Properties

Label 160.3.e.c.79.7
Level $160$
Weight $3$
Character 160.79
Analytic conductor $4.360$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,3,Mod(79,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.79");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 160.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35968422976\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.53824000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 6x^{6} + 36x^{4} + 96x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 79.7
Root \(1.34500 - 1.48020i\) of defining polynomial
Character \(\chi\) \(=\) 160.79
Dual form 160.3.e.c.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.79002i q^{3} +(-4.35250 - 2.46084i) q^{5} -7.67752 q^{7} -13.9443 q^{9} +0.472136 q^{11} +4.10995 q^{13} +(11.7875 - 20.8486i) q^{15} -2.26154i q^{17} -26.3607 q^{19} -36.7754i q^{21} -9.73249 q^{23} +(12.8885 + 21.4216i) q^{25} -23.6832i q^{27} +41.6971i q^{29} +22.0104i q^{31} +2.26154i q^{33} +(33.4164 + 18.8931i) q^{35} -51.7449 q^{37} +19.6867i q^{39} +15.0557 q^{41} +9.31310i q^{43} +(60.6925 + 34.3146i) q^{45} -8.76226 q^{47} +9.94427 q^{49} +10.8328 q^{51} +39.9002 q^{53} +(-2.05497 - 1.16185i) q^{55} -126.268i q^{57} +77.1935 q^{59} +14.7650i q^{61} +107.057 q^{63} +(-17.8885 - 10.1139i) q^{65} -75.8395i q^{67} -46.6188i q^{69} +81.0705i q^{71} +83.4249i q^{73} +(-102.610 + 61.7364i) q^{75} -3.62483 q^{77} -100.757i q^{79} -12.0557 q^{81} -0.266939i q^{83} +(-5.56528 + 9.84336i) q^{85} -199.730 q^{87} +85.5542 q^{89} -31.5542 q^{91} -105.430 q^{93} +(114.735 + 64.8694i) q^{95} +99.1297i q^{97} -6.58359 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 40 q^{9} - 32 q^{11} - 32 q^{19} - 40 q^{25} + 160 q^{35} + 192 q^{41} + 8 q^{49} - 128 q^{51} + 224 q^{59} - 320 q^{75} - 168 q^{81} + 112 q^{89} + 320 q^{91} - 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.79002i 1.59667i 0.602212 + 0.798336i \(0.294286\pi\)
−0.602212 + 0.798336i \(0.705714\pi\)
\(4\) 0 0
\(5\) −4.35250 2.46084i −0.870500 0.492168i
\(6\) 0 0
\(7\) −7.67752 −1.09679 −0.548394 0.836220i \(-0.684761\pi\)
−0.548394 + 0.836220i \(0.684761\pi\)
\(8\) 0 0
\(9\) −13.9443 −1.54936
\(10\) 0 0
\(11\) 0.472136 0.0429215 0.0214607 0.999770i \(-0.493168\pi\)
0.0214607 + 0.999770i \(0.493168\pi\)
\(12\) 0 0
\(13\) 4.10995 0.316150 0.158075 0.987427i \(-0.449471\pi\)
0.158075 + 0.987427i \(0.449471\pi\)
\(14\) 0 0
\(15\) 11.7875 20.8486i 0.785831 1.38990i
\(16\) 0 0
\(17\) 2.26154i 0.133032i −0.997785 0.0665159i \(-0.978812\pi\)
0.997785 0.0665159i \(-0.0211883\pi\)
\(18\) 0 0
\(19\) −26.3607 −1.38740 −0.693702 0.720262i \(-0.744022\pi\)
−0.693702 + 0.720262i \(0.744022\pi\)
\(20\) 0 0
\(21\) 36.7754i 1.75121i
\(22\) 0 0
\(23\) −9.73249 −0.423152 −0.211576 0.977362i \(-0.567860\pi\)
−0.211576 + 0.977362i \(0.567860\pi\)
\(24\) 0 0
\(25\) 12.8885 + 21.4216i 0.515542 + 0.856864i
\(26\) 0 0
\(27\) 23.6832i 0.877154i
\(28\) 0 0
\(29\) 41.6971i 1.43783i 0.695097 + 0.718916i \(0.255361\pi\)
−0.695097 + 0.718916i \(0.744639\pi\)
\(30\) 0 0
\(31\) 22.0104i 0.710013i 0.934864 + 0.355007i \(0.115521\pi\)
−0.934864 + 0.355007i \(0.884479\pi\)
\(32\) 0 0
\(33\) 2.26154i 0.0685315i
\(34\) 0 0
\(35\) 33.4164 + 18.8931i 0.954755 + 0.539804i
\(36\) 0 0
\(37\) −51.7449 −1.39851 −0.699256 0.714872i \(-0.746485\pi\)
−0.699256 + 0.714872i \(0.746485\pi\)
\(38\) 0 0
\(39\) 19.6867i 0.504787i
\(40\) 0 0
\(41\) 15.0557 0.367213 0.183606 0.983000i \(-0.441223\pi\)
0.183606 + 0.983000i \(0.441223\pi\)
\(42\) 0 0
\(43\) 9.31310i 0.216584i 0.994119 + 0.108292i \(0.0345381\pi\)
−0.994119 + 0.108292i \(0.965462\pi\)
\(44\) 0 0
\(45\) 60.6925 + 34.3146i 1.34872 + 0.762547i
\(46\) 0 0
\(47\) −8.76226 −0.186431 −0.0932156 0.995646i \(-0.529715\pi\)
−0.0932156 + 0.995646i \(0.529715\pi\)
\(48\) 0 0
\(49\) 9.94427 0.202944
\(50\) 0 0
\(51\) 10.8328 0.212408
\(52\) 0 0
\(53\) 39.9002 0.752834 0.376417 0.926450i \(-0.377156\pi\)
0.376417 + 0.926450i \(0.377156\pi\)
\(54\) 0 0
\(55\) −2.05497 1.16185i −0.0373631 0.0211246i
\(56\) 0 0
\(57\) 126.268i 2.21523i
\(58\) 0 0
\(59\) 77.1935 1.30836 0.654182 0.756337i \(-0.273013\pi\)
0.654182 + 0.756337i \(0.273013\pi\)
\(60\) 0 0
\(61\) 14.7650i 0.242050i 0.992649 + 0.121025i \(0.0386181\pi\)
−0.992649 + 0.121025i \(0.961382\pi\)
\(62\) 0 0
\(63\) 107.057 1.69932
\(64\) 0 0
\(65\) −17.8885 10.1139i −0.275208 0.155599i
\(66\) 0 0
\(67\) 75.8395i 1.13193i −0.824428 0.565966i \(-0.808503\pi\)
0.824428 0.565966i \(-0.191497\pi\)
\(68\) 0 0
\(69\) 46.6188i 0.675635i
\(70\) 0 0
\(71\) 81.0705i 1.14184i 0.821006 + 0.570919i \(0.193413\pi\)
−0.821006 + 0.570919i \(0.806587\pi\)
\(72\) 0 0
\(73\) 83.4249i 1.14281i 0.820669 + 0.571403i \(0.193601\pi\)
−0.820669 + 0.571403i \(0.806399\pi\)
\(74\) 0 0
\(75\) −102.610 + 61.7364i −1.36813 + 0.823151i
\(76\) 0 0
\(77\) −3.62483 −0.0470757
\(78\) 0 0
\(79\) 100.757i 1.27541i −0.770281 0.637704i \(-0.779884\pi\)
0.770281 0.637704i \(-0.220116\pi\)
\(80\) 0 0
\(81\) −12.0557 −0.148836
\(82\) 0 0
\(83\) 0.266939i 0.00321613i −0.999999 0.00160806i \(-0.999488\pi\)
0.999999 0.00160806i \(-0.000511863\pi\)
\(84\) 0 0
\(85\) −5.56528 + 9.84336i −0.0654739 + 0.115804i
\(86\) 0 0
\(87\) −199.730 −2.29575
\(88\) 0 0
\(89\) 85.5542 0.961283 0.480641 0.876917i \(-0.340404\pi\)
0.480641 + 0.876917i \(0.340404\pi\)
\(90\) 0 0
\(91\) −31.5542 −0.346749
\(92\) 0 0
\(93\) −105.430 −1.13366
\(94\) 0 0
\(95\) 114.735 + 64.8694i 1.20774 + 0.682836i
\(96\) 0 0
\(97\) 99.1297i 1.02196i 0.859594 + 0.510978i \(0.170716\pi\)
−0.859594 + 0.510978i \(0.829284\pi\)
\(98\) 0 0
\(99\) −6.58359 −0.0665009
\(100\) 0 0
\(101\) 105.405i 1.04361i 0.853065 + 0.521805i \(0.174741\pi\)
−0.853065 + 0.521805i \(0.825259\pi\)
\(102\) 0 0
\(103\) −101.863 −0.988958 −0.494479 0.869190i \(-0.664641\pi\)
−0.494479 + 0.869190i \(0.664641\pi\)
\(104\) 0 0
\(105\) −90.4984 + 160.065i −0.861890 + 1.52443i
\(106\) 0 0
\(107\) 32.9962i 0.308376i −0.988042 0.154188i \(-0.950724\pi\)
0.988042 0.154188i \(-0.0492762\pi\)
\(108\) 0 0
\(109\) 181.554i 1.66563i −0.553552 0.832814i \(-0.686728\pi\)
0.553552 0.832814i \(-0.313272\pi\)
\(110\) 0 0
\(111\) 247.859i 2.23296i
\(112\) 0 0
\(113\) 76.6403i 0.678233i −0.940744 0.339116i \(-0.889872\pi\)
0.940744 0.339116i \(-0.110128\pi\)
\(114\) 0 0
\(115\) 42.3607 + 23.9501i 0.368354 + 0.208262i
\(116\) 0 0
\(117\) −57.3102 −0.489831
\(118\) 0 0
\(119\) 17.3630i 0.145908i
\(120\) 0 0
\(121\) −120.777 −0.998158
\(122\) 0 0
\(123\) 72.1172i 0.586319i
\(124\) 0 0
\(125\) −3.38228 124.954i −0.0270582 0.999634i
\(126\) 0 0
\(127\) 142.962 1.12569 0.562843 0.826564i \(-0.309708\pi\)
0.562843 + 0.826564i \(0.309708\pi\)
\(128\) 0 0
\(129\) −44.6099 −0.345813
\(130\) 0 0
\(131\) −110.138 −0.840746 −0.420373 0.907351i \(-0.638101\pi\)
−0.420373 + 0.907351i \(0.638101\pi\)
\(132\) 0 0
\(133\) 202.385 1.52169
\(134\) 0 0
\(135\) −58.2804 + 103.081i −0.431707 + 0.763563i
\(136\) 0 0
\(137\) 225.398i 1.64524i −0.568592 0.822620i \(-0.692512\pi\)
0.568592 0.822620i \(-0.307488\pi\)
\(138\) 0 0
\(139\) −97.4164 −0.700837 −0.350419 0.936593i \(-0.613961\pi\)
−0.350419 + 0.936593i \(0.613961\pi\)
\(140\) 0 0
\(141\) 41.9714i 0.297669i
\(142\) 0 0
\(143\) 1.94045 0.0135696
\(144\) 0 0
\(145\) 102.610 181.487i 0.707655 1.25163i
\(146\) 0 0
\(147\) 47.6332i 0.324036i
\(148\) 0 0
\(149\) 191.397i 1.28454i 0.766477 + 0.642271i \(0.222008\pi\)
−0.766477 + 0.642271i \(0.777992\pi\)
\(150\) 0 0
\(151\) 68.3549i 0.452682i −0.974048 0.226341i \(-0.927324\pi\)
0.974048 0.226341i \(-0.0726763\pi\)
\(152\) 0 0
\(153\) 31.5355i 0.206115i
\(154\) 0 0
\(155\) 54.1641 95.8004i 0.349446 0.618067i
\(156\) 0 0
\(157\) −155.235 −0.988756 −0.494378 0.869247i \(-0.664604\pi\)
−0.494378 + 0.869247i \(0.664604\pi\)
\(158\) 0 0
\(159\) 191.123i 1.20203i
\(160\) 0 0
\(161\) 74.7214 0.464108
\(162\) 0 0
\(163\) 90.4765i 0.555070i 0.960715 + 0.277535i \(0.0895175\pi\)
−0.960715 + 0.277535i \(0.910482\pi\)
\(164\) 0 0
\(165\) 5.56528 9.84336i 0.0337290 0.0596567i
\(166\) 0 0
\(167\) 100.778 0.603461 0.301730 0.953393i \(-0.402436\pi\)
0.301730 + 0.953393i \(0.402436\pi\)
\(168\) 0 0
\(169\) −152.108 −0.900049
\(170\) 0 0
\(171\) 367.580 2.14959
\(172\) 0 0
\(173\) 54.6556 0.315928 0.157964 0.987445i \(-0.449507\pi\)
0.157964 + 0.987445i \(0.449507\pi\)
\(174\) 0 0
\(175\) −98.9520 164.465i −0.565440 0.939799i
\(176\) 0 0
\(177\) 369.758i 2.08903i
\(178\) 0 0
\(179\) 106.807 0.596684 0.298342 0.954459i \(-0.403566\pi\)
0.298342 + 0.954459i \(0.403566\pi\)
\(180\) 0 0
\(181\) 144.778i 0.799879i 0.916542 + 0.399939i \(0.130969\pi\)
−0.916542 + 0.399939i \(0.869031\pi\)
\(182\) 0 0
\(183\) −70.7248 −0.386474
\(184\) 0 0
\(185\) 225.220 + 127.336i 1.21740 + 0.688302i
\(186\) 0 0
\(187\) 1.06775i 0.00570992i
\(188\) 0 0
\(189\) 181.828i 0.962052i
\(190\) 0 0
\(191\) 210.809i 1.10371i 0.833939 + 0.551857i \(0.186081\pi\)
−0.833939 + 0.551857i \(0.813919\pi\)
\(192\) 0 0
\(193\) 108.176i 0.560496i −0.959928 0.280248i \(-0.909583\pi\)
0.959928 0.280248i \(-0.0904168\pi\)
\(194\) 0 0
\(195\) 48.4458 85.6864i 0.248440 0.439418i
\(196\) 0 0
\(197\) 308.300 1.56497 0.782487 0.622667i \(-0.213951\pi\)
0.782487 + 0.622667i \(0.213951\pi\)
\(198\) 0 0
\(199\) 247.859i 1.24552i 0.782412 + 0.622761i \(0.213989\pi\)
−0.782412 + 0.622761i \(0.786011\pi\)
\(200\) 0 0
\(201\) 363.272 1.80733
\(202\) 0 0
\(203\) 320.130i 1.57700i
\(204\) 0 0
\(205\) −65.5301 37.0497i −0.319659 0.180730i
\(206\) 0 0
\(207\) 135.712 0.655616
\(208\) 0 0
\(209\) −12.4458 −0.0595494
\(210\) 0 0
\(211\) −230.584 −1.09281 −0.546407 0.837520i \(-0.684005\pi\)
−0.546407 + 0.837520i \(0.684005\pi\)
\(212\) 0 0
\(213\) −388.329 −1.82314
\(214\) 0 0
\(215\) 22.9180 40.5353i 0.106595 0.188536i
\(216\) 0 0
\(217\) 168.985i 0.778734i
\(218\) 0 0
\(219\) −399.607 −1.82469
\(220\) 0 0
\(221\) 9.29480i 0.0420579i
\(222\) 0 0
\(223\) 177.782 0.797229 0.398615 0.917118i \(-0.369491\pi\)
0.398615 + 0.917118i \(0.369491\pi\)
\(224\) 0 0
\(225\) −179.721 298.709i −0.798762 1.32759i
\(226\) 0 0
\(227\) 203.301i 0.895601i 0.894134 + 0.447800i \(0.147792\pi\)
−0.894134 + 0.447800i \(0.852208\pi\)
\(228\) 0 0
\(229\) 81.0705i 0.354020i −0.984209 0.177010i \(-0.943358\pi\)
0.984209 0.177010i \(-0.0566425\pi\)
\(230\) 0 0
\(231\) 17.3630i 0.0751645i
\(232\) 0 0
\(233\) 56.2864i 0.241573i 0.992679 + 0.120786i \(0.0385416\pi\)
−0.992679 + 0.120786i \(0.961458\pi\)
\(234\) 0 0
\(235\) 38.1378 + 21.5625i 0.162288 + 0.0917554i
\(236\) 0 0
\(237\) 482.629 2.03641
\(238\) 0 0
\(239\) 360.235i 1.50726i −0.657300 0.753629i \(-0.728301\pi\)
0.657300 0.753629i \(-0.271699\pi\)
\(240\) 0 0
\(241\) −197.495 −0.819483 −0.409741 0.912202i \(-0.634381\pi\)
−0.409741 + 0.912202i \(0.634381\pi\)
\(242\) 0 0
\(243\) 270.896i 1.11480i
\(244\) 0 0
\(245\) −43.2825 24.4713i −0.176663 0.0998827i
\(246\) 0 0
\(247\) −108.341 −0.438627
\(248\) 0 0
\(249\) 1.27864 0.00513510
\(250\) 0 0
\(251\) 178.361 0.710600 0.355300 0.934752i \(-0.384379\pi\)
0.355300 + 0.934752i \(0.384379\pi\)
\(252\) 0 0
\(253\) −4.59506 −0.0181623
\(254\) 0 0
\(255\) −47.1498 26.6578i −0.184901 0.104540i
\(256\) 0 0
\(257\) 453.183i 1.76336i 0.471849 + 0.881679i \(0.343587\pi\)
−0.471849 + 0.881679i \(0.656413\pi\)
\(258\) 0 0
\(259\) 397.272 1.53387
\(260\) 0 0
\(261\) 581.436i 2.22772i
\(262\) 0 0
\(263\) 21.0921 0.0801981 0.0400990 0.999196i \(-0.487233\pi\)
0.0400990 + 0.999196i \(0.487233\pi\)
\(264\) 0 0
\(265\) −173.666 98.1879i −0.655342 0.370520i
\(266\) 0 0
\(267\) 409.806i 1.53485i
\(268\) 0 0
\(269\) 92.4148i 0.343549i 0.985136 + 0.171775i \(0.0549501\pi\)
−0.985136 + 0.171775i \(0.945050\pi\)
\(270\) 0 0
\(271\) 188.799i 0.696675i 0.937369 + 0.348337i \(0.113254\pi\)
−0.937369 + 0.348337i \(0.886746\pi\)
\(272\) 0 0
\(273\) 151.145i 0.553645i
\(274\) 0 0
\(275\) 6.08514 + 10.1139i 0.0221278 + 0.0367779i
\(276\) 0 0
\(277\) −70.1251 −0.253159 −0.126580 0.991956i \(-0.540400\pi\)
−0.126580 + 0.991956i \(0.540400\pi\)
\(278\) 0 0
\(279\) 306.919i 1.10007i
\(280\) 0 0
\(281\) −506.269 −1.80167 −0.900835 0.434161i \(-0.857045\pi\)
−0.900835 + 0.434161i \(0.857045\pi\)
\(282\) 0 0
\(283\) 501.350i 1.77156i 0.464110 + 0.885778i \(0.346374\pi\)
−0.464110 + 0.885778i \(0.653626\pi\)
\(284\) 0 0
\(285\) −310.726 + 549.582i −1.09026 + 1.92836i
\(286\) 0 0
\(287\) −115.591 −0.402755
\(288\) 0 0
\(289\) 283.885 0.982303
\(290\) 0 0
\(291\) −474.833 −1.63173
\(292\) 0 0
\(293\) −324.026 −1.10589 −0.552945 0.833218i \(-0.686496\pi\)
−0.552945 + 0.833218i \(0.686496\pi\)
\(294\) 0 0
\(295\) −335.985 189.961i −1.13893 0.643935i
\(296\) 0 0
\(297\) 11.1817i 0.0376487i
\(298\) 0 0
\(299\) −40.0000 −0.133779
\(300\) 0 0
\(301\) 71.5015i 0.237546i
\(302\) 0 0
\(303\) −504.890 −1.66630
\(304\) 0 0
\(305\) 36.3344 64.2648i 0.119129 0.210704i
\(306\) 0 0
\(307\) 9.84697i 0.0320748i 0.999871 + 0.0160374i \(0.00510509\pi\)
−0.999871 + 0.0160374i \(0.994895\pi\)
\(308\) 0 0
\(309\) 487.924i 1.57904i
\(310\) 0 0
\(311\) 200.417i 0.644429i 0.946667 + 0.322214i \(0.104427\pi\)
−0.946667 + 0.322214i \(0.895573\pi\)
\(312\) 0 0
\(313\) 261.582i 0.835727i 0.908510 + 0.417863i \(0.137221\pi\)
−0.908510 + 0.417863i \(0.862779\pi\)
\(314\) 0 0
\(315\) −465.967 263.451i −1.47926 0.836352i
\(316\) 0 0
\(317\) −322.341 −1.01685 −0.508425 0.861107i \(-0.669772\pi\)
−0.508425 + 0.861107i \(0.669772\pi\)
\(318\) 0 0
\(319\) 19.6867i 0.0617138i
\(320\) 0 0
\(321\) 158.053 0.492376
\(322\) 0 0
\(323\) 59.6157i 0.184569i
\(324\) 0 0
\(325\) 52.9712 + 88.0416i 0.162988 + 0.270897i
\(326\) 0 0
\(327\) 869.645 2.65946
\(328\) 0 0
\(329\) 67.2724 0.204475
\(330\) 0 0
\(331\) 61.0883 0.184557 0.0922783 0.995733i \(-0.470585\pi\)
0.0922783 + 0.995733i \(0.470585\pi\)
\(332\) 0 0
\(333\) 721.545 2.16680
\(334\) 0 0
\(335\) −186.629 + 330.091i −0.557101 + 0.985348i
\(336\) 0 0
\(337\) 114.960i 0.341129i 0.985347 + 0.170564i \(0.0545591\pi\)
−0.985347 + 0.170564i \(0.945441\pi\)
\(338\) 0 0
\(339\) 367.108 1.08292
\(340\) 0 0
\(341\) 10.3919i 0.0304748i
\(342\) 0 0
\(343\) 299.851 0.874201
\(344\) 0 0
\(345\) −114.721 + 202.908i −0.332526 + 0.588140i
\(346\) 0 0
\(347\) 143.967i 0.414892i −0.978246 0.207446i \(-0.933485\pi\)
0.978246 0.207446i \(-0.0665151\pi\)
\(348\) 0 0
\(349\) 35.9526i 0.103016i −0.998673 0.0515080i \(-0.983597\pi\)
0.998673 0.0515080i \(-0.0164028\pi\)
\(350\) 0 0
\(351\) 97.3365i 0.277312i
\(352\) 0 0
\(353\) 252.536i 0.715400i −0.933837 0.357700i \(-0.883561\pi\)
0.933837 0.357700i \(-0.116439\pi\)
\(354\) 0 0
\(355\) 199.502 352.860i 0.561976 0.993971i
\(356\) 0 0
\(357\) −83.1691 −0.232967
\(358\) 0 0
\(359\) 594.152i 1.65502i −0.561452 0.827509i \(-0.689757\pi\)
0.561452 0.827509i \(-0.310243\pi\)
\(360\) 0 0
\(361\) 333.885 0.924890
\(362\) 0 0
\(363\) 578.524i 1.59373i
\(364\) 0 0
\(365\) 205.295 363.107i 0.562453 0.994814i
\(366\) 0 0
\(367\) −88.9062 −0.242251 −0.121126 0.992637i \(-0.538650\pi\)
−0.121126 + 0.992637i \(0.538650\pi\)
\(368\) 0 0
\(369\) −209.941 −0.568946
\(370\) 0 0
\(371\) −306.334 −0.825699
\(372\) 0 0
\(373\) 83.6542 0.224274 0.112137 0.993693i \(-0.464230\pi\)
0.112137 + 0.993693i \(0.464230\pi\)
\(374\) 0 0
\(375\) 598.533 16.2012i 1.59609 0.0432031i
\(376\) 0 0
\(377\) 171.373i 0.454570i
\(378\) 0 0
\(379\) 135.135 0.356556 0.178278 0.983980i \(-0.442947\pi\)
0.178278 + 0.983980i \(0.442947\pi\)
\(380\) 0 0
\(381\) 684.791i 1.79735i
\(382\) 0 0
\(383\) −498.526 −1.30164 −0.650818 0.759234i \(-0.725574\pi\)
−0.650818 + 0.759234i \(0.725574\pi\)
\(384\) 0 0
\(385\) 15.7771 + 8.92013i 0.0409794 + 0.0231692i
\(386\) 0 0
\(387\) 129.864i 0.335567i
\(388\) 0 0
\(389\) 308.420i 0.792854i 0.918066 + 0.396427i \(0.129750\pi\)
−0.918066 + 0.396427i \(0.870250\pi\)
\(390\) 0 0
\(391\) 22.0104i 0.0562926i
\(392\) 0 0
\(393\) 527.562i 1.34240i
\(394\) 0 0
\(395\) −247.947 + 438.546i −0.627715 + 1.11024i
\(396\) 0 0
\(397\) 297.682 0.749828 0.374914 0.927060i \(-0.377672\pi\)
0.374914 + 0.927060i \(0.377672\pi\)
\(398\) 0 0
\(399\) 969.426i 2.42964i
\(400\) 0 0
\(401\) 148.663 0.370729 0.185365 0.982670i \(-0.440653\pi\)
0.185365 + 0.982670i \(0.440653\pi\)
\(402\) 0 0
\(403\) 90.4616i 0.224470i
\(404\) 0 0
\(405\) 52.4726 + 29.6672i 0.129562 + 0.0732524i
\(406\) 0 0
\(407\) −24.4306 −0.0600261
\(408\) 0 0
\(409\) 442.387 1.08163 0.540815 0.841141i \(-0.318116\pi\)
0.540815 + 0.841141i \(0.318116\pi\)
\(410\) 0 0
\(411\) 1079.66 2.62691
\(412\) 0 0
\(413\) −592.654 −1.43500
\(414\) 0 0
\(415\) −0.656893 + 1.16185i −0.00158287 + 0.00279964i
\(416\) 0 0
\(417\) 466.626i 1.11901i
\(418\) 0 0
\(419\) −536.184 −1.27968 −0.639838 0.768510i \(-0.720999\pi\)
−0.639838 + 0.768510i \(0.720999\pi\)
\(420\) 0 0
\(421\) 514.582i 1.22228i 0.791521 + 0.611142i \(0.209290\pi\)
−0.791521 + 0.611142i \(0.790710\pi\)
\(422\) 0 0
\(423\) 122.183 0.288850
\(424\) 0 0
\(425\) 48.4458 29.1480i 0.113990 0.0685834i
\(426\) 0 0
\(427\) 113.359i 0.265477i
\(428\) 0 0
\(429\) 9.29480i 0.0216662i
\(430\) 0 0
\(431\) 86.8151i 0.201427i 0.994915 + 0.100714i \(0.0321126\pi\)
−0.994915 + 0.100714i \(0.967887\pi\)
\(432\) 0 0
\(433\) 494.017i 1.14092i 0.821327 + 0.570458i \(0.193234\pi\)
−0.821327 + 0.570458i \(0.806766\pi\)
\(434\) 0 0
\(435\) 869.325 + 491.503i 1.99845 + 1.12989i
\(436\) 0 0
\(437\) 256.555 0.587082
\(438\) 0 0
\(439\) 524.700i 1.19522i 0.801789 + 0.597608i \(0.203882\pi\)
−0.801789 + 0.597608i \(0.796118\pi\)
\(440\) 0 0
\(441\) −138.666 −0.314435
\(442\) 0 0
\(443\) 496.575i 1.12094i 0.828176 + 0.560469i \(0.189379\pi\)
−0.828176 + 0.560469i \(0.810621\pi\)
\(444\) 0 0
\(445\) −372.375 210.535i −0.836797 0.473112i
\(446\) 0 0
\(447\) −916.795 −2.05099
\(448\) 0 0
\(449\) −332.158 −0.739773 −0.369886 0.929077i \(-0.620603\pi\)
−0.369886 + 0.929077i \(0.620603\pi\)
\(450\) 0 0
\(451\) 7.10835 0.0157613
\(452\) 0 0
\(453\) 327.421 0.722785
\(454\) 0 0
\(455\) 137.340 + 77.6497i 0.301845 + 0.170659i
\(456\) 0 0
\(457\) 252.788i 0.553147i −0.960993 0.276574i \(-0.910801\pi\)
0.960993 0.276574i \(-0.0891990\pi\)
\(458\) 0 0
\(459\) −53.5604 −0.116689
\(460\) 0 0
\(461\) 832.716i 1.80633i −0.429299 0.903163i \(-0.641239\pi\)
0.429299 0.903163i \(-0.358761\pi\)
\(462\) 0 0
\(463\) 854.205 1.84494 0.922468 0.386074i \(-0.126169\pi\)
0.922468 + 0.386074i \(0.126169\pi\)
\(464\) 0 0
\(465\) 458.885 + 259.447i 0.986850 + 0.557950i
\(466\) 0 0
\(467\) 102.726i 0.219970i 0.993933 + 0.109985i \(0.0350802\pi\)
−0.993933 + 0.109985i \(0.964920\pi\)
\(468\) 0 0
\(469\) 582.259i 1.24149i
\(470\) 0 0
\(471\) 743.577i 1.57872i
\(472\) 0 0
\(473\) 4.39705i 0.00929608i
\(474\) 0 0
\(475\) −339.751 564.688i −0.715265 1.18882i
\(476\) 0 0
\(477\) −556.379 −1.16641
\(478\) 0 0
\(479\) 268.772i 0.561111i −0.959838 0.280556i \(-0.909481\pi\)
0.959838 0.280556i \(-0.0905187\pi\)
\(480\) 0 0
\(481\) −212.669 −0.442139
\(482\) 0 0
\(483\) 357.917i 0.741028i
\(484\) 0 0
\(485\) 243.942 431.462i 0.502973 0.889612i
\(486\) 0 0
\(487\) −504.065 −1.03504 −0.517520 0.855671i \(-0.673145\pi\)
−0.517520 + 0.855671i \(0.673145\pi\)
\(488\) 0 0
\(489\) −433.384 −0.886266
\(490\) 0 0
\(491\) −130.020 −0.264807 −0.132403 0.991196i \(-0.542269\pi\)
−0.132403 + 0.991196i \(0.542269\pi\)
\(492\) 0 0
\(493\) 94.2997 0.191277
\(494\) 0 0
\(495\) 28.6551 + 16.2012i 0.0578891 + 0.0327296i
\(496\) 0 0
\(497\) 622.421i 1.25236i
\(498\) 0 0
\(499\) −664.184 −1.33103 −0.665515 0.746384i \(-0.731788\pi\)
−0.665515 + 0.746384i \(0.731788\pi\)
\(500\) 0 0
\(501\) 482.728i 0.963529i
\(502\) 0 0
\(503\) 550.015 1.09347 0.546735 0.837306i \(-0.315871\pi\)
0.546735 + 0.837306i \(0.315871\pi\)
\(504\) 0 0
\(505\) 259.384 458.774i 0.513631 0.908463i
\(506\) 0 0
\(507\) 728.602i 1.43708i
\(508\) 0 0
\(509\) 349.843i 0.687314i −0.939095 0.343657i \(-0.888334\pi\)
0.939095 0.343657i \(-0.111666\pi\)
\(510\) 0 0
\(511\) 640.496i 1.25342i
\(512\) 0 0
\(513\) 624.304i 1.21697i
\(514\) 0 0
\(515\) 443.358 + 250.668i 0.860888 + 0.486733i
\(516\) 0 0
\(517\) −4.13698 −0.00800189
\(518\) 0 0
\(519\) 261.801i 0.504434i
\(520\) 0 0
\(521\) 29.7771 0.0571537 0.0285769 0.999592i \(-0.490902\pi\)
0.0285769 + 0.999592i \(0.490902\pi\)
\(522\) 0 0
\(523\) 603.023i 1.15301i −0.817094 0.576504i \(-0.804416\pi\)
0.817094 0.576504i \(-0.195584\pi\)
\(524\) 0 0
\(525\) 787.789 473.982i 1.50055 0.902823i
\(526\) 0 0
\(527\) 49.7774 0.0944543
\(528\) 0 0
\(529\) −434.279 −0.820943
\(530\) 0 0
\(531\) −1076.41 −2.02713
\(532\) 0 0
\(533\) 61.8782 0.116094
\(534\) 0 0
\(535\) −81.1985 + 143.616i −0.151773 + 0.268442i
\(536\) 0 0
\(537\) 511.605i 0.952710i
\(538\) 0 0
\(539\) 4.69505 0.00871066
\(540\) 0 0
\(541\) 163.368i 0.301974i −0.988536 0.150987i \(-0.951755\pi\)
0.988536 0.150987i \(-0.0482451\pi\)
\(542\) 0 0
\(543\) −693.490 −1.27714
\(544\) 0 0
\(545\) −446.774 + 790.212i −0.819769 + 1.44993i
\(546\) 0 0
\(547\) 524.218i 0.958350i −0.877719 0.479175i \(-0.840936\pi\)
0.877719 0.479175i \(-0.159064\pi\)
\(548\) 0 0
\(549\) 205.888i 0.375023i
\(550\) 0 0
\(551\) 1099.16i 1.99485i
\(552\) 0 0
\(553\) 773.566i 1.39885i
\(554\) 0 0
\(555\) −609.941 + 1078.81i −1.09899 + 1.94380i
\(556\) 0 0
\(557\) −589.515 −1.05837 −0.529187 0.848505i \(-0.677503\pi\)
−0.529187 + 0.848505i \(0.677503\pi\)
\(558\) 0 0
\(559\) 38.2763i 0.0684728i
\(560\) 0 0
\(561\) 5.11456 0.00911687
\(562\) 0 0
\(563\) 557.763i 0.990698i −0.868694 0.495349i \(-0.835040\pi\)
0.868694 0.495349i \(-0.164960\pi\)
\(564\) 0 0
\(565\) −188.599 + 333.577i −0.333804 + 0.590402i
\(566\) 0 0
\(567\) 92.5581 0.163242
\(568\) 0 0
\(569\) −542.715 −0.953805 −0.476903 0.878956i \(-0.658241\pi\)
−0.476903 + 0.878956i \(0.658241\pi\)
\(570\) 0 0
\(571\) 476.695 0.834842 0.417421 0.908713i \(-0.362934\pi\)
0.417421 + 0.908713i \(0.362934\pi\)
\(572\) 0 0
\(573\) −1009.78 −1.76227
\(574\) 0 0
\(575\) −125.438 208.486i −0.218152 0.362584i
\(576\) 0 0
\(577\) 865.659i 1.50027i −0.661282 0.750137i \(-0.729987\pi\)
0.661282 0.750137i \(-0.270013\pi\)
\(578\) 0 0
\(579\) 518.164 0.894929
\(580\) 0 0
\(581\) 2.04943i 0.00352741i
\(582\) 0 0
\(583\) 18.8383 0.0323127
\(584\) 0 0
\(585\) 249.443 + 141.031i 0.426398 + 0.241079i
\(586\) 0 0
\(587\) 567.091i 0.966083i 0.875597 + 0.483041i \(0.160468\pi\)
−0.875597 + 0.483041i \(0.839532\pi\)
\(588\) 0 0
\(589\) 580.209i 0.985075i
\(590\) 0 0
\(591\) 1476.76i 2.49875i
\(592\) 0 0
\(593\) 421.774i 0.711254i −0.934628 0.355627i \(-0.884267\pi\)
0.934628 0.355627i \(-0.115733\pi\)
\(594\) 0 0
\(595\) 42.7276 75.5725i 0.0718110 0.127013i
\(596\) 0 0
\(597\) −1187.25 −1.98869
\(598\) 0 0
\(599\) 120.444i 0.201075i −0.994933 0.100538i \(-0.967944\pi\)
0.994933 0.100538i \(-0.0320563\pi\)
\(600\) 0 0
\(601\) 340.158 0.565986 0.282993 0.959122i \(-0.408673\pi\)
0.282993 + 0.959122i \(0.408673\pi\)
\(602\) 0 0
\(603\) 1057.53i 1.75377i
\(604\) 0 0
\(605\) 525.682 + 297.213i 0.868897 + 0.491261i
\(606\) 0 0
\(607\) −115.621 −0.190479 −0.0952396 0.995454i \(-0.530362\pi\)
−0.0952396 + 0.995454i \(0.530362\pi\)
\(608\) 0 0
\(609\) 1533.43 2.51795
\(610\) 0 0
\(611\) −36.0124 −0.0589401
\(612\) 0 0
\(613\) 1095.63 1.78733 0.893663 0.448738i \(-0.148126\pi\)
0.893663 + 0.448738i \(0.148126\pi\)
\(614\) 0 0
\(615\) 177.469 313.890i 0.288567 0.510391i
\(616\) 0 0
\(617\) 716.775i 1.16171i 0.814007 + 0.580855i \(0.197282\pi\)
−0.814007 + 0.580855i \(0.802718\pi\)
\(618\) 0 0
\(619\) −118.584 −0.191573 −0.0957864 0.995402i \(-0.530537\pi\)
−0.0957864 + 0.995402i \(0.530537\pi\)
\(620\) 0 0
\(621\) 230.496i 0.371169i
\(622\) 0 0
\(623\) −656.844 −1.05432
\(624\) 0 0
\(625\) −292.771 + 552.187i −0.468433 + 0.883499i
\(626\) 0 0
\(627\) 59.6157i 0.0950809i
\(628\) 0 0
\(629\) 117.023i 0.186046i
\(630\) 0 0
\(631\) 1168.62i 1.85201i 0.377515 + 0.926004i \(0.376779\pi\)
−0.377515 + 0.926004i \(0.623221\pi\)
\(632\) 0 0
\(633\) 1104.50i 1.74486i
\(634\) 0 0
\(635\) −622.243 351.807i −0.979910 0.554026i
\(636\) 0 0
\(637\) 40.8704 0.0641608
\(638\) 0 0
\(639\) 1130.47i 1.76912i
\(640\) 0 0
\(641\) −244.158 −0.380902 −0.190451 0.981697i \(-0.560995\pi\)
−0.190451 + 0.981697i \(0.560995\pi\)
\(642\) 0 0
\(643\) 868.847i 1.35124i 0.737250 + 0.675620i \(0.236124\pi\)
−0.737250 + 0.675620i \(0.763876\pi\)
\(644\) 0 0
\(645\) 194.165 + 109.778i 0.301031 + 0.170198i
\(646\) 0 0
\(647\) 35.1333 0.0543019 0.0271510 0.999631i \(-0.491357\pi\)
0.0271510 + 0.999631i \(0.491357\pi\)
\(648\) 0 0
\(649\) 36.4458 0.0561569
\(650\) 0 0
\(651\) 809.443 1.24338
\(652\) 0 0
\(653\) 580.068 0.888313 0.444157 0.895949i \(-0.353503\pi\)
0.444157 + 0.895949i \(0.353503\pi\)
\(654\) 0 0
\(655\) 479.375 + 271.031i 0.731870 + 0.413788i
\(656\) 0 0
\(657\) 1163.30i 1.77062i
\(658\) 0 0
\(659\) 992.788 1.50651 0.753253 0.657731i \(-0.228483\pi\)
0.753253 + 0.657731i \(0.228483\pi\)
\(660\) 0 0
\(661\) 719.647i 1.08872i −0.838850 0.544362i \(-0.816772\pi\)
0.838850 0.544362i \(-0.183228\pi\)
\(662\) 0 0
\(663\) 44.5223 0.0671528
\(664\) 0 0
\(665\) −880.879 498.036i −1.32463 0.748926i
\(666\) 0 0
\(667\) 405.817i 0.608421i
\(668\) 0 0
\(669\) 851.580i 1.27291i
\(670\) 0 0
\(671\) 6.97110i 0.0103891i
\(672\) 0 0
\(673\) 189.591i 0.281711i 0.990030 + 0.140855i \(0.0449852\pi\)
−0.990030 + 0.140855i \(0.955015\pi\)
\(674\) 0 0
\(675\) 507.331 305.241i 0.751602 0.452209i
\(676\) 0 0
\(677\) 327.192 0.483297 0.241649 0.970364i \(-0.422312\pi\)
0.241649 + 0.970364i \(0.422312\pi\)
\(678\) 0 0
\(679\) 761.070i 1.12087i
\(680\) 0 0
\(681\) −973.817 −1.42998
\(682\) 0 0
\(683\) 673.539i 0.986148i −0.869987 0.493074i \(-0.835873\pi\)
0.869987 0.493074i \(-0.164127\pi\)
\(684\) 0 0
\(685\) −554.668 + 981.044i −0.809734 + 1.43218i
\(686\) 0 0
\(687\) 388.329 0.565254
\(688\) 0 0
\(689\) 163.988 0.238008
\(690\) 0 0
\(691\) −237.036 −0.343033 −0.171516 0.985181i \(-0.554867\pi\)
−0.171516 + 0.985181i \(0.554867\pi\)
\(692\) 0 0
\(693\) 50.5456 0.0729374
\(694\) 0 0
\(695\) 424.005 + 239.726i 0.610079 + 0.344930i
\(696\) 0 0
\(697\) 34.0491i 0.0488510i
\(698\) 0 0
\(699\) −269.613 −0.385712
\(700\) 0 0
\(701\) 476.306i 0.679466i 0.940522 + 0.339733i \(0.110337\pi\)
−0.940522 + 0.339733i \(0.889663\pi\)
\(702\) 0 0
\(703\) 1364.03 1.94030
\(704\) 0 0
\(705\) −103.285 + 182.681i −0.146503 + 0.259121i
\(706\) 0 0
\(707\) 809.246i 1.14462i
\(708\) 0 0
\(709\) 964.778i 1.36076i −0.732860 0.680380i \(-0.761815\pi\)
0.732860 0.680380i \(-0.238185\pi\)
\(710\) 0 0
\(711\) 1404.99i 1.97607i
\(712\) 0 0
\(713\) 214.216i 0.300443i
\(714\) 0 0
\(715\) −8.44582 4.77514i −0.0118123 0.00667852i
\(716\) 0 0
\(717\) 1725.53 2.40660
\(718\) 0 0
\(719\) 899.974i 1.25170i 0.779943 + 0.625851i \(0.215248\pi\)
−0.779943 + 0.625851i \(0.784752\pi\)
\(720\) 0 0
\(721\) 782.053 1.08468
\(722\) 0 0
\(723\) 946.006i 1.30845i
\(724\) 0 0
\(725\) −893.220 + 537.415i −1.23203 + 0.741262i
\(726\) 0 0
\(727\) −908.888 −1.25019 −0.625095 0.780549i \(-0.714940\pi\)
−0.625095 + 0.780549i \(0.714940\pi\)
\(728\) 0 0
\(729\) 1189.09 1.63113
\(730\) 0 0
\(731\) 21.0619 0.0288125
\(732\) 0 0
\(733\) 433.283 0.591109 0.295554 0.955326i \(-0.404496\pi\)
0.295554 + 0.955326i \(0.404496\pi\)
\(734\) 0 0
\(735\) 117.218 207.324i 0.159480 0.282073i
\(736\) 0 0
\(737\) 35.8065i 0.0485842i
\(738\) 0 0
\(739\) 886.138 1.19910 0.599552 0.800336i \(-0.295345\pi\)
0.599552 + 0.800336i \(0.295345\pi\)
\(740\) 0 0
\(741\) 518.955i 0.700344i
\(742\) 0 0
\(743\) −895.305 −1.20499 −0.602493 0.798124i \(-0.705826\pi\)
−0.602493 + 0.798124i \(0.705826\pi\)
\(744\) 0 0
\(745\) 470.997 833.055i 0.632211 1.11820i
\(746\) 0 0
\(747\) 3.72226i 0.00498295i
\(748\) 0 0
\(749\) 253.329i 0.338223i
\(750\) 0 0
\(751\) 1297.13i 1.72720i −0.504176 0.863601i \(-0.668204\pi\)
0.504176 0.863601i \(-0.331796\pi\)
\(752\) 0 0
\(753\) 854.351i 1.13460i
\(754\) 0 0
\(755\) −168.210 + 297.515i −0.222795 + 0.394060i
\(756\) 0 0
\(757\) −421.694 −0.557060 −0.278530 0.960428i \(-0.589847\pi\)
−0.278530 + 0.960428i \(0.589847\pi\)
\(758\) 0 0
\(759\) 22.0104i 0.0289992i
\(760\) 0 0
\(761\) 1415.76 1.86039 0.930196 0.367063i \(-0.119637\pi\)
0.930196 + 0.367063i \(0.119637\pi\)
\(762\) 0 0
\(763\) 1393.88i 1.82684i
\(764\) 0 0
\(765\) 77.6038 137.258i 0.101443 0.179423i
\(766\) 0 0
\(767\) 317.261 0.413639
\(768\) 0 0
\(769\) −414.210 −0.538635 −0.269318 0.963051i \(-0.586798\pi\)
−0.269318 + 0.963051i \(0.586798\pi\)
\(770\) 0 0
\(771\) −2170.76 −2.81551
\(772\) 0 0
\(773\) −727.056 −0.940564 −0.470282 0.882516i \(-0.655848\pi\)
−0.470282 + 0.882516i \(0.655848\pi\)
\(774\) 0 0
\(775\) −471.498 + 283.682i −0.608385 + 0.366042i
\(776\) 0 0
\(777\) 1902.94i 2.44909i
\(778\) 0 0
\(779\) −396.879 −0.509473
\(780\) 0 0
\(781\) 38.2763i 0.0490094i
\(782\) 0 0
\(783\) 987.519 1.26120
\(784\) 0 0
\(785\) 675.659 + 382.008i 0.860713 + 0.486634i
\(786\) 0 0
\(787\) 1030.11i 1.30890i 0.756104 + 0.654451i \(0.227100\pi\)
−0.756104 + 0.654451i \(0.772900\pi\)
\(788\) 0 0
\(789\) 101.032i 0.128050i
\(790\) 0 0
\(791\) 588.407i 0.743878i
\(792\) 0 0
\(793\) 60.6835i 0.0765239i
\(794\) 0 0
\(795\) 470.322 831.861i 0.591600 1.04637i
\(796\) 0 0
\(797\) −371.202 −0.465750 −0.232875 0.972507i \(-0.574813\pi\)
−0.232875 + 0.972507i \(0.574813\pi\)
\(798\) 0 0
\(799\) 19.8162i 0.0248013i
\(800\) 0 0
\(801\) −1192.99 −1.48938
\(802\) 0 0
\(803\) 39.3879i 0.0490509i
\(804\) 0 0
\(805\) −325.225 183.877i −0.404006 0.228419i
\(806\) 0 0
\(807\) −442.668 −0.548536
\(808\) 0 0
\(809\) 77.7771 0.0961398 0.0480699 0.998844i \(-0.484693\pi\)
0.0480699 + 0.998844i \(0.484693\pi\)
\(810\) 0 0
\(811\) 1407.90 1.73600 0.868000 0.496564i \(-0.165405\pi\)
0.868000 + 0.496564i \(0.165405\pi\)
\(812\) 0 0
\(813\) −904.350 −1.11236
\(814\) 0 0
\(815\) 222.648 393.799i 0.273188 0.483189i
\(816\) 0 0
\(817\) 245.500i 0.300489i
\(818\) 0 0
\(819\) 440.000 0.537241
\(820\) 0 0
\(821\) 820.275i 0.999116i −0.866280 0.499558i \(-0.833496\pi\)
0.866280 0.499558i \(-0.166504\pi\)
\(822\) 0 0
\(823\) −1385.41 −1.68336 −0.841681 0.539976i \(-0.818433\pi\)
−0.841681 + 0.539976i \(0.818433\pi\)
\(824\) 0 0
\(825\) −48.4458 + 29.1480i −0.0587222 + 0.0353309i
\(826\) 0 0
\(827\) 258.898i 0.313057i 0.987673 + 0.156529i \(0.0500303\pi\)
−0.987673 + 0.156529i \(0.949970\pi\)
\(828\) 0 0
\(829\) 1299.31i 1.56732i 0.621190 + 0.783660i \(0.286649\pi\)
−0.621190 + 0.783660i \(0.713351\pi\)
\(830\) 0 0
\(831\) 335.901i 0.404213i
\(832\) 0 0
\(833\) 22.4894i 0.0269980i
\(834\) 0 0
\(835\) −438.636 247.998i −0.525313 0.297004i
\(836\) 0 0
\(837\) 521.276 0.622791
\(838\) 0 0
\(839\) 804.961i 0.959429i 0.877425 + 0.479715i \(0.159260\pi\)
−0.877425 + 0.479715i \(0.840740\pi\)
\(840\) 0 0
\(841\) −897.650 −1.06736
\(842\) 0 0
\(843\) 2425.04i 2.87668i
\(844\) 0 0
\(845\) 662.052 + 374.314i 0.783493 + 0.442975i
\(846\) 0 0
\(847\) 927.268 1.09477
\(848\) 0 0
\(849\) −2401.48 −2.82859
\(850\) 0 0
\(851\) 503.607 0.591782
\(852\) 0 0
\(853\) −470.811 −0.551948 −0.275974 0.961165i \(-0.589000\pi\)
−0.275974 + 0.961165i \(0.589000\pi\)
\(854\) 0 0
\(855\) −1599.89 904.556i −1.87122 1.05796i
\(856\) 0 0
\(857\) 266.105i 0.310508i 0.987875 + 0.155254i \(0.0496196\pi\)
−0.987875 + 0.155254i \(0.950380\pi\)
\(858\) 0 0
\(859\) −1442.02 −1.67872 −0.839360 0.543576i \(-0.817070\pi\)
−0.839360 + 0.543576i \(0.817070\pi\)
\(860\) 0 0
\(861\) 553.681i 0.643067i
\(862\) 0 0
\(863\) −364.495 −0.422358 −0.211179 0.977447i \(-0.567730\pi\)
−0.211179 + 0.977447i \(0.567730\pi\)
\(864\) 0 0
\(865\) −237.889 134.499i −0.275016 0.155490i
\(866\) 0 0
\(867\) 1359.82i 1.56842i
\(868\) 0 0
\(869\) 47.5711i 0.0547424i
\(870\) 0 0
\(871\) 311.696i 0.357860i
\(872\) 0 0
\(873\) 1382.29i 1.58338i
\(874\) 0 0
\(875\) 25.9675 + 959.338i 0.0296771 + 1.09639i
\(876\) 0 0
\(877\) −77.4289 −0.0882883 −0.0441442 0.999025i \(-0.514056\pi\)
−0.0441442 + 0.999025i \(0.514056\pi\)
\(878\) 0 0
\(879\) 1552.09i 1.76574i
\(880\) 0 0
\(881\) 724.932 0.822851 0.411426 0.911443i \(-0.365031\pi\)
0.411426 + 0.911443i \(0.365031\pi\)
\(882\) 0 0
\(883\) 493.342i 0.558711i 0.960188 + 0.279356i \(0.0901208\pi\)
−0.960188 + 0.279356i \(0.909879\pi\)
\(884\) 0 0
\(885\) 909.915 1609.37i 1.02815 1.81850i
\(886\) 0 0
\(887\) 1514.47 1.70741 0.853705 0.520758i \(-0.174351\pi\)
0.853705 + 0.520758i \(0.174351\pi\)
\(888\) 0 0
\(889\) −1097.59 −1.23464
\(890\) 0 0
\(891\) −5.69194 −0.00638826
\(892\) 0 0
\(893\) 230.979 0.258655
\(894\) 0 0
\(895\) −464.876 262.834i −0.519414 0.293669i
\(896\) 0 0
\(897\) 191.601i 0.213602i
\(898\) 0 0
\(899\) −917.771 −1.02088
\(900\) 0 0
\(901\) 90.2359i 0.100151i
\(902\) 0 0
\(903\) 342.493 0.379284
\(904\) 0 0
\(905\) 356.276 630.147i 0.393675 0.696295i
\(906\) 0 0
\(907\) 851.570i 0.938887i 0.882963 + 0.469443i \(0.155545\pi\)
−0.882963 + 0.469443i \(0.844455\pi\)
\(908\) 0 0
\(909\) 1469.79i 1.61693i
\(910\) 0 0
\(911\) 517.728i 0.568308i −0.958779 0.284154i \(-0.908287\pi\)
0.958779 0.284154i \(-0.0917127\pi\)
\(912\) 0 0
\(913\) 0.126031i 0.000138041i
\(914\) 0 0
\(915\) 307.830 + 174.042i 0.336426 + 0.190210i
\(916\) 0 0
\(917\) 845.585 0.922121
\(918\) 0 0
\(919\) 657.730i 0.715701i 0.933779 + 0.357851i \(0.116490\pi\)
−0.933779 + 0.357851i \(0.883510\pi\)
\(920\) 0 0
\(921\) −47.1672 −0.0512130
\(922\) 0 0
\(923\) 333.195i 0.360992i
\(924\) 0 0
\(925\) −666.917 1108.46i −0.720991 1.19833i
\(926\) 0 0
\(927\) 1420.40 1.53226
\(928\) 0 0
\(929\) 1206.28 1.29847 0.649237 0.760586i \(-0.275088\pi\)
0.649237 + 0.760586i \(0.275088\pi\)
\(930\) 0 0
\(931\) −262.138 −0.281566
\(932\) 0 0
\(933\) −960.003 −1.02894
\(934\) 0 0
\(935\) −2.62757 + 4.64740i −0.00281024 + 0.00497048i
\(936\) 0 0
\(937\) 216.730i 0.231302i 0.993290 + 0.115651i \(0.0368954\pi\)
−0.993290 + 0.115651i \(0.963105\pi\)
\(938\) 0 0
\(939\) −1252.98 −1.33438
\(940\) 0 0
\(941\) 749.322i 0.796304i 0.917320 + 0.398152i \(0.130348\pi\)
−0.917320 + 0.398152i \(0.869652\pi\)
\(942\) 0 0
\(943\) −146.530 −0.155387
\(944\) 0 0
\(945\) 447.449 791.406i 0.473491 0.837466i
\(946\) 0 0
\(947\) 114.160i 0.120549i −0.998182 0.0602743i \(-0.980802\pi\)
0.998182 0.0602743i \(-0.0191976\pi\)
\(948\) 0 0
\(949\) 342.872i 0.361298i
\(950\) 0 0
\(951\) 1544.02i 1.62358i
\(952\) 0 0
\(953\) 820.680i 0.861154i 0.902554 + 0.430577i \(0.141690\pi\)
−0.902554 + 0.430577i \(0.858310\pi\)
\(954\) 0 0
\(955\) 518.768 917.548i 0.543212 0.960783i
\(956\) 0 0
\(957\) −94.2997 −0.0985368
\(958\) 0 0
\(959\) 1730.50i 1.80448i
\(960\) 0 0
\(961\) 476.542 0.495881
\(962\) 0 0
\(963\) 460.109i 0.477787i
\(964\) 0 0
\(965\) −266.203 + 470.835i −0.275858 + 0.487912i
\(966\) 0 0
\(967\) −1108.56 −1.14639 −0.573194 0.819420i \(-0.694296\pi\)
−0.573194 + 0.819420i \(0.694296\pi\)
\(968\) 0 0
\(969\) −285.560 −0.294696
\(970\) 0 0
\(971\) 1372.41 1.41340 0.706698 0.707516i \(-0.250184\pi\)
0.706698 + 0.707516i \(0.250184\pi\)
\(972\) 0 0
\(973\) 747.916 0.768670
\(974\) 0 0
\(975\) −421.721 + 253.733i −0.432534 + 0.260239i
\(976\) 0 0
\(977\) 927.224i 0.949052i 0.880241 + 0.474526i \(0.157381\pi\)
−0.880241 + 0.474526i \(0.842619\pi\)
\(978\) 0 0
\(979\) 40.3932 0.0412597
\(980\) 0 0
\(981\) 2531.63i 2.58066i
\(982\) 0 0
\(983\) 354.106 0.360230 0.180115 0.983646i \(-0.442353\pi\)
0.180115 + 0.983646i \(0.442353\pi\)
\(984\) 0 0
\(985\) −1341.88 758.677i −1.36231 0.770230i
\(986\) 0 0
\(987\) 322.236i 0.326480i
\(988\) 0 0
\(989\) 90.6396i 0.0916478i
\(990\) 0 0
\(991\) 537.545i 0.542427i 0.962519 + 0.271213i \(0.0874249\pi\)
−0.962519 + 0.271213i \(0.912575\pi\)
\(992\) 0 0
\(993\) 292.614i 0.294677i
\(994\) 0 0
\(995\) 609.941 1078.81i 0.613006 1.08423i
\(996\) 0 0
\(997\) −441.759 −0.443088 −0.221544 0.975150i \(-0.571110\pi\)
−0.221544 + 0.975150i \(0.571110\pi\)
\(998\) 0 0
\(999\) 1225.48i 1.22671i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.3.e.c.79.7 8
3.2 odd 2 1440.3.p.g.559.8 8
4.3 odd 2 40.3.e.c.19.2 yes 8
5.2 odd 4 800.3.g.h.751.7 8
5.3 odd 4 800.3.g.h.751.2 8
5.4 even 2 inner 160.3.e.c.79.2 8
8.3 odd 2 inner 160.3.e.c.79.8 8
8.5 even 2 40.3.e.c.19.8 yes 8
12.11 even 2 360.3.p.g.19.7 8
15.14 odd 2 1440.3.p.g.559.2 8
16.3 odd 4 1280.3.h.m.1279.14 16
16.5 even 4 1280.3.h.m.1279.15 16
16.11 odd 4 1280.3.h.m.1279.3 16
16.13 even 4 1280.3.h.m.1279.2 16
20.3 even 4 200.3.g.h.51.6 8
20.7 even 4 200.3.g.h.51.3 8
20.19 odd 2 40.3.e.c.19.7 yes 8
24.5 odd 2 360.3.p.g.19.1 8
24.11 even 2 1440.3.p.g.559.1 8
40.3 even 4 800.3.g.h.751.1 8
40.13 odd 4 200.3.g.h.51.5 8
40.19 odd 2 inner 160.3.e.c.79.1 8
40.27 even 4 800.3.g.h.751.8 8
40.29 even 2 40.3.e.c.19.1 8
40.37 odd 4 200.3.g.h.51.4 8
60.59 even 2 360.3.p.g.19.2 8
80.19 odd 4 1280.3.h.m.1279.1 16
80.29 even 4 1280.3.h.m.1279.13 16
80.59 odd 4 1280.3.h.m.1279.16 16
80.69 even 4 1280.3.h.m.1279.4 16
120.29 odd 2 360.3.p.g.19.8 8
120.59 even 2 1440.3.p.g.559.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.e.c.19.1 8 40.29 even 2
40.3.e.c.19.2 yes 8 4.3 odd 2
40.3.e.c.19.7 yes 8 20.19 odd 2
40.3.e.c.19.8 yes 8 8.5 even 2
160.3.e.c.79.1 8 40.19 odd 2 inner
160.3.e.c.79.2 8 5.4 even 2 inner
160.3.e.c.79.7 8 1.1 even 1 trivial
160.3.e.c.79.8 8 8.3 odd 2 inner
200.3.g.h.51.3 8 20.7 even 4
200.3.g.h.51.4 8 40.37 odd 4
200.3.g.h.51.5 8 40.13 odd 4
200.3.g.h.51.6 8 20.3 even 4
360.3.p.g.19.1 8 24.5 odd 2
360.3.p.g.19.2 8 60.59 even 2
360.3.p.g.19.7 8 12.11 even 2
360.3.p.g.19.8 8 120.29 odd 2
800.3.g.h.751.1 8 40.3 even 4
800.3.g.h.751.2 8 5.3 odd 4
800.3.g.h.751.7 8 5.2 odd 4
800.3.g.h.751.8 8 40.27 even 4
1280.3.h.m.1279.1 16 80.19 odd 4
1280.3.h.m.1279.2 16 16.13 even 4
1280.3.h.m.1279.3 16 16.11 odd 4
1280.3.h.m.1279.4 16 80.69 even 4
1280.3.h.m.1279.13 16 80.29 even 4
1280.3.h.m.1279.14 16 16.3 odd 4
1280.3.h.m.1279.15 16 16.5 even 4
1280.3.h.m.1279.16 16 80.59 odd 4
1440.3.p.g.559.1 8 24.11 even 2
1440.3.p.g.559.2 8 15.14 odd 2
1440.3.p.g.559.7 8 120.59 even 2
1440.3.p.g.559.8 8 3.2 odd 2