Properties

Label 810.2.f.b.647.3
Level $810$
Weight $2$
Character 810.647
Analytic conductor $6.468$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,2,Mod(323,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.323");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.46788256372\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.3
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 810.647
Dual form 810.2.f.b.323.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} -1.00000i q^{4} +(1.41421 - 1.73205i) q^{5} +(3.22474 + 3.22474i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-0.224745 - 2.22474i) q^{10} -0.635674i q^{11} +(2.44949 - 2.44949i) q^{13} +4.56048 q^{14} -1.00000 q^{16} +(-0.317837 + 0.317837i) q^{17} +6.44949i q^{19} +(-1.73205 - 1.41421i) q^{20} +(-0.449490 - 0.449490i) q^{22} +(0.707107 + 0.707107i) q^{23} +(-1.00000 - 4.89898i) q^{25} -3.46410i q^{26} +(3.22474 - 3.22474i) q^{28} -0.317837 q^{29} +0.449490 q^{31} +(-0.707107 + 0.707107i) q^{32} +0.449490i q^{34} +(10.1459 - 1.02494i) q^{35} +(-3.00000 - 3.00000i) q^{37} +(4.56048 + 4.56048i) q^{38} +(-2.22474 + 0.224745i) q^{40} -7.38891i q^{41} +(-2.44949 + 2.44949i) q^{43} -0.635674 q^{44} +1.00000 q^{46} +(6.36396 - 6.36396i) q^{47} +13.7980i q^{49} +(-4.17121 - 2.75699i) q^{50} +(-2.44949 - 2.44949i) q^{52} +(-3.78194 - 3.78194i) q^{53} +(-1.10102 - 0.898979i) q^{55} -4.56048i q^{56} +(-0.224745 + 0.224745i) q^{58} -8.97809 q^{59} -0.550510 q^{61} +(0.317837 - 0.317837i) q^{62} +1.00000i q^{64} +(-0.778539 - 7.70674i) q^{65} +(-4.67423 - 4.67423i) q^{67} +(0.317837 + 0.317837i) q^{68} +(6.44949 - 7.89898i) q^{70} -6.29253i q^{71} +(-6.89898 + 6.89898i) q^{73} -4.24264 q^{74} +6.44949 q^{76} +(2.04989 - 2.04989i) q^{77} +2.44949i q^{79} +(-1.41421 + 1.73205i) q^{80} +(-5.22474 - 5.22474i) q^{82} +(3.85337 + 3.85337i) q^{83} +(0.101021 + 1.00000i) q^{85} +3.46410i q^{86} +(-0.449490 + 0.449490i) q^{88} +8.02458 q^{89} +15.7980 q^{91} +(0.707107 - 0.707107i) q^{92} -9.00000i q^{94} +(11.1708 + 9.12096i) q^{95} +(1.89898 + 1.89898i) q^{97} +(9.75663 + 9.75663i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{7} + 8 q^{10} - 8 q^{16} + 16 q^{22} - 8 q^{25} + 16 q^{28} - 16 q^{31} - 24 q^{37} - 8 q^{40} + 8 q^{46} - 48 q^{55} + 8 q^{58} - 24 q^{61} - 8 q^{67} + 32 q^{70} - 16 q^{73} + 32 q^{76} - 32 q^{82}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 1.41421 1.73205i 0.632456 0.774597i
\(6\) 0 0
\(7\) 3.22474 + 3.22474i 1.21884 + 1.21884i 0.968039 + 0.250800i \(0.0806937\pi\)
0.250800 + 0.968039i \(0.419306\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) −0.224745 2.22474i −0.0710706 0.703526i
\(11\) 0.635674i 0.191663i −0.995398 0.0958315i \(-0.969449\pi\)
0.995398 0.0958315i \(-0.0305510\pi\)
\(12\) 0 0
\(13\) 2.44949 2.44949i 0.679366 0.679366i −0.280491 0.959857i \(-0.590497\pi\)
0.959857 + 0.280491i \(0.0904971\pi\)
\(14\) 4.56048 1.21884
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −0.317837 + 0.317837i −0.0770869 + 0.0770869i −0.744599 0.667512i \(-0.767359\pi\)
0.667512 + 0.744599i \(0.267359\pi\)
\(18\) 0 0
\(19\) 6.44949i 1.47961i 0.672819 + 0.739807i \(0.265083\pi\)
−0.672819 + 0.739807i \(0.734917\pi\)
\(20\) −1.73205 1.41421i −0.387298 0.316228i
\(21\) 0 0
\(22\) −0.449490 0.449490i −0.0958315 0.0958315i
\(23\) 0.707107 + 0.707107i 0.147442 + 0.147442i 0.776974 0.629532i \(-0.216753\pi\)
−0.629532 + 0.776974i \(0.716753\pi\)
\(24\) 0 0
\(25\) −1.00000 4.89898i −0.200000 0.979796i
\(26\) 3.46410i 0.679366i
\(27\) 0 0
\(28\) 3.22474 3.22474i 0.609419 0.609419i
\(29\) −0.317837 −0.0590209 −0.0295104 0.999564i \(-0.509395\pi\)
−0.0295104 + 0.999564i \(0.509395\pi\)
\(30\) 0 0
\(31\) 0.449490 0.0807307 0.0403654 0.999185i \(-0.487148\pi\)
0.0403654 + 0.999185i \(0.487148\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 0.449490i 0.0770869i
\(35\) 10.1459 1.02494i 1.71497 0.173247i
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) 4.56048 + 4.56048i 0.739807 + 0.739807i
\(39\) 0 0
\(40\) −2.22474 + 0.224745i −0.351763 + 0.0355353i
\(41\) 7.38891i 1.15395i −0.816761 0.576977i \(-0.804232\pi\)
0.816761 0.576977i \(-0.195768\pi\)
\(42\) 0 0
\(43\) −2.44949 + 2.44949i −0.373544 + 0.373544i −0.868766 0.495222i \(-0.835087\pi\)
0.495222 + 0.868766i \(0.335087\pi\)
\(44\) −0.635674 −0.0958315
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) 6.36396 6.36396i 0.928279 0.928279i −0.0693157 0.997595i \(-0.522082\pi\)
0.997595 + 0.0693157i \(0.0220816\pi\)
\(48\) 0 0
\(49\) 13.7980i 1.97114i
\(50\) −4.17121 2.75699i −0.589898 0.389898i
\(51\) 0 0
\(52\) −2.44949 2.44949i −0.339683 0.339683i
\(53\) −3.78194 3.78194i −0.519489 0.519489i 0.397928 0.917417i \(-0.369730\pi\)
−0.917417 + 0.397928i \(0.869730\pi\)
\(54\) 0 0
\(55\) −1.10102 0.898979i −0.148462 0.121218i
\(56\) 4.56048i 0.609419i
\(57\) 0 0
\(58\) −0.224745 + 0.224745i −0.0295104 + 0.0295104i
\(59\) −8.97809 −1.16885 −0.584424 0.811448i \(-0.698679\pi\)
−0.584424 + 0.811448i \(0.698679\pi\)
\(60\) 0 0
\(61\) −0.550510 −0.0704856 −0.0352428 0.999379i \(-0.511220\pi\)
−0.0352428 + 0.999379i \(0.511220\pi\)
\(62\) 0.317837 0.317837i 0.0403654 0.0403654i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −0.778539 7.70674i −0.0965659 0.955904i
\(66\) 0 0
\(67\) −4.67423 4.67423i −0.571049 0.571049i 0.361373 0.932421i \(-0.382308\pi\)
−0.932421 + 0.361373i \(0.882308\pi\)
\(68\) 0.317837 + 0.317837i 0.0385434 + 0.0385434i
\(69\) 0 0
\(70\) 6.44949 7.89898i 0.770861 0.944109i
\(71\) 6.29253i 0.746786i −0.927673 0.373393i \(-0.878194\pi\)
0.927673 0.373393i \(-0.121806\pi\)
\(72\) 0 0
\(73\) −6.89898 + 6.89898i −0.807464 + 0.807464i −0.984249 0.176785i \(-0.943430\pi\)
0.176785 + 0.984249i \(0.443430\pi\)
\(74\) −4.24264 −0.493197
\(75\) 0 0
\(76\) 6.44949 0.739807
\(77\) 2.04989 2.04989i 0.233606 0.233606i
\(78\) 0 0
\(79\) 2.44949i 0.275589i 0.990461 + 0.137795i \(0.0440014\pi\)
−0.990461 + 0.137795i \(0.955999\pi\)
\(80\) −1.41421 + 1.73205i −0.158114 + 0.193649i
\(81\) 0 0
\(82\) −5.22474 5.22474i −0.576977 0.576977i
\(83\) 3.85337 + 3.85337i 0.422962 + 0.422962i 0.886222 0.463260i \(-0.153320\pi\)
−0.463260 + 0.886222i \(0.653320\pi\)
\(84\) 0 0
\(85\) 0.101021 + 1.00000i 0.0109572 + 0.108465i
\(86\) 3.46410i 0.373544i
\(87\) 0 0
\(88\) −0.449490 + 0.449490i −0.0479158 + 0.0479158i
\(89\) 8.02458 0.850604 0.425302 0.905052i \(-0.360168\pi\)
0.425302 + 0.905052i \(0.360168\pi\)
\(90\) 0 0
\(91\) 15.7980 1.65608
\(92\) 0.707107 0.707107i 0.0737210 0.0737210i
\(93\) 0 0
\(94\) 9.00000i 0.928279i
\(95\) 11.1708 + 9.12096i 1.14610 + 0.935790i
\(96\) 0 0
\(97\) 1.89898 + 1.89898i 0.192812 + 0.192812i 0.796910 0.604098i \(-0.206466\pi\)
−0.604098 + 0.796910i \(0.706466\pi\)
\(98\) 9.75663 + 9.75663i 0.985568 + 0.985568i
\(99\) 0 0
\(100\) −4.89898 + 1.00000i −0.489898 + 0.100000i
\(101\) 12.5851i 1.25226i 0.779719 + 0.626130i \(0.215362\pi\)
−0.779719 + 0.626130i \(0.784638\pi\)
\(102\) 0 0
\(103\) −6.89898 + 6.89898i −0.679777 + 0.679777i −0.959950 0.280173i \(-0.909608\pi\)
0.280173 + 0.959950i \(0.409608\pi\)
\(104\) −3.46410 −0.339683
\(105\) 0 0
\(106\) −5.34847 −0.519489
\(107\) −13.6100 + 13.6100i −1.31573 + 1.31573i −0.398606 + 0.917122i \(0.630506\pi\)
−0.917122 + 0.398606i \(0.869494\pi\)
\(108\) 0 0
\(109\) 5.65153i 0.541318i −0.962675 0.270659i \(-0.912758\pi\)
0.962675 0.270659i \(-0.0872417\pi\)
\(110\) −1.41421 + 0.142865i −0.134840 + 0.0136216i
\(111\) 0 0
\(112\) −3.22474 3.22474i −0.304710 0.304710i
\(113\) 4.09978 + 4.09978i 0.385674 + 0.385674i 0.873141 0.487467i \(-0.162079\pi\)
−0.487467 + 0.873141i \(0.662079\pi\)
\(114\) 0 0
\(115\) 2.22474 0.224745i 0.207459 0.0209576i
\(116\) 0.317837i 0.0295104i
\(117\) 0 0
\(118\) −6.34847 + 6.34847i −0.584424 + 0.584424i
\(119\) −2.04989 −0.187913
\(120\) 0 0
\(121\) 10.5959 0.963265
\(122\) −0.389270 + 0.389270i −0.0352428 + 0.0352428i
\(123\) 0 0
\(124\) 0.449490i 0.0403654i
\(125\) −9.89949 5.19615i −0.885438 0.464758i
\(126\) 0 0
\(127\) 1.87628 + 1.87628i 0.166493 + 0.166493i 0.785436 0.618943i \(-0.212439\pi\)
−0.618943 + 0.785436i \(0.712439\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −6.00000 4.89898i −0.526235 0.429669i
\(131\) 3.60697i 0.315142i 0.987508 + 0.157571i \(0.0503663\pi\)
−0.987508 + 0.157571i \(0.949634\pi\)
\(132\) 0 0
\(133\) −20.7980 + 20.7980i −1.80341 + 1.80341i
\(134\) −6.61037 −0.571049
\(135\) 0 0
\(136\) 0.449490 0.0385434
\(137\) −15.4135 + 15.4135i −1.31686 + 1.31686i −0.400617 + 0.916245i \(0.631204\pi\)
−0.916245 + 0.400617i \(0.868796\pi\)
\(138\) 0 0
\(139\) 3.10102i 0.263025i 0.991315 + 0.131513i \(0.0419834\pi\)
−0.991315 + 0.131513i \(0.958017\pi\)
\(140\) −1.02494 10.1459i −0.0866236 0.857485i
\(141\) 0 0
\(142\) −4.44949 4.44949i −0.373393 0.373393i
\(143\) −1.55708 1.55708i −0.130209 0.130209i
\(144\) 0 0
\(145\) −0.449490 + 0.550510i −0.0373281 + 0.0457174i
\(146\) 9.75663i 0.807464i
\(147\) 0 0
\(148\) −3.00000 + 3.00000i −0.246598 + 0.246598i
\(149\) 4.41761 0.361905 0.180952 0.983492i \(-0.442082\pi\)
0.180952 + 0.983492i \(0.442082\pi\)
\(150\) 0 0
\(151\) 17.5959 1.43194 0.715968 0.698133i \(-0.245986\pi\)
0.715968 + 0.698133i \(0.245986\pi\)
\(152\) 4.56048 4.56048i 0.369904 0.369904i
\(153\) 0 0
\(154\) 2.89898i 0.233606i
\(155\) 0.635674 0.778539i 0.0510586 0.0625338i
\(156\) 0 0
\(157\) −10.3485 10.3485i −0.825898 0.825898i 0.161049 0.986946i \(-0.448512\pi\)
−0.986946 + 0.161049i \(0.948512\pi\)
\(158\) 1.73205 + 1.73205i 0.137795 + 0.137795i
\(159\) 0 0
\(160\) 0.224745 + 2.22474i 0.0177676 + 0.175882i
\(161\) 4.56048i 0.359416i
\(162\) 0 0
\(163\) 4.44949 4.44949i 0.348511 0.348511i −0.511044 0.859555i \(-0.670741\pi\)
0.859555 + 0.511044i \(0.170741\pi\)
\(164\) −7.38891 −0.576977
\(165\) 0 0
\(166\) 5.44949 0.422962
\(167\) −6.22110 + 6.22110i −0.481403 + 0.481403i −0.905579 0.424177i \(-0.860564\pi\)
0.424177 + 0.905579i \(0.360564\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 0.778539 + 0.635674i 0.0597112 + 0.0487540i
\(171\) 0 0
\(172\) 2.44949 + 2.44949i 0.186772 + 0.186772i
\(173\) −9.12096 9.12096i −0.693453 0.693453i 0.269537 0.962990i \(-0.413129\pi\)
−0.962990 + 0.269537i \(0.913129\pi\)
\(174\) 0 0
\(175\) 12.5732 19.0227i 0.950446 1.43798i
\(176\) 0.635674i 0.0479158i
\(177\) 0 0
\(178\) 5.67423 5.67423i 0.425302 0.425302i
\(179\) −10.6780 −0.798114 −0.399057 0.916926i \(-0.630662\pi\)
−0.399057 + 0.916926i \(0.630662\pi\)
\(180\) 0 0
\(181\) −15.4495 −1.14835 −0.574176 0.818732i \(-0.694677\pi\)
−0.574176 + 0.818732i \(0.694677\pi\)
\(182\) 11.1708 11.1708i 0.828038 0.828038i
\(183\) 0 0
\(184\) 1.00000i 0.0737210i
\(185\) −9.43879 + 0.953512i −0.693954 + 0.0701036i
\(186\) 0 0
\(187\) 0.202041 + 0.202041i 0.0147747 + 0.0147747i
\(188\) −6.36396 6.36396i −0.464140 0.464140i
\(189\) 0 0
\(190\) 14.3485 1.44949i 1.04095 0.105157i
\(191\) 17.4634i 1.26361i −0.775129 0.631803i \(-0.782315\pi\)
0.775129 0.631803i \(-0.217685\pi\)
\(192\) 0 0
\(193\) −12.2474 + 12.2474i −0.881591 + 0.881591i −0.993696 0.112106i \(-0.964240\pi\)
0.112106 + 0.993696i \(0.464240\pi\)
\(194\) 2.68556 0.192812
\(195\) 0 0
\(196\) 13.7980 0.985568
\(197\) −6.92820 + 6.92820i −0.493614 + 0.493614i −0.909443 0.415829i \(-0.863492\pi\)
0.415829 + 0.909443i \(0.363492\pi\)
\(198\) 0 0
\(199\) 8.44949i 0.598968i 0.954101 + 0.299484i \(0.0968146\pi\)
−0.954101 + 0.299484i \(0.903185\pi\)
\(200\) −2.75699 + 4.17121i −0.194949 + 0.294949i
\(201\) 0 0
\(202\) 8.89898 + 8.89898i 0.626130 + 0.626130i
\(203\) −1.02494 1.02494i −0.0719370 0.0719370i
\(204\) 0 0
\(205\) −12.7980 10.4495i −0.893848 0.729824i
\(206\) 9.75663i 0.679777i
\(207\) 0 0
\(208\) −2.44949 + 2.44949i −0.169842 + 0.169842i
\(209\) 4.09978 0.283587
\(210\) 0 0
\(211\) 9.10102 0.626540 0.313270 0.949664i \(-0.398576\pi\)
0.313270 + 0.949664i \(0.398576\pi\)
\(212\) −3.78194 + 3.78194i −0.259745 + 0.259745i
\(213\) 0 0
\(214\) 19.2474i 1.31573i
\(215\) 0.778539 + 7.70674i 0.0530959 + 0.525595i
\(216\) 0 0
\(217\) 1.44949 + 1.44949i 0.0983978 + 0.0983978i
\(218\) −3.99624 3.99624i −0.270659 0.270659i
\(219\) 0 0
\(220\) −0.898979 + 1.10102i −0.0606092 + 0.0742308i
\(221\) 1.55708i 0.104740i
\(222\) 0 0
\(223\) 18.1237 18.1237i 1.21365 1.21365i 0.243838 0.969816i \(-0.421593\pi\)
0.969816 0.243838i \(-0.0784067\pi\)
\(224\) −4.56048 −0.304710
\(225\) 0 0
\(226\) 5.79796 0.385674
\(227\) −17.6062 + 17.6062i −1.16857 + 1.16857i −0.186021 + 0.982546i \(0.559559\pi\)
−0.982546 + 0.186021i \(0.940441\pi\)
\(228\) 0 0
\(229\) 1.65153i 0.109136i −0.998510 0.0545681i \(-0.982622\pi\)
0.998510 0.0545681i \(-0.0173782\pi\)
\(230\) 1.41421 1.73205i 0.0932505 0.114208i
\(231\) 0 0
\(232\) 0.224745 + 0.224745i 0.0147552 + 0.0147552i
\(233\) 14.4600 + 14.4600i 0.947304 + 0.947304i 0.998679 0.0513751i \(-0.0163604\pi\)
−0.0513751 + 0.998679i \(0.516360\pi\)
\(234\) 0 0
\(235\) −2.02270 20.0227i −0.131947 1.30614i
\(236\) 8.97809i 0.584424i
\(237\) 0 0
\(238\) −1.44949 + 1.44949i −0.0939565 + 0.0939565i
\(239\) −16.9706 −1.09773 −0.548867 0.835910i \(-0.684941\pi\)
−0.548867 + 0.835910i \(0.684941\pi\)
\(240\) 0 0
\(241\) 19.0000 1.22390 0.611949 0.790897i \(-0.290386\pi\)
0.611949 + 0.790897i \(0.290386\pi\)
\(242\) 7.49245 7.49245i 0.481633 0.481633i
\(243\) 0 0
\(244\) 0.550510i 0.0352428i
\(245\) 23.8988 + 19.5133i 1.52684 + 1.24666i
\(246\) 0 0
\(247\) 15.7980 + 15.7980i 1.00520 + 1.00520i
\(248\) −0.317837 0.317837i −0.0201827 0.0201827i
\(249\) 0 0
\(250\) −10.6742 + 3.32577i −0.675098 + 0.210340i
\(251\) 2.68556i 0.169511i −0.996402 0.0847556i \(-0.972989\pi\)
0.996402 0.0847556i \(-0.0270110\pi\)
\(252\) 0 0
\(253\) 0.449490 0.449490i 0.0282592 0.0282592i
\(254\) 2.65345 0.166493
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −12.7600 + 12.7600i −0.795949 + 0.795949i −0.982454 0.186505i \(-0.940284\pi\)
0.186505 + 0.982454i \(0.440284\pi\)
\(258\) 0 0
\(259\) 19.3485i 1.20226i
\(260\) −7.70674 + 0.778539i −0.477952 + 0.0482829i
\(261\) 0 0
\(262\) 2.55051 + 2.55051i 0.157571 + 0.157571i
\(263\) 11.8065 + 11.8065i 0.728021 + 0.728021i 0.970225 0.242204i \(-0.0778704\pi\)
−0.242204 + 0.970225i \(0.577870\pi\)
\(264\) 0 0
\(265\) −11.8990 + 1.20204i −0.730948 + 0.0738408i
\(266\) 29.4128i 1.80341i
\(267\) 0 0
\(268\) −4.67423 + 4.67423i −0.285524 + 0.285524i
\(269\) 15.0956 0.920398 0.460199 0.887816i \(-0.347778\pi\)
0.460199 + 0.887816i \(0.347778\pi\)
\(270\) 0 0
\(271\) 28.0454 1.70364 0.851819 0.523837i \(-0.175500\pi\)
0.851819 + 0.523837i \(0.175500\pi\)
\(272\) 0.317837 0.317837i 0.0192717 0.0192717i
\(273\) 0 0
\(274\) 21.7980i 1.31686i
\(275\) −3.11416 + 0.635674i −0.187791 + 0.0383326i
\(276\) 0 0
\(277\) −19.8990 19.8990i −1.19561 1.19561i −0.975467 0.220147i \(-0.929346\pi\)
−0.220147 0.975467i \(-0.570654\pi\)
\(278\) 2.19275 + 2.19275i 0.131513 + 0.131513i
\(279\) 0 0
\(280\) −7.89898 6.44949i −0.472054 0.385431i
\(281\) 17.1455i 1.02282i −0.859338 0.511408i \(-0.829124\pi\)
0.859338 0.511408i \(-0.170876\pi\)
\(282\) 0 0
\(283\) 17.1237 17.1237i 1.01790 1.01790i 0.0180629 0.999837i \(-0.494250\pi\)
0.999837 0.0180629i \(-0.00574991\pi\)
\(284\) −6.29253 −0.373393
\(285\) 0 0
\(286\) −2.20204 −0.130209
\(287\) 23.8273 23.8273i 1.40648 1.40648i
\(288\) 0 0
\(289\) 16.7980i 0.988115i
\(290\) 0.0714323 + 0.707107i 0.00419465 + 0.0415227i
\(291\) 0 0
\(292\) 6.89898 + 6.89898i 0.403732 + 0.403732i
\(293\) −15.5885 15.5885i −0.910687 0.910687i 0.0856388 0.996326i \(-0.472707\pi\)
−0.996326 + 0.0856388i \(0.972707\pi\)
\(294\) 0 0
\(295\) −12.6969 + 15.5505i −0.739244 + 0.905386i
\(296\) 4.24264i 0.246598i
\(297\) 0 0
\(298\) 3.12372 3.12372i 0.180952 0.180952i
\(299\) 3.46410 0.200334
\(300\) 0 0
\(301\) −15.7980 −0.910579
\(302\) 12.4422 12.4422i 0.715968 0.715968i
\(303\) 0 0
\(304\) 6.44949i 0.369904i
\(305\) −0.778539 + 0.953512i −0.0445790 + 0.0545979i
\(306\) 0 0
\(307\) −6.67423 6.67423i −0.380919 0.380919i 0.490514 0.871433i \(-0.336809\pi\)
−0.871433 + 0.490514i \(0.836809\pi\)
\(308\) −2.04989 2.04989i −0.116803 0.116803i
\(309\) 0 0
\(310\) −0.101021 1.00000i −0.00573758 0.0567962i
\(311\) 27.5057i 1.55971i −0.625962 0.779853i \(-0.715294\pi\)
0.625962 0.779853i \(-0.284706\pi\)
\(312\) 0 0
\(313\) 8.44949 8.44949i 0.477593 0.477593i −0.426768 0.904361i \(-0.640348\pi\)
0.904361 + 0.426768i \(0.140348\pi\)
\(314\) −14.6349 −0.825898
\(315\) 0 0
\(316\) 2.44949 0.137795
\(317\) 7.70674 7.70674i 0.432854 0.432854i −0.456744 0.889598i \(-0.650985\pi\)
0.889598 + 0.456744i \(0.150985\pi\)
\(318\) 0 0
\(319\) 0.202041i 0.0113121i
\(320\) 1.73205 + 1.41421i 0.0968246 + 0.0790569i
\(321\) 0 0
\(322\) 3.22474 + 3.22474i 0.179708 + 0.179708i
\(323\) −2.04989 2.04989i −0.114059 0.114059i
\(324\) 0 0
\(325\) −14.4495 9.55051i −0.801513 0.529767i
\(326\) 6.29253i 0.348511i
\(327\) 0 0
\(328\) −5.22474 + 5.22474i −0.288488 + 0.288488i
\(329\) 41.0443 2.26285
\(330\) 0 0
\(331\) 0.449490 0.0247062 0.0123531 0.999924i \(-0.496068\pi\)
0.0123531 + 0.999924i \(0.496068\pi\)
\(332\) 3.85337 3.85337i 0.211481 0.211481i
\(333\) 0 0
\(334\) 8.79796i 0.481403i
\(335\) −14.7064 + 1.48565i −0.803495 + 0.0811695i
\(336\) 0 0
\(337\) −2.20204 2.20204i −0.119953 0.119953i 0.644582 0.764535i \(-0.277031\pi\)
−0.764535 + 0.644582i \(0.777031\pi\)
\(338\) 0.707107 + 0.707107i 0.0384615 + 0.0384615i
\(339\) 0 0
\(340\) 1.00000 0.101021i 0.0542326 0.00547861i
\(341\) 0.285729i 0.0154731i
\(342\) 0 0
\(343\) −21.9217 + 21.9217i −1.18366 + 1.18366i
\(344\) 3.46410 0.186772
\(345\) 0 0
\(346\) −12.8990 −0.693453
\(347\) 16.8277 16.8277i 0.903358 0.903358i −0.0923669 0.995725i \(-0.529443\pi\)
0.995725 + 0.0923669i \(0.0294433\pi\)
\(348\) 0 0
\(349\) 29.0454i 1.55477i 0.629028 + 0.777383i \(0.283453\pi\)
−0.629028 + 0.777383i \(0.716547\pi\)
\(350\) −4.56048 22.3417i −0.243768 1.19421i
\(351\) 0 0
\(352\) 0.449490 + 0.449490i 0.0239579 + 0.0239579i
\(353\) −24.2487 24.2487i −1.29063 1.29063i −0.934398 0.356231i \(-0.884062\pi\)
−0.356231 0.934398i \(-0.615938\pi\)
\(354\) 0 0
\(355\) −10.8990 8.89898i −0.578458 0.472309i
\(356\) 8.02458i 0.425302i
\(357\) 0 0
\(358\) −7.55051 + 7.55051i −0.399057 + 0.399057i
\(359\) −3.32124 −0.175288 −0.0876441 0.996152i \(-0.527934\pi\)
−0.0876441 + 0.996152i \(0.527934\pi\)
\(360\) 0 0
\(361\) −22.5959 −1.18926
\(362\) −10.9244 + 10.9244i −0.574176 + 0.574176i
\(363\) 0 0
\(364\) 15.7980i 0.828038i
\(365\) 2.19275 + 21.7060i 0.114774 + 1.13614i
\(366\) 0 0
\(367\) −2.89898 2.89898i −0.151325 0.151325i 0.627384 0.778710i \(-0.284126\pi\)
−0.778710 + 0.627384i \(0.784126\pi\)
\(368\) −0.707107 0.707107i −0.0368605 0.0368605i
\(369\) 0 0
\(370\) −6.00000 + 7.34847i −0.311925 + 0.382029i
\(371\) 24.3916i 1.26635i
\(372\) 0 0
\(373\) −0.348469 + 0.348469i −0.0180431 + 0.0180431i −0.716071 0.698028i \(-0.754061\pi\)
0.698028 + 0.716071i \(0.254061\pi\)
\(374\) 0.285729 0.0147747
\(375\) 0 0
\(376\) −9.00000 −0.464140
\(377\) −0.778539 + 0.778539i −0.0400968 + 0.0400968i
\(378\) 0 0
\(379\) 21.3485i 1.09660i −0.836283 0.548299i \(-0.815276\pi\)
0.836283 0.548299i \(-0.184724\pi\)
\(380\) 9.12096 11.1708i 0.467895 0.573052i
\(381\) 0 0
\(382\) −12.3485 12.3485i −0.631803 0.631803i
\(383\) 5.79972 + 5.79972i 0.296352 + 0.296352i 0.839583 0.543231i \(-0.182799\pi\)
−0.543231 + 0.839583i \(0.682799\pi\)
\(384\) 0 0
\(385\) −0.651531 6.44949i −0.0332051 0.328696i
\(386\) 17.3205i 0.881591i
\(387\) 0 0
\(388\) 1.89898 1.89898i 0.0964061 0.0964061i
\(389\) 36.8017 1.86592 0.932959 0.359982i \(-0.117217\pi\)
0.932959 + 0.359982i \(0.117217\pi\)
\(390\) 0 0
\(391\) −0.449490 −0.0227317
\(392\) 9.75663 9.75663i 0.492784 0.492784i
\(393\) 0 0
\(394\) 9.79796i 0.493614i
\(395\) 4.24264 + 3.46410i 0.213470 + 0.174298i
\(396\) 0 0
\(397\) 10.5505 + 10.5505i 0.529515 + 0.529515i 0.920428 0.390913i \(-0.127841\pi\)
−0.390913 + 0.920428i \(0.627841\pi\)
\(398\) 5.97469 + 5.97469i 0.299484 + 0.299484i
\(399\) 0 0
\(400\) 1.00000 + 4.89898i 0.0500000 + 0.244949i
\(401\) 8.83523i 0.441210i −0.975363 0.220605i \(-0.929197\pi\)
0.975363 0.220605i \(-0.0708032\pi\)
\(402\) 0 0
\(403\) 1.10102 1.10102i 0.0548457 0.0548457i
\(404\) 12.5851 0.626130
\(405\) 0 0
\(406\) −1.44949 −0.0719370
\(407\) −1.90702 + 1.90702i −0.0945276 + 0.0945276i
\(408\) 0 0
\(409\) 28.8990i 1.42896i −0.699655 0.714481i \(-0.746663\pi\)
0.699655 0.714481i \(-0.253337\pi\)
\(410\) −16.4384 + 1.66062i −0.811836 + 0.0820121i
\(411\) 0 0
\(412\) 6.89898 + 6.89898i 0.339888 + 0.339888i
\(413\) −28.9521 28.9521i −1.42464 1.42464i
\(414\) 0 0
\(415\) 12.1237 1.22474i 0.595130 0.0601204i
\(416\) 3.46410i 0.169842i
\(417\) 0 0
\(418\) 2.89898 2.89898i 0.141794 0.141794i
\(419\) 5.02118 0.245301 0.122650 0.992450i \(-0.460861\pi\)
0.122650 + 0.992450i \(0.460861\pi\)
\(420\) 0 0
\(421\) −5.10102 −0.248609 −0.124304 0.992244i \(-0.539670\pi\)
−0.124304 + 0.992244i \(0.539670\pi\)
\(422\) 6.43539 6.43539i 0.313270 0.313270i
\(423\) 0 0
\(424\) 5.34847i 0.259745i
\(425\) 1.87492 + 1.23924i 0.0909468 + 0.0601120i
\(426\) 0 0
\(427\) −1.77526 1.77526i −0.0859106 0.0859106i
\(428\) 13.6100 + 13.6100i 0.657864 + 0.657864i
\(429\) 0 0
\(430\) 6.00000 + 4.89898i 0.289346 + 0.236250i
\(431\) 15.5563i 0.749323i 0.927162 + 0.374661i \(0.122241\pi\)
−0.927162 + 0.374661i \(0.877759\pi\)
\(432\) 0 0
\(433\) 13.4495 13.4495i 0.646341 0.646341i −0.305766 0.952107i \(-0.598912\pi\)
0.952107 + 0.305766i \(0.0989124\pi\)
\(434\) 2.04989 0.0983978
\(435\) 0 0
\(436\) −5.65153 −0.270659
\(437\) −4.56048 + 4.56048i −0.218157 + 0.218157i
\(438\) 0 0
\(439\) 29.7980i 1.42218i 0.703102 + 0.711089i \(0.251798\pi\)
−0.703102 + 0.711089i \(0.748202\pi\)
\(440\) 0.142865 + 1.41421i 0.00681080 + 0.0674200i
\(441\) 0 0
\(442\) 1.10102 + 1.10102i 0.0523702 + 0.0523702i
\(443\) −3.85337 3.85337i −0.183079 0.183079i 0.609617 0.792696i \(-0.291323\pi\)
−0.792696 + 0.609617i \(0.791323\pi\)
\(444\) 0 0
\(445\) 11.3485 13.8990i 0.537969 0.658875i
\(446\) 25.6308i 1.21365i
\(447\) 0 0
\(448\) −3.22474 + 3.22474i −0.152355 + 0.152355i
\(449\) −0.921404 −0.0434837 −0.0217419 0.999764i \(-0.506921\pi\)
−0.0217419 + 0.999764i \(0.506921\pi\)
\(450\) 0 0
\(451\) −4.69694 −0.221170
\(452\) 4.09978 4.09978i 0.192837 0.192837i
\(453\) 0 0
\(454\) 24.8990i 1.16857i
\(455\) 22.3417 27.3629i 1.04739 1.28279i
\(456\) 0 0
\(457\) −10.3485 10.3485i −0.484081 0.484081i 0.422351 0.906432i \(-0.361205\pi\)
−0.906432 + 0.422351i \(0.861205\pi\)
\(458\) −1.16781 1.16781i −0.0545681 0.0545681i
\(459\) 0 0
\(460\) −0.224745 2.22474i −0.0104788 0.103729i
\(461\) 33.0518i 1.53938i 0.638420 + 0.769689i \(0.279589\pi\)
−0.638420 + 0.769689i \(0.720411\pi\)
\(462\) 0 0
\(463\) −8.65153 + 8.65153i −0.402071 + 0.402071i −0.878962 0.476891i \(-0.841763\pi\)
0.476891 + 0.878962i \(0.341763\pi\)
\(464\) 0.317837 0.0147552
\(465\) 0 0
\(466\) 20.4495 0.947304
\(467\) −2.82843 + 2.82843i −0.130884 + 0.130884i −0.769514 0.638630i \(-0.779501\pi\)
0.638630 + 0.769514i \(0.279501\pi\)
\(468\) 0 0
\(469\) 30.1464i 1.39203i
\(470\) −15.5885 12.7279i −0.719042 0.587095i
\(471\) 0 0
\(472\) 6.34847 + 6.34847i 0.292212 + 0.292212i
\(473\) 1.55708 + 1.55708i 0.0715945 + 0.0715945i
\(474\) 0 0
\(475\) 31.5959 6.44949i 1.44972 0.295923i
\(476\) 2.04989i 0.0939565i
\(477\) 0 0
\(478\) −12.0000 + 12.0000i −0.548867 + 0.548867i
\(479\) −7.07107 −0.323085 −0.161543 0.986866i \(-0.551647\pi\)
−0.161543 + 0.986866i \(0.551647\pi\)
\(480\) 0 0
\(481\) −14.6969 −0.670123
\(482\) 13.4350 13.4350i 0.611949 0.611949i
\(483\) 0 0
\(484\) 10.5959i 0.481633i
\(485\) 5.97469 0.603566i 0.271297 0.0274065i
\(486\) 0 0
\(487\) −12.0000 12.0000i −0.543772 0.543772i 0.380861 0.924632i \(-0.375628\pi\)
−0.924632 + 0.380861i \(0.875628\pi\)
\(488\) 0.389270 + 0.389270i 0.0176214 + 0.0176214i
\(489\) 0 0
\(490\) 30.6969 3.10102i 1.38675 0.140090i
\(491\) 27.9985i 1.26356i 0.775149 + 0.631778i \(0.217675\pi\)
−0.775149 + 0.631778i \(0.782325\pi\)
\(492\) 0 0
\(493\) 0.101021 0.101021i 0.00454974 0.00454974i
\(494\) 22.3417 1.00520
\(495\) 0 0
\(496\) −0.449490 −0.0201827
\(497\) 20.2918 20.2918i 0.910212 0.910212i
\(498\) 0 0
\(499\) 0.898979i 0.0402438i 0.999798 + 0.0201219i \(0.00640544\pi\)
−0.999798 + 0.0201219i \(0.993595\pi\)
\(500\) −5.19615 + 9.89949i −0.232379 + 0.442719i
\(501\) 0 0
\(502\) −1.89898 1.89898i −0.0847556 0.0847556i
\(503\) −4.02834 4.02834i −0.179615 0.179615i 0.611573 0.791188i \(-0.290537\pi\)
−0.791188 + 0.611573i \(0.790537\pi\)
\(504\) 0 0
\(505\) 21.7980 + 17.7980i 0.969996 + 0.791999i
\(506\) 0.635674i 0.0282592i
\(507\) 0 0
\(508\) 1.87628 1.87628i 0.0832463 0.0832463i
\(509\) −8.45317 −0.374680 −0.187340 0.982295i \(-0.559987\pi\)
−0.187340 + 0.982295i \(0.559987\pi\)
\(510\) 0 0
\(511\) −44.4949 −1.96834
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 18.0454i 0.795949i
\(515\) 2.19275 + 21.7060i 0.0966242 + 0.956481i
\(516\) 0 0
\(517\) −4.04541 4.04541i −0.177917 0.177917i
\(518\) −13.6814 13.6814i −0.601128 0.601128i
\(519\) 0 0
\(520\) −4.89898 + 6.00000i −0.214834 + 0.263117i
\(521\) 29.4449i 1.29000i −0.764181 0.645001i \(-0.776857\pi\)
0.764181 0.645001i \(-0.223143\pi\)
\(522\) 0 0
\(523\) 4.22474 4.22474i 0.184735 0.184735i −0.608680 0.793416i \(-0.708301\pi\)
0.793416 + 0.608680i \(0.208301\pi\)
\(524\) 3.60697 0.157571
\(525\) 0 0
\(526\) 16.6969 0.728021
\(527\) −0.142865 + 0.142865i −0.00622328 + 0.00622328i
\(528\) 0 0
\(529\) 22.0000i 0.956522i
\(530\) −7.56388 + 9.26382i −0.328554 + 0.402395i
\(531\) 0 0
\(532\) 20.7980 + 20.7980i 0.901706 + 0.901706i
\(533\) −18.0990 18.0990i −0.783957 0.783957i
\(534\) 0 0
\(535\) 4.32577 + 42.8207i 0.187019 + 1.85130i
\(536\) 6.61037i 0.285524i
\(537\) 0 0
\(538\) 10.6742 10.6742i 0.460199 0.460199i
\(539\) 8.77101 0.377794
\(540\) 0 0
\(541\) 27.9444 1.20142 0.600712 0.799466i \(-0.294884\pi\)
0.600712 + 0.799466i \(0.294884\pi\)
\(542\) 19.8311 19.8311i 0.851819 0.851819i
\(543\) 0 0
\(544\) 0.449490i 0.0192717i
\(545\) −9.78874 7.99247i −0.419303 0.342360i
\(546\) 0 0
\(547\) −2.87628 2.87628i −0.122981 0.122981i 0.642938 0.765918i \(-0.277715\pi\)
−0.765918 + 0.642938i \(0.777715\pi\)
\(548\) 15.4135 + 15.4135i 0.658431 + 0.658431i
\(549\) 0 0
\(550\) −1.75255 + 2.65153i −0.0747290 + 0.113062i
\(551\) 2.04989i 0.0873282i
\(552\) 0 0
\(553\) −7.89898 + 7.89898i −0.335899 + 0.335899i
\(554\) −28.1414 −1.19561
\(555\) 0 0
\(556\) 3.10102 0.131513
\(557\) 7.88171 7.88171i 0.333959 0.333959i −0.520129 0.854088i \(-0.674116\pi\)
0.854088 + 0.520129i \(0.174116\pi\)
\(558\) 0 0
\(559\) 12.0000i 0.507546i
\(560\) −10.1459 + 1.02494i −0.428743 + 0.0433118i
\(561\) 0 0
\(562\) −12.1237 12.1237i −0.511408 0.511408i
\(563\) −13.8957 13.8957i −0.585635 0.585635i 0.350811 0.936446i \(-0.385906\pi\)
−0.936446 + 0.350811i \(0.885906\pi\)
\(564\) 0 0
\(565\) 12.8990 1.30306i 0.542664 0.0548202i
\(566\) 24.2166i 1.01790i
\(567\) 0 0
\(568\) −4.44949 + 4.44949i −0.186696 + 0.186696i
\(569\) −19.1633 −0.803368 −0.401684 0.915778i \(-0.631575\pi\)
−0.401684 + 0.915778i \(0.631575\pi\)
\(570\) 0 0
\(571\) 36.8990 1.54417 0.772087 0.635517i \(-0.219213\pi\)
0.772087 + 0.635517i \(0.219213\pi\)
\(572\) −1.55708 + 1.55708i −0.0651047 + 0.0651047i
\(573\) 0 0
\(574\) 33.6969i 1.40648i
\(575\) 2.75699 4.17121i 0.114975 0.173951i
\(576\) 0 0
\(577\) −17.0000 17.0000i −0.707719 0.707719i 0.258336 0.966055i \(-0.416826\pi\)
−0.966055 + 0.258336i \(0.916826\pi\)
\(578\) 11.8780 + 11.8780i 0.494058 + 0.494058i
\(579\) 0 0
\(580\) 0.550510 + 0.449490i 0.0228587 + 0.0186640i
\(581\) 24.8523i 1.03105i
\(582\) 0 0
\(583\) −2.40408 + 2.40408i −0.0995669 + 0.0995669i
\(584\) 9.75663 0.403732
\(585\) 0 0
\(586\) −22.0454 −0.910687
\(587\) −9.22450 + 9.22450i −0.380736 + 0.380736i −0.871367 0.490631i \(-0.836766\pi\)
0.490631 + 0.871367i \(0.336766\pi\)
\(588\) 0 0
\(589\) 2.89898i 0.119450i
\(590\) 2.01778 + 19.9740i 0.0830707 + 0.822315i
\(591\) 0 0
\(592\) 3.00000 + 3.00000i 0.123299 + 0.123299i
\(593\) 7.24604 + 7.24604i 0.297559 + 0.297559i 0.840057 0.542498i \(-0.182521\pi\)
−0.542498 + 0.840057i \(0.682521\pi\)
\(594\) 0 0
\(595\) −2.89898 + 3.55051i −0.118847 + 0.145557i
\(596\) 4.41761i 0.180952i
\(597\) 0 0
\(598\) 2.44949 2.44949i 0.100167 0.100167i
\(599\) 19.9419 0.814802 0.407401 0.913249i \(-0.366435\pi\)
0.407401 + 0.913249i \(0.366435\pi\)
\(600\) 0 0
\(601\) 5.30306 0.216316 0.108158 0.994134i \(-0.465505\pi\)
0.108158 + 0.994134i \(0.465505\pi\)
\(602\) −11.1708 + 11.1708i −0.455290 + 0.455290i
\(603\) 0 0
\(604\) 17.5959i 0.715968i
\(605\) 14.9849 18.3527i 0.609222 0.746142i
\(606\) 0 0
\(607\) 8.32577 + 8.32577i 0.337932 + 0.337932i 0.855589 0.517656i \(-0.173195\pi\)
−0.517656 + 0.855589i \(0.673195\pi\)
\(608\) −4.56048 4.56048i −0.184952 0.184952i
\(609\) 0 0
\(610\) 0.123724 + 1.22474i 0.00500945 + 0.0495885i
\(611\) 31.1769i 1.26128i
\(612\) 0 0
\(613\) 6.79796 6.79796i 0.274567 0.274567i −0.556369 0.830936i \(-0.687806\pi\)
0.830936 + 0.556369i \(0.187806\pi\)
\(614\) −9.43879 −0.380919
\(615\) 0 0
\(616\) −2.89898 −0.116803
\(617\) −11.9494 + 11.9494i −0.481064 + 0.481064i −0.905471 0.424407i \(-0.860482\pi\)
0.424407 + 0.905471i \(0.360482\pi\)
\(618\) 0 0
\(619\) 48.7423i 1.95912i −0.201151 0.979560i \(-0.564468\pi\)
0.201151 0.979560i \(-0.435532\pi\)
\(620\) −0.778539 0.635674i −0.0312669 0.0255293i
\(621\) 0 0
\(622\) −19.4495 19.4495i −0.779853 0.779853i
\(623\) 25.8772 + 25.8772i 1.03675 + 1.03675i
\(624\) 0 0
\(625\) −23.0000 + 9.79796i −0.920000 + 0.391918i
\(626\) 11.9494i 0.477593i
\(627\) 0 0
\(628\) −10.3485 + 10.3485i −0.412949 + 0.412949i
\(629\) 1.90702 0.0760380
\(630\) 0 0
\(631\) −3.10102 −0.123450 −0.0617248 0.998093i \(-0.519660\pi\)
−0.0617248 + 0.998093i \(0.519660\pi\)
\(632\) 1.73205 1.73205i 0.0688973 0.0688973i
\(633\) 0 0
\(634\) 10.8990i 0.432854i
\(635\) 5.90326 0.596350i 0.234264 0.0236654i
\(636\) 0 0
\(637\) 33.7980 + 33.7980i 1.33912 + 1.33912i
\(638\) 0.142865 + 0.142865i 0.00565606 + 0.00565606i
\(639\) 0 0
\(640\) 2.22474 0.224745i 0.0879408 0.00888382i
\(641\) 19.3383i 0.763816i 0.924200 + 0.381908i \(0.124733\pi\)
−0.924200 + 0.381908i \(0.875267\pi\)
\(642\) 0 0
\(643\) 4.47219 4.47219i 0.176366 0.176366i −0.613404 0.789770i \(-0.710200\pi\)
0.789770 + 0.613404i \(0.210200\pi\)
\(644\) 4.56048 0.179708
\(645\) 0 0
\(646\) −2.89898 −0.114059
\(647\) −23.5416 + 23.5416i −0.925516 + 0.925516i −0.997412 0.0718961i \(-0.977095\pi\)
0.0718961 + 0.997412i \(0.477095\pi\)
\(648\) 0 0
\(649\) 5.70714i 0.224025i
\(650\) −16.9706 + 3.46410i −0.665640 + 0.135873i
\(651\) 0 0
\(652\) −4.44949 4.44949i −0.174255 0.174255i
\(653\) −18.7026 18.7026i −0.731890 0.731890i 0.239104 0.970994i \(-0.423146\pi\)
−0.970994 + 0.239104i \(0.923146\pi\)
\(654\) 0 0
\(655\) 6.24745 + 5.10102i 0.244108 + 0.199313i
\(656\) 7.38891i 0.288488i
\(657\) 0 0
\(658\) 29.0227 29.0227i 1.13142 1.13142i
\(659\) 11.3137 0.440720 0.220360 0.975419i \(-0.429277\pi\)
0.220360 + 0.975419i \(0.429277\pi\)
\(660\) 0 0
\(661\) −1.30306 −0.0506832 −0.0253416 0.999679i \(-0.508067\pi\)
−0.0253416 + 0.999679i \(0.508067\pi\)
\(662\) 0.317837 0.317837i 0.0123531 0.0123531i
\(663\) 0 0
\(664\) 5.44949i 0.211481i
\(665\) 6.61037 + 65.4359i 0.256339 + 2.53749i
\(666\) 0 0
\(667\) −0.224745 0.224745i −0.00870216 0.00870216i
\(668\) 6.22110 + 6.22110i 0.240701 + 0.240701i
\(669\) 0 0
\(670\) −9.34847 + 11.4495i −0.361163 + 0.442332i
\(671\) 0.349945i 0.0135095i
\(672\) 0 0
\(673\) −16.4495 + 16.4495i −0.634081 + 0.634081i −0.949089 0.315008i \(-0.897993\pi\)
0.315008 + 0.949089i \(0.397993\pi\)
\(674\) −3.11416 −0.119953
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 32.2412 32.2412i 1.23913 1.23913i 0.278772 0.960357i \(-0.410073\pi\)
0.960357 0.278772i \(-0.0899274\pi\)
\(678\) 0 0
\(679\) 12.2474i 0.470014i
\(680\) 0.635674 0.778539i 0.0243770 0.0298556i
\(681\) 0 0
\(682\) −0.202041 0.202041i −0.00773655 0.00773655i
\(683\) 13.8564 + 13.8564i 0.530201 + 0.530201i 0.920632 0.390431i \(-0.127674\pi\)
−0.390431 + 0.920632i \(0.627674\pi\)
\(684\) 0 0
\(685\) 4.89898 + 48.4949i 0.187180 + 1.85289i
\(686\) 31.0019i 1.18366i
\(687\) 0 0
\(688\) 2.44949 2.44949i 0.0933859 0.0933859i
\(689\) −18.5276 −0.705847
\(690\) 0 0
\(691\) −20.9444 −0.796762 −0.398381 0.917220i \(-0.630428\pi\)
−0.398381 + 0.917220i \(0.630428\pi\)
\(692\) −9.12096 + 9.12096i −0.346727 + 0.346727i
\(693\) 0 0
\(694\) 23.7980i 0.903358i
\(695\) 5.37113 + 4.38551i 0.203738 + 0.166352i
\(696\) 0 0
\(697\) 2.34847 + 2.34847i 0.0889546 + 0.0889546i
\(698\) 20.5382 + 20.5382i 0.777383 + 0.777383i
\(699\) 0 0
\(700\) −19.0227 12.5732i −0.718991 0.475223i
\(701\) 21.1024i 0.797028i 0.917162 + 0.398514i \(0.130474\pi\)
−0.917162 + 0.398514i \(0.869526\pi\)
\(702\) 0 0
\(703\) 19.3485 19.3485i 0.729741 0.729741i
\(704\) 0.635674 0.0239579
\(705\) 0 0
\(706\) −34.2929 −1.29063
\(707\) −40.5836 + 40.5836i −1.52630 + 1.52630i
\(708\) 0 0
\(709\) 29.6515i 1.11359i 0.830651 + 0.556793i \(0.187968\pi\)
−0.830651 + 0.556793i \(0.812032\pi\)
\(710\) −13.9993 + 1.41421i −0.525383 + 0.0530745i
\(711\) 0 0
\(712\) −5.67423 5.67423i −0.212651 0.212651i
\(713\) 0.317837 + 0.317837i 0.0119031 + 0.0119031i
\(714\) 0 0
\(715\) −4.89898 + 0.494897i −0.183211 + 0.0185081i
\(716\) 10.6780i 0.399057i
\(717\) 0 0
\(718\) −2.34847 + 2.34847i −0.0876441 + 0.0876441i
\(719\) −32.5269 −1.21305 −0.606525 0.795065i \(-0.707437\pi\)
−0.606525 + 0.795065i \(0.707437\pi\)
\(720\) 0 0
\(721\) −44.4949 −1.65708
\(722\) −15.9777 + 15.9777i −0.594629 + 0.594629i
\(723\) 0 0
\(724\) 15.4495i 0.574176i
\(725\) 0.317837 + 1.55708i 0.0118042 + 0.0578284i
\(726\) 0 0
\(727\) 34.1691 + 34.1691i 1.26726 + 1.26726i 0.947496 + 0.319767i \(0.103605\pi\)
0.319767 + 0.947496i \(0.396395\pi\)
\(728\) −11.1708 11.1708i −0.414019 0.414019i
\(729\) 0 0
\(730\) 16.8990 + 13.7980i 0.625459 + 0.510685i
\(731\) 1.55708i 0.0575906i
\(732\) 0 0
\(733\) 24.1464 24.1464i 0.891869 0.891869i −0.102830 0.994699i \(-0.532790\pi\)
0.994699 + 0.102830i \(0.0327898\pi\)
\(734\) −4.09978 −0.151325
\(735\) 0 0
\(736\) −1.00000 −0.0368605
\(737\) −2.97129 + 2.97129i −0.109449 + 0.109449i
\(738\) 0 0
\(739\) 28.9444i 1.06474i 0.846513 + 0.532368i \(0.178698\pi\)
−0.846513 + 0.532368i \(0.821302\pi\)
\(740\) 0.953512 + 9.43879i 0.0350518 + 0.346977i
\(741\) 0 0
\(742\) −17.2474 17.2474i −0.633174 0.633174i
\(743\) 6.99964 + 6.99964i 0.256792 + 0.256792i 0.823748 0.566956i \(-0.191879\pi\)
−0.566956 + 0.823748i \(0.691879\pi\)
\(744\) 0 0
\(745\) 6.24745 7.65153i 0.228889 0.280330i
\(746\) 0.492810i 0.0180431i
\(747\) 0 0
\(748\) 0.202041 0.202041i 0.00738735 0.00738735i
\(749\) −87.7776 −3.20732
\(750\) 0 0
\(751\) 20.6969 0.755242 0.377621 0.925960i \(-0.376742\pi\)
0.377621 + 0.925960i \(0.376742\pi\)
\(752\) −6.36396 + 6.36396i −0.232070 + 0.232070i
\(753\) 0 0
\(754\) 1.10102i 0.0400968i
\(755\) 24.8844 30.4770i 0.905636 1.10917i
\(756\) 0 0
\(757\) 22.0454 + 22.0454i 0.801254 + 0.801254i 0.983292 0.182038i \(-0.0582693\pi\)
−0.182038 + 0.983292i \(0.558269\pi\)
\(758\) −15.0956 15.0956i −0.548299 0.548299i
\(759\) 0 0
\(760\) −1.44949 14.3485i −0.0525785 0.520474i
\(761\) 6.46750i 0.234447i 0.993106 + 0.117223i \(0.0373993\pi\)
−0.993106 + 0.117223i \(0.962601\pi\)
\(762\) 0 0
\(763\) 18.2247 18.2247i 0.659780 0.659780i
\(764\) −17.4634 −0.631803
\(765\) 0 0
\(766\) 8.20204 0.296352
\(767\) −21.9917 + 21.9917i −0.794076 + 0.794076i
\(768\) 0 0
\(769\) 9.69694i 0.349681i −0.984597 0.174840i \(-0.944059\pi\)
0.984597 0.174840i \(-0.0559409\pi\)
\(770\) −5.02118 4.09978i −0.180951 0.147746i
\(771\) 0 0
\(772\) 12.2474 + 12.2474i 0.440795 + 0.440795i
\(773\) −30.8270 30.8270i −1.10877 1.10877i −0.993313 0.115456i \(-0.963167\pi\)
−0.115456 0.993313i \(-0.536833\pi\)
\(774\) 0 0
\(775\) −0.449490 2.20204i −0.0161461 0.0790996i
\(776\) 2.68556i 0.0964061i
\(777\) 0 0
\(778\) 26.0227 26.0227i 0.932959 0.932959i
\(779\) 47.6547 1.70741
\(780\) 0 0
\(781\) −4.00000 −0.143131
\(782\) −0.317837 + 0.317837i −0.0113658 + 0.0113658i
\(783\) 0 0
\(784\) 13.7980i 0.492784i
\(785\) −32.5590 + 3.28913i −1.16208 + 0.117394i
\(786\) 0 0
\(787\) −6.89898 6.89898i −0.245922 0.245922i 0.573373 0.819295i \(-0.305635\pi\)
−0.819295 + 0.573373i \(0.805635\pi\)
\(788\) 6.92820 + 6.92820i 0.246807 + 0.246807i
\(789\) 0 0
\(790\) 5.44949 0.550510i 0.193884 0.0195863i
\(791\) 26.4415i 0.940150i
\(792\) 0 0
\(793\) −1.34847 + 1.34847i −0.0478855 + 0.0478855i
\(794\) 14.9207 0.529515
\(795\) 0 0
\(796\) 8.44949 0.299484
\(797\) 28.1414 28.1414i 0.996820 0.996820i −0.00317519 0.999995i \(-0.501011\pi\)
0.999995 + 0.00317519i \(0.00101070\pi\)
\(798\) 0 0
\(799\) 4.04541i 0.143116i
\(800\) 4.17121 + 2.75699i 0.147474 + 0.0974745i
\(801\) 0 0
\(802\) −6.24745 6.24745i −0.220605 0.220605i
\(803\) 4.38551 + 4.38551i 0.154761 + 0.154761i
\(804\) 0 0
\(805\) 7.89898 + 6.44949i 0.278402 + 0.227315i
\(806\) 1.55708i 0.0548457i
\(807\) 0 0
\(808\) 8.89898 8.89898i 0.313065 0.313065i
\(809\) 19.4490 0.683792 0.341896 0.939738i \(-0.388931\pi\)
0.341896 + 0.939738i \(0.388931\pi\)
\(810\) 0 0
\(811\) −39.6413 −1.39200 −0.695998 0.718044i \(-0.745038\pi\)
−0.695998 + 0.718044i \(0.745038\pi\)
\(812\) −1.02494 + 1.02494i −0.0359685 + 0.0359685i
\(813\) 0 0
\(814\) 2.69694i 0.0945276i
\(815\) −1.41421 13.9993i −0.0495377 0.490373i
\(816\) 0 0
\(817\) −15.7980 15.7980i −0.552701 0.552701i
\(818\) −20.4347 20.4347i −0.714481 0.714481i
\(819\) 0 0
\(820\) −10.4495 + 12.7980i −0.364912 + 0.446924i
\(821\) 22.3096i 0.778610i 0.921109 + 0.389305i \(0.127285\pi\)
−0.921109 + 0.389305i \(0.872715\pi\)
\(822\) 0 0
\(823\) 2.37117 2.37117i 0.0826539 0.0826539i −0.664571 0.747225i \(-0.731386\pi\)
0.747225 + 0.664571i \(0.231386\pi\)
\(824\) 9.75663 0.339888
\(825\) 0 0
\(826\) −40.9444 −1.42464
\(827\) −31.5662 + 31.5662i −1.09766 + 1.09766i −0.102980 + 0.994683i \(0.532838\pi\)
−0.994683 + 0.102980i \(0.967162\pi\)
\(828\) 0 0
\(829\) 10.5505i 0.366434i −0.983072 0.183217i \(-0.941349\pi\)
0.983072 0.183217i \(-0.0586512\pi\)
\(830\) 7.70674 9.43879i 0.267505 0.327625i
\(831\) 0 0
\(832\) 2.44949 + 2.44949i 0.0849208 + 0.0849208i
\(833\) −4.38551 4.38551i −0.151949 0.151949i
\(834\) 0 0
\(835\) 1.97730 + 19.5732i 0.0684272 + 0.677359i
\(836\) 4.09978i 0.141794i
\(837\) 0 0
\(838\) 3.55051 3.55051i 0.122650 0.122650i
\(839\) 0.492810 0.0170137 0.00850684 0.999964i \(-0.497292\pi\)
0.00850684 + 0.999964i \(0.497292\pi\)
\(840\) 0 0
\(841\) −28.8990 −0.996517
\(842\) −3.60697 + 3.60697i −0.124304 + 0.124304i
\(843\) 0 0
\(844\) 9.10102i 0.313270i
\(845\) 1.73205 + 1.41421i 0.0595844 + 0.0486504i
\(846\) 0 0
\(847\) 34.1691 + 34.1691i 1.17407 + 1.17407i
\(848\) 3.78194 + 3.78194i 0.129872 + 0.129872i
\(849\) 0 0
\(850\) 2.20204 0.449490i 0.0755294 0.0154174i
\(851\) 4.24264i 0.145436i
\(852\) 0 0
\(853\) −1.75255 + 1.75255i −0.0600062 + 0.0600062i −0.736473 0.676467i \(-0.763510\pi\)
0.676467 + 0.736473i \(0.263510\pi\)
\(854\) −2.51059 −0.0859106
\(855\) 0 0
\(856\) 19.2474 0.657864
\(857\) −11.1708 + 11.1708i −0.381589 + 0.381589i −0.871674 0.490086i \(-0.836966\pi\)
0.490086 + 0.871674i \(0.336966\pi\)
\(858\) 0 0
\(859\) 46.4949i 1.58639i −0.608971 0.793193i \(-0.708417\pi\)
0.608971 0.793193i \(-0.291583\pi\)
\(860\) 7.70674 0.778539i 0.262798 0.0265480i
\(861\) 0 0
\(862\) 11.0000 + 11.0000i 0.374661 + 0.374661i
\(863\) 20.7132 + 20.7132i 0.705085 + 0.705085i 0.965497 0.260413i \(-0.0838586\pi\)
−0.260413 + 0.965497i \(0.583859\pi\)
\(864\) 0 0
\(865\) −28.6969 + 2.89898i −0.975725 + 0.0985683i
\(866\) 19.0205i 0.646341i
\(867\) 0 0
\(868\) 1.44949 1.44949i 0.0491989 0.0491989i
\(869\) 1.55708 0.0528203
\(870\) 0 0
\(871\) −22.8990 −0.775902
\(872\) −3.99624 + 3.99624i −0.135330 + 0.135330i
\(873\) 0 0
\(874\) 6.44949i 0.218157i
\(875\) −15.1671 48.6796i −0.512741 1.64567i
\(876\) 0 0
\(877\) 30.2474 + 30.2474i 1.02138 + 1.02138i 0.999766 + 0.0216175i \(0.00688159\pi\)
0.0216175 + 0.999766i \(0.493118\pi\)
\(878\) 21.0703 + 21.0703i 0.711089 + 0.711089i
\(879\) 0 0
\(880\) 1.10102 + 0.898979i 0.0371154 + 0.0303046i
\(881\) 54.8365i 1.84749i −0.383010 0.923744i \(-0.625113\pi\)
0.383010 0.923744i \(-0.374887\pi\)
\(882\) 0 0
\(883\) 6.27015 6.27015i 0.211007 0.211007i −0.593688 0.804695i \(-0.702329\pi\)
0.804695 + 0.593688i \(0.202329\pi\)
\(884\) 1.55708 0.0523702
\(885\) 0 0
\(886\) −5.44949 −0.183079
\(887\) −5.79972 + 5.79972i −0.194735 + 0.194735i −0.797739 0.603003i \(-0.793971\pi\)
0.603003 + 0.797739i \(0.293971\pi\)
\(888\) 0 0
\(889\) 12.1010i 0.405855i
\(890\) −1.80348 17.8526i −0.0604529 0.598422i
\(891\) 0 0
\(892\) −18.1237 18.1237i −0.606827 0.606827i
\(893\) 41.0443 + 41.0443i 1.37350 + 1.37350i
\(894\) 0 0
\(895\) −15.1010 + 18.4949i −0.504771 + 0.618216i
\(896\) 4.56048i 0.152355i
\(897\) 0 0
\(898\) −0.651531 + 0.651531i −0.0217419 + 0.0217419i
\(899\) −0.142865 −0.00476480
\(900\) 0 0
\(901\) 2.40408 0.0800916
\(902\) −3.32124 + 3.32124i −0.110585 + 0.110585i
\(903\) 0 0
\(904\) 5.79796i 0.192837i
\(905\) −21.8489 + 26.7593i −0.726281 + 0.889509i
\(906\) 0 0
\(907\) −2.67423 2.67423i −0.0887965 0.0887965i 0.661313 0.750110i \(-0.269999\pi\)
−0.750110 + 0.661313i \(0.769999\pi\)
\(908\) 17.6062 + 17.6062i 0.584284 + 0.584284i
\(909\) 0 0
\(910\) −3.55051 35.1464i −0.117698 1.16509i
\(911\) 7.07107i 0.234275i −0.993116 0.117137i \(-0.962628\pi\)
0.993116 0.117137i \(-0.0373718\pi\)
\(912\) 0 0
\(913\) 2.44949 2.44949i 0.0810663 0.0810663i
\(914\) −14.6349 −0.484081
\(915\) 0 0
\(916\) −1.65153 −0.0545681
\(917\) −11.6315 + 11.6315i −0.384107 + 0.384107i
\(918\) 0 0
\(919\) 12.6515i 0.417335i 0.977987 + 0.208668i \(0.0669127\pi\)
−0.977987 + 0.208668i \(0.933087\pi\)
\(920\) −1.73205 1.41421i −0.0571040 0.0466252i
\(921\) 0 0
\(922\) 23.3712 + 23.3712i 0.769689 + 0.769689i
\(923\) −15.4135 15.4135i −0.507341 0.507341i
\(924\) 0 0
\(925\) −11.6969 + 17.6969i −0.384593 + 0.581872i
\(926\) 12.2351i 0.402071i
\(927\) 0 0
\(928\) 0.224745 0.224745i 0.00737761 0.00737761i
\(929\) 42.2049 1.38470 0.692349 0.721563i \(-0.256576\pi\)
0.692349 + 0.721563i \(0.256576\pi\)
\(930\) 0 0
\(931\) −88.9898 −2.91652
\(932\) 14.4600 14.4600i 0.473652 0.473652i
\(933\) 0 0
\(934\) 4.00000i 0.130884i
\(935\) 0.635674 0.0642162i 0.0207888 0.00210009i
\(936\) 0 0
\(937\) −3.10102 3.10102i −0.101306 0.101306i 0.654637 0.755943i \(-0.272821\pi\)
−0.755943 + 0.654637i \(0.772821\pi\)
\(938\) −21.3167 21.3167i −0.696016 0.696016i
\(939\) 0 0
\(940\) −20.0227 + 2.02270i −0.653069 + 0.0659733i
\(941\) 31.7805i 1.03601i −0.855376 0.518007i \(-0.826674\pi\)
0.855376 0.518007i \(-0.173326\pi\)
\(942\) 0 0
\(943\) 5.22474 5.22474i 0.170141 0.170141i
\(944\) 8.97809 0.292212
\(945\) 0 0
\(946\) 2.20204 0.0715945
\(947\) −2.15343 + 2.15343i −0.0699770 + 0.0699770i −0.741229 0.671252i \(-0.765757\pi\)
0.671252 + 0.741229i \(0.265757\pi\)
\(948\) 0 0
\(949\) 33.7980i 1.09713i
\(950\) 17.7812 26.9022i 0.576899 0.872822i
\(951\) 0 0
\(952\) 1.44949 + 1.44949i 0.0469782 + 0.0469782i
\(953\) 5.79972 + 5.79972i 0.187871 + 0.187871i 0.794775 0.606904i \(-0.207589\pi\)
−0.606904 + 0.794775i \(0.707589\pi\)
\(954\) 0 0
\(955\) −30.2474 24.6969i −0.978784 0.799174i
\(956\) 16.9706i 0.548867i
\(957\) 0 0
\(958\) −5.00000 + 5.00000i −0.161543 + 0.161543i
\(959\) −99.4091 −3.21009
\(960\) 0 0
\(961\) −30.7980 −0.993483
\(962\) −10.3923 + 10.3923i −0.335061 + 0.335061i
\(963\) 0 0
\(964\) 19.0000i 0.611949i
\(965\) 3.89270 + 38.5337i 0.125310 + 1.24044i
\(966\) 0 0
\(967\) −28.3258 28.3258i −0.910895 0.910895i 0.0854475 0.996343i \(-0.472768\pi\)
−0.996343 + 0.0854475i \(0.972768\pi\)
\(968\) −7.49245 7.49245i −0.240816 0.240816i
\(969\) 0 0
\(970\) 3.79796 4.65153i 0.121945 0.149352i
\(971\) 21.4989i 0.689934i 0.938615 + 0.344967i \(0.112110\pi\)
−0.938615 + 0.344967i \(0.887890\pi\)
\(972\) 0 0
\(973\) −10.0000 + 10.0000i −0.320585 + 0.320585i
\(974\) −16.9706 −0.543772
\(975\) 0 0
\(976\) 0.550510 0.0176214
\(977\) 4.59259 4.59259i 0.146930 0.146930i −0.629815 0.776745i \(-0.716869\pi\)
0.776745 + 0.629815i \(0.216869\pi\)
\(978\) 0 0
\(979\) 5.10102i 0.163029i
\(980\) 19.5133 23.8988i 0.623328 0.763418i
\(981\) 0 0
\(982\) 19.7980 + 19.7980i 0.631778 + 0.631778i
\(983\) −19.2347 19.2347i −0.613493 0.613493i 0.330361 0.943855i \(-0.392829\pi\)
−0.943855 + 0.330361i \(0.892829\pi\)
\(984\) 0 0
\(985\) 2.20204 + 21.7980i 0.0701629 + 0.694541i
\(986\) 0.142865i 0.00454974i
\(987\) 0 0
\(988\) 15.7980 15.7980i 0.502600 0.502600i
\(989\) −3.46410 −0.110152
\(990\) 0 0
\(991\) 16.7423 0.531838 0.265919 0.963995i \(-0.414325\pi\)
0.265919 + 0.963995i \(0.414325\pi\)
\(992\) −0.317837 + 0.317837i −0.0100913 + 0.0100913i
\(993\) 0 0
\(994\) 28.6969i 0.910212i
\(995\) 14.6349 + 11.9494i 0.463959 + 0.378821i
\(996\) 0 0
\(997\) −4.75255 4.75255i −0.150515 0.150515i 0.627833 0.778348i \(-0.283942\pi\)
−0.778348 + 0.627833i \(0.783942\pi\)
\(998\) 0.635674 + 0.635674i 0.0201219 + 0.0201219i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.2.f.b.647.3 8
3.2 odd 2 inner 810.2.f.b.647.2 8
5.3 odd 4 inner 810.2.f.b.323.1 8
9.2 odd 6 270.2.m.a.17.2 8
9.4 even 3 270.2.m.a.197.2 8
9.5 odd 6 90.2.l.a.47.1 yes 8
9.7 even 3 90.2.l.a.77.1 yes 8
15.8 even 4 inner 810.2.f.b.323.4 8
36.7 odd 6 720.2.cu.a.257.1 8
36.23 even 6 720.2.cu.a.497.1 8
45.2 even 12 1350.2.q.g.1043.1 8
45.4 even 6 1350.2.q.g.1007.1 8
45.7 odd 12 450.2.p.a.293.2 8
45.13 odd 12 270.2.m.a.143.2 8
45.14 odd 6 450.2.p.a.407.2 8
45.22 odd 12 1350.2.q.g.143.1 8
45.23 even 12 90.2.l.a.83.1 yes 8
45.29 odd 6 1350.2.q.g.557.1 8
45.32 even 12 450.2.p.a.443.2 8
45.34 even 6 450.2.p.a.257.2 8
45.38 even 12 270.2.m.a.233.2 8
45.43 odd 12 90.2.l.a.23.1 8
180.23 odd 12 720.2.cu.a.353.1 8
180.43 even 12 720.2.cu.a.113.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.l.a.23.1 8 45.43 odd 12
90.2.l.a.47.1 yes 8 9.5 odd 6
90.2.l.a.77.1 yes 8 9.7 even 3
90.2.l.a.83.1 yes 8 45.23 even 12
270.2.m.a.17.2 8 9.2 odd 6
270.2.m.a.143.2 8 45.13 odd 12
270.2.m.a.197.2 8 9.4 even 3
270.2.m.a.233.2 8 45.38 even 12
450.2.p.a.257.2 8 45.34 even 6
450.2.p.a.293.2 8 45.7 odd 12
450.2.p.a.407.2 8 45.14 odd 6
450.2.p.a.443.2 8 45.32 even 12
720.2.cu.a.113.1 8 180.43 even 12
720.2.cu.a.257.1 8 36.7 odd 6
720.2.cu.a.353.1 8 180.23 odd 12
720.2.cu.a.497.1 8 36.23 even 6
810.2.f.b.323.1 8 5.3 odd 4 inner
810.2.f.b.323.4 8 15.8 even 4 inner
810.2.f.b.647.2 8 3.2 odd 2 inner
810.2.f.b.647.3 8 1.1 even 1 trivial
1350.2.q.g.143.1 8 45.22 odd 12
1350.2.q.g.557.1 8 45.29 odd 6
1350.2.q.g.1007.1 8 45.4 even 6
1350.2.q.g.1043.1 8 45.2 even 12