Learn more

Refine search


Results (40 matches)

  displayed columns for results
Label Class Conductor Discriminant Rank* Torsion End0(JQ)\textrm{End}^0(J_{\overline\Q}) Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
256.a.512.1 256.a 28 2^{8} 29 - 2^{9} 00 Z/2ZZ/10Z\Z/2\Z\oplus\Z/10\Z M2(Q)\mathrm{M}_2(\Q) [26,2,40,2][26,-2,40,2] [52,118,36,3949,512][52,118,-36,-3949,512] [742586,129623/4,1521/8][742586,129623/4,-1521/8] y2+y=2x53x4+x3+x2xy^2 + y = 2x^5 - 3x^4 + x^3 + x^2 - x
324.a.648.1 324.a 2234 2^{2} \cdot 3^{4} 2334 - 2^{3} \cdot 3^{4} 00 Z/21Z\Z/21\Z M2(Q)\mathrm{M}_2(\Q) [60,945,2295,82944][60,945,2295,82944] [15,30,140,300,648][15,-30,140,300,648] [9375/8,625/4,875/18][9375/8,-625/4,875/18] y2+(x3+x+1)y=x5+2x4+2x3+x2y^2 + (x^3 + x + 1)y = x^5 + 2x^4 + 2x^3 + x^2
388.a.776.1 388.a 2297 2^{2} \cdot 97 2397 2^{3} \cdot 97 00 Z/21Z\Z/21\Z Q\Q [36,1569,13743,99328][36,1569,-13743,99328] [9,62,356,160,776][9,-62,356,-160,776] [59049/776,22599/388,7209/194][59049/776,-22599/388,7209/194] y2+(x3+x+1)y=x4+2x2+xy^2 + (x^3 + x + 1)y = -x^4 + 2x^2 + x
472.a.944.1 472.a 2359 2^{3} \cdot 59 2459 - 2^{4} \cdot 59 00 Z/2ZZ/8Z\Z/2\Z\oplus\Z/8\Z Q\Q [280,760,60604,3776][280,760,60604,-3776] [140,690,4544,40015,944][140,690,4544,40015,-944] [3361400000/59,118335000/59,5566400/59][-3361400000/59,-118335000/59,-5566400/59] y2+(x2+1)y=x5x42x3+xy^2 + (x^2 + 1)y = x^5 - x^4 - 2x^3 + x
476.a.952.1 476.a 22717 2^{2} \cdot 7 \cdot 17 23717 - 2^{3} \cdot 7 \cdot 17 00 Z/3ZZ/6Z\Z/3\Z\oplus\Z/6\Z Q×Q\Q \times \Q [7340,1042345,2905273355,121856][7340,1042345,2905273355,121856] [1835,96870,3910340,4139817700,952][1835,96870,-3910340,-4139817700,952] [20805604708146875/952,299272981175625/476,27661753375/2][20805604708146875/952,299272981175625/476,-27661753375/2] y2+(x3+1)y=5x4+7x3+25x275x+54y^2 + (x^3 + 1)y = -5x^4 + 7x^3 + 25x^2 - 75x + 54
523.a.523.1 523.a 523 523 523 -523 00 Z/10Z\Z/10\Z Q\Q [120,540,29169,2092][120,-540,-29169,-2092] [60,240,2241,19215,523][60,240,2241,19215,-523] [777600000/523,51840000/523,8067600/523][-777600000/523,-51840000/523,-8067600/523] y2+(x+1)y=x5x4x3y^2 + (x + 1)y = x^5 - x^4 - x^3
523.a.523.2 523.a 523 523 523 -523 00 Z/2Z\Z/2\Z Q\Q [332400,10084860,1107044456391,2092][332400,10084860,1107044456391,-2092] [166200,1149254190,10581558955401,109467476288772525,523][166200,1149254190,10581558955401,109467476288772525,-523] [126810465636208320000000000/523,5276053055713522320000000/523,292288477352026798440000/523][-126810465636208320000000000/523,-5276053055713522320000000/523,-292288477352026798440000/523] y2+xy=x531x4110x3+21x2xy^2 + xy = x^5 - 31x^4 - 110x^3 + 21x^2 - x
529.a.529.1 529.a 232 23^{2} 232 23^{2} 00 Z/11Z\Z/11\Z RM\mathsf{RM} [284,2401,246639,67712][284,2401,246639,-67712] [71,110,624,14101,529][71,110,-624,-14101,-529] [1804229351/529,39370210/529,3145584/529][-1804229351/529,-39370210/529,3145584/529] y2+(x3+x+1)y=x5y^2 + (x^3 + x + 1)y = -x^5
576.a.576.1 576.a 2632 2^{6} \cdot 3^{2} 2632 - 2^{6} \cdot 3^{2} 00 Z/10Z\Z/10\Z M2(Q)\mathrm{M}_2(\Q) [68,124,2616,72][68,124,2616,72] [68,110,36,3637,576][68,110,-36,-3637,576] [22717712/9,540430/9,289][22717712/9,540430/9,-289] y2+(x3+x2+x+1)y=x3xy^2 + (x^3 + x^2 + x + 1)y = -x^3 - x
587.a.587.1 587.a 587 587 587 587 11 trivial\mathsf{trivial} Q\Q [60,1401,54147,75136][60,1401,54147,-75136] [15,49,501,2479,587][15,-49,-501,-2479,-587] [759375/587,165375/587,112725/587][-759375/587,165375/587,112725/587] y2+(x3+x+1)y=x2xy^2 + (x^3 + x + 1)y = -x^2 - x
597.a.597.1 597.a 3199 3 \cdot 199 3199 3 \cdot 199 00 Z/7Z\Z/7\Z Q\Q [120,192,9912,2388][120,192,9912,2388] [60,118,68,4501,597][60,118,-68,-4501,597] [259200000/199,8496000/199,81600/199][259200000/199,8496000/199,-81600/199] y2+y=x5+2x4+3x3+2x2+xy^2 + y = x^5 + 2x^4 + 3x^3 + 2x^2 + x
603.a.603.1 603.a 3267 3^{2} \cdot 67 3267 - 3^{2} \cdot 67 00 Z/10Z\Z/10\Z Q\Q [1672,75628,49887881,2412][1672,75628,49887881,2412] [836,16516,1263521,332270453,603][836,16516,-1263521,-332270453,603] [408348897330176/603,9649919856896/603,883069772816/603][408348897330176/603,9649919856896/603,-883069772816/603] y2+(x2+1)y=x5+8x4+4x3+4x2+2xy^2 + (x^2 + 1)y = x^5 + 8x^4 + 4x^3 + 4x^2 + 2x
603.a.603.2 603.a 3267 3^{2} \cdot 67 3267 - 3^{2} \cdot 67 00 Z/10Z\Z/10\Z Q\Q [176,148,7375,2412][176,148,7375,-2412] [88,298,1361,7741,603][88,298,1361,7741,-603] [5277319168/603,203078656/603,10539584/603][-5277319168/603,-203078656/603,-10539584/603] y2+(x2+1)y=x5x3+xy^2 + (x^2 + 1)y = x^5 - x^3 + x
686.a.686.1 686.a 273 2 \cdot 7^{3} 273 2 \cdot 7^{3} 00 Z/6Z\Z/6\Z CM×Q\mathsf{CM} \times \Q [420,4305,640185,87808][420,4305,640185,87808] [105,280,980,45325,686][105,280,-980,-45325,686] [37209375/2,472500,15750][37209375/2,472500,-15750] y2+(x2+x)y=x5+x4+2x3+x2+xy^2 + (x^2 + x)y = x^5 + x^4 + 2x^3 + x^2 + x
691.a.691.1 691.a 691 691 691 -691 00 Z/8Z\Z/8\Z Q\Q [104,824,20333,2764][104,-824,-20333,-2764] [52,250,601,7812,691][52,250,601,-7812,-691] [380204032/691,35152000/691,1625104/691][-380204032/691,-35152000/691,-1625104/691] y2+(x+1)y=x5x3x2y^2 + (x + 1)y = x^5 - x^3 - x^2
709.a.709.1 709.a 709 709 709 709 00 Z/8Z\Z/8\Z Q\Q [160,1280,42089,2836][160,-1280,-42089,2836] [80,480,1121,35180,709][80,480,1121,-35180,709] [3276800000/709,245760000/709,7174400/709][3276800000/709,245760000/709,7174400/709] y2+xy=x52x2+xy^2 + xy = x^5 - 2x^2 + x
713.a.713.1 713.a 2331 23 \cdot 31 2331 23 \cdot 31 11 trivial\mathsf{trivial} Q\Q [36,1305,2547,91264][36,1305,-2547,91264] [9,51,173,261,713][9,-51,173,-261,713] [59049/713,37179/713,14013/713][59049/713,-37179/713,14013/713] y2+(x3+x+1)y=x5xy^2 + (x^3 + x + 1)y = -x^5 - x
713.b.713.1 713.b 2331 23 \cdot 31 2331 23 \cdot 31 00 Z/9Z\Z/9\Z Q\Q [92,73,6379,91264][92,73,6379,-91264] [23,19,41,326,713][23,19,-41,-326,-713] [279841/31,10051/31,943/31][-279841/31,-10051/31,943/31] y2+(x3+x+1)y=x4y^2 + (x^3 + x + 1)y = -x^4
743.a.743.1 743.a 743 743 743 -743 11 trivial\mathsf{trivial} Q\Q [28,1945,15219,95104][28,1945,15219,95104] [7,79,53,1653,743][7,-79,-53,-1653,743] [16807/743,27097/743,2597/743][16807/743,-27097/743,-2597/743] y2+(x3+x+1)y=x4+x2y^2 + (x^3 + x + 1)y = -x^4 + x^2
745.a.745.1 745.a 5149 5 \cdot 149 5149 - 5 \cdot 149 00 Z/9Z\Z/9\Z Q\Q [124,1417,38763,95360][124,1417,38763,95360] [31,19,39,212,745][31,-19,39,212,745] [28629151/745,566029/745,37479/745][28629151/745,-566029/745,37479/745] y2+(x3+x+1)y=xy^2 + (x^3 + x + 1)y = -x
763.a.763.1 763.a 7109 7 \cdot 109 7109 - 7 \cdot 109 00 Z/10Z\Z/10\Z Q\Q [216,1116,75735,3052][216,1116,75735,-3052] [108,300,81,20313,763][108,300,81,-20313,-763] [14693280768/763,377913600/763,944784/763][-14693280768/763,-377913600/763,-944784/763] y2+(x3+x)y=2x4+2x2xy^2 + (x^3 + x)y = -2x^4 + 2x^2 - x
797.a.797.1 797.a 797 797 797 797 00 Z/7Z\Z/7\Z Q\Q [24,528,7608,3188][24,528,7608,3188] [12,82,548,3325,797][12,-82,-548,-3325,797] [248832/797,141696/797,78912/797][248832/797,-141696/797,-78912/797] y2+y=x5x4+x3y^2 + y = x^5 - x^4 + x^3
832.a.832.1 832.a 2613 2^{6} \cdot 13 2613 - 2^{6} \cdot 13 00 Z/8Z\Z/8\Z Q\Q [272,131,12402,104][272,-131,-12402,-104] [272,3170,51008,956319,832][272,3170,51008,956319,-832] [23262937088/13,996749440/13,58965248/13][-23262937088/13,-996749440/13,-58965248/13] y2+(x3+x)y=x5x3+x2+2x1y^2 + (x^3 + x)y = x^5 - x^3 + x^2 + 2x - 1
841.a.841.1 841.a 292 29^{2} 292 - 29^{2} 00 Z/7Z\Z/7\Z RM\mathsf{RM} [1420,4201,1973899,107648][1420,4201,1973899,107648] [355,5076,93408,1848516,841][355,5076,93408,1848516,841] [5638216721875/841,227094529500/841,11771743200/841][5638216721875/841,227094529500/841,11771743200/841] y2+(x3+x2+x)y=x4+x3+3x2+x+2y^2 + (x^3 + x^2 + x)y = x^4 + x^3 + 3x^2 + x + 2
847.a.847.1 847.a 7112 7 \cdot 11^{2} 7112 - 7 \cdot 11^{2} 11 Z/5Z\Z/5\Z Q×Q\Q \times \Q [120,276,6864,3388][120,276,6864,3388] [60,104,504,4856,847][60,104,504,4856,847] [777600000/847,22464000/847,259200/121][777600000/847,22464000/847,259200/121] y2+(x3+x2+x+1)y=x4+x3+x2y^2 + (x^3 + x^2 + x + 1)y = x^4 + x^3 + x^2
847.d.847.1 847.d 7112 7 \cdot 11^{2} 7112 - 7 \cdot 11^{2} 00 Z/3Z\Z/3\Z Q×Q\Q \times \Q [80408,402403732,8094753026048,3388][80408,402403732,8094753026048,3388] [40204,281112,1967560,19956424,847][40204,281112,1967560,19956424,847] [105037970421355597057024/847,18267839107785466368/847,454326923025280/121][105037970421355597057024/847,18267839107785466368/847,454326923025280/121] y2+(x3+x2+x+1)y=12x615x5+9x4+31x3+9x215x12y^2 + (x^3 + x^2 + x + 1)y = -12x^6 - 15x^5 + 9x^4 + 31x^3 + 9x^2 - 15x - 12
862.a.862.1 862.a 2431 2 \cdot 431 2431 - 2 \cdot 431 00 Z/8Z\Z/8\Z Q\Q [1940,2609665,270472593,110336][1940,2609665,270472593,-110336] [485,98935,11156681,1094285985,862][485,-98935,11156681,-1094285985,-862] [26835438303125/862,11286912906875/862,2624330288225/862][-26835438303125/862,11286912906875/862,-2624330288225/862] y2+(x3+1)y=x52x47x3+7x2+2x+5y^2 + (x^3 + 1)y = x^5 - 2x^4 - 7x^3 + 7x^2 + 2x + 5
862.b.862.1 862.b 2431 2 \cdot 431 2431 2 \cdot 431 00 Z/9Z\Z/9\Z Q\Q [552,696,112755,3448][552,696,112755,3448] [276,3058,45033,769436,862][276,3058,45033,769436,862] [800784050688/431,32146576704/431,1715216904/431][800784050688/431,32146576704/431,1715216904/431] y2+(x3+x)y=2x4+3x2x1y^2 + (x^3 + x)y = -2x^4 + 3x^2 - x - 1
893.a.893.1 893.a 1947 19 \cdot 47 1947 19 \cdot 47 11 trivial\mathsf{trivial} Q\Q [156,519,11805,114304][156,-519,-11805,-114304] [39,85,67,1153,893][39,85,67,-1153,-893] [90224199/893,5042115/893,101907/893][-90224199/893,-5042115/893,-101907/893] y2+(x3+x+1)y=x4x2y^2 + (x^3 + x + 1)y = -x^4 - x^2
909.a.909.1 909.a 32101 3^{2} \cdot 101 32101 3^{2} \cdot 101 00 Z/8Z\Z/8\Z Q\Q [40,200,5469,3636][40,-200,-5469,3636] [20,50,441,1580,909][20,50,441,1580,909] [3200000/909,400000/909,19600/101][3200000/909,400000/909,19600/101] y2+(x3+x)y=x4+x2xy^2 + (x^3 + x)y = -x^4 + x^2 - x
925.a.925.1 925.a 5237 5^{2} \cdot 37 5237 5^{2} \cdot 37 00 Z/8Z\Z/8\Z Q\Q [40,944,14117,3700][40,-944,-14117,3700] [20,174,713,4004,925][20,174,713,-4004,925] [128000/37,55680/37,11408/37][128000/37,55680/37,11408/37] y2+(x+1)y=x5+2x4x3x2y^2 + (x + 1)y = -x^5 + 2x^4 - x^3 - x^2
930.a.930.1 930.a 23531 2 \cdot 3 \cdot 5 \cdot 31 23531 2 \cdot 3 \cdot 5 \cdot 31 00 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z Q×Q\Q \times \Q [46596,239073,3674852529,119040][46596,239073,3674852529,119040] [11649,5644172,3640360380,2637470125259,930][11649,5644172,3640360380,2637470125259,930] [71502622649365111083/310,1487013548016809538/155,531176338621566][71502622649365111083/310,1487013548016809538/155,531176338621566] y2+(x2+x)y=x57x4+37x245x+15y^2 + (x^2 + x)y = -x^5 - 7x^4 + 37x^2 - 45x + 15
953.a.953.1 953.a 953 953 953 -953 11 trivial\mathsf{trivial} Q\Q [92,1513,26203,121984][92,1513,26203,121984] [23,41,67,35,953][23,-41,67,-35,953] [6436343/953,498847/953,35443/953][6436343/953,-498847/953,35443/953] y2+(x3+x+1)y=x3+x2y^2 + (x^3 + x + 1)y = x^3 + x^2
961.a.961.1 961.a 312 31^{2} 312 - 31^{2} 00 trivial\mathsf{trivial} RM\mathsf{RM} [66980,1011437281,14016353908561,123008][66980,1011437281,14016353908561,-123008] [16745,30460094,12221475912,180792178085599,961][16745,-30460094,12221475912,-180792178085599,-961] [1316514841399349215625/961,143016680917998700750/961,3426841043882137800/961][-1316514841399349215625/961,143016680917998700750/961,-3426841043882137800/961] y2+(x3+x+1)y=x6x57x4+74x3145x2+99x33y^2 + (x^3 + x + 1)y = -x^6 - x^5 - 7x^4 + 74x^3 - 145x^2 + 99x - 33
961.a.961.2 961.a 312 31^{2} 312 - 31^{2} 00 Z/5Z\Z/5\Z RM\mathsf{RM} [11260,503521,1770579599,123008][11260,503521,1770579599,123008] [2815,309196,43449708,6677190401,961][2815,309196,43449708,6677190401,961] [176763257309509375/961,6897140364776500/961,344305262376300/961][176763257309509375/961,6897140364776500/961,344305262376300/961] y2+(x3+x+1)y=x6+2x58x4+12x318x2+12x7y^2 + (x^3 + x + 1)y = -x^6 + 2x^5 - 8x^4 + 12x^3 - 18x^2 + 12x - 7
961.a.961.3 961.a 312 31^{2} 312 31^{2} 00 Z/5Z\Z/5\Z RM\mathsf{RM} [260,1681,185209,123008][260,1681,185209,123008] [65,106,672,13729,961][65,106,-672,-13729,961] [1160290625/961,29110250/961,2839200/961][1160290625/961,29110250/961,-2839200/961] y2+(x3+x+1)y=x5+x4+x3x1y^2 + (x^3 + x + 1)y = x^5 + x^4 + x^3 - x - 1
971.a.971.1 971.a 971 971 971 -971 11 trivial\mathsf{trivial} Q\Q [256,1024,80304,3884][256,1024,80304,-3884] [128,512,2000,1536,971][128,512,2000,-1536,-971] [34359738368/971,1073741824/971,32768000/971][-34359738368/971,-1073741824/971,-32768000/971] y2+y=x52x3+xy^2 + y = x^5 - 2x^3 + x
997.a.997.1 997.a 997 997 997 997 00 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z Q\Q [6112,48064,98113399,3988][6112,48064,98113399,3988] [3056,381120,61964417,11027700988,997][3056,381120,61964417,11027700988,997] [266542673508171776/997,10877317101649920/997,578694117523712/997][266542673508171776/997,10877317101649920/997,578694117523712/997] y2+xy=x58x4+16x3xy^2 + xy = x^5 - 8x^4 + 16x^3 - x
997.a.997.2 997.a 997 997 997 997 00 Z/8Z\Z/8\Z Q\Q [64,184,391,3988][64,184,391,3988] [32,12,305,2404,997][32,12,305,2404,997] [33554432/997,393216/997,312320/997][33554432/997,393216/997,312320/997] y2+(x+1)y=x5+x4y^2 + (x + 1)y = x^5 + x^4
997.b.997.1 997.b 997 997 997 997 11 Z/3Z\Z/3\Z Q\Q [32,16,1680,3988][32,16,-1680,-3988] [16,8,208,816,997][16,8,208,816,-997] [1048576/997,32768/997,53248/997][-1048576/997,-32768/997,-53248/997] y2+y=x52x4+2x3x2y^2 + y = x^5 - 2x^4 + 2x^3 - x^2
  displayed columns for results