Properties

Label 1280.3.h.m.1279.4
Level $1280$
Weight $3$
Character 1280.1279
Analytic conductor $34.877$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,3,Mod(1279,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.1279");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1280.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.8774738381\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.741637881856000000000000.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 9x^{12} + 41x^{8} - 144x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{42} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1279.4
Root \(-0.0676000 - 1.41260i\) of defining polynomial
Character \(\chi\) \(=\) 1280.1279
Dual form 1280.3.h.m.1279.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.79002 q^{3} +(2.46084 + 4.35250i) q^{5} -7.67752 q^{7} +13.9443 q^{9} +0.472136i q^{11} +4.10995i q^{13} +(-11.7875 - 20.8486i) q^{15} +2.26154i q^{17} +26.3607i q^{19} +36.7754 q^{21} -9.73249 q^{23} +(-12.8885 + 21.4216i) q^{25} -23.6832 q^{27} +41.6971 q^{29} +22.0104i q^{31} -2.26154i q^{33} +(-18.8931 - 33.4164i) q^{35} +51.7449i q^{37} -19.6867i q^{39} -15.0557 q^{41} +9.31310 q^{43} +(34.3146 + 60.6925i) q^{45} +8.76226 q^{47} +9.94427 q^{49} -10.8328i q^{51} -39.9002i q^{53} +(-2.05497 + 1.16185i) q^{55} -126.268i q^{57} +77.1935i q^{59} +14.7650 q^{61} -107.057 q^{63} +(-17.8885 + 10.1139i) q^{65} +75.8395 q^{67} +46.6188 q^{69} -81.0705i q^{71} +83.4249i q^{73} +(61.7364 - 102.610i) q^{75} -3.62483i q^{77} -100.757i q^{79} -12.0557 q^{81} +0.266939 q^{83} +(-9.84336 + 5.56528i) q^{85} -199.730 q^{87} -85.5542 q^{89} -31.5542i q^{91} -105.430i q^{93} +(-114.735 + 64.8694i) q^{95} -99.1297i q^{97} +6.58359i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 80 q^{9} + 80 q^{25} - 384 q^{41} + 16 q^{49} - 336 q^{81} - 224 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.79002 −1.59667 −0.798336 0.602212i \(-0.794286\pi\)
−0.798336 + 0.602212i \(0.794286\pi\)
\(4\) 0 0
\(5\) 2.46084 + 4.35250i 0.492168 + 0.870500i
\(6\) 0 0
\(7\) −7.67752 −1.09679 −0.548394 0.836220i \(-0.684761\pi\)
−0.548394 + 0.836220i \(0.684761\pi\)
\(8\) 0 0
\(9\) 13.9443 1.54936
\(10\) 0 0
\(11\) 0.472136i 0.0429215i 0.999770 + 0.0214607i \(0.00683169\pi\)
−0.999770 + 0.0214607i \(0.993168\pi\)
\(12\) 0 0
\(13\) 4.10995i 0.316150i 0.987427 + 0.158075i \(0.0505287\pi\)
−0.987427 + 0.158075i \(0.949471\pi\)
\(14\) 0 0
\(15\) −11.7875 20.8486i −0.785831 1.38990i
\(16\) 0 0
\(17\) 2.26154i 0.133032i 0.997785 + 0.0665159i \(0.0211883\pi\)
−0.997785 + 0.0665159i \(0.978812\pi\)
\(18\) 0 0
\(19\) 26.3607i 1.38740i 0.720262 + 0.693702i \(0.244022\pi\)
−0.720262 + 0.693702i \(0.755978\pi\)
\(20\) 0 0
\(21\) 36.7754 1.75121
\(22\) 0 0
\(23\) −9.73249 −0.423152 −0.211576 0.977362i \(-0.567860\pi\)
−0.211576 + 0.977362i \(0.567860\pi\)
\(24\) 0 0
\(25\) −12.8885 + 21.4216i −0.515542 + 0.856864i
\(26\) 0 0
\(27\) −23.6832 −0.877154
\(28\) 0 0
\(29\) 41.6971 1.43783 0.718916 0.695097i \(-0.244639\pi\)
0.718916 + 0.695097i \(0.244639\pi\)
\(30\) 0 0
\(31\) 22.0104i 0.710013i 0.934864 + 0.355007i \(0.115521\pi\)
−0.934864 + 0.355007i \(0.884479\pi\)
\(32\) 0 0
\(33\) 2.26154i 0.0685315i
\(34\) 0 0
\(35\) −18.8931 33.4164i −0.539804 0.954755i
\(36\) 0 0
\(37\) 51.7449i 1.39851i 0.714872 + 0.699256i \(0.246485\pi\)
−0.714872 + 0.699256i \(0.753515\pi\)
\(38\) 0 0
\(39\) 19.6867i 0.504787i
\(40\) 0 0
\(41\) −15.0557 −0.367213 −0.183606 0.983000i \(-0.558777\pi\)
−0.183606 + 0.983000i \(0.558777\pi\)
\(42\) 0 0
\(43\) 9.31310 0.216584 0.108292 0.994119i \(-0.465462\pi\)
0.108292 + 0.994119i \(0.465462\pi\)
\(44\) 0 0
\(45\) 34.3146 + 60.6925i 0.762547 + 1.34872i
\(46\) 0 0
\(47\) 8.76226 0.186431 0.0932156 0.995646i \(-0.470285\pi\)
0.0932156 + 0.995646i \(0.470285\pi\)
\(48\) 0 0
\(49\) 9.94427 0.202944
\(50\) 0 0
\(51\) 10.8328i 0.212408i
\(52\) 0 0
\(53\) 39.9002i 0.752834i −0.926450 0.376417i \(-0.877156\pi\)
0.926450 0.376417i \(-0.122844\pi\)
\(54\) 0 0
\(55\) −2.05497 + 1.16185i −0.0373631 + 0.0211246i
\(56\) 0 0
\(57\) 126.268i 2.21523i
\(58\) 0 0
\(59\) 77.1935i 1.30836i 0.756337 + 0.654182i \(0.226987\pi\)
−0.756337 + 0.654182i \(0.773013\pi\)
\(60\) 0 0
\(61\) 14.7650 0.242050 0.121025 0.992649i \(-0.461382\pi\)
0.121025 + 0.992649i \(0.461382\pi\)
\(62\) 0 0
\(63\) −107.057 −1.69932
\(64\) 0 0
\(65\) −17.8885 + 10.1139i −0.275208 + 0.155599i
\(66\) 0 0
\(67\) 75.8395 1.13193 0.565966 0.824428i \(-0.308503\pi\)
0.565966 + 0.824428i \(0.308503\pi\)
\(68\) 0 0
\(69\) 46.6188 0.675635
\(70\) 0 0
\(71\) 81.0705i 1.14184i −0.821006 0.570919i \(-0.806587\pi\)
0.821006 0.570919i \(-0.193413\pi\)
\(72\) 0 0
\(73\) 83.4249i 1.14281i 0.820669 + 0.571403i \(0.193601\pi\)
−0.820669 + 0.571403i \(0.806399\pi\)
\(74\) 0 0
\(75\) 61.7364 102.610i 0.823151 1.36813i
\(76\) 0 0
\(77\) 3.62483i 0.0470757i
\(78\) 0 0
\(79\) 100.757i 1.27541i −0.770281 0.637704i \(-0.779884\pi\)
0.770281 0.637704i \(-0.220116\pi\)
\(80\) 0 0
\(81\) −12.0557 −0.148836
\(82\) 0 0
\(83\) 0.266939 0.00321613 0.00160806 0.999999i \(-0.499488\pi\)
0.00160806 + 0.999999i \(0.499488\pi\)
\(84\) 0 0
\(85\) −9.84336 + 5.56528i −0.115804 + 0.0654739i
\(86\) 0 0
\(87\) −199.730 −2.29575
\(88\) 0 0
\(89\) −85.5542 −0.961283 −0.480641 0.876917i \(-0.659596\pi\)
−0.480641 + 0.876917i \(0.659596\pi\)
\(90\) 0 0
\(91\) 31.5542i 0.346749i
\(92\) 0 0
\(93\) 105.430i 1.13366i
\(94\) 0 0
\(95\) −114.735 + 64.8694i −1.20774 + 0.682836i
\(96\) 0 0
\(97\) 99.1297i 1.02196i −0.859594 0.510978i \(-0.829284\pi\)
0.859594 0.510978i \(-0.170716\pi\)
\(98\) 0 0
\(99\) 6.58359i 0.0665009i
\(100\) 0 0
\(101\) −105.405 −1.04361 −0.521805 0.853065i \(-0.674741\pi\)
−0.521805 + 0.853065i \(0.674741\pi\)
\(102\) 0 0
\(103\) −101.863 −0.988958 −0.494479 0.869190i \(-0.664641\pi\)
−0.494479 + 0.869190i \(0.664641\pi\)
\(104\) 0 0
\(105\) 90.4984 + 160.065i 0.861890 + 1.52443i
\(106\) 0 0
\(107\) −32.9962 −0.308376 −0.154188 0.988042i \(-0.549276\pi\)
−0.154188 + 0.988042i \(0.549276\pi\)
\(108\) 0 0
\(109\) −181.554 −1.66563 −0.832814 0.553552i \(-0.813272\pi\)
−0.832814 + 0.553552i \(0.813272\pi\)
\(110\) 0 0
\(111\) 247.859i 2.23296i
\(112\) 0 0
\(113\) 76.6403i 0.678233i 0.940744 + 0.339116i \(0.110128\pi\)
−0.940744 + 0.339116i \(0.889872\pi\)
\(114\) 0 0
\(115\) −23.9501 42.3607i −0.208262 0.368354i
\(116\) 0 0
\(117\) 57.3102i 0.489831i
\(118\) 0 0
\(119\) 17.3630i 0.145908i
\(120\) 0 0
\(121\) 120.777 0.998158
\(122\) 0 0
\(123\) 72.1172 0.586319
\(124\) 0 0
\(125\) −124.954 3.38228i −0.999634 0.0270582i
\(126\) 0 0
\(127\) −142.962 −1.12569 −0.562843 0.826564i \(-0.690292\pi\)
−0.562843 + 0.826564i \(0.690292\pi\)
\(128\) 0 0
\(129\) −44.6099 −0.345813
\(130\) 0 0
\(131\) 110.138i 0.840746i 0.907351 + 0.420373i \(0.138101\pi\)
−0.907351 + 0.420373i \(0.861899\pi\)
\(132\) 0 0
\(133\) 202.385i 1.52169i
\(134\) 0 0
\(135\) −58.2804 103.081i −0.431707 0.763563i
\(136\) 0 0
\(137\) 225.398i 1.64524i −0.568592 0.822620i \(-0.692512\pi\)
0.568592 0.822620i \(-0.307488\pi\)
\(138\) 0 0
\(139\) 97.4164i 0.700837i −0.936593 0.350419i \(-0.886039\pi\)
0.936593 0.350419i \(-0.113961\pi\)
\(140\) 0 0
\(141\) −41.9714 −0.297669
\(142\) 0 0
\(143\) −1.94045 −0.0135696
\(144\) 0 0
\(145\) 102.610 + 181.487i 0.707655 + 1.25163i
\(146\) 0 0
\(147\) −47.6332 −0.324036
\(148\) 0 0
\(149\) −191.397 −1.28454 −0.642271 0.766477i \(-0.722008\pi\)
−0.642271 + 0.766477i \(0.722008\pi\)
\(150\) 0 0
\(151\) 68.3549i 0.452682i 0.974048 + 0.226341i \(0.0726763\pi\)
−0.974048 + 0.226341i \(0.927324\pi\)
\(152\) 0 0
\(153\) 31.5355i 0.206115i
\(154\) 0 0
\(155\) −95.8004 + 54.1641i −0.618067 + 0.349446i
\(156\) 0 0
\(157\) 155.235i 0.988756i −0.869247 0.494378i \(-0.835396\pi\)
0.869247 0.494378i \(-0.164604\pi\)
\(158\) 0 0
\(159\) 191.123i 1.20203i
\(160\) 0 0
\(161\) 74.7214 0.464108
\(162\) 0 0
\(163\) −90.4765 −0.555070 −0.277535 0.960715i \(-0.589518\pi\)
−0.277535 + 0.960715i \(0.589518\pi\)
\(164\) 0 0
\(165\) 9.84336 5.56528i 0.0596567 0.0337290i
\(166\) 0 0
\(167\) 100.778 0.603461 0.301730 0.953393i \(-0.402436\pi\)
0.301730 + 0.953393i \(0.402436\pi\)
\(168\) 0 0
\(169\) 152.108 0.900049
\(170\) 0 0
\(171\) 367.580i 2.14959i
\(172\) 0 0
\(173\) 54.6556i 0.315928i 0.987445 + 0.157964i \(0.0504930\pi\)
−0.987445 + 0.157964i \(0.949507\pi\)
\(174\) 0 0
\(175\) 98.9520 164.465i 0.565440 0.939799i
\(176\) 0 0
\(177\) 369.758i 2.08903i
\(178\) 0 0
\(179\) 106.807i 0.596684i −0.954459 0.298342i \(-0.903566\pi\)
0.954459 0.298342i \(-0.0964337\pi\)
\(180\) 0 0
\(181\) −144.778 −0.799879 −0.399939 0.916542i \(-0.630969\pi\)
−0.399939 + 0.916542i \(0.630969\pi\)
\(182\) 0 0
\(183\) −70.7248 −0.386474
\(184\) 0 0
\(185\) −225.220 + 127.336i −1.21740 + 0.688302i
\(186\) 0 0
\(187\) −1.06775 −0.00570992
\(188\) 0 0
\(189\) 181.828 0.962052
\(190\) 0 0
\(191\) 210.809i 1.10371i 0.833939 + 0.551857i \(0.186081\pi\)
−0.833939 + 0.551857i \(0.813919\pi\)
\(192\) 0 0
\(193\) 108.176i 0.560496i 0.959928 + 0.280248i \(0.0904168\pi\)
−0.959928 + 0.280248i \(0.909583\pi\)
\(194\) 0 0
\(195\) 85.6864 48.4458i 0.439418 0.248440i
\(196\) 0 0
\(197\) 308.300i 1.56497i −0.622667 0.782487i \(-0.713951\pi\)
0.622667 0.782487i \(-0.286049\pi\)
\(198\) 0 0
\(199\) 247.859i 1.24552i −0.782412 0.622761i \(-0.786011\pi\)
0.782412 0.622761i \(-0.213989\pi\)
\(200\) 0 0
\(201\) −363.272 −1.80733
\(202\) 0 0
\(203\) −320.130 −1.57700
\(204\) 0 0
\(205\) −37.0497 65.5301i −0.180730 0.319659i
\(206\) 0 0
\(207\) −135.712 −0.655616
\(208\) 0 0
\(209\) −12.4458 −0.0595494
\(210\) 0 0
\(211\) 230.584i 1.09281i 0.837520 + 0.546407i \(0.184005\pi\)
−0.837520 + 0.546407i \(0.815995\pi\)
\(212\) 0 0
\(213\) 388.329i 1.82314i
\(214\) 0 0
\(215\) 22.9180 + 40.5353i 0.106595 + 0.188536i
\(216\) 0 0
\(217\) 168.985i 0.778734i
\(218\) 0 0
\(219\) 399.607i 1.82469i
\(220\) 0 0
\(221\) −9.29480 −0.0420579
\(222\) 0 0
\(223\) −177.782 −0.797229 −0.398615 0.917118i \(-0.630509\pi\)
−0.398615 + 0.917118i \(0.630509\pi\)
\(224\) 0 0
\(225\) −179.721 + 298.709i −0.798762 + 1.32759i
\(226\) 0 0
\(227\) −203.301 −0.895601 −0.447800 0.894134i \(-0.647792\pi\)
−0.447800 + 0.894134i \(0.647792\pi\)
\(228\) 0 0
\(229\) 81.0705 0.354020 0.177010 0.984209i \(-0.443358\pi\)
0.177010 + 0.984209i \(0.443358\pi\)
\(230\) 0 0
\(231\) 17.3630i 0.0751645i
\(232\) 0 0
\(233\) 56.2864i 0.241573i 0.992679 + 0.120786i \(0.0385416\pi\)
−0.992679 + 0.120786i \(0.961458\pi\)
\(234\) 0 0
\(235\) 21.5625 + 38.1378i 0.0917554 + 0.162288i
\(236\) 0 0
\(237\) 482.629i 2.03641i
\(238\) 0 0
\(239\) 360.235i 1.50726i −0.657300 0.753629i \(-0.728301\pi\)
0.657300 0.753629i \(-0.271699\pi\)
\(240\) 0 0
\(241\) −197.495 −0.819483 −0.409741 0.912202i \(-0.634381\pi\)
−0.409741 + 0.912202i \(0.634381\pi\)
\(242\) 0 0
\(243\) 270.896 1.11480
\(244\) 0 0
\(245\) 24.4713 + 43.2825i 0.0998827 + 0.176663i
\(246\) 0 0
\(247\) −108.341 −0.438627
\(248\) 0 0
\(249\) −1.27864 −0.00513510
\(250\) 0 0
\(251\) 178.361i 0.710600i 0.934752 + 0.355300i \(0.115621\pi\)
−0.934752 + 0.355300i \(0.884379\pi\)
\(252\) 0 0
\(253\) 4.59506i 0.0181623i
\(254\) 0 0
\(255\) 47.1498 26.6578i 0.184901 0.104540i
\(256\) 0 0
\(257\) 453.183i 1.76336i −0.471849 0.881679i \(-0.656413\pi\)
0.471849 0.881679i \(-0.343587\pi\)
\(258\) 0 0
\(259\) 397.272i 1.53387i
\(260\) 0 0
\(261\) 581.436 2.22772
\(262\) 0 0
\(263\) 21.0921 0.0801981 0.0400990 0.999196i \(-0.487233\pi\)
0.0400990 + 0.999196i \(0.487233\pi\)
\(264\) 0 0
\(265\) 173.666 98.1879i 0.655342 0.370520i
\(266\) 0 0
\(267\) 409.806 1.53485
\(268\) 0 0
\(269\) 92.4148 0.343549 0.171775 0.985136i \(-0.445050\pi\)
0.171775 + 0.985136i \(0.445050\pi\)
\(270\) 0 0
\(271\) 188.799i 0.696675i 0.937369 + 0.348337i \(0.113254\pi\)
−0.937369 + 0.348337i \(0.886746\pi\)
\(272\) 0 0
\(273\) 151.145i 0.553645i
\(274\) 0 0
\(275\) −10.1139 6.08514i −0.0367779 0.0221278i
\(276\) 0 0
\(277\) 70.1251i 0.253159i 0.991956 + 0.126580i \(0.0403999\pi\)
−0.991956 + 0.126580i \(0.959600\pi\)
\(278\) 0 0
\(279\) 306.919i 1.10007i
\(280\) 0 0
\(281\) 506.269 1.80167 0.900835 0.434161i \(-0.142955\pi\)
0.900835 + 0.434161i \(0.142955\pi\)
\(282\) 0 0
\(283\) 501.350 1.77156 0.885778 0.464110i \(-0.153626\pi\)
0.885778 + 0.464110i \(0.153626\pi\)
\(284\) 0 0
\(285\) 549.582 310.726i 1.92836 1.09026i
\(286\) 0 0
\(287\) 115.591 0.402755
\(288\) 0 0
\(289\) 283.885 0.982303
\(290\) 0 0
\(291\) 474.833i 1.63173i
\(292\) 0 0
\(293\) 324.026i 1.10589i 0.833218 + 0.552945i \(0.186496\pi\)
−0.833218 + 0.552945i \(0.813504\pi\)
\(294\) 0 0
\(295\) −335.985 + 189.961i −1.13893 + 0.643935i
\(296\) 0 0
\(297\) 11.1817i 0.0376487i
\(298\) 0 0
\(299\) 40.0000i 0.133779i
\(300\) 0 0
\(301\) −71.5015 −0.237546
\(302\) 0 0
\(303\) 504.890 1.66630
\(304\) 0 0
\(305\) 36.3344 + 64.2648i 0.119129 + 0.210704i
\(306\) 0 0
\(307\) −9.84697 −0.0320748 −0.0160374 0.999871i \(-0.505105\pi\)
−0.0160374 + 0.999871i \(0.505105\pi\)
\(308\) 0 0
\(309\) 487.924 1.57904
\(310\) 0 0
\(311\) 200.417i 0.644429i −0.946667 0.322214i \(-0.895573\pi\)
0.946667 0.322214i \(-0.104427\pi\)
\(312\) 0 0
\(313\) 261.582i 0.835727i 0.908510 + 0.417863i \(0.137221\pi\)
−0.908510 + 0.417863i \(0.862779\pi\)
\(314\) 0 0
\(315\) −263.451 465.967i −0.836352 1.47926i
\(316\) 0 0
\(317\) 322.341i 1.01685i −0.861107 0.508425i \(-0.830228\pi\)
0.861107 0.508425i \(-0.169772\pi\)
\(318\) 0 0
\(319\) 19.6867i 0.0617138i
\(320\) 0 0
\(321\) 158.053 0.492376
\(322\) 0 0
\(323\) −59.6157 −0.184569
\(324\) 0 0
\(325\) −88.0416 52.9712i −0.270897 0.162988i
\(326\) 0 0
\(327\) 869.645 2.65946
\(328\) 0 0
\(329\) −67.2724 −0.204475
\(330\) 0 0
\(331\) 61.0883i 0.184557i 0.995733 + 0.0922783i \(0.0294150\pi\)
−0.995733 + 0.0922783i \(0.970585\pi\)
\(332\) 0 0
\(333\) 721.545i 2.16680i
\(334\) 0 0
\(335\) 186.629 + 330.091i 0.557101 + 0.985348i
\(336\) 0 0
\(337\) 114.960i 0.341129i −0.985347 0.170564i \(-0.945441\pi\)
0.985347 0.170564i \(-0.0545591\pi\)
\(338\) 0 0
\(339\) 367.108i 1.08292i
\(340\) 0 0
\(341\) −10.3919 −0.0304748
\(342\) 0 0
\(343\) 299.851 0.874201
\(344\) 0 0
\(345\) 114.721 + 202.908i 0.332526 + 0.588140i
\(346\) 0 0
\(347\) −143.967 −0.414892 −0.207446 0.978246i \(-0.566515\pi\)
−0.207446 + 0.978246i \(0.566515\pi\)
\(348\) 0 0
\(349\) −35.9526 −0.103016 −0.0515080 0.998673i \(-0.516403\pi\)
−0.0515080 + 0.998673i \(0.516403\pi\)
\(350\) 0 0
\(351\) 97.3365i 0.277312i
\(352\) 0 0
\(353\) 252.536i 0.715400i 0.933837 + 0.357700i \(0.116439\pi\)
−0.933837 + 0.357700i \(0.883561\pi\)
\(354\) 0 0
\(355\) 352.860 199.502i 0.993971 0.561976i
\(356\) 0 0
\(357\) 83.1691i 0.232967i
\(358\) 0 0
\(359\) 594.152i 1.65502i 0.561452 + 0.827509i \(0.310243\pi\)
−0.561452 + 0.827509i \(0.689757\pi\)
\(360\) 0 0
\(361\) −333.885 −0.924890
\(362\) 0 0
\(363\) −578.524 −1.59373
\(364\) 0 0
\(365\) −363.107 + 205.295i −0.994814 + 0.562453i
\(366\) 0 0
\(367\) 88.9062 0.242251 0.121126 0.992637i \(-0.461350\pi\)
0.121126 + 0.992637i \(0.461350\pi\)
\(368\) 0 0
\(369\) −209.941 −0.568946
\(370\) 0 0
\(371\) 306.334i 0.825699i
\(372\) 0 0
\(373\) 83.6542i 0.224274i −0.993693 0.112137i \(-0.964230\pi\)
0.993693 0.112137i \(-0.0357696\pi\)
\(374\) 0 0
\(375\) 598.533 + 16.2012i 1.59609 + 0.0432031i
\(376\) 0 0
\(377\) 171.373i 0.454570i
\(378\) 0 0
\(379\) 135.135i 0.356556i 0.983980 + 0.178278i \(0.0570526\pi\)
−0.983980 + 0.178278i \(0.942947\pi\)
\(380\) 0 0
\(381\) 684.791 1.79735
\(382\) 0 0
\(383\) 498.526 1.30164 0.650818 0.759234i \(-0.274426\pi\)
0.650818 + 0.759234i \(0.274426\pi\)
\(384\) 0 0
\(385\) 15.7771 8.92013i 0.0409794 0.0231692i
\(386\) 0 0
\(387\) 129.864 0.335567
\(388\) 0 0
\(389\) −308.420 −0.792854 −0.396427 0.918066i \(-0.629750\pi\)
−0.396427 + 0.918066i \(0.629750\pi\)
\(390\) 0 0
\(391\) 22.0104i 0.0562926i
\(392\) 0 0
\(393\) 527.562i 1.34240i
\(394\) 0 0
\(395\) 438.546 247.947i 1.11024 0.627715i
\(396\) 0 0
\(397\) 297.682i 0.749828i 0.927060 + 0.374914i \(0.122328\pi\)
−0.927060 + 0.374914i \(0.877672\pi\)
\(398\) 0 0
\(399\) 969.426i 2.42964i
\(400\) 0 0
\(401\) 148.663 0.370729 0.185365 0.982670i \(-0.440653\pi\)
0.185365 + 0.982670i \(0.440653\pi\)
\(402\) 0 0
\(403\) −90.4616 −0.224470
\(404\) 0 0
\(405\) −29.6672 52.4726i −0.0732524 0.129562i
\(406\) 0 0
\(407\) −24.4306 −0.0600261
\(408\) 0 0
\(409\) −442.387 −1.08163 −0.540815 0.841141i \(-0.681884\pi\)
−0.540815 + 0.841141i \(0.681884\pi\)
\(410\) 0 0
\(411\) 1079.66i 2.62691i
\(412\) 0 0
\(413\) 592.654i 1.43500i
\(414\) 0 0
\(415\) 0.656893 + 1.16185i 0.00158287 + 0.00279964i
\(416\) 0 0
\(417\) 466.626i 1.11901i
\(418\) 0 0
\(419\) 536.184i 1.27968i 0.768510 + 0.639838i \(0.220999\pi\)
−0.768510 + 0.639838i \(0.779001\pi\)
\(420\) 0 0
\(421\) −514.582 −1.22228 −0.611142 0.791521i \(-0.709290\pi\)
−0.611142 + 0.791521i \(0.709290\pi\)
\(422\) 0 0
\(423\) 122.183 0.288850
\(424\) 0 0
\(425\) −48.4458 29.1480i −0.113990 0.0685834i
\(426\) 0 0
\(427\) −113.359 −0.265477
\(428\) 0 0
\(429\) 9.29480 0.0216662
\(430\) 0 0
\(431\) 86.8151i 0.201427i 0.994915 + 0.100714i \(0.0321126\pi\)
−0.994915 + 0.100714i \(0.967887\pi\)
\(432\) 0 0
\(433\) 494.017i 1.14092i −0.821327 0.570458i \(-0.806766\pi\)
0.821327 0.570458i \(-0.193234\pi\)
\(434\) 0 0
\(435\) −491.503 869.325i −1.12989 1.99845i
\(436\) 0 0
\(437\) 256.555i 0.587082i
\(438\) 0 0
\(439\) 524.700i 1.19522i −0.801789 0.597608i \(-0.796118\pi\)
0.801789 0.597608i \(-0.203882\pi\)
\(440\) 0 0
\(441\) 138.666 0.314435
\(442\) 0 0
\(443\) 496.575 1.12094 0.560469 0.828176i \(-0.310621\pi\)
0.560469 + 0.828176i \(0.310621\pi\)
\(444\) 0 0
\(445\) −210.535 372.375i −0.473112 0.836797i
\(446\) 0 0
\(447\) 916.795 2.05099
\(448\) 0 0
\(449\) −332.158 −0.739773 −0.369886 0.929077i \(-0.620603\pi\)
−0.369886 + 0.929077i \(0.620603\pi\)
\(450\) 0 0
\(451\) 7.10835i 0.0157613i
\(452\) 0 0
\(453\) 327.421i 0.722785i
\(454\) 0 0
\(455\) 137.340 77.6497i 0.301845 0.170659i
\(456\) 0 0
\(457\) 252.788i 0.553147i −0.960993 0.276574i \(-0.910801\pi\)
0.960993 0.276574i \(-0.0891990\pi\)
\(458\) 0 0
\(459\) 53.5604i 0.116689i
\(460\) 0 0
\(461\) −832.716 −1.80633 −0.903163 0.429299i \(-0.858761\pi\)
−0.903163 + 0.429299i \(0.858761\pi\)
\(462\) 0 0
\(463\) −854.205 −1.84494 −0.922468 0.386074i \(-0.873831\pi\)
−0.922468 + 0.386074i \(0.873831\pi\)
\(464\) 0 0
\(465\) 458.885 259.447i 0.986850 0.557950i
\(466\) 0 0
\(467\) −102.726 −0.219970 −0.109985 0.993933i \(-0.535080\pi\)
−0.109985 + 0.993933i \(0.535080\pi\)
\(468\) 0 0
\(469\) −582.259 −1.24149
\(470\) 0 0
\(471\) 743.577i 1.57872i
\(472\) 0 0
\(473\) 4.39705i 0.00929608i
\(474\) 0 0
\(475\) −564.688 339.751i −1.18882 0.715265i
\(476\) 0 0
\(477\) 556.379i 1.16641i
\(478\) 0 0
\(479\) 268.772i 0.561111i −0.959838 0.280556i \(-0.909481\pi\)
0.959838 0.280556i \(-0.0905187\pi\)
\(480\) 0 0
\(481\) −212.669 −0.442139
\(482\) 0 0
\(483\) −357.917 −0.741028
\(484\) 0 0
\(485\) 431.462 243.942i 0.889612 0.502973i
\(486\) 0 0
\(487\) −504.065 −1.03504 −0.517520 0.855671i \(-0.673145\pi\)
−0.517520 + 0.855671i \(0.673145\pi\)
\(488\) 0 0
\(489\) 433.384 0.886266
\(490\) 0 0
\(491\) 130.020i 0.264807i −0.991196 0.132403i \(-0.957731\pi\)
0.991196 0.132403i \(-0.0422694\pi\)
\(492\) 0 0
\(493\) 94.2997i 0.191277i
\(494\) 0 0
\(495\) −28.6551 + 16.2012i −0.0578891 + 0.0327296i
\(496\) 0 0
\(497\) 622.421i 1.25236i
\(498\) 0 0
\(499\) 664.184i 1.33103i 0.746384 + 0.665515i \(0.231788\pi\)
−0.746384 + 0.665515i \(0.768212\pi\)
\(500\) 0 0
\(501\) −482.728 −0.963529
\(502\) 0 0
\(503\) 550.015 1.09347 0.546735 0.837306i \(-0.315871\pi\)
0.546735 + 0.837306i \(0.315871\pi\)
\(504\) 0 0
\(505\) −259.384 458.774i −0.513631 0.908463i
\(506\) 0 0
\(507\) −728.602 −1.43708
\(508\) 0 0
\(509\) −349.843 −0.687314 −0.343657 0.939095i \(-0.611666\pi\)
−0.343657 + 0.939095i \(0.611666\pi\)
\(510\) 0 0
\(511\) 640.496i 1.25342i
\(512\) 0 0
\(513\) 624.304i 1.21697i
\(514\) 0 0
\(515\) −250.668 443.358i −0.486733 0.860888i
\(516\) 0 0
\(517\) 4.13698i 0.00800189i
\(518\) 0 0
\(519\) 261.801i 0.504434i
\(520\) 0 0
\(521\) −29.7771 −0.0571537 −0.0285769 0.999592i \(-0.509098\pi\)
−0.0285769 + 0.999592i \(0.509098\pi\)
\(522\) 0 0
\(523\) −603.023 −1.15301 −0.576504 0.817094i \(-0.695584\pi\)
−0.576504 + 0.817094i \(0.695584\pi\)
\(524\) 0 0
\(525\) −473.982 + 787.789i −0.902823 + 1.50055i
\(526\) 0 0
\(527\) −49.7774 −0.0944543
\(528\) 0 0
\(529\) −434.279 −0.820943
\(530\) 0 0
\(531\) 1076.41i 2.02713i
\(532\) 0 0
\(533\) 61.8782i 0.116094i
\(534\) 0 0
\(535\) −81.1985 143.616i −0.151773 0.268442i
\(536\) 0 0
\(537\) 511.605i 0.952710i
\(538\) 0 0
\(539\) 4.69505i 0.00871066i
\(540\) 0 0
\(541\) −163.368 −0.301974 −0.150987 0.988536i \(-0.548245\pi\)
−0.150987 + 0.988536i \(0.548245\pi\)
\(542\) 0 0
\(543\) 693.490 1.27714
\(544\) 0 0
\(545\) −446.774 790.212i −0.819769 1.44993i
\(546\) 0 0
\(547\) 524.218 0.958350 0.479175 0.877719i \(-0.340936\pi\)
0.479175 + 0.877719i \(0.340936\pi\)
\(548\) 0 0
\(549\) 205.888 0.375023
\(550\) 0 0
\(551\) 1099.16i 1.99485i
\(552\) 0 0
\(553\) 773.566i 1.39885i
\(554\) 0 0
\(555\) 1078.81 609.941i 1.94380 1.09899i
\(556\) 0 0
\(557\) 589.515i 1.05837i −0.848505 0.529187i \(-0.822497\pi\)
0.848505 0.529187i \(-0.177503\pi\)
\(558\) 0 0
\(559\) 38.2763i 0.0684728i
\(560\) 0 0
\(561\) 5.11456 0.00911687
\(562\) 0 0
\(563\) 557.763 0.990698 0.495349 0.868694i \(-0.335040\pi\)
0.495349 + 0.868694i \(0.335040\pi\)
\(564\) 0 0
\(565\) −333.577 + 188.599i −0.590402 + 0.333804i
\(566\) 0 0
\(567\) 92.5581 0.163242
\(568\) 0 0
\(569\) 542.715 0.953805 0.476903 0.878956i \(-0.341759\pi\)
0.476903 + 0.878956i \(0.341759\pi\)
\(570\) 0 0
\(571\) 476.695i 0.834842i 0.908713 + 0.417421i \(0.137066\pi\)
−0.908713 + 0.417421i \(0.862934\pi\)
\(572\) 0 0
\(573\) 1009.78i 1.76227i
\(574\) 0 0
\(575\) 125.438 208.486i 0.218152 0.362584i
\(576\) 0 0
\(577\) 865.659i 1.50027i 0.661282 + 0.750137i \(0.270013\pi\)
−0.661282 + 0.750137i \(0.729987\pi\)
\(578\) 0 0
\(579\) 518.164i 0.894929i
\(580\) 0 0
\(581\) −2.04943 −0.00352741
\(582\) 0 0
\(583\) 18.8383 0.0323127
\(584\) 0 0
\(585\) −249.443 + 141.031i −0.426398 + 0.241079i
\(586\) 0 0
\(587\) 567.091 0.966083 0.483041 0.875597i \(-0.339532\pi\)
0.483041 + 0.875597i \(0.339532\pi\)
\(588\) 0 0
\(589\) −580.209 −0.985075
\(590\) 0 0
\(591\) 1476.76i 2.49875i
\(592\) 0 0
\(593\) 421.774i 0.711254i 0.934628 + 0.355627i \(0.115733\pi\)
−0.934628 + 0.355627i \(0.884267\pi\)
\(594\) 0 0
\(595\) 75.5725 42.7276i 0.127013 0.0718110i
\(596\) 0 0
\(597\) 1187.25i 1.98869i
\(598\) 0 0
\(599\) 120.444i 0.201075i 0.994933 + 0.100538i \(0.0320563\pi\)
−0.994933 + 0.100538i \(0.967944\pi\)
\(600\) 0 0
\(601\) −340.158 −0.565986 −0.282993 0.959122i \(-0.591327\pi\)
−0.282993 + 0.959122i \(0.591327\pi\)
\(602\) 0 0
\(603\) 1057.53 1.75377
\(604\) 0 0
\(605\) 297.213 + 525.682i 0.491261 + 0.868897i
\(606\) 0 0
\(607\) 115.621 0.190479 0.0952396 0.995454i \(-0.469638\pi\)
0.0952396 + 0.995454i \(0.469638\pi\)
\(608\) 0 0
\(609\) 1533.43 2.51795
\(610\) 0 0
\(611\) 36.0124i 0.0589401i
\(612\) 0 0
\(613\) 1095.63i 1.78733i −0.448738 0.893663i \(-0.648126\pi\)
0.448738 0.893663i \(-0.351874\pi\)
\(614\) 0 0
\(615\) 177.469 + 313.890i 0.288567 + 0.510391i
\(616\) 0 0
\(617\) 716.775i 1.16171i 0.814007 + 0.580855i \(0.197282\pi\)
−0.814007 + 0.580855i \(0.802718\pi\)
\(618\) 0 0
\(619\) 118.584i 0.191573i −0.995402 0.0957864i \(-0.969463\pi\)
0.995402 0.0957864i \(-0.0305366\pi\)
\(620\) 0 0
\(621\) 230.496 0.371169
\(622\) 0 0
\(623\) 656.844 1.05432
\(624\) 0 0
\(625\) −292.771 552.187i −0.468433 0.883499i
\(626\) 0 0
\(627\) 59.6157 0.0950809
\(628\) 0 0
\(629\) −117.023 −0.186046
\(630\) 0 0
\(631\) 1168.62i 1.85201i −0.377515 0.926004i \(-0.623221\pi\)
0.377515 0.926004i \(-0.376779\pi\)
\(632\) 0 0
\(633\) 1104.50i 1.74486i
\(634\) 0 0
\(635\) −351.807 622.243i −0.554026 0.979910i
\(636\) 0 0
\(637\) 40.8704i 0.0641608i
\(638\) 0 0
\(639\) 1130.47i 1.76912i
\(640\) 0 0
\(641\) −244.158 −0.380902 −0.190451 0.981697i \(-0.560995\pi\)
−0.190451 + 0.981697i \(0.560995\pi\)
\(642\) 0 0
\(643\) −868.847 −1.35124 −0.675620 0.737250i \(-0.736124\pi\)
−0.675620 + 0.737250i \(0.736124\pi\)
\(644\) 0 0
\(645\) −109.778 194.165i −0.170198 0.301031i
\(646\) 0 0
\(647\) 35.1333 0.0543019 0.0271510 0.999631i \(-0.491357\pi\)
0.0271510 + 0.999631i \(0.491357\pi\)
\(648\) 0 0
\(649\) −36.4458 −0.0561569
\(650\) 0 0
\(651\) 809.443i 1.24338i
\(652\) 0 0
\(653\) 580.068i 0.888313i 0.895949 + 0.444157i \(0.146497\pi\)
−0.895949 + 0.444157i \(0.853503\pi\)
\(654\) 0 0
\(655\) −479.375 + 271.031i −0.731870 + 0.413788i
\(656\) 0 0
\(657\) 1163.30i 1.77062i
\(658\) 0 0
\(659\) 992.788i 1.50651i −0.657731 0.753253i \(-0.728483\pi\)
0.657731 0.753253i \(-0.271517\pi\)
\(660\) 0 0
\(661\) 719.647 1.08872 0.544362 0.838850i \(-0.316772\pi\)
0.544362 + 0.838850i \(0.316772\pi\)
\(662\) 0 0
\(663\) 44.5223 0.0671528
\(664\) 0 0
\(665\) 880.879 498.036i 1.32463 0.748926i
\(666\) 0 0
\(667\) −405.817 −0.608421
\(668\) 0 0
\(669\) 851.580 1.27291
\(670\) 0 0
\(671\) 6.97110i 0.0103891i
\(672\) 0 0
\(673\) 189.591i 0.281711i −0.990030 0.140855i \(-0.955015\pi\)
0.990030 0.140855i \(-0.0449852\pi\)
\(674\) 0 0
\(675\) 305.241 507.331i 0.452209 0.751602i
\(676\) 0 0
\(677\) 327.192i 0.483297i −0.970364 0.241649i \(-0.922312\pi\)
0.970364 0.241649i \(-0.0776882\pi\)
\(678\) 0 0
\(679\) 761.070i 1.12087i
\(680\) 0 0
\(681\) 973.817 1.42998
\(682\) 0 0
\(683\) −673.539 −0.986148 −0.493074 0.869987i \(-0.664127\pi\)
−0.493074 + 0.869987i \(0.664127\pi\)
\(684\) 0 0
\(685\) 981.044 554.668i 1.43218 0.809734i
\(686\) 0 0
\(687\) −388.329 −0.565254
\(688\) 0 0
\(689\) 163.988 0.238008
\(690\) 0 0
\(691\) 237.036i 0.343033i 0.985181 + 0.171516i \(0.0548666\pi\)
−0.985181 + 0.171516i \(0.945133\pi\)
\(692\) 0 0
\(693\) 50.5456i 0.0729374i
\(694\) 0 0
\(695\) 424.005 239.726i 0.610079 0.344930i
\(696\) 0 0
\(697\) 34.0491i 0.0488510i
\(698\) 0 0
\(699\) 269.613i 0.385712i
\(700\) 0 0
\(701\) 476.306 0.679466 0.339733 0.940522i \(-0.389663\pi\)
0.339733 + 0.940522i \(0.389663\pi\)
\(702\) 0 0
\(703\) −1364.03 −1.94030
\(704\) 0 0
\(705\) −103.285 182.681i −0.146503 0.259121i
\(706\) 0 0
\(707\) 809.246 1.14462
\(708\) 0 0
\(709\) 964.778 1.36076 0.680380 0.732860i \(-0.261815\pi\)
0.680380 + 0.732860i \(0.261815\pi\)
\(710\) 0 0
\(711\) 1404.99i 1.97607i
\(712\) 0 0
\(713\) 214.216i 0.300443i
\(714\) 0 0
\(715\) −4.77514 8.44582i −0.00667852 0.0118123i
\(716\) 0 0
\(717\) 1725.53i 2.40660i
\(718\) 0 0
\(719\) 899.974i 1.25170i 0.779943 + 0.625851i \(0.215248\pi\)
−0.779943 + 0.625851i \(0.784752\pi\)
\(720\) 0 0
\(721\) 782.053 1.08468
\(722\) 0 0
\(723\) 946.006 1.30845
\(724\) 0 0
\(725\) −537.415 + 893.220i −0.741262 + 1.23203i
\(726\) 0 0
\(727\) −908.888 −1.25019 −0.625095 0.780549i \(-0.714940\pi\)
−0.625095 + 0.780549i \(0.714940\pi\)
\(728\) 0 0
\(729\) −1189.09 −1.63113
\(730\) 0 0
\(731\) 21.0619i 0.0288125i
\(732\) 0 0
\(733\) 433.283i 0.591109i 0.955326 + 0.295554i \(0.0955043\pi\)
−0.955326 + 0.295554i \(0.904496\pi\)
\(734\) 0 0
\(735\) −117.218 207.324i −0.159480 0.282073i
\(736\) 0 0
\(737\) 35.8065i 0.0485842i
\(738\) 0 0
\(739\) 886.138i 1.19910i −0.800336 0.599552i \(-0.795345\pi\)
0.800336 0.599552i \(-0.204655\pi\)
\(740\) 0 0
\(741\) 518.955 0.700344
\(742\) 0 0
\(743\) −895.305 −1.20499 −0.602493 0.798124i \(-0.705826\pi\)
−0.602493 + 0.798124i \(0.705826\pi\)
\(744\) 0 0
\(745\) −470.997 833.055i −0.632211 1.11820i
\(746\) 0 0
\(747\) 3.72226 0.00498295
\(748\) 0 0
\(749\) 253.329 0.338223
\(750\) 0 0
\(751\) 1297.13i 1.72720i −0.504176 0.863601i \(-0.668204\pi\)
0.504176 0.863601i \(-0.331796\pi\)
\(752\) 0 0
\(753\) 854.351i 1.13460i
\(754\) 0 0
\(755\) −297.515 + 168.210i −0.394060 + 0.222795i
\(756\) 0 0
\(757\) 421.694i 0.557060i 0.960428 + 0.278530i \(0.0898471\pi\)
−0.960428 + 0.278530i \(0.910153\pi\)
\(758\) 0 0
\(759\) 22.0104i 0.0289992i
\(760\) 0 0
\(761\) −1415.76 −1.86039 −0.930196 0.367063i \(-0.880363\pi\)
−0.930196 + 0.367063i \(0.880363\pi\)
\(762\) 0 0
\(763\) 1393.88 1.82684
\(764\) 0 0
\(765\) −137.258 + 77.6038i −0.179423 + 0.101443i
\(766\) 0 0
\(767\) −317.261 −0.413639
\(768\) 0 0
\(769\) −414.210 −0.538635 −0.269318 0.963051i \(-0.586798\pi\)
−0.269318 + 0.963051i \(0.586798\pi\)
\(770\) 0 0
\(771\) 2170.76i 2.81551i
\(772\) 0 0
\(773\) 727.056i 0.940564i 0.882516 + 0.470282i \(0.155848\pi\)
−0.882516 + 0.470282i \(0.844152\pi\)
\(774\) 0 0
\(775\) −471.498 283.682i −0.608385 0.366042i
\(776\) 0 0
\(777\) 1902.94i 2.44909i
\(778\) 0 0
\(779\) 396.879i 0.509473i
\(780\) 0 0
\(781\) 38.2763 0.0490094
\(782\) 0 0
\(783\) −987.519 −1.26120
\(784\) 0 0
\(785\) 675.659 382.008i 0.860713 0.486634i
\(786\) 0 0
\(787\) −1030.11 −1.30890 −0.654451 0.756104i \(-0.727100\pi\)
−0.654451 + 0.756104i \(0.727100\pi\)
\(788\) 0 0
\(789\) −101.032 −0.128050
\(790\) 0 0
\(791\) 588.407i 0.743878i
\(792\) 0 0
\(793\) 60.6835i 0.0765239i
\(794\) 0 0
\(795\) −831.861 + 470.322i −1.04637 + 0.591600i
\(796\) 0 0
\(797\) 371.202i 0.465750i −0.972507 0.232875i \(-0.925187\pi\)
0.972507 0.232875i \(-0.0748132\pi\)
\(798\) 0 0
\(799\) 19.8162i 0.0248013i
\(800\) 0 0
\(801\) −1192.99 −1.48938
\(802\) 0 0
\(803\) −39.3879 −0.0490509
\(804\) 0 0
\(805\) 183.877 + 325.225i 0.228419 + 0.404006i
\(806\) 0 0
\(807\) −442.668 −0.548536
\(808\) 0 0
\(809\) −77.7771 −0.0961398 −0.0480699 0.998844i \(-0.515307\pi\)
−0.0480699 + 0.998844i \(0.515307\pi\)
\(810\) 0 0
\(811\) 1407.90i 1.73600i 0.496564 + 0.868000i \(0.334595\pi\)
−0.496564 + 0.868000i \(0.665405\pi\)
\(812\) 0 0
\(813\) 904.350i 1.11236i
\(814\) 0 0
\(815\) −222.648 393.799i −0.273188 0.483189i
\(816\) 0 0
\(817\) 245.500i 0.300489i
\(818\) 0 0
\(819\) 440.000i 0.537241i
\(820\) 0 0
\(821\) 820.275 0.999116 0.499558 0.866280i \(-0.333496\pi\)
0.499558 + 0.866280i \(0.333496\pi\)
\(822\) 0 0
\(823\) −1385.41 −1.68336 −0.841681 0.539976i \(-0.818433\pi\)
−0.841681 + 0.539976i \(0.818433\pi\)
\(824\) 0 0
\(825\) 48.4458 + 29.1480i 0.0587222 + 0.0353309i
\(826\) 0 0
\(827\) 258.898 0.313057 0.156529 0.987673i \(-0.449970\pi\)
0.156529 + 0.987673i \(0.449970\pi\)
\(828\) 0 0
\(829\) 1299.31 1.56732 0.783660 0.621190i \(-0.213351\pi\)
0.783660 + 0.621190i \(0.213351\pi\)
\(830\) 0 0
\(831\) 335.901i 0.404213i
\(832\) 0 0
\(833\) 22.4894i 0.0269980i
\(834\) 0 0
\(835\) 247.998 + 438.636i 0.297004 + 0.525313i
\(836\) 0 0
\(837\) 521.276i 0.622791i
\(838\) 0 0
\(839\) 804.961i 0.959429i −0.877425 0.479715i \(-0.840740\pi\)
0.877425 0.479715i \(-0.159260\pi\)
\(840\) 0 0
\(841\) 897.650 1.06736
\(842\) 0 0
\(843\) −2425.04 −2.87668
\(844\) 0 0
\(845\) 374.314 + 662.052i 0.442975 + 0.783493i
\(846\) 0 0
\(847\) −927.268 −1.09477
\(848\) 0 0
\(849\) −2401.48 −2.82859
\(850\) 0 0
\(851\) 503.607i 0.591782i
\(852\) 0 0
\(853\) 470.811i 0.551948i 0.961165 + 0.275974i \(0.0890003\pi\)
−0.961165 + 0.275974i \(0.911000\pi\)
\(854\) 0 0
\(855\) −1599.89 + 904.556i −1.87122 + 1.05796i
\(856\) 0 0
\(857\) 266.105i 0.310508i 0.987875 + 0.155254i \(0.0496196\pi\)
−0.987875 + 0.155254i \(0.950380\pi\)
\(858\) 0 0
\(859\) 1442.02i 1.67872i −0.543576 0.839360i \(-0.682930\pi\)
0.543576 0.839360i \(-0.317070\pi\)
\(860\) 0 0
\(861\) −553.681 −0.643067
\(862\) 0 0
\(863\) 364.495 0.422358 0.211179 0.977447i \(-0.432270\pi\)
0.211179 + 0.977447i \(0.432270\pi\)
\(864\) 0 0
\(865\) −237.889 + 134.499i −0.275016 + 0.155490i
\(866\) 0 0
\(867\) −1359.82 −1.56842
\(868\) 0 0
\(869\) 47.5711 0.0547424
\(870\) 0 0
\(871\) 311.696i 0.357860i
\(872\) 0 0
\(873\) 1382.29i 1.58338i
\(874\) 0 0
\(875\) 959.338 + 25.9675i 1.09639 + 0.0296771i
\(876\) 0 0
\(877\) 77.4289i 0.0882883i −0.999025 0.0441442i \(-0.985944\pi\)
0.999025 0.0441442i \(-0.0140561\pi\)
\(878\) 0 0
\(879\) 1552.09i 1.76574i
\(880\) 0 0
\(881\) 724.932 0.822851 0.411426 0.911443i \(-0.365031\pi\)
0.411426 + 0.911443i \(0.365031\pi\)
\(882\) 0 0
\(883\) −493.342 −0.558711 −0.279356 0.960188i \(-0.590121\pi\)
−0.279356 + 0.960188i \(0.590121\pi\)
\(884\) 0 0
\(885\) 1609.37 909.915i 1.81850 1.02815i
\(886\) 0 0
\(887\) 1514.47 1.70741 0.853705 0.520758i \(-0.174351\pi\)
0.853705 + 0.520758i \(0.174351\pi\)
\(888\) 0 0
\(889\) 1097.59 1.23464
\(890\) 0 0
\(891\) 5.69194i 0.00638826i
\(892\) 0 0
\(893\) 230.979i 0.258655i
\(894\) 0 0
\(895\) 464.876 262.834i 0.519414 0.293669i
\(896\) 0 0
\(897\) 191.601i 0.213602i
\(898\) 0 0
\(899\) 917.771i 1.02088i
\(900\) 0 0
\(901\) 90.2359 0.100151
\(902\) 0 0
\(903\) 342.493 0.379284
\(904\) 0 0
\(905\) −356.276 630.147i −0.393675 0.696295i
\(906\) 0 0
\(907\) 851.570 0.938887 0.469443 0.882963i \(-0.344455\pi\)
0.469443 + 0.882963i \(0.344455\pi\)
\(908\) 0 0
\(909\) −1469.79 −1.61693
\(910\) 0 0
\(911\) 517.728i 0.568308i −0.958779 0.284154i \(-0.908287\pi\)
0.958779 0.284154i \(-0.0917127\pi\)
\(912\) 0 0
\(913\) 0.126031i 0.000138041i
\(914\) 0 0
\(915\) −174.042 307.830i −0.190210 0.336426i
\(916\) 0 0
\(917\) 845.585i 0.922121i
\(918\) 0 0
\(919\) 657.730i 0.715701i −0.933779 0.357851i \(-0.883510\pi\)
0.933779 0.357851i \(-0.116490\pi\)
\(920\) 0 0
\(921\) 47.1672 0.0512130
\(922\) 0 0
\(923\) 333.195 0.360992
\(924\) 0 0
\(925\) −1108.46 666.917i −1.19833 0.720991i
\(926\) 0 0
\(927\) −1420.40 −1.53226
\(928\) 0 0
\(929\) 1206.28 1.29847 0.649237 0.760586i \(-0.275088\pi\)
0.649237 + 0.760586i \(0.275088\pi\)
\(930\) 0 0
\(931\) 262.138i 0.281566i
\(932\) 0 0
\(933\) 960.003i 1.02894i
\(934\) 0 0
\(935\) −2.62757 4.64740i −0.00281024 0.00497048i
\(936\) 0 0
\(937\) 216.730i 0.231302i 0.993290 + 0.115651i \(0.0368954\pi\)
−0.993290 + 0.115651i \(0.963105\pi\)
\(938\) 0 0
\(939\) 1252.98i 1.33438i
\(940\) 0 0
\(941\) 749.322 0.796304 0.398152 0.917320i \(-0.369652\pi\)
0.398152 + 0.917320i \(0.369652\pi\)
\(942\) 0 0
\(943\) 146.530 0.155387
\(944\) 0 0
\(945\) 447.449 + 791.406i 0.473491 + 0.837466i
\(946\) 0 0
\(947\) 114.160 0.120549 0.0602743 0.998182i \(-0.480802\pi\)
0.0602743 + 0.998182i \(0.480802\pi\)
\(948\) 0 0
\(949\) −342.872 −0.361298
\(950\) 0 0
\(951\) 1544.02i 1.62358i
\(952\) 0 0
\(953\) 820.680i 0.861154i 0.902554 + 0.430577i \(0.141690\pi\)
−0.902554 + 0.430577i \(0.858310\pi\)
\(954\) 0 0
\(955\) −917.548 + 518.768i −0.960783 + 0.543212i
\(956\) 0 0
\(957\) 94.2997i 0.0985368i
\(958\) 0 0
\(959\) 1730.50i 1.80448i
\(960\) 0 0
\(961\) 476.542 0.495881
\(962\) 0 0
\(963\) −460.109 −0.477787
\(964\) 0 0
\(965\) −470.835 + 266.203i −0.487912 + 0.275858i
\(966\) 0 0
\(967\) −1108.56 −1.14639 −0.573194 0.819420i \(-0.694296\pi\)
−0.573194 + 0.819420i \(0.694296\pi\)
\(968\) 0 0
\(969\) 285.560 0.294696
\(970\) 0 0
\(971\) 1372.41i 1.41340i 0.707516 + 0.706698i \(0.249816\pi\)
−0.707516 + 0.706698i \(0.750184\pi\)
\(972\) 0 0
\(973\) 747.916i 0.768670i
\(974\) 0 0
\(975\) 421.721 + 253.733i 0.432534 + 0.260239i
\(976\) 0 0
\(977\) 927.224i 0.949052i −0.880241 0.474526i \(-0.842619\pi\)
0.880241 0.474526i \(-0.157381\pi\)
\(978\) 0 0
\(979\) 40.3932i 0.0412597i
\(980\) 0 0
\(981\) −2531.63 −2.58066
\(982\) 0 0
\(983\) 354.106 0.360230 0.180115 0.983646i \(-0.442353\pi\)
0.180115 + 0.983646i \(0.442353\pi\)
\(984\) 0 0
\(985\) 1341.88 758.677i 1.36231 0.770230i
\(986\) 0 0
\(987\) 322.236 0.326480
\(988\) 0 0
\(989\) −90.6396 −0.0916478
\(990\) 0 0
\(991\) 537.545i 0.542427i 0.962519 + 0.271213i \(0.0874249\pi\)
−0.962519 + 0.271213i \(0.912575\pi\)
\(992\) 0 0
\(993\) 292.614i 0.294677i
\(994\) 0 0
\(995\) 1078.81 609.941i 1.08423 0.613006i
\(996\) 0 0
\(997\) 441.759i 0.443088i 0.975150 + 0.221544i \(0.0711096\pi\)
−0.975150 + 0.221544i \(0.928890\pi\)
\(998\) 0 0
\(999\) 1225.48i 1.22671i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.3.h.m.1279.4 16
4.3 odd 2 inner 1280.3.h.m.1279.16 16
5.4 even 2 inner 1280.3.h.m.1279.15 16
8.3 odd 2 inner 1280.3.h.m.1279.1 16
8.5 even 2 inner 1280.3.h.m.1279.13 16
16.3 odd 4 40.3.e.c.19.7 yes 8
16.5 even 4 40.3.e.c.19.1 8
16.11 odd 4 160.3.e.c.79.1 8
16.13 even 4 160.3.e.c.79.2 8
20.19 odd 2 inner 1280.3.h.m.1279.3 16
40.19 odd 2 inner 1280.3.h.m.1279.14 16
40.29 even 2 inner 1280.3.h.m.1279.2 16
48.5 odd 4 360.3.p.g.19.8 8
48.11 even 4 1440.3.p.g.559.7 8
48.29 odd 4 1440.3.p.g.559.2 8
48.35 even 4 360.3.p.g.19.2 8
80.3 even 4 200.3.g.h.51.3 8
80.13 odd 4 800.3.g.h.751.7 8
80.19 odd 4 40.3.e.c.19.2 yes 8
80.27 even 4 800.3.g.h.751.1 8
80.29 even 4 160.3.e.c.79.7 8
80.37 odd 4 200.3.g.h.51.5 8
80.43 even 4 800.3.g.h.751.8 8
80.53 odd 4 200.3.g.h.51.4 8
80.59 odd 4 160.3.e.c.79.8 8
80.67 even 4 200.3.g.h.51.6 8
80.69 even 4 40.3.e.c.19.8 yes 8
80.77 odd 4 800.3.g.h.751.2 8
240.29 odd 4 1440.3.p.g.559.8 8
240.59 even 4 1440.3.p.g.559.1 8
240.149 odd 4 360.3.p.g.19.1 8
240.179 even 4 360.3.p.g.19.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.e.c.19.1 8 16.5 even 4
40.3.e.c.19.2 yes 8 80.19 odd 4
40.3.e.c.19.7 yes 8 16.3 odd 4
40.3.e.c.19.8 yes 8 80.69 even 4
160.3.e.c.79.1 8 16.11 odd 4
160.3.e.c.79.2 8 16.13 even 4
160.3.e.c.79.7 8 80.29 even 4
160.3.e.c.79.8 8 80.59 odd 4
200.3.g.h.51.3 8 80.3 even 4
200.3.g.h.51.4 8 80.53 odd 4
200.3.g.h.51.5 8 80.37 odd 4
200.3.g.h.51.6 8 80.67 even 4
360.3.p.g.19.1 8 240.149 odd 4
360.3.p.g.19.2 8 48.35 even 4
360.3.p.g.19.7 8 240.179 even 4
360.3.p.g.19.8 8 48.5 odd 4
800.3.g.h.751.1 8 80.27 even 4
800.3.g.h.751.2 8 80.77 odd 4
800.3.g.h.751.7 8 80.13 odd 4
800.3.g.h.751.8 8 80.43 even 4
1280.3.h.m.1279.1 16 8.3 odd 2 inner
1280.3.h.m.1279.2 16 40.29 even 2 inner
1280.3.h.m.1279.3 16 20.19 odd 2 inner
1280.3.h.m.1279.4 16 1.1 even 1 trivial
1280.3.h.m.1279.13 16 8.5 even 2 inner
1280.3.h.m.1279.14 16 40.19 odd 2 inner
1280.3.h.m.1279.15 16 5.4 even 2 inner
1280.3.h.m.1279.16 16 4.3 odd 2 inner
1440.3.p.g.559.1 8 240.59 even 4
1440.3.p.g.559.2 8 48.29 odd 4
1440.3.p.g.559.7 8 48.11 even 4
1440.3.p.g.559.8 8 240.29 odd 4