Properties

Label 810.2.f.b.647.2
Level $810$
Weight $2$
Character 810.647
Analytic conductor $6.468$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,2,Mod(323,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.323");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.46788256372\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.2
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 810.647
Dual form 810.2.f.b.323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-1.41421 + 1.73205i) q^{5} +(3.22474 + 3.22474i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-0.224745 - 2.22474i) q^{10} +0.635674i q^{11} +(2.44949 - 2.44949i) q^{13} -4.56048 q^{14} -1.00000 q^{16} +(0.317837 - 0.317837i) q^{17} +6.44949i q^{19} +(1.73205 + 1.41421i) q^{20} +(-0.449490 - 0.449490i) q^{22} +(-0.707107 - 0.707107i) q^{23} +(-1.00000 - 4.89898i) q^{25} +3.46410i q^{26} +(3.22474 - 3.22474i) q^{28} +0.317837 q^{29} +0.449490 q^{31} +(0.707107 - 0.707107i) q^{32} +0.449490i q^{34} +(-10.1459 + 1.02494i) q^{35} +(-3.00000 - 3.00000i) q^{37} +(-4.56048 - 4.56048i) q^{38} +(-2.22474 + 0.224745i) q^{40} +7.38891i q^{41} +(-2.44949 + 2.44949i) q^{43} +0.635674 q^{44} +1.00000 q^{46} +(-6.36396 + 6.36396i) q^{47} +13.7980i q^{49} +(4.17121 + 2.75699i) q^{50} +(-2.44949 - 2.44949i) q^{52} +(3.78194 + 3.78194i) q^{53} +(-1.10102 - 0.898979i) q^{55} +4.56048i q^{56} +(-0.224745 + 0.224745i) q^{58} +8.97809 q^{59} -0.550510 q^{61} +(-0.317837 + 0.317837i) q^{62} +1.00000i q^{64} +(0.778539 + 7.70674i) q^{65} +(-4.67423 - 4.67423i) q^{67} +(-0.317837 - 0.317837i) q^{68} +(6.44949 - 7.89898i) q^{70} +6.29253i q^{71} +(-6.89898 + 6.89898i) q^{73} +4.24264 q^{74} +6.44949 q^{76} +(-2.04989 + 2.04989i) q^{77} +2.44949i q^{79} +(1.41421 - 1.73205i) q^{80} +(-5.22474 - 5.22474i) q^{82} +(-3.85337 - 3.85337i) q^{83} +(0.101021 + 1.00000i) q^{85} -3.46410i q^{86} +(-0.449490 + 0.449490i) q^{88} -8.02458 q^{89} +15.7980 q^{91} +(-0.707107 + 0.707107i) q^{92} -9.00000i q^{94} +(-11.1708 - 9.12096i) q^{95} +(1.89898 + 1.89898i) q^{97} +(-9.75663 - 9.75663i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{7} + 8 q^{10} - 8 q^{16} + 16 q^{22} - 8 q^{25} + 16 q^{28} - 16 q^{31} - 24 q^{37} - 8 q^{40} + 8 q^{46} - 48 q^{55} + 8 q^{58} - 24 q^{61} - 8 q^{67} + 32 q^{70} - 16 q^{73} + 32 q^{76} - 32 q^{82}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.41421 + 1.73205i −0.632456 + 0.774597i
\(6\) 0 0
\(7\) 3.22474 + 3.22474i 1.21884 + 1.21884i 0.968039 + 0.250800i \(0.0806937\pi\)
0.250800 + 0.968039i \(0.419306\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) −0.224745 2.22474i −0.0710706 0.703526i
\(11\) 0.635674i 0.191663i 0.995398 + 0.0958315i \(0.0305510\pi\)
−0.995398 + 0.0958315i \(0.969449\pi\)
\(12\) 0 0
\(13\) 2.44949 2.44949i 0.679366 0.679366i −0.280491 0.959857i \(-0.590497\pi\)
0.959857 + 0.280491i \(0.0904971\pi\)
\(14\) −4.56048 −1.21884
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 0.317837 0.317837i 0.0770869 0.0770869i −0.667512 0.744599i \(-0.732641\pi\)
0.744599 + 0.667512i \(0.232641\pi\)
\(18\) 0 0
\(19\) 6.44949i 1.47961i 0.672819 + 0.739807i \(0.265083\pi\)
−0.672819 + 0.739807i \(0.734917\pi\)
\(20\) 1.73205 + 1.41421i 0.387298 + 0.316228i
\(21\) 0 0
\(22\) −0.449490 0.449490i −0.0958315 0.0958315i
\(23\) −0.707107 0.707107i −0.147442 0.147442i 0.629532 0.776974i \(-0.283247\pi\)
−0.776974 + 0.629532i \(0.783247\pi\)
\(24\) 0 0
\(25\) −1.00000 4.89898i −0.200000 0.979796i
\(26\) 3.46410i 0.679366i
\(27\) 0 0
\(28\) 3.22474 3.22474i 0.609419 0.609419i
\(29\) 0.317837 0.0590209 0.0295104 0.999564i \(-0.490605\pi\)
0.0295104 + 0.999564i \(0.490605\pi\)
\(30\) 0 0
\(31\) 0.449490 0.0807307 0.0403654 0.999185i \(-0.487148\pi\)
0.0403654 + 0.999185i \(0.487148\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 0.449490i 0.0770869i
\(35\) −10.1459 + 1.02494i −1.71497 + 0.173247i
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) −4.56048 4.56048i −0.739807 0.739807i
\(39\) 0 0
\(40\) −2.22474 + 0.224745i −0.351763 + 0.0355353i
\(41\) 7.38891i 1.15395i 0.816761 + 0.576977i \(0.195768\pi\)
−0.816761 + 0.576977i \(0.804232\pi\)
\(42\) 0 0
\(43\) −2.44949 + 2.44949i −0.373544 + 0.373544i −0.868766 0.495222i \(-0.835087\pi\)
0.495222 + 0.868766i \(0.335087\pi\)
\(44\) 0.635674 0.0958315
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) −6.36396 + 6.36396i −0.928279 + 0.928279i −0.997595 0.0693157i \(-0.977918\pi\)
0.0693157 + 0.997595i \(0.477918\pi\)
\(48\) 0 0
\(49\) 13.7980i 1.97114i
\(50\) 4.17121 + 2.75699i 0.589898 + 0.389898i
\(51\) 0 0
\(52\) −2.44949 2.44949i −0.339683 0.339683i
\(53\) 3.78194 + 3.78194i 0.519489 + 0.519489i 0.917417 0.397928i \(-0.130270\pi\)
−0.397928 + 0.917417i \(0.630270\pi\)
\(54\) 0 0
\(55\) −1.10102 0.898979i −0.148462 0.121218i
\(56\) 4.56048i 0.609419i
\(57\) 0 0
\(58\) −0.224745 + 0.224745i −0.0295104 + 0.0295104i
\(59\) 8.97809 1.16885 0.584424 0.811448i \(-0.301321\pi\)
0.584424 + 0.811448i \(0.301321\pi\)
\(60\) 0 0
\(61\) −0.550510 −0.0704856 −0.0352428 0.999379i \(-0.511220\pi\)
−0.0352428 + 0.999379i \(0.511220\pi\)
\(62\) −0.317837 + 0.317837i −0.0403654 + 0.0403654i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0.778539 + 7.70674i 0.0965659 + 0.955904i
\(66\) 0 0
\(67\) −4.67423 4.67423i −0.571049 0.571049i 0.361373 0.932421i \(-0.382308\pi\)
−0.932421 + 0.361373i \(0.882308\pi\)
\(68\) −0.317837 0.317837i −0.0385434 0.0385434i
\(69\) 0 0
\(70\) 6.44949 7.89898i 0.770861 0.944109i
\(71\) 6.29253i 0.746786i 0.927673 + 0.373393i \(0.121806\pi\)
−0.927673 + 0.373393i \(0.878194\pi\)
\(72\) 0 0
\(73\) −6.89898 + 6.89898i −0.807464 + 0.807464i −0.984249 0.176785i \(-0.943430\pi\)
0.176785 + 0.984249i \(0.443430\pi\)
\(74\) 4.24264 0.493197
\(75\) 0 0
\(76\) 6.44949 0.739807
\(77\) −2.04989 + 2.04989i −0.233606 + 0.233606i
\(78\) 0 0
\(79\) 2.44949i 0.275589i 0.990461 + 0.137795i \(0.0440014\pi\)
−0.990461 + 0.137795i \(0.955999\pi\)
\(80\) 1.41421 1.73205i 0.158114 0.193649i
\(81\) 0 0
\(82\) −5.22474 5.22474i −0.576977 0.576977i
\(83\) −3.85337 3.85337i −0.422962 0.422962i 0.463260 0.886222i \(-0.346680\pi\)
−0.886222 + 0.463260i \(0.846680\pi\)
\(84\) 0 0
\(85\) 0.101021 + 1.00000i 0.0109572 + 0.108465i
\(86\) 3.46410i 0.373544i
\(87\) 0 0
\(88\) −0.449490 + 0.449490i −0.0479158 + 0.0479158i
\(89\) −8.02458 −0.850604 −0.425302 0.905052i \(-0.639832\pi\)
−0.425302 + 0.905052i \(0.639832\pi\)
\(90\) 0 0
\(91\) 15.7980 1.65608
\(92\) −0.707107 + 0.707107i −0.0737210 + 0.0737210i
\(93\) 0 0
\(94\) 9.00000i 0.928279i
\(95\) −11.1708 9.12096i −1.14610 0.935790i
\(96\) 0 0
\(97\) 1.89898 + 1.89898i 0.192812 + 0.192812i 0.796910 0.604098i \(-0.206466\pi\)
−0.604098 + 0.796910i \(0.706466\pi\)
\(98\) −9.75663 9.75663i −0.985568 0.985568i
\(99\) 0 0
\(100\) −4.89898 + 1.00000i −0.489898 + 0.100000i
\(101\) 12.5851i 1.25226i −0.779719 0.626130i \(-0.784638\pi\)
0.779719 0.626130i \(-0.215362\pi\)
\(102\) 0 0
\(103\) −6.89898 + 6.89898i −0.679777 + 0.679777i −0.959950 0.280173i \(-0.909608\pi\)
0.280173 + 0.959950i \(0.409608\pi\)
\(104\) 3.46410 0.339683
\(105\) 0 0
\(106\) −5.34847 −0.519489
\(107\) 13.6100 13.6100i 1.31573 1.31573i 0.398606 0.917122i \(-0.369494\pi\)
0.917122 0.398606i \(-0.130506\pi\)
\(108\) 0 0
\(109\) 5.65153i 0.541318i −0.962675 0.270659i \(-0.912758\pi\)
0.962675 0.270659i \(-0.0872417\pi\)
\(110\) 1.41421 0.142865i 0.134840 0.0136216i
\(111\) 0 0
\(112\) −3.22474 3.22474i −0.304710 0.304710i
\(113\) −4.09978 4.09978i −0.385674 0.385674i 0.487467 0.873141i \(-0.337921\pi\)
−0.873141 + 0.487467i \(0.837921\pi\)
\(114\) 0 0
\(115\) 2.22474 0.224745i 0.207459 0.0209576i
\(116\) 0.317837i 0.0295104i
\(117\) 0 0
\(118\) −6.34847 + 6.34847i −0.584424 + 0.584424i
\(119\) 2.04989 0.187913
\(120\) 0 0
\(121\) 10.5959 0.963265
\(122\) 0.389270 0.389270i 0.0352428 0.0352428i
\(123\) 0 0
\(124\) 0.449490i 0.0403654i
\(125\) 9.89949 + 5.19615i 0.885438 + 0.464758i
\(126\) 0 0
\(127\) 1.87628 + 1.87628i 0.166493 + 0.166493i 0.785436 0.618943i \(-0.212439\pi\)
−0.618943 + 0.785436i \(0.712439\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) −6.00000 4.89898i −0.526235 0.429669i
\(131\) 3.60697i 0.315142i −0.987508 0.157571i \(-0.949634\pi\)
0.987508 0.157571i \(-0.0503663\pi\)
\(132\) 0 0
\(133\) −20.7980 + 20.7980i −1.80341 + 1.80341i
\(134\) 6.61037 0.571049
\(135\) 0 0
\(136\) 0.449490 0.0385434
\(137\) 15.4135 15.4135i 1.31686 1.31686i 0.400617 0.916245i \(-0.368796\pi\)
0.916245 0.400617i \(-0.131204\pi\)
\(138\) 0 0
\(139\) 3.10102i 0.263025i 0.991315 + 0.131513i \(0.0419834\pi\)
−0.991315 + 0.131513i \(0.958017\pi\)
\(140\) 1.02494 + 10.1459i 0.0866236 + 0.857485i
\(141\) 0 0
\(142\) −4.44949 4.44949i −0.373393 0.373393i
\(143\) 1.55708 + 1.55708i 0.130209 + 0.130209i
\(144\) 0 0
\(145\) −0.449490 + 0.550510i −0.0373281 + 0.0457174i
\(146\) 9.75663i 0.807464i
\(147\) 0 0
\(148\) −3.00000 + 3.00000i −0.246598 + 0.246598i
\(149\) −4.41761 −0.361905 −0.180952 0.983492i \(-0.557918\pi\)
−0.180952 + 0.983492i \(0.557918\pi\)
\(150\) 0 0
\(151\) 17.5959 1.43194 0.715968 0.698133i \(-0.245986\pi\)
0.715968 + 0.698133i \(0.245986\pi\)
\(152\) −4.56048 + 4.56048i −0.369904 + 0.369904i
\(153\) 0 0
\(154\) 2.89898i 0.233606i
\(155\) −0.635674 + 0.778539i −0.0510586 + 0.0625338i
\(156\) 0 0
\(157\) −10.3485 10.3485i −0.825898 0.825898i 0.161049 0.986946i \(-0.448512\pi\)
−0.986946 + 0.161049i \(0.948512\pi\)
\(158\) −1.73205 1.73205i −0.137795 0.137795i
\(159\) 0 0
\(160\) 0.224745 + 2.22474i 0.0177676 + 0.175882i
\(161\) 4.56048i 0.359416i
\(162\) 0 0
\(163\) 4.44949 4.44949i 0.348511 0.348511i −0.511044 0.859555i \(-0.670741\pi\)
0.859555 + 0.511044i \(0.170741\pi\)
\(164\) 7.38891 0.576977
\(165\) 0 0
\(166\) 5.44949 0.422962
\(167\) 6.22110 6.22110i 0.481403 0.481403i −0.424177 0.905579i \(-0.639436\pi\)
0.905579 + 0.424177i \(0.139436\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) −0.778539 0.635674i −0.0597112 0.0487540i
\(171\) 0 0
\(172\) 2.44949 + 2.44949i 0.186772 + 0.186772i
\(173\) 9.12096 + 9.12096i 0.693453 + 0.693453i 0.962990 0.269537i \(-0.0868705\pi\)
−0.269537 + 0.962990i \(0.586871\pi\)
\(174\) 0 0
\(175\) 12.5732 19.0227i 0.950446 1.43798i
\(176\) 0.635674i 0.0479158i
\(177\) 0 0
\(178\) 5.67423 5.67423i 0.425302 0.425302i
\(179\) 10.6780 0.798114 0.399057 0.916926i \(-0.369338\pi\)
0.399057 + 0.916926i \(0.369338\pi\)
\(180\) 0 0
\(181\) −15.4495 −1.14835 −0.574176 0.818732i \(-0.694677\pi\)
−0.574176 + 0.818732i \(0.694677\pi\)
\(182\) −11.1708 + 11.1708i −0.828038 + 0.828038i
\(183\) 0 0
\(184\) 1.00000i 0.0737210i
\(185\) 9.43879 0.953512i 0.693954 0.0701036i
\(186\) 0 0
\(187\) 0.202041 + 0.202041i 0.0147747 + 0.0147747i
\(188\) 6.36396 + 6.36396i 0.464140 + 0.464140i
\(189\) 0 0
\(190\) 14.3485 1.44949i 1.04095 0.105157i
\(191\) 17.4634i 1.26361i 0.775129 + 0.631803i \(0.217685\pi\)
−0.775129 + 0.631803i \(0.782315\pi\)
\(192\) 0 0
\(193\) −12.2474 + 12.2474i −0.881591 + 0.881591i −0.993696 0.112106i \(-0.964240\pi\)
0.112106 + 0.993696i \(0.464240\pi\)
\(194\) −2.68556 −0.192812
\(195\) 0 0
\(196\) 13.7980 0.985568
\(197\) 6.92820 6.92820i 0.493614 0.493614i −0.415829 0.909443i \(-0.636508\pi\)
0.909443 + 0.415829i \(0.136508\pi\)
\(198\) 0 0
\(199\) 8.44949i 0.598968i 0.954101 + 0.299484i \(0.0968146\pi\)
−0.954101 + 0.299484i \(0.903185\pi\)
\(200\) 2.75699 4.17121i 0.194949 0.294949i
\(201\) 0 0
\(202\) 8.89898 + 8.89898i 0.626130 + 0.626130i
\(203\) 1.02494 + 1.02494i 0.0719370 + 0.0719370i
\(204\) 0 0
\(205\) −12.7980 10.4495i −0.893848 0.729824i
\(206\) 9.75663i 0.679777i
\(207\) 0 0
\(208\) −2.44949 + 2.44949i −0.169842 + 0.169842i
\(209\) −4.09978 −0.283587
\(210\) 0 0
\(211\) 9.10102 0.626540 0.313270 0.949664i \(-0.398576\pi\)
0.313270 + 0.949664i \(0.398576\pi\)
\(212\) 3.78194 3.78194i 0.259745 0.259745i
\(213\) 0 0
\(214\) 19.2474i 1.31573i
\(215\) −0.778539 7.70674i −0.0530959 0.525595i
\(216\) 0 0
\(217\) 1.44949 + 1.44949i 0.0983978 + 0.0983978i
\(218\) 3.99624 + 3.99624i 0.270659 + 0.270659i
\(219\) 0 0
\(220\) −0.898979 + 1.10102i −0.0606092 + 0.0742308i
\(221\) 1.55708i 0.104740i
\(222\) 0 0
\(223\) 18.1237 18.1237i 1.21365 1.21365i 0.243838 0.969816i \(-0.421593\pi\)
0.969816 0.243838i \(-0.0784067\pi\)
\(224\) 4.56048 0.304710
\(225\) 0 0
\(226\) 5.79796 0.385674
\(227\) 17.6062 17.6062i 1.16857 1.16857i 0.186021 0.982546i \(-0.440441\pi\)
0.982546 0.186021i \(-0.0595593\pi\)
\(228\) 0 0
\(229\) 1.65153i 0.109136i −0.998510 0.0545681i \(-0.982622\pi\)
0.998510 0.0545681i \(-0.0173782\pi\)
\(230\) −1.41421 + 1.73205i −0.0932505 + 0.114208i
\(231\) 0 0
\(232\) 0.224745 + 0.224745i 0.0147552 + 0.0147552i
\(233\) −14.4600 14.4600i −0.947304 0.947304i 0.0513751 0.998679i \(-0.483640\pi\)
−0.998679 + 0.0513751i \(0.983640\pi\)
\(234\) 0 0
\(235\) −2.02270 20.0227i −0.131947 1.30614i
\(236\) 8.97809i 0.584424i
\(237\) 0 0
\(238\) −1.44949 + 1.44949i −0.0939565 + 0.0939565i
\(239\) 16.9706 1.09773 0.548867 0.835910i \(-0.315059\pi\)
0.548867 + 0.835910i \(0.315059\pi\)
\(240\) 0 0
\(241\) 19.0000 1.22390 0.611949 0.790897i \(-0.290386\pi\)
0.611949 + 0.790897i \(0.290386\pi\)
\(242\) −7.49245 + 7.49245i −0.481633 + 0.481633i
\(243\) 0 0
\(244\) 0.550510i 0.0352428i
\(245\) −23.8988 19.5133i −1.52684 1.24666i
\(246\) 0 0
\(247\) 15.7980 + 15.7980i 1.00520 + 1.00520i
\(248\) 0.317837 + 0.317837i 0.0201827 + 0.0201827i
\(249\) 0 0
\(250\) −10.6742 + 3.32577i −0.675098 + 0.210340i
\(251\) 2.68556i 0.169511i 0.996402 + 0.0847556i \(0.0270110\pi\)
−0.996402 + 0.0847556i \(0.972989\pi\)
\(252\) 0 0
\(253\) 0.449490 0.449490i 0.0282592 0.0282592i
\(254\) −2.65345 −0.166493
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.7600 12.7600i 0.795949 0.795949i −0.186505 0.982454i \(-0.559716\pi\)
0.982454 + 0.186505i \(0.0597161\pi\)
\(258\) 0 0
\(259\) 19.3485i 1.20226i
\(260\) 7.70674 0.778539i 0.477952 0.0482829i
\(261\) 0 0
\(262\) 2.55051 + 2.55051i 0.157571 + 0.157571i
\(263\) −11.8065 11.8065i −0.728021 0.728021i 0.242204 0.970225i \(-0.422130\pi\)
−0.970225 + 0.242204i \(0.922130\pi\)
\(264\) 0 0
\(265\) −11.8990 + 1.20204i −0.730948 + 0.0738408i
\(266\) 29.4128i 1.80341i
\(267\) 0 0
\(268\) −4.67423 + 4.67423i −0.285524 + 0.285524i
\(269\) −15.0956 −0.920398 −0.460199 0.887816i \(-0.652222\pi\)
−0.460199 + 0.887816i \(0.652222\pi\)
\(270\) 0 0
\(271\) 28.0454 1.70364 0.851819 0.523837i \(-0.175500\pi\)
0.851819 + 0.523837i \(0.175500\pi\)
\(272\) −0.317837 + 0.317837i −0.0192717 + 0.0192717i
\(273\) 0 0
\(274\) 21.7980i 1.31686i
\(275\) 3.11416 0.635674i 0.187791 0.0383326i
\(276\) 0 0
\(277\) −19.8990 19.8990i −1.19561 1.19561i −0.975467 0.220147i \(-0.929346\pi\)
−0.220147 0.975467i \(-0.570654\pi\)
\(278\) −2.19275 2.19275i −0.131513 0.131513i
\(279\) 0 0
\(280\) −7.89898 6.44949i −0.472054 0.385431i
\(281\) 17.1455i 1.02282i 0.859338 + 0.511408i \(0.170876\pi\)
−0.859338 + 0.511408i \(0.829124\pi\)
\(282\) 0 0
\(283\) 17.1237 17.1237i 1.01790 1.01790i 0.0180629 0.999837i \(-0.494250\pi\)
0.999837 0.0180629i \(-0.00574991\pi\)
\(284\) 6.29253 0.373393
\(285\) 0 0
\(286\) −2.20204 −0.130209
\(287\) −23.8273 + 23.8273i −1.40648 + 1.40648i
\(288\) 0 0
\(289\) 16.7980i 0.988115i
\(290\) −0.0714323 0.707107i −0.00419465 0.0415227i
\(291\) 0 0
\(292\) 6.89898 + 6.89898i 0.403732 + 0.403732i
\(293\) 15.5885 + 15.5885i 0.910687 + 0.910687i 0.996326 0.0856388i \(-0.0272931\pi\)
−0.0856388 + 0.996326i \(0.527293\pi\)
\(294\) 0 0
\(295\) −12.6969 + 15.5505i −0.739244 + 0.905386i
\(296\) 4.24264i 0.246598i
\(297\) 0 0
\(298\) 3.12372 3.12372i 0.180952 0.180952i
\(299\) −3.46410 −0.200334
\(300\) 0 0
\(301\) −15.7980 −0.910579
\(302\) −12.4422 + 12.4422i −0.715968 + 0.715968i
\(303\) 0 0
\(304\) 6.44949i 0.369904i
\(305\) 0.778539 0.953512i 0.0445790 0.0545979i
\(306\) 0 0
\(307\) −6.67423 6.67423i −0.380919 0.380919i 0.490514 0.871433i \(-0.336809\pi\)
−0.871433 + 0.490514i \(0.836809\pi\)
\(308\) 2.04989 + 2.04989i 0.116803 + 0.116803i
\(309\) 0 0
\(310\) −0.101021 1.00000i −0.00573758 0.0567962i
\(311\) 27.5057i 1.55971i 0.625962 + 0.779853i \(0.284706\pi\)
−0.625962 + 0.779853i \(0.715294\pi\)
\(312\) 0 0
\(313\) 8.44949 8.44949i 0.477593 0.477593i −0.426768 0.904361i \(-0.640348\pi\)
0.904361 + 0.426768i \(0.140348\pi\)
\(314\) 14.6349 0.825898
\(315\) 0 0
\(316\) 2.44949 0.137795
\(317\) −7.70674 + 7.70674i −0.432854 + 0.432854i −0.889598 0.456744i \(-0.849015\pi\)
0.456744 + 0.889598i \(0.349015\pi\)
\(318\) 0 0
\(319\) 0.202041i 0.0113121i
\(320\) −1.73205 1.41421i −0.0968246 0.0790569i
\(321\) 0 0
\(322\) 3.22474 + 3.22474i 0.179708 + 0.179708i
\(323\) 2.04989 + 2.04989i 0.114059 + 0.114059i
\(324\) 0 0
\(325\) −14.4495 9.55051i −0.801513 0.529767i
\(326\) 6.29253i 0.348511i
\(327\) 0 0
\(328\) −5.22474 + 5.22474i −0.288488 + 0.288488i
\(329\) −41.0443 −2.26285
\(330\) 0 0
\(331\) 0.449490 0.0247062 0.0123531 0.999924i \(-0.496068\pi\)
0.0123531 + 0.999924i \(0.496068\pi\)
\(332\) −3.85337 + 3.85337i −0.211481 + 0.211481i
\(333\) 0 0
\(334\) 8.79796i 0.481403i
\(335\) 14.7064 1.48565i 0.803495 0.0811695i
\(336\) 0 0
\(337\) −2.20204 2.20204i −0.119953 0.119953i 0.644582 0.764535i \(-0.277031\pi\)
−0.764535 + 0.644582i \(0.777031\pi\)
\(338\) −0.707107 0.707107i −0.0384615 0.0384615i
\(339\) 0 0
\(340\) 1.00000 0.101021i 0.0542326 0.00547861i
\(341\) 0.285729i 0.0154731i
\(342\) 0 0
\(343\) −21.9217 + 21.9217i −1.18366 + 1.18366i
\(344\) −3.46410 −0.186772
\(345\) 0 0
\(346\) −12.8990 −0.693453
\(347\) −16.8277 + 16.8277i −0.903358 + 0.903358i −0.995725 0.0923669i \(-0.970557\pi\)
0.0923669 + 0.995725i \(0.470557\pi\)
\(348\) 0 0
\(349\) 29.0454i 1.55477i 0.629028 + 0.777383i \(0.283453\pi\)
−0.629028 + 0.777383i \(0.716547\pi\)
\(350\) 4.56048 + 22.3417i 0.243768 + 1.19421i
\(351\) 0 0
\(352\) 0.449490 + 0.449490i 0.0239579 + 0.0239579i
\(353\) 24.2487 + 24.2487i 1.29063 + 1.29063i 0.934398 + 0.356231i \(0.115938\pi\)
0.356231 + 0.934398i \(0.384062\pi\)
\(354\) 0 0
\(355\) −10.8990 8.89898i −0.578458 0.472309i
\(356\) 8.02458i 0.425302i
\(357\) 0 0
\(358\) −7.55051 + 7.55051i −0.399057 + 0.399057i
\(359\) 3.32124 0.175288 0.0876441 0.996152i \(-0.472066\pi\)
0.0876441 + 0.996152i \(0.472066\pi\)
\(360\) 0 0
\(361\) −22.5959 −1.18926
\(362\) 10.9244 10.9244i 0.574176 0.574176i
\(363\) 0 0
\(364\) 15.7980i 0.828038i
\(365\) −2.19275 21.7060i −0.114774 1.13614i
\(366\) 0 0
\(367\) −2.89898 2.89898i −0.151325 0.151325i 0.627384 0.778710i \(-0.284126\pi\)
−0.778710 + 0.627384i \(0.784126\pi\)
\(368\) 0.707107 + 0.707107i 0.0368605 + 0.0368605i
\(369\) 0 0
\(370\) −6.00000 + 7.34847i −0.311925 + 0.382029i
\(371\) 24.3916i 1.26635i
\(372\) 0 0
\(373\) −0.348469 + 0.348469i −0.0180431 + 0.0180431i −0.716071 0.698028i \(-0.754061\pi\)
0.698028 + 0.716071i \(0.254061\pi\)
\(374\) −0.285729 −0.0147747
\(375\) 0 0
\(376\) −9.00000 −0.464140
\(377\) 0.778539 0.778539i 0.0400968 0.0400968i
\(378\) 0 0
\(379\) 21.3485i 1.09660i −0.836283 0.548299i \(-0.815276\pi\)
0.836283 0.548299i \(-0.184724\pi\)
\(380\) −9.12096 + 11.1708i −0.467895 + 0.573052i
\(381\) 0 0
\(382\) −12.3485 12.3485i −0.631803 0.631803i
\(383\) −5.79972 5.79972i −0.296352 0.296352i 0.543231 0.839583i \(-0.317201\pi\)
−0.839583 + 0.543231i \(0.817201\pi\)
\(384\) 0 0
\(385\) −0.651531 6.44949i −0.0332051 0.328696i
\(386\) 17.3205i 0.881591i
\(387\) 0 0
\(388\) 1.89898 1.89898i 0.0964061 0.0964061i
\(389\) −36.8017 −1.86592 −0.932959 0.359982i \(-0.882783\pi\)
−0.932959 + 0.359982i \(0.882783\pi\)
\(390\) 0 0
\(391\) −0.449490 −0.0227317
\(392\) −9.75663 + 9.75663i −0.492784 + 0.492784i
\(393\) 0 0
\(394\) 9.79796i 0.493614i
\(395\) −4.24264 3.46410i −0.213470 0.174298i
\(396\) 0 0
\(397\) 10.5505 + 10.5505i 0.529515 + 0.529515i 0.920428 0.390913i \(-0.127841\pi\)
−0.390913 + 0.920428i \(0.627841\pi\)
\(398\) −5.97469 5.97469i −0.299484 0.299484i
\(399\) 0 0
\(400\) 1.00000 + 4.89898i 0.0500000 + 0.244949i
\(401\) 8.83523i 0.441210i 0.975363 + 0.220605i \(0.0708032\pi\)
−0.975363 + 0.220605i \(0.929197\pi\)
\(402\) 0 0
\(403\) 1.10102 1.10102i 0.0548457 0.0548457i
\(404\) −12.5851 −0.626130
\(405\) 0 0
\(406\) −1.44949 −0.0719370
\(407\) 1.90702 1.90702i 0.0945276 0.0945276i
\(408\) 0 0
\(409\) 28.8990i 1.42896i −0.699655 0.714481i \(-0.746663\pi\)
0.699655 0.714481i \(-0.253337\pi\)
\(410\) 16.4384 1.66062i 0.811836 0.0820121i
\(411\) 0 0
\(412\) 6.89898 + 6.89898i 0.339888 + 0.339888i
\(413\) 28.9521 + 28.9521i 1.42464 + 1.42464i
\(414\) 0 0
\(415\) 12.1237 1.22474i 0.595130 0.0601204i
\(416\) 3.46410i 0.169842i
\(417\) 0 0
\(418\) 2.89898 2.89898i 0.141794 0.141794i
\(419\) −5.02118 −0.245301 −0.122650 0.992450i \(-0.539139\pi\)
−0.122650 + 0.992450i \(0.539139\pi\)
\(420\) 0 0
\(421\) −5.10102 −0.248609 −0.124304 0.992244i \(-0.539670\pi\)
−0.124304 + 0.992244i \(0.539670\pi\)
\(422\) −6.43539 + 6.43539i −0.313270 + 0.313270i
\(423\) 0 0
\(424\) 5.34847i 0.259745i
\(425\) −1.87492 1.23924i −0.0909468 0.0601120i
\(426\) 0 0
\(427\) −1.77526 1.77526i −0.0859106 0.0859106i
\(428\) −13.6100 13.6100i −0.657864 0.657864i
\(429\) 0 0
\(430\) 6.00000 + 4.89898i 0.289346 + 0.236250i
\(431\) 15.5563i 0.749323i −0.927162 0.374661i \(-0.877759\pi\)
0.927162 0.374661i \(-0.122241\pi\)
\(432\) 0 0
\(433\) 13.4495 13.4495i 0.646341 0.646341i −0.305766 0.952107i \(-0.598912\pi\)
0.952107 + 0.305766i \(0.0989124\pi\)
\(434\) −2.04989 −0.0983978
\(435\) 0 0
\(436\) −5.65153 −0.270659
\(437\) 4.56048 4.56048i 0.218157 0.218157i
\(438\) 0 0
\(439\) 29.7980i 1.42218i 0.703102 + 0.711089i \(0.251798\pi\)
−0.703102 + 0.711089i \(0.748202\pi\)
\(440\) −0.142865 1.41421i −0.00681080 0.0674200i
\(441\) 0 0
\(442\) 1.10102 + 1.10102i 0.0523702 + 0.0523702i
\(443\) 3.85337 + 3.85337i 0.183079 + 0.183079i 0.792696 0.609617i \(-0.208677\pi\)
−0.609617 + 0.792696i \(0.708677\pi\)
\(444\) 0 0
\(445\) 11.3485 13.8990i 0.537969 0.658875i
\(446\) 25.6308i 1.21365i
\(447\) 0 0
\(448\) −3.22474 + 3.22474i −0.152355 + 0.152355i
\(449\) 0.921404 0.0434837 0.0217419 0.999764i \(-0.493079\pi\)
0.0217419 + 0.999764i \(0.493079\pi\)
\(450\) 0 0
\(451\) −4.69694 −0.221170
\(452\) −4.09978 + 4.09978i −0.192837 + 0.192837i
\(453\) 0 0
\(454\) 24.8990i 1.16857i
\(455\) −22.3417 + 27.3629i −1.04739 + 1.28279i
\(456\) 0 0
\(457\) −10.3485 10.3485i −0.484081 0.484081i 0.422351 0.906432i \(-0.361205\pi\)
−0.906432 + 0.422351i \(0.861205\pi\)
\(458\) 1.16781 + 1.16781i 0.0545681 + 0.0545681i
\(459\) 0 0
\(460\) −0.224745 2.22474i −0.0104788 0.103729i
\(461\) 33.0518i 1.53938i −0.638420 0.769689i \(-0.720411\pi\)
0.638420 0.769689i \(-0.279589\pi\)
\(462\) 0 0
\(463\) −8.65153 + 8.65153i −0.402071 + 0.402071i −0.878962 0.476891i \(-0.841763\pi\)
0.476891 + 0.878962i \(0.341763\pi\)
\(464\) −0.317837 −0.0147552
\(465\) 0 0
\(466\) 20.4495 0.947304
\(467\) 2.82843 2.82843i 0.130884 0.130884i −0.638630 0.769514i \(-0.720499\pi\)
0.769514 + 0.638630i \(0.220499\pi\)
\(468\) 0 0
\(469\) 30.1464i 1.39203i
\(470\) 15.5885 + 12.7279i 0.719042 + 0.587095i
\(471\) 0 0
\(472\) 6.34847 + 6.34847i 0.292212 + 0.292212i
\(473\) −1.55708 1.55708i −0.0715945 0.0715945i
\(474\) 0 0
\(475\) 31.5959 6.44949i 1.44972 0.295923i
\(476\) 2.04989i 0.0939565i
\(477\) 0 0
\(478\) −12.0000 + 12.0000i −0.548867 + 0.548867i
\(479\) 7.07107 0.323085 0.161543 0.986866i \(-0.448353\pi\)
0.161543 + 0.986866i \(0.448353\pi\)
\(480\) 0 0
\(481\) −14.6969 −0.670123
\(482\) −13.4350 + 13.4350i −0.611949 + 0.611949i
\(483\) 0 0
\(484\) 10.5959i 0.481633i
\(485\) −5.97469 + 0.603566i −0.271297 + 0.0274065i
\(486\) 0 0
\(487\) −12.0000 12.0000i −0.543772 0.543772i 0.380861 0.924632i \(-0.375628\pi\)
−0.924632 + 0.380861i \(0.875628\pi\)
\(488\) −0.389270 0.389270i −0.0176214 0.0176214i
\(489\) 0 0
\(490\) 30.6969 3.10102i 1.38675 0.140090i
\(491\) 27.9985i 1.26356i −0.775149 0.631778i \(-0.782325\pi\)
0.775149 0.631778i \(-0.217675\pi\)
\(492\) 0 0
\(493\) 0.101021 0.101021i 0.00454974 0.00454974i
\(494\) −22.3417 −1.00520
\(495\) 0 0
\(496\) −0.449490 −0.0201827
\(497\) −20.2918 + 20.2918i −0.910212 + 0.910212i
\(498\) 0 0
\(499\) 0.898979i 0.0402438i 0.999798 + 0.0201219i \(0.00640544\pi\)
−0.999798 + 0.0201219i \(0.993595\pi\)
\(500\) 5.19615 9.89949i 0.232379 0.442719i
\(501\) 0 0
\(502\) −1.89898 1.89898i −0.0847556 0.0847556i
\(503\) 4.02834 + 4.02834i 0.179615 + 0.179615i 0.791188 0.611573i \(-0.209463\pi\)
−0.611573 + 0.791188i \(0.709463\pi\)
\(504\) 0 0
\(505\) 21.7980 + 17.7980i 0.969996 + 0.791999i
\(506\) 0.635674i 0.0282592i
\(507\) 0 0
\(508\) 1.87628 1.87628i 0.0832463 0.0832463i
\(509\) 8.45317 0.374680 0.187340 0.982295i \(-0.440013\pi\)
0.187340 + 0.982295i \(0.440013\pi\)
\(510\) 0 0
\(511\) −44.4949 −1.96834
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 18.0454i 0.795949i
\(515\) −2.19275 21.7060i −0.0966242 0.956481i
\(516\) 0 0
\(517\) −4.04541 4.04541i −0.177917 0.177917i
\(518\) 13.6814 + 13.6814i 0.601128 + 0.601128i
\(519\) 0 0
\(520\) −4.89898 + 6.00000i −0.214834 + 0.263117i
\(521\) 29.4449i 1.29000i 0.764181 + 0.645001i \(0.223143\pi\)
−0.764181 + 0.645001i \(0.776857\pi\)
\(522\) 0 0
\(523\) 4.22474 4.22474i 0.184735 0.184735i −0.608680 0.793416i \(-0.708301\pi\)
0.793416 + 0.608680i \(0.208301\pi\)
\(524\) −3.60697 −0.157571
\(525\) 0 0
\(526\) 16.6969 0.728021
\(527\) 0.142865 0.142865i 0.00622328 0.00622328i
\(528\) 0 0
\(529\) 22.0000i 0.956522i
\(530\) 7.56388 9.26382i 0.328554 0.402395i
\(531\) 0 0
\(532\) 20.7980 + 20.7980i 0.901706 + 0.901706i
\(533\) 18.0990 + 18.0990i 0.783957 + 0.783957i
\(534\) 0 0
\(535\) 4.32577 + 42.8207i 0.187019 + 1.85130i
\(536\) 6.61037i 0.285524i
\(537\) 0 0
\(538\) 10.6742 10.6742i 0.460199 0.460199i
\(539\) −8.77101 −0.377794
\(540\) 0 0
\(541\) 27.9444 1.20142 0.600712 0.799466i \(-0.294884\pi\)
0.600712 + 0.799466i \(0.294884\pi\)
\(542\) −19.8311 + 19.8311i −0.851819 + 0.851819i
\(543\) 0 0
\(544\) 0.449490i 0.0192717i
\(545\) 9.78874 + 7.99247i 0.419303 + 0.342360i
\(546\) 0 0
\(547\) −2.87628 2.87628i −0.122981 0.122981i 0.642938 0.765918i \(-0.277715\pi\)
−0.765918 + 0.642938i \(0.777715\pi\)
\(548\) −15.4135 15.4135i −0.658431 0.658431i
\(549\) 0 0
\(550\) −1.75255 + 2.65153i −0.0747290 + 0.113062i
\(551\) 2.04989i 0.0873282i
\(552\) 0 0
\(553\) −7.89898 + 7.89898i −0.335899 + 0.335899i
\(554\) 28.1414 1.19561
\(555\) 0 0
\(556\) 3.10102 0.131513
\(557\) −7.88171 + 7.88171i −0.333959 + 0.333959i −0.854088 0.520129i \(-0.825884\pi\)
0.520129 + 0.854088i \(0.325884\pi\)
\(558\) 0 0
\(559\) 12.0000i 0.507546i
\(560\) 10.1459 1.02494i 0.428743 0.0433118i
\(561\) 0 0
\(562\) −12.1237 12.1237i −0.511408 0.511408i
\(563\) 13.8957 + 13.8957i 0.585635 + 0.585635i 0.936446 0.350811i \(-0.114094\pi\)
−0.350811 + 0.936446i \(0.614094\pi\)
\(564\) 0 0
\(565\) 12.8990 1.30306i 0.542664 0.0548202i
\(566\) 24.2166i 1.01790i
\(567\) 0 0
\(568\) −4.44949 + 4.44949i −0.186696 + 0.186696i
\(569\) 19.1633 0.803368 0.401684 0.915778i \(-0.368425\pi\)
0.401684 + 0.915778i \(0.368425\pi\)
\(570\) 0 0
\(571\) 36.8990 1.54417 0.772087 0.635517i \(-0.219213\pi\)
0.772087 + 0.635517i \(0.219213\pi\)
\(572\) 1.55708 1.55708i 0.0651047 0.0651047i
\(573\) 0 0
\(574\) 33.6969i 1.40648i
\(575\) −2.75699 + 4.17121i −0.114975 + 0.173951i
\(576\) 0 0
\(577\) −17.0000 17.0000i −0.707719 0.707719i 0.258336 0.966055i \(-0.416826\pi\)
−0.966055 + 0.258336i \(0.916826\pi\)
\(578\) −11.8780 11.8780i −0.494058 0.494058i
\(579\) 0 0
\(580\) 0.550510 + 0.449490i 0.0228587 + 0.0186640i
\(581\) 24.8523i 1.03105i
\(582\) 0 0
\(583\) −2.40408 + 2.40408i −0.0995669 + 0.0995669i
\(584\) −9.75663 −0.403732
\(585\) 0 0
\(586\) −22.0454 −0.910687
\(587\) 9.22450 9.22450i 0.380736 0.380736i −0.490631 0.871367i \(-0.663234\pi\)
0.871367 + 0.490631i \(0.163234\pi\)
\(588\) 0 0
\(589\) 2.89898i 0.119450i
\(590\) −2.01778 19.9740i −0.0830707 0.822315i
\(591\) 0 0
\(592\) 3.00000 + 3.00000i 0.123299 + 0.123299i
\(593\) −7.24604 7.24604i −0.297559 0.297559i 0.542498 0.840057i \(-0.317479\pi\)
−0.840057 + 0.542498i \(0.817479\pi\)
\(594\) 0 0
\(595\) −2.89898 + 3.55051i −0.118847 + 0.145557i
\(596\) 4.41761i 0.180952i
\(597\) 0 0
\(598\) 2.44949 2.44949i 0.100167 0.100167i
\(599\) −19.9419 −0.814802 −0.407401 0.913249i \(-0.633565\pi\)
−0.407401 + 0.913249i \(0.633565\pi\)
\(600\) 0 0
\(601\) 5.30306 0.216316 0.108158 0.994134i \(-0.465505\pi\)
0.108158 + 0.994134i \(0.465505\pi\)
\(602\) 11.1708 11.1708i 0.455290 0.455290i
\(603\) 0 0
\(604\) 17.5959i 0.715968i
\(605\) −14.9849 + 18.3527i −0.609222 + 0.746142i
\(606\) 0 0
\(607\) 8.32577 + 8.32577i 0.337932 + 0.337932i 0.855589 0.517656i \(-0.173195\pi\)
−0.517656 + 0.855589i \(0.673195\pi\)
\(608\) 4.56048 + 4.56048i 0.184952 + 0.184952i
\(609\) 0 0
\(610\) 0.123724 + 1.22474i 0.00500945 + 0.0495885i
\(611\) 31.1769i 1.26128i
\(612\) 0 0
\(613\) 6.79796 6.79796i 0.274567 0.274567i −0.556369 0.830936i \(-0.687806\pi\)
0.830936 + 0.556369i \(0.187806\pi\)
\(614\) 9.43879 0.380919
\(615\) 0 0
\(616\) −2.89898 −0.116803
\(617\) 11.9494 11.9494i 0.481064 0.481064i −0.424407 0.905471i \(-0.639518\pi\)
0.905471 + 0.424407i \(0.139518\pi\)
\(618\) 0 0
\(619\) 48.7423i 1.95912i −0.201151 0.979560i \(-0.564468\pi\)
0.201151 0.979560i \(-0.435532\pi\)
\(620\) 0.778539 + 0.635674i 0.0312669 + 0.0255293i
\(621\) 0 0
\(622\) −19.4495 19.4495i −0.779853 0.779853i
\(623\) −25.8772 25.8772i −1.03675 1.03675i
\(624\) 0 0
\(625\) −23.0000 + 9.79796i −0.920000 + 0.391918i
\(626\) 11.9494i 0.477593i
\(627\) 0 0
\(628\) −10.3485 + 10.3485i −0.412949 + 0.412949i
\(629\) −1.90702 −0.0760380
\(630\) 0 0
\(631\) −3.10102 −0.123450 −0.0617248 0.998093i \(-0.519660\pi\)
−0.0617248 + 0.998093i \(0.519660\pi\)
\(632\) −1.73205 + 1.73205i −0.0688973 + 0.0688973i
\(633\) 0 0
\(634\) 10.8990i 0.432854i
\(635\) −5.90326 + 0.596350i −0.234264 + 0.0236654i
\(636\) 0 0
\(637\) 33.7980 + 33.7980i 1.33912 + 1.33912i
\(638\) −0.142865 0.142865i −0.00565606 0.00565606i
\(639\) 0 0
\(640\) 2.22474 0.224745i 0.0879408 0.00888382i
\(641\) 19.3383i 0.763816i −0.924200 0.381908i \(-0.875267\pi\)
0.924200 0.381908i \(-0.124733\pi\)
\(642\) 0 0
\(643\) 4.47219 4.47219i 0.176366 0.176366i −0.613404 0.789770i \(-0.710200\pi\)
0.789770 + 0.613404i \(0.210200\pi\)
\(644\) −4.56048 −0.179708
\(645\) 0 0
\(646\) −2.89898 −0.114059
\(647\) 23.5416 23.5416i 0.925516 0.925516i −0.0718961 0.997412i \(-0.522905\pi\)
0.997412 + 0.0718961i \(0.0229050\pi\)
\(648\) 0 0
\(649\) 5.70714i 0.224025i
\(650\) 16.9706 3.46410i 0.665640 0.135873i
\(651\) 0 0
\(652\) −4.44949 4.44949i −0.174255 0.174255i
\(653\) 18.7026 + 18.7026i 0.731890 + 0.731890i 0.970994 0.239104i \(-0.0768537\pi\)
−0.239104 + 0.970994i \(0.576854\pi\)
\(654\) 0 0
\(655\) 6.24745 + 5.10102i 0.244108 + 0.199313i
\(656\) 7.38891i 0.288488i
\(657\) 0 0
\(658\) 29.0227 29.0227i 1.13142 1.13142i
\(659\) −11.3137 −0.440720 −0.220360 0.975419i \(-0.570723\pi\)
−0.220360 + 0.975419i \(0.570723\pi\)
\(660\) 0 0
\(661\) −1.30306 −0.0506832 −0.0253416 0.999679i \(-0.508067\pi\)
−0.0253416 + 0.999679i \(0.508067\pi\)
\(662\) −0.317837 + 0.317837i −0.0123531 + 0.0123531i
\(663\) 0 0
\(664\) 5.44949i 0.211481i
\(665\) −6.61037 65.4359i −0.256339 2.53749i
\(666\) 0 0
\(667\) −0.224745 0.224745i −0.00870216 0.00870216i
\(668\) −6.22110 6.22110i −0.240701 0.240701i
\(669\) 0 0
\(670\) −9.34847 + 11.4495i −0.361163 + 0.442332i
\(671\) 0.349945i 0.0135095i
\(672\) 0 0
\(673\) −16.4495 + 16.4495i −0.634081 + 0.634081i −0.949089 0.315008i \(-0.897993\pi\)
0.315008 + 0.949089i \(0.397993\pi\)
\(674\) 3.11416 0.119953
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −32.2412 + 32.2412i −1.23913 + 1.23913i −0.278772 + 0.960357i \(0.589927\pi\)
−0.960357 + 0.278772i \(0.910073\pi\)
\(678\) 0 0
\(679\) 12.2474i 0.470014i
\(680\) −0.635674 + 0.778539i −0.0243770 + 0.0298556i
\(681\) 0 0
\(682\) −0.202041 0.202041i −0.00773655 0.00773655i
\(683\) −13.8564 13.8564i −0.530201 0.530201i 0.390431 0.920632i \(-0.372326\pi\)
−0.920632 + 0.390431i \(0.872326\pi\)
\(684\) 0 0
\(685\) 4.89898 + 48.4949i 0.187180 + 1.85289i
\(686\) 31.0019i 1.18366i
\(687\) 0 0
\(688\) 2.44949 2.44949i 0.0933859 0.0933859i
\(689\) 18.5276 0.705847
\(690\) 0 0
\(691\) −20.9444 −0.796762 −0.398381 0.917220i \(-0.630428\pi\)
−0.398381 + 0.917220i \(0.630428\pi\)
\(692\) 9.12096 9.12096i 0.346727 0.346727i
\(693\) 0 0
\(694\) 23.7980i 0.903358i
\(695\) −5.37113 4.38551i −0.203738 0.166352i
\(696\) 0 0
\(697\) 2.34847 + 2.34847i 0.0889546 + 0.0889546i
\(698\) −20.5382 20.5382i −0.777383 0.777383i
\(699\) 0 0
\(700\) −19.0227 12.5732i −0.718991 0.475223i
\(701\) 21.1024i 0.797028i −0.917162 0.398514i \(-0.869526\pi\)
0.917162 0.398514i \(-0.130474\pi\)
\(702\) 0 0
\(703\) 19.3485 19.3485i 0.729741 0.729741i
\(704\) −0.635674 −0.0239579
\(705\) 0 0
\(706\) −34.2929 −1.29063
\(707\) 40.5836 40.5836i 1.52630 1.52630i
\(708\) 0 0
\(709\) 29.6515i 1.11359i 0.830651 + 0.556793i \(0.187968\pi\)
−0.830651 + 0.556793i \(0.812032\pi\)
\(710\) 13.9993 1.41421i 0.525383 0.0530745i
\(711\) 0 0
\(712\) −5.67423 5.67423i −0.212651 0.212651i
\(713\) −0.317837 0.317837i −0.0119031 0.0119031i
\(714\) 0 0
\(715\) −4.89898 + 0.494897i −0.183211 + 0.0185081i
\(716\) 10.6780i 0.399057i
\(717\) 0 0
\(718\) −2.34847 + 2.34847i −0.0876441 + 0.0876441i
\(719\) 32.5269 1.21305 0.606525 0.795065i \(-0.292563\pi\)
0.606525 + 0.795065i \(0.292563\pi\)
\(720\) 0 0
\(721\) −44.4949 −1.65708
\(722\) 15.9777 15.9777i 0.594629 0.594629i
\(723\) 0 0
\(724\) 15.4495i 0.574176i
\(725\) −0.317837 1.55708i −0.0118042 0.0578284i
\(726\) 0 0
\(727\) 34.1691 + 34.1691i 1.26726 + 1.26726i 0.947496 + 0.319767i \(0.103605\pi\)
0.319767 + 0.947496i \(0.396395\pi\)
\(728\) 11.1708 + 11.1708i 0.414019 + 0.414019i
\(729\) 0 0
\(730\) 16.8990 + 13.7980i 0.625459 + 0.510685i
\(731\) 1.55708i 0.0575906i
\(732\) 0 0
\(733\) 24.1464 24.1464i 0.891869 0.891869i −0.102830 0.994699i \(-0.532790\pi\)
0.994699 + 0.102830i \(0.0327898\pi\)
\(734\) 4.09978 0.151325
\(735\) 0 0
\(736\) −1.00000 −0.0368605
\(737\) 2.97129 2.97129i 0.109449 0.109449i
\(738\) 0 0
\(739\) 28.9444i 1.06474i 0.846513 + 0.532368i \(0.178698\pi\)
−0.846513 + 0.532368i \(0.821302\pi\)
\(740\) −0.953512 9.43879i −0.0350518 0.346977i
\(741\) 0 0
\(742\) −17.2474 17.2474i −0.633174 0.633174i
\(743\) −6.99964 6.99964i −0.256792 0.256792i 0.566956 0.823748i \(-0.308121\pi\)
−0.823748 + 0.566956i \(0.808121\pi\)
\(744\) 0 0
\(745\) 6.24745 7.65153i 0.228889 0.280330i
\(746\) 0.492810i 0.0180431i
\(747\) 0 0
\(748\) 0.202041 0.202041i 0.00738735 0.00738735i
\(749\) 87.7776 3.20732
\(750\) 0 0
\(751\) 20.6969 0.755242 0.377621 0.925960i \(-0.376742\pi\)
0.377621 + 0.925960i \(0.376742\pi\)
\(752\) 6.36396 6.36396i 0.232070 0.232070i
\(753\) 0 0
\(754\) 1.10102i 0.0400968i
\(755\) −24.8844 + 30.4770i −0.905636 + 1.10917i
\(756\) 0 0
\(757\) 22.0454 + 22.0454i 0.801254 + 0.801254i 0.983292 0.182038i \(-0.0582693\pi\)
−0.182038 + 0.983292i \(0.558269\pi\)
\(758\) 15.0956 + 15.0956i 0.548299 + 0.548299i
\(759\) 0 0
\(760\) −1.44949 14.3485i −0.0525785 0.520474i
\(761\) 6.46750i 0.234447i −0.993106 0.117223i \(-0.962601\pi\)
0.993106 0.117223i \(-0.0373993\pi\)
\(762\) 0 0
\(763\) 18.2247 18.2247i 0.659780 0.659780i
\(764\) 17.4634 0.631803
\(765\) 0 0
\(766\) 8.20204 0.296352
\(767\) 21.9917 21.9917i 0.794076 0.794076i
\(768\) 0 0
\(769\) 9.69694i 0.349681i −0.984597 0.174840i \(-0.944059\pi\)
0.984597 0.174840i \(-0.0559409\pi\)
\(770\) 5.02118 + 4.09978i 0.180951 + 0.147746i
\(771\) 0 0
\(772\) 12.2474 + 12.2474i 0.440795 + 0.440795i
\(773\) 30.8270 + 30.8270i 1.10877 + 1.10877i 0.993313 + 0.115456i \(0.0368331\pi\)
0.115456 + 0.993313i \(0.463167\pi\)
\(774\) 0 0
\(775\) −0.449490 2.20204i −0.0161461 0.0790996i
\(776\) 2.68556i 0.0964061i
\(777\) 0 0
\(778\) 26.0227 26.0227i 0.932959 0.932959i
\(779\) −47.6547 −1.70741
\(780\) 0 0
\(781\) −4.00000 −0.143131
\(782\) 0.317837 0.317837i 0.0113658 0.0113658i
\(783\) 0 0
\(784\) 13.7980i 0.492784i
\(785\) 32.5590 3.28913i 1.16208 0.117394i
\(786\) 0 0
\(787\) −6.89898 6.89898i −0.245922 0.245922i 0.573373 0.819295i \(-0.305635\pi\)
−0.819295 + 0.573373i \(0.805635\pi\)
\(788\) −6.92820 6.92820i −0.246807 0.246807i
\(789\) 0 0
\(790\) 5.44949 0.550510i 0.193884 0.0195863i
\(791\) 26.4415i 0.940150i
\(792\) 0 0
\(793\) −1.34847 + 1.34847i −0.0478855 + 0.0478855i
\(794\) −14.9207 −0.529515
\(795\) 0 0
\(796\) 8.44949 0.299484
\(797\) −28.1414 + 28.1414i −0.996820 + 0.996820i −0.999995 0.00317519i \(-0.998989\pi\)
0.00317519 + 0.999995i \(0.498989\pi\)
\(798\) 0 0
\(799\) 4.04541i 0.143116i
\(800\) −4.17121 2.75699i −0.147474 0.0974745i
\(801\) 0 0
\(802\) −6.24745 6.24745i −0.220605 0.220605i
\(803\) −4.38551 4.38551i −0.154761 0.154761i
\(804\) 0 0
\(805\) 7.89898 + 6.44949i 0.278402 + 0.227315i
\(806\) 1.55708i 0.0548457i
\(807\) 0 0
\(808\) 8.89898 8.89898i 0.313065 0.313065i
\(809\) −19.4490 −0.683792 −0.341896 0.939738i \(-0.611069\pi\)
−0.341896 + 0.939738i \(0.611069\pi\)
\(810\) 0 0
\(811\) −39.6413 −1.39200 −0.695998 0.718044i \(-0.745038\pi\)
−0.695998 + 0.718044i \(0.745038\pi\)
\(812\) 1.02494 1.02494i 0.0359685 0.0359685i
\(813\) 0 0
\(814\) 2.69694i 0.0945276i
\(815\) 1.41421 + 13.9993i 0.0495377 + 0.490373i
\(816\) 0 0
\(817\) −15.7980 15.7980i −0.552701 0.552701i
\(818\) 20.4347 + 20.4347i 0.714481 + 0.714481i
\(819\) 0 0
\(820\) −10.4495 + 12.7980i −0.364912 + 0.446924i
\(821\) 22.3096i 0.778610i −0.921109 0.389305i \(-0.872715\pi\)
0.921109 0.389305i \(-0.127285\pi\)
\(822\) 0 0
\(823\) 2.37117 2.37117i 0.0826539 0.0826539i −0.664571 0.747225i \(-0.731386\pi\)
0.747225 + 0.664571i \(0.231386\pi\)
\(824\) −9.75663 −0.339888
\(825\) 0 0
\(826\) −40.9444 −1.42464
\(827\) 31.5662 31.5662i 1.09766 1.09766i 0.102980 0.994683i \(-0.467162\pi\)
0.994683 0.102980i \(-0.0328379\pi\)
\(828\) 0 0
\(829\) 10.5505i 0.366434i −0.983072 0.183217i \(-0.941349\pi\)
0.983072 0.183217i \(-0.0586512\pi\)
\(830\) −7.70674 + 9.43879i −0.267505 + 0.327625i
\(831\) 0 0
\(832\) 2.44949 + 2.44949i 0.0849208 + 0.0849208i
\(833\) 4.38551 + 4.38551i 0.151949 + 0.151949i
\(834\) 0 0
\(835\) 1.97730 + 19.5732i 0.0684272 + 0.677359i
\(836\) 4.09978i 0.141794i
\(837\) 0 0
\(838\) 3.55051 3.55051i 0.122650 0.122650i
\(839\) −0.492810 −0.0170137 −0.00850684 0.999964i \(-0.502708\pi\)
−0.00850684 + 0.999964i \(0.502708\pi\)
\(840\) 0 0
\(841\) −28.8990 −0.996517
\(842\) 3.60697 3.60697i 0.124304 0.124304i
\(843\) 0 0
\(844\) 9.10102i 0.313270i
\(845\) −1.73205 1.41421i −0.0595844 0.0486504i
\(846\) 0 0
\(847\) 34.1691 + 34.1691i 1.17407 + 1.17407i
\(848\) −3.78194 3.78194i −0.129872 0.129872i
\(849\) 0 0
\(850\) 2.20204 0.449490i 0.0755294 0.0154174i
\(851\) 4.24264i 0.145436i
\(852\) 0 0
\(853\) −1.75255 + 1.75255i −0.0600062 + 0.0600062i −0.736473 0.676467i \(-0.763510\pi\)
0.676467 + 0.736473i \(0.263510\pi\)
\(854\) 2.51059 0.0859106
\(855\) 0 0
\(856\) 19.2474 0.657864
\(857\) 11.1708 11.1708i 0.381589 0.381589i −0.490086 0.871674i \(-0.663034\pi\)
0.871674 + 0.490086i \(0.163034\pi\)
\(858\) 0 0
\(859\) 46.4949i 1.58639i −0.608971 0.793193i \(-0.708417\pi\)
0.608971 0.793193i \(-0.291583\pi\)
\(860\) −7.70674 + 0.778539i −0.262798 + 0.0265480i
\(861\) 0 0
\(862\) 11.0000 + 11.0000i 0.374661 + 0.374661i
\(863\) −20.7132 20.7132i −0.705085 0.705085i 0.260413 0.965497i \(-0.416141\pi\)
−0.965497 + 0.260413i \(0.916141\pi\)
\(864\) 0 0
\(865\) −28.6969 + 2.89898i −0.975725 + 0.0985683i
\(866\) 19.0205i 0.646341i
\(867\) 0 0
\(868\) 1.44949 1.44949i 0.0491989 0.0491989i
\(869\) −1.55708 −0.0528203
\(870\) 0 0
\(871\) −22.8990 −0.775902
\(872\) 3.99624 3.99624i 0.135330 0.135330i
\(873\) 0 0
\(874\) 6.44949i 0.218157i
\(875\) 15.1671 + 48.6796i 0.512741 + 1.64567i
\(876\) 0 0
\(877\) 30.2474 + 30.2474i 1.02138 + 1.02138i 0.999766 + 0.0216175i \(0.00688159\pi\)
0.0216175 + 0.999766i \(0.493118\pi\)
\(878\) −21.0703 21.0703i −0.711089 0.711089i
\(879\) 0 0
\(880\) 1.10102 + 0.898979i 0.0371154 + 0.0303046i
\(881\) 54.8365i 1.84749i 0.383010 + 0.923744i \(0.374887\pi\)
−0.383010 + 0.923744i \(0.625113\pi\)
\(882\) 0 0
\(883\) 6.27015 6.27015i 0.211007 0.211007i −0.593688 0.804695i \(-0.702329\pi\)
0.804695 + 0.593688i \(0.202329\pi\)
\(884\) −1.55708 −0.0523702
\(885\) 0 0
\(886\) −5.44949 −0.183079
\(887\) 5.79972 5.79972i 0.194735 0.194735i −0.603003 0.797739i \(-0.706029\pi\)
0.797739 + 0.603003i \(0.206029\pi\)
\(888\) 0 0
\(889\) 12.1010i 0.405855i
\(890\) 1.80348 + 17.8526i 0.0604529 + 0.598422i
\(891\) 0 0
\(892\) −18.1237 18.1237i −0.606827 0.606827i
\(893\) −41.0443 41.0443i −1.37350 1.37350i
\(894\) 0 0
\(895\) −15.1010 + 18.4949i −0.504771 + 0.618216i
\(896\) 4.56048i 0.152355i
\(897\) 0 0
\(898\) −0.651531 + 0.651531i −0.0217419 + 0.0217419i
\(899\) 0.142865 0.00476480
\(900\) 0 0
\(901\) 2.40408 0.0800916
\(902\) 3.32124 3.32124i 0.110585 0.110585i
\(903\) 0 0
\(904\) 5.79796i 0.192837i
\(905\) 21.8489 26.7593i 0.726281 0.889509i
\(906\) 0 0
\(907\) −2.67423 2.67423i −0.0887965 0.0887965i 0.661313 0.750110i \(-0.269999\pi\)
−0.750110 + 0.661313i \(0.769999\pi\)
\(908\) −17.6062 17.6062i −0.584284 0.584284i
\(909\) 0 0
\(910\) −3.55051 35.1464i −0.117698 1.16509i
\(911\) 7.07107i 0.234275i 0.993116 + 0.117137i \(0.0373718\pi\)
−0.993116 + 0.117137i \(0.962628\pi\)
\(912\) 0 0
\(913\) 2.44949 2.44949i 0.0810663 0.0810663i
\(914\) 14.6349 0.484081
\(915\) 0 0
\(916\) −1.65153 −0.0545681
\(917\) 11.6315 11.6315i 0.384107 0.384107i
\(918\) 0 0
\(919\) 12.6515i 0.417335i 0.977987 + 0.208668i \(0.0669127\pi\)
−0.977987 + 0.208668i \(0.933087\pi\)
\(920\) 1.73205 + 1.41421i 0.0571040 + 0.0466252i
\(921\) 0 0
\(922\) 23.3712 + 23.3712i 0.769689 + 0.769689i
\(923\) 15.4135 + 15.4135i 0.507341 + 0.507341i
\(924\) 0 0
\(925\) −11.6969 + 17.6969i −0.384593 + 0.581872i
\(926\) 12.2351i 0.402071i
\(927\) 0 0
\(928\) 0.224745 0.224745i 0.00737761 0.00737761i
\(929\) −42.2049 −1.38470 −0.692349 0.721563i \(-0.743424\pi\)
−0.692349 + 0.721563i \(0.743424\pi\)
\(930\) 0 0
\(931\) −88.9898 −2.91652
\(932\) −14.4600 + 14.4600i −0.473652 + 0.473652i
\(933\) 0 0
\(934\) 4.00000i 0.130884i
\(935\) −0.635674 + 0.0642162i −0.0207888 + 0.00210009i
\(936\) 0 0
\(937\) −3.10102 3.10102i −0.101306 0.101306i 0.654637 0.755943i \(-0.272821\pi\)
−0.755943 + 0.654637i \(0.772821\pi\)
\(938\) 21.3167 + 21.3167i 0.696016 + 0.696016i
\(939\) 0 0
\(940\) −20.0227 + 2.02270i −0.653069 + 0.0659733i
\(941\) 31.7805i 1.03601i 0.855376 + 0.518007i \(0.173326\pi\)
−0.855376 + 0.518007i \(0.826674\pi\)
\(942\) 0 0
\(943\) 5.22474 5.22474i 0.170141 0.170141i
\(944\) −8.97809 −0.292212
\(945\) 0 0
\(946\) 2.20204 0.0715945
\(947\) 2.15343 2.15343i 0.0699770 0.0699770i −0.671252 0.741229i \(-0.734243\pi\)
0.741229 + 0.671252i \(0.234243\pi\)
\(948\) 0 0
\(949\) 33.7980i 1.09713i
\(950\) −17.7812 + 26.9022i −0.576899 + 0.872822i
\(951\) 0 0
\(952\) 1.44949 + 1.44949i 0.0469782 + 0.0469782i
\(953\) −5.79972 5.79972i −0.187871 0.187871i 0.606904 0.794775i \(-0.292411\pi\)
−0.794775 + 0.606904i \(0.792411\pi\)
\(954\) 0 0
\(955\) −30.2474 24.6969i −0.978784 0.799174i
\(956\) 16.9706i 0.548867i
\(957\) 0 0
\(958\) −5.00000 + 5.00000i −0.161543 + 0.161543i
\(959\) 99.4091 3.21009
\(960\) 0 0
\(961\) −30.7980 −0.993483
\(962\) 10.3923 10.3923i 0.335061 0.335061i
\(963\) 0 0
\(964\) 19.0000i 0.611949i
\(965\) −3.89270 38.5337i −0.125310 1.24044i
\(966\) 0 0
\(967\) −28.3258 28.3258i −0.910895 0.910895i 0.0854475 0.996343i \(-0.472768\pi\)
−0.996343 + 0.0854475i \(0.972768\pi\)
\(968\) 7.49245 + 7.49245i 0.240816 + 0.240816i
\(969\) 0 0
\(970\) 3.79796 4.65153i 0.121945 0.149352i
\(971\) 21.4989i 0.689934i −0.938615 0.344967i \(-0.887890\pi\)
0.938615 0.344967i \(-0.112110\pi\)
\(972\) 0 0
\(973\) −10.0000 + 10.0000i −0.320585 + 0.320585i
\(974\) 16.9706 0.543772
\(975\) 0 0
\(976\) 0.550510 0.0176214
\(977\) −4.59259 + 4.59259i −0.146930 + 0.146930i −0.776745 0.629815i \(-0.783131\pi\)
0.629815 + 0.776745i \(0.283131\pi\)
\(978\) 0 0
\(979\) 5.10102i 0.163029i
\(980\) −19.5133 + 23.8988i −0.623328 + 0.763418i
\(981\) 0 0
\(982\) 19.7980 + 19.7980i 0.631778 + 0.631778i
\(983\) 19.2347 + 19.2347i 0.613493 + 0.613493i 0.943855 0.330361i \(-0.107171\pi\)
−0.330361 + 0.943855i \(0.607171\pi\)
\(984\) 0 0
\(985\) 2.20204 + 21.7980i 0.0701629 + 0.694541i
\(986\) 0.142865i 0.00454974i
\(987\) 0 0
\(988\) 15.7980 15.7980i 0.502600 0.502600i
\(989\) 3.46410 0.110152
\(990\) 0 0
\(991\) 16.7423 0.531838 0.265919 0.963995i \(-0.414325\pi\)
0.265919 + 0.963995i \(0.414325\pi\)
\(992\) 0.317837 0.317837i 0.0100913 0.0100913i
\(993\) 0 0
\(994\) 28.6969i 0.910212i
\(995\) −14.6349 11.9494i −0.463959 0.378821i
\(996\) 0 0
\(997\) −4.75255 4.75255i −0.150515 0.150515i 0.627833 0.778348i \(-0.283942\pi\)
−0.778348 + 0.627833i \(0.783942\pi\)
\(998\) −0.635674 0.635674i −0.0201219 0.0201219i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.2.f.b.647.2 8
3.2 odd 2 inner 810.2.f.b.647.3 8
5.3 odd 4 inner 810.2.f.b.323.4 8
9.2 odd 6 90.2.l.a.77.1 yes 8
9.4 even 3 90.2.l.a.47.1 yes 8
9.5 odd 6 270.2.m.a.197.2 8
9.7 even 3 270.2.m.a.17.2 8
15.8 even 4 inner 810.2.f.b.323.1 8
36.11 even 6 720.2.cu.a.257.1 8
36.31 odd 6 720.2.cu.a.497.1 8
45.2 even 12 450.2.p.a.293.2 8
45.4 even 6 450.2.p.a.407.2 8
45.7 odd 12 1350.2.q.g.1043.1 8
45.13 odd 12 90.2.l.a.83.1 yes 8
45.14 odd 6 1350.2.q.g.1007.1 8
45.22 odd 12 450.2.p.a.443.2 8
45.23 even 12 270.2.m.a.143.2 8
45.29 odd 6 450.2.p.a.257.2 8
45.32 even 12 1350.2.q.g.143.1 8
45.34 even 6 1350.2.q.g.557.1 8
45.38 even 12 90.2.l.a.23.1 8
45.43 odd 12 270.2.m.a.233.2 8
180.83 odd 12 720.2.cu.a.113.1 8
180.103 even 12 720.2.cu.a.353.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.l.a.23.1 8 45.38 even 12
90.2.l.a.47.1 yes 8 9.4 even 3
90.2.l.a.77.1 yes 8 9.2 odd 6
90.2.l.a.83.1 yes 8 45.13 odd 12
270.2.m.a.17.2 8 9.7 even 3
270.2.m.a.143.2 8 45.23 even 12
270.2.m.a.197.2 8 9.5 odd 6
270.2.m.a.233.2 8 45.43 odd 12
450.2.p.a.257.2 8 45.29 odd 6
450.2.p.a.293.2 8 45.2 even 12
450.2.p.a.407.2 8 45.4 even 6
450.2.p.a.443.2 8 45.22 odd 12
720.2.cu.a.113.1 8 180.83 odd 12
720.2.cu.a.257.1 8 36.11 even 6
720.2.cu.a.353.1 8 180.103 even 12
720.2.cu.a.497.1 8 36.31 odd 6
810.2.f.b.323.1 8 15.8 even 4 inner
810.2.f.b.323.4 8 5.3 odd 4 inner
810.2.f.b.647.2 8 1.1 even 1 trivial
810.2.f.b.647.3 8 3.2 odd 2 inner
1350.2.q.g.143.1 8 45.32 even 12
1350.2.q.g.557.1 8 45.34 even 6
1350.2.q.g.1007.1 8 45.14 odd 6
1350.2.q.g.1043.1 8 45.7 odd 12