.89898i 0.427482 0.246807i
\(395\) −4.24264 3.46410i −0.213470 0.174298i
\(396\) 0 0
\(397\) 10.5505 + 10.5505i 0.529515 + 0.529515i 0.920428 0.390913i \(-0.127841\pi\)
−0.390913 + 0.920428i \(0.627841\pi\)
\(398\) −2.18689 + 8.16158i −0.109619 + 0.409103i
\(399\) 0 0
\(400\) −4.74264 1.58346i −0.237132 0.0791732i
\(401\) −7.65153 4.41761i −0.382099 0.220605i 0.296632 0.954992i \(-0.404137\pi\)
−0.678731 + 0.734387i \(0.737470\pi\)
\(402\) 0 0
\(403\) −1.50402 0.403001i −0.0749207 0.0200749i
\(404\) −12.5851 −0.626130
\(405\) 0 0
\(406\) −1.44949 −0.0719370
\(407\) −2.60504 0.698019i −0.129127 0.0345995i
\(408\) 0 0
\(409\) 25.0273 + 14.4495i 1.23752 + 0.714481i 0.968586 0.248678i \(-0.0799961\pi\)
0.268932 + 0.963159i \(0.413329\pi\)
\(410\) −6.78108 + 15.0664i −0.334893 + 0.744077i
\(411\) 0 0
\(412\) 2.52520 9.42418i 0.124408 0.464296i
\(413\) 28.9521 + 28.9521i 1.42464 + 1.42464i
\(414\) 0 0
\(415\) 12.1237 1.22474i 0.595130 0.0601204i
\(416\) −3.00000 + 1.73205i −0.147087 + 0.0849208i
\(417\) 0 0
\(418\) 1.06110 + 3.96008i 0.0519001 + 0.193694i
\(419\) 2.51059 4.34847i 0.122650 0.212437i −0.798162 0.602443i \(-0.794194\pi\)
0.920812 + 0.390007i \(0.127527\pi\)
\(420\) 0 0
\(421\) 2.55051 + 4.41761i 0.124304 + 0.215301i 0.921461 0.388471i \(-0.126997\pi\)
−0.797157 + 0.603773i \(0.793663\pi\)
\(422\) −6.43539 + 6.43539i −0.313270 + 0.313270i
\(423\) 0 0
\(424\) 5.34847i 0.259745i
\(425\) −0.135756 + 2.24334i −0.00658515 + 0.108818i
\(426\) 0 0
\(427\) 2.42504 0.649788i 0.117356 0.0314455i
\(428\) 18.5916 4.98161i 0.898659 0.240795i
\(429\) 0 0
\(430\) 1.24264 7.64564i 0.0599255 0.368706i
\(431\) 15.5563i 0.749323i −0.927162 0.374661i \(-0.877759\pi\)
0.927162 0.374661i \(-0.122241\pi\)
\(432\) 0 0
\(433\) 13.4495 13.4495i 0.646341 0.646341i −0.305766 0.952107i \(-0.598912\pi\)
0.952107 + 0.305766i \(0.0989124\pi\)
\(434\) 1.02494 + 1.77526i 0.0491989 + 0.0852150i
\(435\) 0 0
\(436\) 2.82577 4.89437i 0.135330 0.234398i
\(437\) 1.66925 + 6.22973i 0.0798511 + 0.298008i
\(438\) 0 0
\(439\) 25.8058 14.8990i 1.23164 0.711089i 0.264271 0.964449i \(-0.414869\pi\)
0.967372 + 0.253359i \(0.0815354\pi\)
\(440\) −0.142865 1.41421i −0.00681080 0.0674200i
\(441\) 0 0
\(442\) 1.10102 + 1.10102i 0.0523702 + 0.0523702i
\(443\) 1.41043 5.26380i 0.0670116 0.250091i −0.924292 0.381687i \(-0.875343\pi\)
0.991303 + 0.131596i \(0.0420101\pi\)
\(444\) 0 0
\(445\) 6.36263 + 16.7776i 0.301618 + 0.795332i
\(446\) −22.1969 12.8154i −1.05106 0.606827i
\(447\) 0 0
\(448\) 4.40508 + 1.18034i 0.208121 + 0.0557658i
\(449\) 0.921404 0.0434837 0.0217419 0.999764i \(-0.493079\pi\)
0.0217419 + 0.999764i \(0.493079\pi\)
\(450\) 0 0
\(451\) −4.69694 −0.221170
\(452\) 5.60040 + 1.50062i 0.263421 + 0.0705833i
\(453\) 0 0
\(454\) −21.5631 12.4495i −1.01201 0.584284i
\(455\) −12.5261 33.0299i −0.587232 1.54847i
\(456\) 0 0
\(457\) −3.78780 + 14.1363i −0.177186 + 0.661267i 0.818983 + 0.573818i \(0.194538\pi\)
−0.996169 + 0.0874492i \(0.972128\pi\)
\(458\) 1.16781 + 1.16781i 0.0545681 + 0.0545681i
\(459\) 0 0
\(460\) −0.224745 2.22474i −0.0104788 0.103729i
\(461\) −28.6237 + 16.5259i −1.33314 + 0.769689i −0.985780 0.168043i \(-0.946255\pi\)
−0.347360 + 0.937732i \(0.612922\pi\)
\(462\) 0 0
\(463\) −3.16668 11.8182i −0.147168 0.549239i −0.999649 0.0264810i \(-0.991570\pi\)
0.852481 0.522758i \(-0.175097\pi\)
\(464\) 0.158919 0.275255i 0.00737761 0.0127784i
\(465\) 0 0
\(466\) −10.2247 17.7098i −0.473652 0.820390i
\(467\) 2.82843 2.82843i 0.130884 0.130884i −0.638630 0.769514i \(-0.720499\pi\)
0.769514 + 0.638630i \(0.220499\pi\)
\(468\) 0 0
\(469\) 30.1464i 1.39203i
\(470\) 3.22848 19.8640i 0.148918 0.916256i
\(471\) 0 0
\(472\) −8.67217 + 2.32370i −0.399169 + 0.106957i
\(473\) 2.12701 0.569930i 0.0977999 0.0262054i
\(474\) 0 0
\(475\) −21.3834 24.1381i −0.981137 1.10753i
\(476\) 2.04989i 0.0939565i
\(477\) 0 0
\(478\) −12.0000 + 12.0000i −0.548867 + 0.548867i
\(479\) −3.53553 6.12372i −0.161543 0.279800i 0.773879 0.633333i \(-0.218314\pi\)
−0.935422 + 0.353533i \(0.884980\pi\)
\(480\) 0 0
\(481\) 7.34847 12.7279i 0.335061 0.580343i
\(482\) −4.91756 18.3526i −0.223989 0.835938i
\(483\) 0 0
\(484\) −9.17633 + 5.29796i −0.417106 + 0.240816i
\(485\) −5.97469 + 0.603566i −0.271297 + 0.0274065i
\(486\) 0 0
\(487\) −12.0000 12.0000i −0.543772 0.543772i 0.380861 0.924632i \(-0.375628\pi\)
−0.924632 + 0.380861i \(0.875628\pi\)
\(488\) −0.142483 + 0.531752i −0.00644988 + 0.0240713i
\(489\) 0 0
\(490\) −12.6629 + 28.1348i −0.572052 + 1.27100i
\(491\) 24.2474 + 13.9993i 1.09427 + 0.631778i 0.934711 0.355410i \(-0.115659\pi\)
0.159561 + 0.987188i \(0.448992\pi\)
\(492\) 0 0
\(493\) −0.137997 0.0369761i −0.00621505 0.00166532i
\(494\) −22.3417 −1.00520
\(495\) 0 0
\(496\) −0.449490 −0.0201827
\(497\) 27.7191 + 7.42731i 1.24337 + 0.333161i
\(498\) 0 0
\(499\) −0.778539 0.449490i −0.0348522 0.0201219i 0.482473 0.875911i \(-0.339739\pi\)
−0.517325 + 0.855789i \(0.673072\pi\)
\(500\) 5.97514 + 9.44975i 0.267216 + 0.422606i
\(501\) 0 0
\(502\) −0.695075 + 2.59405i −0.0310227 + 0.115778i
\(503\) 4.02834 + 4.02834i 0.179615 + 0.179615i 0.791188 0.611573i \(-0.209463\pi\)
−0.611573 + 0.791188i \(0.709463\pi\)
\(504\) 0 0
\(505\) 21.7980 + 17.7980i 0.969996 + 0.791999i
\(506\) 0.550510 0.317837i 0.0244732 0.0141296i
\(507\) 0 0
\(508\) 0.686765 + 2.56304i 0.0304702 + 0.113717i
\(509\) −4.22659 + 7.32066i −0.187340 + 0.324483i −0.944363 0.328906i \(-0.893320\pi\)
0.757022 + 0.653389i \(0.226653\pi\)
\(510\) 0 0
\(511\) 22.2474 + 38.5337i 0.984169 + 1.70463i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 18.0454i 0.795949i
\(515\) −17.7016 + 12.7520i −0.780025 + 0.561920i
\(516\) 0 0
\(517\) 5.52613 1.48072i 0.243039 0.0651221i
\(518\) −18.6892 + 5.00775i −0.821156 + 0.220028i
\(519\) 0 0
\(520\) 7.64564 + 1.24264i 0.335284 + 0.0544934i
\(521\) 29.4449i 1.29000i 0.764181 + 0.645001i \(0.223143\pi\)
−0.764181 + 0.645001i \(0.776857\pi\)
\(522\) 0 0
\(523\) 4.22474 4.22474i 0.184735 0.184735i −0.608680 0.793416i \(-0.708301\pi\)
0.793416 + 0.608680i \(0.208301\pi\)
\(524\) 1.80348 + 3.12372i 0.0787855 + 0.136461i
\(525\) 0 0
\(526\) −8.34847 + 14.4600i −0.364011 + 0.630485i
\(527\) 0.0522921 + 0.195157i 0.00227788 + 0.00850116i
\(528\) 0 0
\(529\) −19.0526 + 11.0000i −0.828372 + 0.478261i
\(530\) 7.56388 9.26382i 0.328554 0.402395i
\(531\) 0 0
\(532\) 20.7980 + 20.7980i 0.901706 + 0.901706i
\(533\) 6.62471 24.7238i 0.286948 1.07090i
\(534\) 0 0
\(535\) −39.2467 17.6641i −1.69678 0.763686i
\(536\) 5.72474 + 3.30518i 0.247271 + 0.142762i
\(537\) 0 0
\(538\) −14.5813 3.90704i −0.628643 0.168444i
\(539\) −8.77101 −0.377794
\(540\) 0 0
\(541\) 27.9444 1.20142 0.600712 0.799466i \(-0.294884\pi\)
0.600712 + 0.799466i \(0.294884\pi\)
\(542\) 27.0898 + 7.25869i 1.16361 + 0.311787i
\(543\) 0 0
\(544\) 0.389270 + 0.224745i 0.0166898 + 0.00963586i
\(545\) −11.8161 + 4.48106i −0.506144 + 0.191948i
\(546\) 0 0
\(547\) −1.05279 + 3.92907i −0.0450140 + 0.167995i −0.984774 0.173841i \(-0.944382\pi\)
0.939760 + 0.341836i \(0.111049\pi\)
\(548\) −15.4135 15.4135i −0.658431 0.658431i
\(549\) 0 0
\(550\) −1.75255 + 2.65153i −0.0747290 + 0.113062i
\(551\) 1.77526 1.02494i 0.0756284 0.0436641i
\(552\) 0 0
\(553\) −2.89123 10.7902i −0.122947 0.458846i
\(554\) −14.0707 + 24.3712i −0.597807 + 1.03543i
\(555\) 0 0
\(556\) −1.55051 2.68556i −0.0657563 0.113893i
\(557\) −7.88171 + 7.88171i −0.333959 + 0.333959i −0.854088 0.520129i \(-0.825884\pi\)
0.520129 + 0.854088i \(0.325884\pi\)
\(558\) 0 0
\(559\) 12.0000i 0.507546i
\(560\) −5.96058 8.27414i −0.251880 0.349646i
\(561\) 0 0
\(562\) 16.5613 4.43759i 0.698597 0.187188i
\(563\) −18.9819 + 5.08619i −0.799993 + 0.214357i −0.635581 0.772034i \(-0.719239\pi\)
−0.164412 + 0.986392i \(0.552573\pi\)
\(564\) 0 0
\(565\) −7.57797 10.5193i −0.318808 0.442551i
\(566\) 24.2166i 1.01790i
\(567\) 0 0
\(568\) −4.44949 + 4.44949i −0.186696 + 0.186696i
\(569\) −9.58166 16.5959i −0.401684 0.695737i 0.592245 0.805758i \(-0.298242\pi\)
−0.993929 + 0.110021i \(0.964908\pi\)
\(570\) 0 0
\(571\) −18.4495 + 31.9555i −0.772087 + 1.33729i 0.164330 + 0.986405i \(0.447454\pi\)
−0.936417 + 0.350889i \(0.885880\pi\)
\(572\) 0.569930 + 2.12701i 0.0238300 + 0.0889347i
\(573\) 0 0
\(574\) −29.1824 + 16.8485i −1.21805 + 0.703242i
\(575\) −2.75699 + 4.17121i −0.114975 + 0.173951i
\(576\) 0 0
\(577\) −17.0000 17.0000i −0.707719 0.707719i 0.258336 0.966055i \(-0.416826\pi\)
−0.966055 + 0.258336i \(0.916826\pi\)
\(578\) −4.34763 + 16.2256i −0.180838 + 0.674895i
\(579\) 0 0
\(580\) −0.664525 + 0.252011i −0.0275929 + 0.0104642i
\(581\) 21.5227 + 12.4261i 0.892912 + 0.515523i
\(582\) 0 0
\(583\) 3.28404 + 0.879955i 0.136011 + 0.0364440i
\(584\) −9.75663 −0.403732
\(585\) 0 0
\(586\) −22.0454 −0.910687
\(587\) −12.6009 3.37640i −0.520095 0.139359i −0.0107843 0.999942i \(-0.503433\pi\)
−0.509310 + 0.860583i \(0.670099\pi\)
\(588\) 0 0
\(589\) −2.51059 1.44949i −0.103447 0.0597252i
\(590\) 18.3068 + 8.23953i 0.753681 + 0.339216i
\(591\) 0 0
\(592\) 1.09808 4.09808i 0.0451307 0.168430i
\(593\) −7.24604 7.24604i −0.297559 0.297559i 0.542498 0.840057i \(-0.317479\pi\)
−0.840057 + 0.542498i \(0.817479\pi\)
\(594\) 0 0
\(595\) −2.89898 + 3.55051i −0.118847 + 0.145557i
\(596\) 3.82577 2.20881i 0.156709 0.0904762i
\(597\) 0 0
\(598\) 0.896575 + 3.34607i 0.0366637 + 0.136831i
\(599\) 9.97093 17.2702i 0.407401 0.705639i −0.587197 0.809444i \(-0.699768\pi\)
0.994598 + 0.103805i \(0.0331018\pi\)
\(600\) 0 0
\(601\) −2.65153 4.59259i −0.108158 0.187335i 0.806866 0.590735i \(-0.201162\pi\)
−0.915024 + 0.403399i \(0.867829\pi\)
\(602\) 11.1708 11.1708i 0.455290 0.455290i
\(603\) 0 0
\(604\) 17.5959i 0.715968i
\(605\) 23.3863 + 3.80096i 0.950789 + 0.154531i
\(606\) 0 0
\(607\) −11.3732 + 3.04744i −0.461624 + 0.123692i −0.482133 0.876098i \(-0.660138\pi\)
0.0205092 + 0.999790i \(0.493471\pi\)
\(608\) −6.22973 + 1.66925i −0.252649 + 0.0676971i
\(609\) 0 0
\(610\) 0.998798 0.719521i 0.0404401 0.0291325i
\(611\) 31.1769i 1.26128i
\(612\) 0 0
\(613\) 6.79796 6.79796i 0.274567 0.274567i −0.556369 0.830936i \(-0.687806\pi\)
0.830936 + 0.556369i \(0.187806\pi\)
\(614\) −4.71940 8.17423i −0.190459 0.329885i
\(615\) 0 0
\(616\) 1.44949 2.51059i 0.0584016 0.101155i
\(617\) 4.37378 + 16.3232i 0.176082 + 0.657146i 0.996365 + 0.0851882i \(0.0271491\pi\)
−0.820283 + 0.571958i \(0.806184\pi\)
\(618\) 0 0
\(619\) −42.2121 + 24.3712i −1.69665 + 0.979560i −0.747748 + 0.663982i \(0.768865\pi\)
−0.948900 + 0.315578i \(0.897802\pi\)
\(620\) 0.778539 + 0.635674i 0.0312669 + 0.0255293i
\(621\) 0 0
\(622\) −19.4495 19.4495i −0.779853 0.779853i
\(623\) −9.47172 + 35.3489i −0.379476 + 1.41623i
\(624\) 0 0
\(625\) 3.01472 24.8176i 0.120589 0.992703i
\(626\) −10.3485 5.97469i −0.413608 0.238797i
\(627\) 0 0
\(628\) 14.1363 + 3.78780i 0.564099 + 0.151150i
\(629\) −1.90702 −0.0760380
\(630\) 0 0
\(631\) −3.10102 −0.123450 −0.0617248 0.998093i \(-0.519660\pi\)
−0.0617248 + 0.998093i \(0.519660\pi\)
\(632\) 2.36603 + 0.633975i 0.0941154 + 0.0252182i
\(633\) 0 0
\(634\) 9.43879 + 5.44949i 0.374862 + 0.216427i
\(635\) 2.43518 5.41055i 0.0966370 0.214711i
\(636\) 0 0
\(637\) 12.3709 46.1689i 0.490153 1.82928i
\(638\) −0.142865 0.142865i −0.00565606 0.00565606i
\(639\) 0 0
\(640\) 2.22474 0.224745i 0.0879408 0.00888382i
\(641\) −16.7474 + 9.66914i −0.661484 + 0.381908i −0.792842 0.609427i \(-0.791400\pi\)
0.131358 + 0.991335i \(0.458066\pi\)
\(642\) 0 0
\(643\) 1.63694 + 6.10913i 0.0645545 + 0.240921i 0.990662 0.136338i \(-0.0435334\pi\)
−0.926108 + 0.377259i \(0.876867\pi\)
\(644\) 2.28024 3.94949i 0.0898540 0.155632i
\(645\) 0 0
\(646\) 1.44949 + 2.51059i 0.0570294 + 0.0987778i
\(647\) 23.5416 23.5416i 0.925516 0.925516i −0.0718961 0.997412i \(-0.522905\pi\)
0.997412 + 0.0718961i \(0.0229050\pi\)
\(648\) 0 0
\(649\) 5.70714i 0.224025i
\(650\) −11.4853 12.9649i −0.450490 0.508525i
\(651\) 0 0
\(652\) 6.07812 1.62863i 0.238037 0.0637819i
\(653\) −25.5482 + 6.84563i −0.999780 + 0.267890i −0.721353 0.692567i \(-0.756480\pi\)
−0.278427 + 0.960457i \(0.589813\pi\)
\(654\) 0 0
\(655\) 1.29389 7.96096i 0.0505564 0.311060i
\(656\) 7.38891i 0.288488i
\(657\) 0 0
\(658\) 29.0227 29.0227i 1.13142 1.13142i
\(659\) 5.65685 + 9.79796i 0.220360 + 0.381674i 0.954917 0.296872i \(-0.0959435\pi\)
−0.734557 + 0.678546i \(0.762610\pi\)
\(660\) 0 0
\(661\) 0.651531 1.12848i 0.0253416 0.0438930i −0.853076 0.521786i \(-0.825266\pi\)
0.878418 + 0.477893i \(0.158599\pi\)
\(662\) −0.116337 0.434174i −0.00452155 0.0168746i
\(663\) 0 0
\(664\) −4.71940 + 2.72474i −0.183148 + 0.105741i
\(665\) −6.61037 65.4359i −0.256339 2.53749i
\(666\) 0 0
\(667\) −0.224745 0.224745i −0.00870216 0.00870216i
\(668\) −2.27708 + 8.49818i −0.0881028 + 0.328804i
\(669\) 0 0
\(670\) −5.24131 13.8208i −0.202490 0.533942i
\(671\) 0.303062 + 0.174973i 0.0116996 + 0.00675474i
\(672\) 0 0
\(673\) 22.4704 + 6.02093i 0.866171 + 0.232090i 0.664431 0.747349i \(-0.268674\pi\)
0.201740 + 0.979439i \(0.435340\pi\)
\(674\) 3.11416 0.119953
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 44.0423 + 11.8011i 1.69268 + 0.453553i 0.971080 0.238755i \(-0.0767393\pi\)
0.721602 + 0.692308i \(0.243406\pi\)
\(678\) 0 0
\(679\) −10.6066 6.12372i −0.407044 0.235007i
\(680\) −0.356397 0.939780i −0.0136672 0.0360389i
\(681\) 0 0
\(682\) −0.0739521 + 0.275993i −0.00283177 + 0.0105683i
\(683\) −13.8564 13.8564i −0.530201 0.530201i 0.390431 0.920632i \(-0.372326\pi\)
−0.920632 + 0.390431i \(0.872326\pi\)
\(684\) 0 0
\(685\) 4.89898 + 48.4949i 0.187180 + 1.85289i
\(686\) −26.8485 + 15.5010i −1.02508 + 0.591830i
\(687\) 0 0
\(688\) 0.896575 + 3.34607i 0.0341816 + 0.127568i
\(689\) −9.26382 + 16.0454i −0.352923 + 0.611281i
\(690\) 0 0
\(691\) 10.4722 + 18.1384i 0.398381 + 0.690016i 0.993526 0.113602i \(-0.0362388\pi\)
−0.595145 + 0.803618i \(0.702906\pi\)
\(692\) 9.12096 9.12096i 0.346727 0.346727i
\(693\) 0 0
\(694\) 23.7980i 0.903358i
\(695\) −1.11240 + 6.84428i −0.0421956 + 0.259618i
\(696\) 0 0
\(697\) −3.20807 + 0.859599i −0.121514 + 0.0325596i
\(698\) 28.0557 7.51750i 1.06192 0.284542i
\(699\) 0 0
\(700\) −1.37737 + 22.7608i −0.0520597 + 0.860276i
\(701\) 21.1024i 0.797028i −0.917162 0.398514i \(-0.869526\pi\)
0.917162 0.398514i \(-0.130474\pi\)
\(702\) 0 0
\(703\) 19.3485 19.3485i 0.729741 0.729741i
\(704\) 0.317837 + 0.550510i 0.0119789 + 0.0207481i
\(705\) 0 0
\(706\) 17.1464 29.6985i 0.645314 1.11772i
\(707\) 14.8546 + 55.4382i 0.558666 + 2.08497i
\(708\) 0 0
\(709\) 25.6790 14.8258i 0.964394 0.556793i 0.0668716 0.997762i \(-0.478698\pi\)
0.897523 + 0.440968i \(0.145365\pi\)
\(710\) 13.9993 1.41421i 0.525383 0.0530745i
\(711\) 0 0
\(712\) −5.67423 5.67423i −0.212651 0.212651i
\(713\) −0.116337 + 0.434174i −0.00435684 + 0.0162599i
\(714\) 0 0
\(715\) 2.02090 4.49009i 0.0755772 0.167920i
\(716\) 9.24745 + 5.33902i 0.345593 + 0.199528i
\(717\) 0 0
\(718\) 3.20807 + 0.859599i 0.119724 + 0.0320800i
\(719\) 32.5269 1.21305 0.606525 0.795065i \(-0.292563\pi\)
0.606525 + 0.795065i \(0.292563\pi\)
\(720\) 0 0
\(721\) −44.4949 −1.65708
\(722\) −21.8260 5.84825i −0.812279 0.217649i
\(723\) 0 0
\(724\) −13.3797 7.72474i −0.497251 0.287088i
\(725\) 1.50739 + 0.503284i 0.0559830 + 0.0186915i
\(726\) 0 0
\(727\) 12.5068 46.6759i 0.463850 1.73111i −0.196822 0.980439i \(-0.563062\pi\)
0.660673 0.750674i \(-0.270271\pi\)
\(728\) 11.1708 + 11.1708i 0.414019 + 0.414019i
\(729\) 0 0
\(730\) 16.8990 + 13.7980i 0.625459 + 0.510685i
\(731\) 1.34847 0.778539i 0.0498749 0.0287953i
\(732\) 0 0
\(733\) 8.83821 + 32.9846i 0.326447 + 1.21832i 0.912850 + 0.408296i \(0.133877\pi\)
−0.586403 + 0.810019i \(0.699457\pi\)
\(734\) −2.04989 + 3.55051i −0.0756627 + 0.131052i
\(735\) 0 0
\(736\) 0.500000 + 0.866025i 0.0184302 + 0.0319221i
\(737\) 2.97129 2.97129i 0.109449 0.109449i
\(738\) 0 0
\(739\) 28.9444i 1.06474i 0.846513 + 0.532368i \(0.178698\pi\)
−0.846513 + 0.532368i \(0.821302\pi\)
\(740\) −7.69748 + 5.54516i −0.282965 + 0.203844i
\(741\) 0 0
\(742\) 23.5605 6.31300i 0.864931 0.231758i
\(743\) 9.56168 2.56204i 0.350784 0.0939923i −0.0791245 0.996865i \(-0.525212\pi\)
0.429909 + 0.902872i \(0.358546\pi\)
\(744\) 0 0
\(745\) −9.75014 1.58468i −0.357218 0.0580583i
\(746\) 0.492810i 0.0180431i
\(747\) 0 0
\(748\) 0.202041 0.202041i 0.00738735 0.00738735i
\(749\) −43.8888 76.0176i −1.60366 2.77762i
\(750\) 0 0
\(751\) −10.3485 + 17.9241i −0.377621 + 0.654059i −0.990716 0.135951i \(-0.956591\pi\)
0.613095 + 0.790010i \(0.289924\pi\)
\(752\) 2.32937 + 8.69333i 0.0849434 + 0.317013i
\(753\) 0 0
\(754\) 0.953512 0.550510i 0.0347248 0.0200484i
\(755\) −24.8844 + 30.4770i −0.905636 + 1.10917i
\(756\) 0 0
\(757\) 22.0454 + 22.0454i 0.801254 + 0.801254i 0.983292 0.182038i \(-0.0582693\pi\)
−0.182038 + 0.983292i \(0.558269\pi\)
\(758\) 5.52539 20.6210i 0.200691 0.748990i
\(759\) 0 0
\(760\) 13.1509 + 5.91894i 0.477033 + 0.214703i
\(761\) 5.60102 + 3.23375i 0.203037 + 0.117223i 0.598071 0.801443i \(-0.295934\pi\)
−0.395034 + 0.918666i \(0.629267\pi\)
\(762\) 0 0
\(763\) −24.8955 6.67072i −0.901276 0.241496i
\(764\) 17.4634 0.631803
\(765\) 0 0
\(766\) 8.20204 0.296352
\(767\) −30.0413 8.04954i −1.08473 0.290652i
\(768\) 0 0
\(769\) 8.39780 + 4.84847i 0.302832 + 0.174840i 0.643715 0.765266i \(-0.277392\pi\)
−0.340882 + 0.940106i \(0.610726\pi\)
\(770\) −6.06110 + 2.29858i −0.218427 + 0.0828351i
\(771\) 0 0
\(772\) 4.48288 16.7303i 0.161342 0.602138i
\(773\) 30.8270 + 30.8270i 1.10877 + 1.10877i 0.993313 + 0.115456i \(0.0368331\pi\)
0.115456 + 0.993313i \(0.463167\pi\)
\(774\) 0 0
\(775\) −0.449490 2.20204i −0.0161461 0.0790996i
\(776\) 2.32577 1.34278i 0.0834901 0.0482030i
\(777\) 0 0
\(778\) 9.52497 + 35.5477i 0.341487 + 1.27445i
\(779\) 23.8273 41.2702i 0.853703 1.47866i
\(780\) 0 0
\(781\) 2.00000 + 3.46410i 0.0715656 + 0.123955i
\(782\) 0.317837 0.317837i 0.0113658 0.0113658i
\(783\) 0 0
\(784\) 13.7980i 0.492784i
\(785\) −19.1280 26.5524i −0.682707 0.947695i
\(786\) 0 0
\(787\) 9.42418 2.52520i 0.335936 0.0900137i −0.0869079 0.996216i \(-0.527699\pi\)
0.422844 + 0.906203i \(0.361032\pi\)
\(788\) 9.46410 2.53590i 0.337145 0.0903376i
\(789\) 0 0
\(790\) −3.20150 4.44414i −0.113904 0.158115i
\(791\) 26.4415i 0.940150i
\(792\) 0 0
\(793\) −1.34847 + 1.34847i −0.0478855 + 0.0478855i
\(794\) 7.46034 + 12.9217i 0.264757 + 0.458573i
\(795\) 0 0
\(796\) −4.22474 + 7.31747i −0.149742 + 0.259361i
\(797\) −10.3005 38.4419i −0.364861 1.36168i −0.867609 0.497248i \(-0.834344\pi\)
0.502747 0.864433i \(-0.332323\pi\)
\(798\) 0 0
\(799\) 3.50343 2.02270i 0.123942 0.0715581i
\(800\) −4.17121 2.75699i −0.147474 0.0974745i
\(801\) 0 0
\(802\) −6.24745 6.24745i −0.220605 0.220605i
\(803\) −1.60521 + 5.99071i −0.0566465 + 0.211408i
\(804\) 0 0
\(805\) −9.53491 + 3.61597i −0.336061 + 0.127446i
\(806\) −1.34847 0.778539i −0.0474978 0.0274229i
\(807\) 0 0
\(808\) −12.1562 3.25725i −0.427655 0.114590i
\(809\) −19.4490 −0.683792 −0.341896 0.939738i \(-0.611069\pi\)
−0.341896 + 0.939738i \(0.611069\pi\)
\(810\) 0 0
\(811\) −39.6413 −1.39200 −0.695998 0.718044i \(-0.745038\pi\)
−0.695998 + 0.718044i \(0.745038\pi\)
\(812\) −1.40010 0.375156i −0.0491339 0.0131654i
\(813\) 0 0
\(814\) −2.33562 1.34847i −0.0818633 0.0472638i
\(815\) −12.8308 5.77489i −0.449444 0.202286i
\(816\) 0 0
\(817\) −5.78245 + 21.5804i −0.202302 + 0.755003i
\(818\) 20.4347 + 20.4347i 0.714481 + 0.714481i
\(819\) 0 0
\(820\) −10.4495 + 12.7980i −0.364912 + 0.446924i
\(821\) −19.3207 + 11.1548i −0.674296 + 0.389305i −0.797702 0.603051i \(-0.793951\pi\)
0.123407 + 0.992356i \(0.460618\pi\)
\(822\) 0 0
\(823\) 0.867910 + 3.23908i 0.0302534 + 0.112907i 0.979401 0.201923i \(-0.0647191\pi\)
−0.949148 + 0.314830i \(0.898052\pi\)
\(824\) 4.87832 8.44949i 0.169944 0.294352i
\(825\) 0 0
\(826\) 20.4722 + 35.4589i 0.712319 + 1.23377i
\(827\) 31.5662 31.5662i 1.09766 1.09766i 0.102980 0.994683i \(-0.467162\pi\)
0.994683 0.102980i \(-0.0328379\pi\)
\(828\) 0 0
\(829\) 10.5505i 0.366434i −0.983072 0.183217i \(-0.941349\pi\)
0.983072 0.183217i \(-0.0586512\pi\)
\(830\) 12.0276 + 1.95484i 0.417484 + 0.0678534i
\(831\) 0 0
\(832\) −3.34607 + 0.896575i −0.116004 + 0.0310832i
\(833\) −5.99071 + 1.60521i −0.207566 + 0.0556171i
\(834\) 0 0
\(835\) 15.9623 11.4990i 0.552397 0.397939i
\(836\) 4.09978i 0.141794i
\(837\) 0 0
\(838\) 3.55051 3.55051i 0.122650 0.122650i
\(839\) 0.246405 + 0.426786i 0.00850684 + 0.0147343i 0.870247 0.492615i \(-0.163959\pi\)
−0.861741 + 0.507349i \(0.830625\pi\)
\(840\) 0 0
\(841\) 14.4495 25.0273i 0.498258 0.863009i
\(842\) 1.32024 + 4.92721i 0.0454985 + 0.169803i
\(843\) 0 0
\(844\) −7.88171 + 4.55051i −0.271300 + 0.156635i
\(845\) −1.73205 1.41421i −0.0595844 0.0486504i
\(846\) 0 0
\(847\) 34.1691 + 34.1691i 1.17407 + 1.17407i
\(848\) −1.38429 + 5.16622i −0.0475366 + 0.177409i
\(849\) 0 0
\(850\) −0.711751 + 2.13177i −0.0244129 + 0.0731191i
\(851\) −3.67423 2.12132i −0.125951 0.0727179i
\(852\) 0 0
\(853\) 2.39403 + 0.641478i 0.0819700 + 0.0219638i 0.299571 0.954074i \(-0.403156\pi\)
−0.217601 + 0.976038i \(0.569823\pi\)
\(854\) 2.51059 0.0859106
\(855\) 0 0
\(856\) 19.2474 0.657864
\(857\) −15.2597 4.08881i −0.521260 0.139671i −0.0114106 0.999935i \(-0.503632\pi\)
−0.509849 + 0.860264i \(0.670299\pi\)
\(858\) 0 0
\(859\) 40.2658 + 23.2474i 1.37385 + 0.793193i 0.991410 0.130788i \(-0.0417506\pi\)
0.382440 + 0.923980i \(0.375084\pi\)
\(860\) 3.17914 7.06350i 0.108408 0.240863i
\(861\) 0 0
\(862\) 4.02628 15.0263i 0.137136 0.511797i
\(863\) −20.7132 20.7132i −0.705085 0.705085i 0.260413 0.965497i \(-0.416141\pi\)
−0.965497 + 0.260413i \(0.916141\pi\)
\(864\) 0 0
\(865\) −28.6969 + 2.89898i −0.975725 + 0.0985683i
\(866\) 16.4722 9.51023i 0.559748 0.323171i
\(867\) 0 0
\(868\) 0.530550 + 1.98004i 0.0180080 + 0.0672069i
\(869\) 0.778539 1.34847i 0.0264101 0.0457437i
\(870\) 0 0
\(871\) 11.4495 + 19.8311i 0.387951 + 0.671951i
\(872\) 3.99624 3.99624i 0.135330 0.135330i
\(873\) 0 0
\(874\) 6.44949i 0.218157i
\(875\) 34.5742 37.4749i 1.16882 1.26688i
\(876\) 0 0
\(877\) −41.3188 + 11.0713i −1.39524 + 0.373852i −0.876632 0.481162i \(-0.840215\pi\)
−0.518604 + 0.855014i \(0.673548\pi\)
\(878\) 28.7826 7.71228i 0.971366 0.260277i
\(879\) 0 0
\(880\) 0.228029 1.40300i 0.00768685 0.0472952i
\(881\) 54.8365i 1.84749i 0.383010 + 0.923744i \(0.374887\pi\)
−0.383010 + 0.923744i \(0.625113\pi\)
\(882\) 0 0
\(883\) 6.27015 6.27015i 0.211007 0.211007i −0.593688 0.804695i \(-0.702329\pi\)
0.804695 + 0.593688i \(0.202329\pi\)
\(884\) 0.778539 + 1.34847i 0.0261851 + 0.0453539i
\(885\) 0 0
\(886\) 2.72474 4.71940i 0.0915396 0.158551i
\(887\) 2.12284 + 7.92256i 0.0712781 + 0.266014i 0.992364 0.123347i \(-0.0393627\pi\)
−0.921085 + 0.389360i \(0.872696\pi\)
\(888\) 0 0
\(889\) 10.4798 6.05051i 0.351481 0.202928i
\(890\) 1.80348 + 17.8526i 0.0604529 + 0.598422i
\(891\) 0 0
\(892\) −18.1237 18.1237i −0.606827 0.606827i
\(893\) −15.0233 + 56.0676i −0.502734 + 1.87623i
\(894\) 0 0
\(895\) −8.46654 22.3253i −0.283005 0.746253i
\(896\) 3.94949 + 2.28024i 0.131943 + 0.0761774i
\(897\) 0 0
\(898\) 0.890008 + 0.238477i 0.0296999 + 0.00795807i
\(899\) 0.142865 0.00476480
\(900\) 0 0
\(901\) 2.40408 0.0800916
\(902\) −4.53689 1.21566i −0.151062 0.0404770i
\(903\) 0 0
\(904\) 5.02118 + 2.89898i 0.167002 + 0.0964186i
\(905\) 12.2498 + 32.3013i 0.407197 + 1.07373i
\(906\) 0 0
\(907\) −0.978838 + 3.65307i −0.0325018 + 0.121298i −0.980271 0.197659i \(-0.936666\pi\)
0.947769 + 0.318957i \(0.103333\pi\)
\(908\) −17.6062 17.6062i −0.584284 0.584284i
\(909\) 0 0
\(910\) −3.55051 35.1464i −0.117698 1.16509i
\(911\) 6.12372 3.53553i 0.202888 0.117137i −0.395114 0.918632i \(-0.629295\pi\)
0.598002 + 0.801495i \(0.295962\pi\)
\(912\) 0 0
\(913\) 0.896575 + 3.34607i 0.0296723 + 0.110739i
\(914\) −7.31747 + 12.6742i −0.242040 + 0.419226i
\(915\) 0 0
\(916\) 0.825765 + 1.43027i 0.0272841 + 0.0472574i
\(917\) 11.6315 11.6315i 0.384107 0.384107i
\(918\) 0 0
\(919\) 12.6515i 0.417335i 0.977987 + 0.208668i \(0.0669127\pi\)
−0.977987 + 0.208668i \(0.933087\pi\)
\(920\) 0.358719 2.20711i 0.0118266 0.0727662i
\(921\) 0 0
\(922\) −31.9256 + 8.55444i −1.05141 + 0.281726i
\(923\) −21.0552 + 5.64173i −0.693041 + 0.185700i
\(924\) 0 0
\(925\) 21.1745 + 1.28138i 0.696212 + 0.0421314i
\(926\) 12.2351i 0.402071i
\(927\) 0 0
\(928\) 0.224745 0.224745i 0.00737761 0.00737761i
\(929\) 21.1024 + 36.5505i 0.692349 + 1.19918i 0.971066 + 0.238810i \(0.0767574\pi\)
−0.278717 + 0.960373i \(0.589909\pi\)
\(930\) 0 0
\(931\) 44.4949 77.0674i 1.45826 2.52578i
\(932\) −5.29272 19.7527i −0.173369 0.647021i
\(933\) 0 0
\(934\) 3.46410 2.00000i 0.113349 0.0654420i
\(935\) −0.635674 + 0.0642162i −0.0207888 + 0.00210009i
\(936\) 0 0
\(937\) −3.10102 3.10102i −0.101306 0.101306i 0.654637 0.755943i \(-0.272821\pi\)
−0.755943 + 0.654637i \(0.772821\pi\)
\(938\) 7.80247 29.1192i 0.254760 0.950776i
\(939\) 0 0
\(940\) 8.25964 18.3515i 0.269400 0.598561i
\(941\) −27.5227 15.8902i −0.897215 0.518007i −0.0209191 0.999781i \(-0.506659\pi\)
−0.876295 + 0.481774i \(0.839993\pi\)
\(942\) 0 0
\(943\) −7.13713 1.91239i −0.232417 0.0622760i
\(944\) −8.97809 −0.292212
\(945\) 0 0
\(946\) 2.20204 0.0715945
\(947\) −2.94164 0.788210i −0.0955904 0.0256134i 0.210707 0.977549i \(-0.432423\pi\)
−0.306297 + 0.951936i \(0.599090\pi\)
\(948\) 0 0
\(949\) −29.2699 16.8990i −0.950141 0.548564i
\(950\) −14.4074 28.8501i −0.467436 0.936020i
\(951\) 0 0
\(952\) 0.530550 1.98004i 0.0171952 0.0641735i
\(953\) −5.79972 5.79972i −0.187871 0.187871i 0.606904 0.794775i \(-0.292411\pi\)
−0.794775 + 0.606904i \(0.792411\pi\)
\(954\) 0 0
\(955\) −30.2474 24.6969i −0.978784 0.799174i
\(956\) −14.6969 + 8.48528i −0.475333 + 0.274434i
\(957\) 0 0
\(958\) −1.83013 6.83013i −0.0591287 0.220671i
\(959\) −49.7046 + 86.0908i −1.60504 + 2.78002i
\(960\) 0 0
\(961\) 15.3990 + 26.6718i 0.496741 + 0.860381i
\(962\) 10.3923 10.3923i 0.335061 0.335061i
\(963\) 0 0
\(964\) 19.0000i 0.611949i
\(965\) −31.4248 + 22.6380i −1.01160 + 0.728744i
\(966\) 0 0
\(967\) 38.6937 10.3679i 1.24431 0.333411i 0.424172 0.905582i \(-0.360565\pi\)
0.820134 + 0.572171i \(0.193899\pi\)
\(968\) −10.2349 + 2.74243i −0.328961 + 0.0881449i
\(969\) 0 0
\(970\) −5.92732 0.963364i −0.190315 0.0309317i
\(971\) 21.4989i 0.689934i −0.938615 0.344967i \(-0.887890\pi\)
0.938615 0.344967i \(-0.112110\pi\)
\(972\) 0 0
\(973\) −10.0000 + 10.0000i −0.320585 + 0.320585i
\(974\) −8.48528 14.6969i −0.271886 0.470920i
\(975\) 0 0
\(976\) −0.275255 + 0.476756i −0.00881070 + 0.0152606i
\(977\) −1.68100 6.27359i −0.0537801 0.200710i 0.933808 0.357773i \(-0.116464\pi\)
−0.987589 + 0.157063i \(0.949797\pi\)
\(978\) 0 0
\(979\) −4.41761 + 2.55051i −0.141188 + 0.0815147i
\(980\) −19.5133 + 23.8988i −0.623328 + 0.763418i
\(981\) 0 0
\(982\) 19.7980 + 19.7980i 0.631778 + 0.631778i
\(983\) 7.04041 26.2752i 0.224554 0.838047i −0.758029 0.652221i \(-0.773837\pi\)
0.982583 0.185826i \(-0.0594961\pi\)
\(984\) 0 0
\(985\) −19.9786 8.99196i −0.636571 0.286508i
\(986\) −0.123724 0.0714323i −0.00394019 0.00227487i
\(987\) 0 0
\(988\) −21.5804 5.78245i −0.686564 0.183964i
\(989\) 3.46410 0.110152
\(990\) 0 0
\(991\) 16.7423 0.531838 0.265919 0.963995i \(-0.414325\pi\)
0.265919 + 0.963995i \(0.414325\pi\)
\(992\) −0.434174 0.116337i −0.0137850 0.00369369i
\(993\) 0 0
\(994\) 24.8523 + 14.3485i 0.788266 + 0.455106i
\(995\) 17.6659 6.69954i 0.560048 0.212390i
\(996\) 0 0
\(997\) −1.73955 + 6.49211i −0.0550922 + 0.205607i −0.987986 0.154545i \(-0.950609\pi\)
0.932893 + 0.360153i \(0.117275\pi\)
\(998\) −0.635674 0.635674i −0.0201219 0.0201219i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.2.m.a.17.2 8
3.2 odd 2 90.2.l.a.77.1 yes 8
5.2 odd 4 1350.2.q.g.1043.1 8
5.3 odd 4 inner 270.2.m.a.233.2 8
5.4 even 2 1350.2.q.g.557.1 8
9.2 odd 6 inner 270.2.m.a.197.2 8
9.4 even 3 810.2.f.b.647.2 8
9.5 odd 6 810.2.f.b.647.3 8
9.7 even 3 90.2.l.a.47.1 yes 8
12.11 even 2 720.2.cu.a.257.1 8
15.2 even 4 450.2.p.a.293.2 8
15.8 even 4 90.2.l.a.23.1 8
15.14 odd 2 450.2.p.a.257.2 8
36.7 odd 6 720.2.cu.a.497.1 8
45.2 even 12 1350.2.q.g.143.1 8
45.7 odd 12 450.2.p.a.443.2 8
45.13 odd 12 810.2.f.b.323.4 8
45.23 even 12 810.2.f.b.323.1 8
45.29 odd 6 1350.2.q.g.1007.1 8
45.34 even 6 450.2.p.a.407.2 8
45.38 even 12 inner 270.2.m.a.143.2 8
45.43 odd 12 90.2.l.a.83.1 yes 8
60.23 odd 4 720.2.cu.a.113.1 8
180.43 even 12 720.2.cu.a.353.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.l.a.23.1 8 15.8 even 4
90.2.l.a.47.1 yes 8 9.7 even 3
90.2.l.a.77.1 yes 8 3.2 odd 2
90.2.l.a.83.1 yes 8 45.43 odd 12
270.2.m.a.17.2 8 1.1 even 1 trivial
270.2.m.a.143.2 8 45.38 even 12 inner
270.2.m.a.197.2 8 9.2 odd 6 inner
270.2.m.a.233.2 8 5.3 odd 4 inner
450.2.p.a.257.2 8 15.14 odd 2
450.2.p.a.293.2 8 15.2 even 4
450.2.p.a.407.2 8 45.34 even 6
450.2.p.a.443.2 8 45.7 odd 12
720.2.cu.a.113.1 8 60.23 odd 4
720.2.cu.a.257.1 8 12.11 even 2
720.2.cu.a.353.1 8 180.43 even 12
720.2.cu.a.497.1 8 36.7 odd 6
810.2.f.b.323.1 8 45.23 even 12
810.2.f.b.323.4 8 45.13 odd 12
810.2.f.b.647.2 8 9.4 even 3
810.2.f.b.647.3 8 9.5 odd 6
1350.2.q.g.143.1 8 45.2 even 12
1350.2.q.g.557.1 8 5.4 even 2
1350.2.q.g.1007.1 8 45.29 odd 6
1350.2.q.g.1043.1 8 5.2 odd 4