Properties

Label 360.3.p.g.19.7
Level $360$
Weight $3$
Character 360.19
Analytic conductor $9.809$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,3,Mod(19,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 360.p (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.80928951697\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.53824000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 6x^{6} + 36x^{4} + 96x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.7
Root \(1.34500 - 1.48020i\) of defining polynomial
Character \(\chi\) \(=\) 360.19
Dual form 360.3.p.g.19.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34500 - 1.48020i) q^{2} +(-0.381966 - 3.98172i) q^{4} +(4.35250 + 2.46084i) q^{5} +7.67752 q^{7} +(-6.40747 - 4.79002i) q^{8} +(9.49663 - 3.13274i) q^{10} +0.472136 q^{11} +4.10995 q^{13} +(10.3262 - 11.3642i) q^{14} +(-15.7082 + 3.04176i) q^{16} +2.26154i q^{17} +26.3607 q^{19} +(8.13587 - 18.2704i) q^{20} +(0.635021 - 0.698854i) q^{22} -9.73249 q^{23} +(12.8885 + 21.4216i) q^{25} +(5.52786 - 6.08353i) q^{26} +(-2.93255 - 30.5697i) q^{28} -41.6971i q^{29} -22.0104i q^{31} +(-16.6251 + 27.3424i) q^{32} +(3.34752 + 3.04176i) q^{34} +(33.4164 + 18.8931i) q^{35} -51.7449 q^{37} +(35.4550 - 39.0190i) q^{38} +(-16.1011 - 36.6163i) q^{40} -15.0557 q^{41} -9.31310i q^{43} +(-0.180340 - 1.87991i) q^{44} +(-13.0902 + 14.4060i) q^{46} -8.76226 q^{47} +9.94427 q^{49} +(49.0433 + 9.73442i) q^{50} +(-1.56986 - 16.3647i) q^{52} -39.9002 q^{53} +(2.05497 + 1.16185i) q^{55} +(-49.1935 - 36.7754i) q^{56} +(-61.7200 - 56.0825i) q^{58} +77.1935 q^{59} +14.7650i q^{61} +(-32.5797 - 29.6039i) q^{62} +(18.1115 + 61.3838i) q^{64} +(17.8885 + 10.1139i) q^{65} +75.8395i q^{67} +(9.00482 - 0.863831i) q^{68} +(72.9105 - 24.0517i) q^{70} +81.0705i q^{71} +83.4249i q^{73} +(-69.5967 + 76.5927i) q^{74} +(-10.0689 - 104.961i) q^{76} +3.62483 q^{77} +100.757i q^{79} +(-75.8553 - 25.4161i) q^{80} +(-20.2499 + 22.2854i) q^{82} -0.266939i q^{83} +(-5.56528 + 9.84336i) q^{85} +(-13.7852 - 12.5261i) q^{86} +(-3.02520 - 2.26154i) q^{88} -85.5542 q^{89} +31.5542 q^{91} +(3.71748 + 38.7521i) q^{92} +(-11.7852 + 12.9699i) q^{94} +(114.735 + 64.8694i) q^{95} +99.1297i q^{97} +(13.3750 - 14.7195i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{4} + 20 q^{10} - 32 q^{11} + 20 q^{14} - 72 q^{16} + 32 q^{19} - 20 q^{20} - 40 q^{25} + 80 q^{26} + 152 q^{34} + 160 q^{35} - 80 q^{40} - 192 q^{41} + 88 q^{44} - 60 q^{46} + 8 q^{49} + 200 q^{50}+ \cdots - 300 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34500 1.48020i 0.672499 0.740098i
\(3\) 0 0
\(4\) −0.381966 3.98172i −0.0954915 0.995430i
\(5\) 4.35250 + 2.46084i 0.870500 + 0.492168i
\(6\) 0 0
\(7\) 7.67752 1.09679 0.548394 0.836220i \(-0.315239\pi\)
0.548394 + 0.836220i \(0.315239\pi\)
\(8\) −6.40747 4.79002i −0.800934 0.598752i
\(9\) 0 0
\(10\) 9.49663 3.13274i 0.949663 0.313274i
\(11\) 0.472136 0.0429215 0.0214607 0.999770i \(-0.493168\pi\)
0.0214607 + 0.999770i \(0.493168\pi\)
\(12\) 0 0
\(13\) 4.10995 0.316150 0.158075 0.987427i \(-0.449471\pi\)
0.158075 + 0.987427i \(0.449471\pi\)
\(14\) 10.3262 11.3642i 0.737588 0.811731i
\(15\) 0 0
\(16\) −15.7082 + 3.04176i −0.981763 + 0.190110i
\(17\) 2.26154i 0.133032i 0.997785 + 0.0665159i \(0.0211883\pi\)
−0.997785 + 0.0665159i \(0.978812\pi\)
\(18\) 0 0
\(19\) 26.3607 1.38740 0.693702 0.720262i \(-0.255978\pi\)
0.693702 + 0.720262i \(0.255978\pi\)
\(20\) 8.13587 18.2704i 0.406793 0.913520i
\(21\) 0 0
\(22\) 0.635021 0.698854i 0.0288646 0.0317661i
\(23\) −9.73249 −0.423152 −0.211576 0.977362i \(-0.567860\pi\)
−0.211576 + 0.977362i \(0.567860\pi\)
\(24\) 0 0
\(25\) 12.8885 + 21.4216i 0.515542 + 0.856864i
\(26\) 5.52786 6.08353i 0.212610 0.233982i
\(27\) 0 0
\(28\) −2.93255 30.5697i −0.104734 1.09178i
\(29\) 41.6971i 1.43783i −0.695097 0.718916i \(-0.744639\pi\)
0.695097 0.718916i \(-0.255361\pi\)
\(30\) 0 0
\(31\) 22.0104i 0.710013i −0.934864 0.355007i \(-0.884479\pi\)
0.934864 0.355007i \(-0.115521\pi\)
\(32\) −16.6251 + 27.3424i −0.519534 + 0.854450i
\(33\) 0 0
\(34\) 3.34752 + 3.04176i 0.0984566 + 0.0894637i
\(35\) 33.4164 + 18.8931i 0.954755 + 0.539804i
\(36\) 0 0
\(37\) −51.7449 −1.39851 −0.699256 0.714872i \(-0.746485\pi\)
−0.699256 + 0.714872i \(0.746485\pi\)
\(38\) 35.4550 39.0190i 0.933027 1.02682i
\(39\) 0 0
\(40\) −16.1011 36.6163i −0.402527 0.915408i
\(41\) −15.0557 −0.367213 −0.183606 0.983000i \(-0.558777\pi\)
−0.183606 + 0.983000i \(0.558777\pi\)
\(42\) 0 0
\(43\) 9.31310i 0.216584i −0.994119 0.108292i \(-0.965462\pi\)
0.994119 0.108292i \(-0.0345381\pi\)
\(44\) −0.180340 1.87991i −0.00409863 0.0427253i
\(45\) 0 0
\(46\) −13.0902 + 14.4060i −0.284569 + 0.313174i
\(47\) −8.76226 −0.186431 −0.0932156 0.995646i \(-0.529715\pi\)
−0.0932156 + 0.995646i \(0.529715\pi\)
\(48\) 0 0
\(49\) 9.94427 0.202944
\(50\) 49.0433 + 9.73442i 0.980865 + 0.194688i
\(51\) 0 0
\(52\) −1.56986 16.3647i −0.0301896 0.314705i
\(53\) −39.9002 −0.752834 −0.376417 0.926450i \(-0.622844\pi\)
−0.376417 + 0.926450i \(0.622844\pi\)
\(54\) 0 0
\(55\) 2.05497 + 1.16185i 0.0373631 + 0.0211246i
\(56\) −49.1935 36.7754i −0.878455 0.656704i
\(57\) 0 0
\(58\) −61.7200 56.0825i −1.06414 0.966940i
\(59\) 77.1935 1.30836 0.654182 0.756337i \(-0.273013\pi\)
0.654182 + 0.756337i \(0.273013\pi\)
\(60\) 0 0
\(61\) 14.7650i 0.242050i 0.992649 + 0.121025i \(0.0386181\pi\)
−0.992649 + 0.121025i \(0.961382\pi\)
\(62\) −32.5797 29.6039i −0.525480 0.477483i
\(63\) 0 0
\(64\) 18.1115 + 61.3838i 0.282992 + 0.959122i
\(65\) 17.8885 + 10.1139i 0.275208 + 0.155599i
\(66\) 0 0
\(67\) 75.8395i 1.13193i 0.824428 + 0.565966i \(0.191497\pi\)
−0.824428 + 0.565966i \(0.808503\pi\)
\(68\) 9.00482 0.863831i 0.132424 0.0127034i
\(69\) 0 0
\(70\) 72.9105 24.0517i 1.04158 0.343595i
\(71\) 81.0705i 1.14184i 0.821006 + 0.570919i \(0.193413\pi\)
−0.821006 + 0.570919i \(0.806587\pi\)
\(72\) 0 0
\(73\) 83.4249i 1.14281i 0.820669 + 0.571403i \(0.193601\pi\)
−0.820669 + 0.571403i \(0.806399\pi\)
\(74\) −69.5967 + 76.5927i −0.940497 + 1.03504i
\(75\) 0 0
\(76\) −10.0689 104.961i −0.132485 1.38106i
\(77\) 3.62483 0.0470757
\(78\) 0 0
\(79\) 100.757i 1.27541i 0.770281 + 0.637704i \(0.220116\pi\)
−0.770281 + 0.637704i \(0.779884\pi\)
\(80\) −75.8553 25.4161i −0.948191 0.317701i
\(81\) 0 0
\(82\) −20.2499 + 22.2854i −0.246950 + 0.271774i
\(83\) 0.266939i 0.00321613i −0.999999 0.00160806i \(-0.999488\pi\)
0.999999 0.00160806i \(-0.000511863\pi\)
\(84\) 0 0
\(85\) −5.56528 + 9.84336i −0.0654739 + 0.115804i
\(86\) −13.7852 12.5261i −0.160293 0.145652i
\(87\) 0 0
\(88\) −3.02520 2.26154i −0.0343773 0.0256993i
\(89\) −85.5542 −0.961283 −0.480641 0.876917i \(-0.659596\pi\)
−0.480641 + 0.876917i \(0.659596\pi\)
\(90\) 0 0
\(91\) 31.5542 0.346749
\(92\) 3.71748 + 38.7521i 0.0404074 + 0.421218i
\(93\) 0 0
\(94\) −11.7852 + 12.9699i −0.125375 + 0.137977i
\(95\) 114.735 + 64.8694i 1.20774 + 0.682836i
\(96\) 0 0
\(97\) 99.1297i 1.02196i 0.859594 + 0.510978i \(0.170716\pi\)
−0.859594 + 0.510978i \(0.829284\pi\)
\(98\) 13.3750 14.7195i 0.136480 0.150199i
\(99\) 0 0
\(100\) 80.3719 59.5009i 0.803719 0.595009i
\(101\) 105.405i 1.04361i −0.853065 0.521805i \(-0.825259\pi\)
0.853065 0.521805i \(-0.174741\pi\)
\(102\) 0 0
\(103\) 101.863 0.988958 0.494479 0.869190i \(-0.335359\pi\)
0.494479 + 0.869190i \(0.335359\pi\)
\(104\) −26.3344 19.6867i −0.253215 0.189295i
\(105\) 0 0
\(106\) −53.6656 + 59.0601i −0.506280 + 0.557171i
\(107\) 32.9962i 0.308376i −0.988042 0.154188i \(-0.950724\pi\)
0.988042 0.154188i \(-0.0492762\pi\)
\(108\) 0 0
\(109\) 181.554i 1.66563i −0.553552 0.832814i \(-0.686728\pi\)
0.553552 0.832814i \(-0.313272\pi\)
\(110\) 4.48370 1.47908i 0.0407609 0.0134462i
\(111\) 0 0
\(112\) −120.600 + 23.3532i −1.07679 + 0.208511i
\(113\) 76.6403i 0.678233i 0.940744 + 0.339116i \(0.110128\pi\)
−0.940744 + 0.339116i \(0.889872\pi\)
\(114\) 0 0
\(115\) −42.3607 23.9501i −0.368354 0.208262i
\(116\) −166.026 + 15.9269i −1.43126 + 0.137301i
\(117\) 0 0
\(118\) 103.825 114.262i 0.879873 0.968318i
\(119\) 17.3630i 0.145908i
\(120\) 0 0
\(121\) −120.777 −0.998158
\(122\) 21.8552 + 19.8589i 0.179141 + 0.162778i
\(123\) 0 0
\(124\) −87.6393 + 8.40723i −0.706769 + 0.0678002i
\(125\) 3.38228 + 124.954i 0.0270582 + 0.999634i
\(126\) 0 0
\(127\) −142.962 −1.12569 −0.562843 0.826564i \(-0.690292\pi\)
−0.562843 + 0.826564i \(0.690292\pi\)
\(128\) 115.220 + 55.7526i 0.900156 + 0.435567i
\(129\) 0 0
\(130\) 39.0306 12.8754i 0.300236 0.0990414i
\(131\) −110.138 −0.840746 −0.420373 0.907351i \(-0.638101\pi\)
−0.420373 + 0.907351i \(0.638101\pi\)
\(132\) 0 0
\(133\) 202.385 1.52169
\(134\) 112.257 + 102.004i 0.837741 + 0.761223i
\(135\) 0 0
\(136\) 10.8328 14.4908i 0.0796531 0.106550i
\(137\) 225.398i 1.64524i 0.568592 + 0.822620i \(0.307488\pi\)
−0.568592 + 0.822620i \(0.692512\pi\)
\(138\) 0 0
\(139\) 97.4164 0.700837 0.350419 0.936593i \(-0.386039\pi\)
0.350419 + 0.936593i \(0.386039\pi\)
\(140\) 62.4633 140.271i 0.446166 1.00194i
\(141\) 0 0
\(142\) 120.000 + 109.040i 0.845073 + 0.767885i
\(143\) 1.94045 0.0135696
\(144\) 0 0
\(145\) 102.610 181.487i 0.707655 1.25163i
\(146\) 123.485 + 112.206i 0.845790 + 0.768536i
\(147\) 0 0
\(148\) 19.7648 + 206.034i 0.133546 + 1.39212i
\(149\) 191.397i 1.28454i −0.766477 0.642271i \(-0.777992\pi\)
0.766477 0.642271i \(-0.222008\pi\)
\(150\) 0 0
\(151\) 68.3549i 0.452682i 0.974048 + 0.226341i \(0.0726763\pi\)
−0.974048 + 0.226341i \(0.927324\pi\)
\(152\) −168.905 126.268i −1.11122 0.830711i
\(153\) 0 0
\(154\) 4.87539 5.36547i 0.0316584 0.0348407i
\(155\) 54.1641 95.8004i 0.349446 0.618067i
\(156\) 0 0
\(157\) −155.235 −0.988756 −0.494378 0.869247i \(-0.664604\pi\)
−0.494378 + 0.869247i \(0.664604\pi\)
\(158\) 149.141 + 135.518i 0.943928 + 0.857710i
\(159\) 0 0
\(160\) −139.646 + 78.0962i −0.872787 + 0.488101i
\(161\) −74.7214 −0.464108
\(162\) 0 0
\(163\) 90.4765i 0.555070i −0.960715 0.277535i \(-0.910482\pi\)
0.960715 0.277535i \(-0.0895175\pi\)
\(164\) 5.75078 + 59.9477i 0.0350657 + 0.365535i
\(165\) 0 0
\(166\) −0.395122 0.359032i −0.00238025 0.00216284i
\(167\) 100.778 0.603461 0.301730 0.953393i \(-0.402436\pi\)
0.301730 + 0.953393i \(0.402436\pi\)
\(168\) 0 0
\(169\) −152.108 −0.900049
\(170\) 7.08481 + 21.4770i 0.0416754 + 0.126335i
\(171\) 0 0
\(172\) −37.0822 + 3.55729i −0.215594 + 0.0206819i
\(173\) −54.6556 −0.315928 −0.157964 0.987445i \(-0.550493\pi\)
−0.157964 + 0.987445i \(0.550493\pi\)
\(174\) 0 0
\(175\) 98.9520 + 164.465i 0.565440 + 0.939799i
\(176\) −7.41641 + 1.43613i −0.0421387 + 0.00815981i
\(177\) 0 0
\(178\) −115.070 + 126.637i −0.646461 + 0.711444i
\(179\) 106.807 0.596684 0.298342 0.954459i \(-0.403566\pi\)
0.298342 + 0.954459i \(0.403566\pi\)
\(180\) 0 0
\(181\) 144.778i 0.799879i 0.916542 + 0.399939i \(0.130969\pi\)
−0.916542 + 0.399939i \(0.869031\pi\)
\(182\) 42.4403 46.7064i 0.233188 0.256629i
\(183\) 0 0
\(184\) 62.3607 + 46.6188i 0.338917 + 0.253363i
\(185\) −225.220 127.336i −1.21740 0.688302i
\(186\) 0 0
\(187\) 1.06775i 0.00570992i
\(188\) 3.34689 + 34.8889i 0.0178026 + 0.185579i
\(189\) 0 0
\(190\) 250.338 82.5811i 1.31757 0.434638i
\(191\) 210.809i 1.10371i 0.833939 + 0.551857i \(0.186081\pi\)
−0.833939 + 0.551857i \(0.813919\pi\)
\(192\) 0 0
\(193\) 108.176i 0.560496i −0.959928 0.280248i \(-0.909583\pi\)
0.959928 0.280248i \(-0.0904168\pi\)
\(194\) 146.731 + 133.329i 0.756347 + 0.687263i
\(195\) 0 0
\(196\) −3.79837 39.5953i −0.0193795 0.202017i
\(197\) −308.300 −1.56497 −0.782487 0.622667i \(-0.786049\pi\)
−0.782487 + 0.622667i \(0.786049\pi\)
\(198\) 0 0
\(199\) 247.859i 1.24552i −0.782412 0.622761i \(-0.786011\pi\)
0.782412 0.622761i \(-0.213989\pi\)
\(200\) 20.0269 198.995i 0.100134 0.994974i
\(201\) 0 0
\(202\) −156.020 141.769i −0.772375 0.701826i
\(203\) 320.130i 1.57700i
\(204\) 0 0
\(205\) −65.5301 37.0497i −0.319659 0.180730i
\(206\) 137.005 150.777i 0.665073 0.731926i
\(207\) 0 0
\(208\) −64.5599 + 12.5015i −0.310384 + 0.0601033i
\(209\) 12.4458 0.0595494
\(210\) 0 0
\(211\) 230.584 1.09281 0.546407 0.837520i \(-0.315995\pi\)
0.546407 + 0.837520i \(0.315995\pi\)
\(212\) 15.2405 + 158.871i 0.0718892 + 0.749393i
\(213\) 0 0
\(214\) −48.8409 44.3799i −0.228229 0.207383i
\(215\) 22.9180 40.5353i 0.106595 0.188536i
\(216\) 0 0
\(217\) 168.985i 0.778734i
\(218\) −268.735 244.189i −1.23273 1.12013i
\(219\) 0 0
\(220\) 3.84123 8.62611i 0.0174602 0.0392096i
\(221\) 9.29480i 0.0420579i
\(222\) 0 0
\(223\) −177.782 −0.797229 −0.398615 0.917118i \(-0.630509\pi\)
−0.398615 + 0.917118i \(0.630509\pi\)
\(224\) −127.639 + 209.922i −0.569818 + 0.937151i
\(225\) 0 0
\(226\) 113.443 + 103.081i 0.501959 + 0.456110i
\(227\) 203.301i 0.895601i 0.894134 + 0.447800i \(0.147792\pi\)
−0.894134 + 0.447800i \(0.852208\pi\)
\(228\) 0 0
\(229\) 81.0705i 0.354020i −0.984209 0.177010i \(-0.943358\pi\)
0.984209 0.177010i \(-0.0566425\pi\)
\(230\) −92.4258 + 30.4893i −0.401851 + 0.132562i
\(231\) 0 0
\(232\) −199.730 + 267.173i −0.860905 + 1.15161i
\(233\) 56.2864i 0.241573i −0.992679 0.120786i \(-0.961458\pi\)
0.992679 0.120786i \(-0.0385416\pi\)
\(234\) 0 0
\(235\) −38.1378 21.5625i −0.162288 0.0917554i
\(236\) −29.4853 307.363i −0.124938 1.30239i
\(237\) 0 0
\(238\) 25.7007 + 23.3532i 0.107986 + 0.0981227i
\(239\) 360.235i 1.50726i −0.657300 0.753629i \(-0.728301\pi\)
0.657300 0.753629i \(-0.271699\pi\)
\(240\) 0 0
\(241\) −197.495 −0.819483 −0.409741 0.912202i \(-0.634381\pi\)
−0.409741 + 0.912202i \(0.634381\pi\)
\(242\) −162.445 + 178.774i −0.671260 + 0.738735i
\(243\) 0 0
\(244\) 58.7902 5.63974i 0.240944 0.0231137i
\(245\) 43.2825 + 24.4713i 0.176663 + 0.0998827i
\(246\) 0 0
\(247\) 108.341 0.438627
\(248\) −105.430 + 141.031i −0.425122 + 0.568674i
\(249\) 0 0
\(250\) 189.506 + 163.057i 0.758024 + 0.652227i
\(251\) 178.361 0.710600 0.355300 0.934752i \(-0.384379\pi\)
0.355300 + 0.934752i \(0.384379\pi\)
\(252\) 0 0
\(253\) −4.59506 −0.0181623
\(254\) −192.284 + 211.612i −0.757022 + 0.833119i
\(255\) 0 0
\(256\) 237.495 95.5613i 0.927716 0.373286i
\(257\) 453.183i 1.76336i −0.471849 0.881679i \(-0.656413\pi\)
0.471849 0.881679i \(-0.343587\pi\)
\(258\) 0 0
\(259\) −397.272 −1.53387
\(260\) 33.4380 75.0904i 0.128608 0.288809i
\(261\) 0 0
\(262\) −148.135 + 163.026i −0.565401 + 0.622235i
\(263\) 21.0921 0.0801981 0.0400990 0.999196i \(-0.487233\pi\)
0.0400990 + 0.999196i \(0.487233\pi\)
\(264\) 0 0
\(265\) −173.666 98.1879i −0.655342 0.370520i
\(266\) 272.207 299.569i 1.02333 1.12620i
\(267\) 0 0
\(268\) 301.972 28.9681i 1.12676 0.108090i
\(269\) 92.4148i 0.343549i −0.985136 0.171775i \(-0.945050\pi\)
0.985136 0.171775i \(-0.0549501\pi\)
\(270\) 0 0
\(271\) 188.799i 0.696675i −0.937369 0.348337i \(-0.886746\pi\)
0.937369 0.348337i \(-0.113254\pi\)
\(272\) −6.87907 35.5247i −0.0252907 0.130606i
\(273\) 0 0
\(274\) 333.633 + 303.159i 1.21764 + 1.10642i
\(275\) 6.08514 + 10.1139i 0.0221278 + 0.0367779i
\(276\) 0 0
\(277\) −70.1251 −0.253159 −0.126580 0.991956i \(-0.540400\pi\)
−0.126580 + 0.991956i \(0.540400\pi\)
\(278\) 131.025 144.195i 0.471312 0.518689i
\(279\) 0 0
\(280\) −123.616 281.122i −0.441487 1.00401i
\(281\) 506.269 1.80167 0.900835 0.434161i \(-0.142955\pi\)
0.900835 + 0.434161i \(0.142955\pi\)
\(282\) 0 0
\(283\) 501.350i 1.77156i −0.464110 0.885778i \(-0.653626\pi\)
0.464110 0.885778i \(-0.346374\pi\)
\(284\) 322.800 30.9662i 1.13662 0.109036i
\(285\) 0 0
\(286\) 2.60990 2.87225i 0.00912554 0.0100428i
\(287\) −115.591 −0.402755
\(288\) 0 0
\(289\) 283.885 0.982303
\(290\) −130.626 395.982i −0.450435 1.36546i
\(291\) 0 0
\(292\) 332.175 31.8655i 1.13758 0.109128i
\(293\) 324.026 1.10589 0.552945 0.833218i \(-0.313504\pi\)
0.552945 + 0.833218i \(0.313504\pi\)
\(294\) 0 0
\(295\) 335.985 + 189.961i 1.13893 + 0.643935i
\(296\) 331.554 + 247.859i 1.12012 + 0.837362i
\(297\) 0 0
\(298\) −283.305 257.428i −0.950688 0.863853i
\(299\) −40.0000 −0.133779
\(300\) 0 0
\(301\) 71.5015i 0.237546i
\(302\) 101.179 + 91.9372i 0.335029 + 0.304428i
\(303\) 0 0
\(304\) −414.079 + 80.1830i −1.36210 + 0.263760i
\(305\) −36.3344 + 64.2648i −0.119129 + 0.210704i
\(306\) 0 0
\(307\) 9.84697i 0.0320748i −0.999871 0.0160374i \(-0.994895\pi\)
0.999871 0.0160374i \(-0.00510509\pi\)
\(308\) −1.38456 14.4331i −0.00449533 0.0468606i
\(309\) 0 0
\(310\) −68.9529 209.025i −0.222429 0.674273i
\(311\) 200.417i 0.644429i 0.946667 + 0.322214i \(0.104427\pi\)
−0.946667 + 0.322214i \(0.895573\pi\)
\(312\) 0 0
\(313\) 261.582i 0.835727i 0.908510 + 0.417863i \(0.137221\pi\)
−0.908510 + 0.417863i \(0.862779\pi\)
\(314\) −208.790 + 229.778i −0.664937 + 0.731777i
\(315\) 0 0
\(316\) 401.187 38.4858i 1.26958 0.121791i
\(317\) 322.341 1.01685 0.508425 0.861107i \(-0.330228\pi\)
0.508425 + 0.861107i \(0.330228\pi\)
\(318\) 0 0
\(319\) 19.6867i 0.0617138i
\(320\) −72.2256 + 311.743i −0.225705 + 0.974196i
\(321\) 0 0
\(322\) −100.500 + 110.602i −0.312112 + 0.343485i
\(323\) 59.6157i 0.184569i
\(324\) 0 0
\(325\) 52.9712 + 88.0416i 0.162988 + 0.270897i
\(326\) −133.923 121.691i −0.410807 0.373284i
\(327\) 0 0
\(328\) 96.4692 + 72.1172i 0.294113 + 0.219870i
\(329\) −67.2724 −0.204475
\(330\) 0 0
\(331\) −61.0883 −0.184557 −0.0922783 0.995733i \(-0.529415\pi\)
−0.0922783 + 0.995733i \(0.529415\pi\)
\(332\) −1.06287 + 0.101961i −0.00320143 + 0.000307113i
\(333\) 0 0
\(334\) 135.546 149.171i 0.405826 0.446620i
\(335\) −186.629 + 330.091i −0.557101 + 0.985348i
\(336\) 0 0
\(337\) 114.960i 0.341129i 0.985347 + 0.170564i \(0.0545591\pi\)
−0.985347 + 0.170564i \(0.945441\pi\)
\(338\) −204.585 + 225.150i −0.605282 + 0.666125i
\(339\) 0 0
\(340\) 41.3192 + 18.3996i 0.121527 + 0.0541164i
\(341\) 10.3919i 0.0304748i
\(342\) 0 0
\(343\) −299.851 −0.874201
\(344\) −44.6099 + 59.6734i −0.129680 + 0.173469i
\(345\) 0 0
\(346\) −73.5116 + 80.9010i −0.212461 + 0.233818i
\(347\) 143.967i 0.414892i −0.978246 0.207446i \(-0.933485\pi\)
0.978246 0.207446i \(-0.0665151\pi\)
\(348\) 0 0
\(349\) 35.9526i 0.103016i −0.998673 0.0515080i \(-0.983597\pi\)
0.998673 0.0515080i \(-0.0164028\pi\)
\(350\) 376.530 + 74.7362i 1.07580 + 0.213532i
\(351\) 0 0
\(352\) −7.84930 + 12.9093i −0.0222991 + 0.0366742i
\(353\) 252.536i 0.715400i 0.933837 + 0.357700i \(0.116439\pi\)
−0.933837 + 0.357700i \(0.883561\pi\)
\(354\) 0 0
\(355\) −199.502 + 352.860i −0.561976 + 0.993971i
\(356\) 32.6788 + 340.653i 0.0917943 + 0.956890i
\(357\) 0 0
\(358\) 143.654 158.095i 0.401269 0.441605i
\(359\) 594.152i 1.65502i −0.561452 0.827509i \(-0.689757\pi\)
0.561452 0.827509i \(-0.310243\pi\)
\(360\) 0 0
\(361\) 333.885 0.924890
\(362\) 214.300 + 194.726i 0.591989 + 0.537917i
\(363\) 0 0
\(364\) −12.0526 125.640i −0.0331116 0.345165i
\(365\) −205.295 + 363.107i −0.562453 + 0.994814i
\(366\) 0 0
\(367\) 88.9062 0.242251 0.121126 0.992637i \(-0.461350\pi\)
0.121126 + 0.992637i \(0.461350\pi\)
\(368\) 152.880 29.6039i 0.415435 0.0804455i
\(369\) 0 0
\(370\) −491.402 + 162.103i −1.32811 + 0.438117i
\(371\) −306.334 −0.825699
\(372\) 0 0
\(373\) 83.6542 0.224274 0.112137 0.993693i \(-0.464230\pi\)
0.112137 + 0.993693i \(0.464230\pi\)
\(374\) 1.58049 + 1.43613i 0.00422590 + 0.00383991i
\(375\) 0 0
\(376\) 56.1440 + 41.9714i 0.149319 + 0.111626i
\(377\) 171.373i 0.454570i
\(378\) 0 0
\(379\) −135.135 −0.356556 −0.178278 0.983980i \(-0.557053\pi\)
−0.178278 + 0.983980i \(0.557053\pi\)
\(380\) 214.467 481.620i 0.564387 1.26742i
\(381\) 0 0
\(382\) 312.039 + 283.538i 0.816857 + 0.742246i
\(383\) −498.526 −1.30164 −0.650818 0.759234i \(-0.725574\pi\)
−0.650818 + 0.759234i \(0.725574\pi\)
\(384\) 0 0
\(385\) 15.7771 + 8.92013i 0.0409794 + 0.0231692i
\(386\) −160.122 145.496i −0.414823 0.376933i
\(387\) 0 0
\(388\) 394.707 37.8642i 1.01729 0.0975880i
\(389\) 308.420i 0.792854i −0.918066 0.396427i \(-0.870250\pi\)
0.918066 0.396427i \(-0.129750\pi\)
\(390\) 0 0
\(391\) 22.0104i 0.0562926i
\(392\) −63.7177 47.6332i −0.162545 0.121513i
\(393\) 0 0
\(394\) −414.663 + 456.345i −1.05244 + 1.15824i
\(395\) −247.947 + 438.546i −0.627715 + 1.11024i
\(396\) 0 0
\(397\) 297.682 0.749828 0.374914 0.927060i \(-0.377672\pi\)
0.374914 + 0.927060i \(0.377672\pi\)
\(398\) −366.880 333.370i −0.921810 0.837612i
\(399\) 0 0
\(400\) −267.615 297.291i −0.669038 0.743228i
\(401\) −148.663 −0.370729 −0.185365 0.982670i \(-0.559347\pi\)
−0.185365 + 0.982670i \(0.559347\pi\)
\(402\) 0 0
\(403\) 90.4616i 0.224470i
\(404\) −419.692 + 40.2610i −1.03884 + 0.0996559i
\(405\) 0 0
\(406\) −473.856 430.574i −1.16713 1.06053i
\(407\) −24.4306 −0.0600261
\(408\) 0 0
\(409\) 442.387 1.08163 0.540815 0.841141i \(-0.318116\pi\)
0.540815 + 0.841141i \(0.318116\pi\)
\(410\) −142.979 + 47.1657i −0.348728 + 0.115038i
\(411\) 0 0
\(412\) −38.9081 405.589i −0.0944371 0.984439i
\(413\) 592.654 1.43500
\(414\) 0 0
\(415\) 0.656893 1.16185i 0.00158287 0.00279964i
\(416\) −68.3282 + 112.376i −0.164250 + 0.270134i
\(417\) 0 0
\(418\) 16.7396 18.4223i 0.0400469 0.0440724i
\(419\) −536.184 −1.27968 −0.639838 0.768510i \(-0.720999\pi\)
−0.639838 + 0.768510i \(0.720999\pi\)
\(420\) 0 0
\(421\) 514.582i 1.22228i 0.791521 + 0.611142i \(0.209290\pi\)
−0.791521 + 0.611142i \(0.790710\pi\)
\(422\) 310.134 341.309i 0.734915 0.808789i
\(423\) 0 0
\(424\) 255.659 + 191.123i 0.602970 + 0.450761i
\(425\) −48.4458 + 29.1480i −0.113990 + 0.0685834i
\(426\) 0 0
\(427\) 113.359i 0.265477i
\(428\) −131.382 + 12.6034i −0.306967 + 0.0294473i
\(429\) 0 0
\(430\) −29.1755 88.4430i −0.0678500 0.205681i
\(431\) 86.8151i 0.201427i 0.994915 + 0.100714i \(0.0321126\pi\)
−0.994915 + 0.100714i \(0.967887\pi\)
\(432\) 0 0
\(433\) 494.017i 1.14092i 0.821327 + 0.570458i \(0.193234\pi\)
−0.821327 + 0.570458i \(0.806766\pi\)
\(434\) −250.132 227.285i −0.576340 0.523698i
\(435\) 0 0
\(436\) −722.895 + 69.3473i −1.65802 + 0.159053i
\(437\) −256.555 −0.587082
\(438\) 0 0
\(439\) 524.700i 1.19522i −0.801789 0.597608i \(-0.796118\pi\)
0.801789 0.597608i \(-0.203882\pi\)
\(440\) −7.60190 17.2879i −0.0172770 0.0392906i
\(441\) 0 0
\(442\) 13.7581 + 12.5015i 0.0311270 + 0.0282839i
\(443\) 496.575i 1.12094i 0.828176 + 0.560469i \(0.189379\pi\)
−0.828176 + 0.560469i \(0.810621\pi\)
\(444\) 0 0
\(445\) −372.375 210.535i −0.836797 0.473112i
\(446\) −239.116 + 263.153i −0.536136 + 0.590028i
\(447\) 0 0
\(448\) 139.051 + 471.275i 0.310382 + 1.05195i
\(449\) 332.158 0.739773 0.369886 0.929077i \(-0.379397\pi\)
0.369886 + 0.929077i \(0.379397\pi\)
\(450\) 0 0
\(451\) −7.10835 −0.0157613
\(452\) 305.160 29.2740i 0.675133 0.0647655i
\(453\) 0 0
\(454\) 300.926 + 273.440i 0.662833 + 0.602290i
\(455\) 137.340 + 77.6497i 0.301845 + 0.170659i
\(456\) 0 0
\(457\) 252.788i 0.553147i −0.960993 0.276574i \(-0.910801\pi\)
0.960993 0.276574i \(-0.0891990\pi\)
\(458\) −120.000 109.040i −0.262010 0.238078i
\(459\) 0 0
\(460\) −79.1822 + 177.817i −0.172135 + 0.386558i
\(461\) 832.716i 1.80633i 0.429299 + 0.903163i \(0.358761\pi\)
−0.429299 + 0.903163i \(0.641239\pi\)
\(462\) 0 0
\(463\) −854.205 −1.84494 −0.922468 0.386074i \(-0.873831\pi\)
−0.922468 + 0.386074i \(0.873831\pi\)
\(464\) 126.833 + 654.987i 0.273347 + 1.41161i
\(465\) 0 0
\(466\) −83.3150 75.7051i −0.178788 0.162457i
\(467\) 102.726i 0.219970i 0.993933 + 0.109985i \(0.0350802\pi\)
−0.993933 + 0.109985i \(0.964920\pi\)
\(468\) 0 0
\(469\) 582.259i 1.24149i
\(470\) −83.2120 + 27.4499i −0.177047 + 0.0584040i
\(471\) 0 0
\(472\) −494.615 369.758i −1.04791 0.783386i
\(473\) 4.39705i 0.00929608i
\(474\) 0 0
\(475\) 339.751 + 564.688i 0.715265 + 1.18882i
\(476\) 69.1347 6.63208i 0.145241 0.0139329i
\(477\) 0 0
\(478\) −533.218 484.515i −1.11552 1.01363i
\(479\) 268.772i 0.561111i −0.959838 0.280556i \(-0.909481\pi\)
0.959838 0.280556i \(-0.0905187\pi\)
\(480\) 0 0
\(481\) −212.669 −0.442139
\(482\) −265.631 + 292.332i −0.551101 + 0.606498i
\(483\) 0 0
\(484\) 46.1327 + 480.901i 0.0953156 + 0.993596i
\(485\) −243.942 + 431.462i −0.502973 + 0.889612i
\(486\) 0 0
\(487\) 504.065 1.03504 0.517520 0.855671i \(-0.326855\pi\)
0.517520 + 0.855671i \(0.326855\pi\)
\(488\) 70.7248 94.6066i 0.144928 0.193866i
\(489\) 0 0
\(490\) 94.4371 31.1528i 0.192729 0.0635772i
\(491\) −130.020 −0.264807 −0.132403 0.991196i \(-0.542269\pi\)
−0.132403 + 0.991196i \(0.542269\pi\)
\(492\) 0 0
\(493\) 94.2997 0.191277
\(494\) 145.718 160.366i 0.294976 0.324627i
\(495\) 0 0
\(496\) 66.9505 + 345.744i 0.134981 + 0.697065i
\(497\) 622.421i 1.25236i
\(498\) 0 0
\(499\) 664.184 1.33103 0.665515 0.746384i \(-0.268212\pi\)
0.665515 + 0.746384i \(0.268212\pi\)
\(500\) 496.241 61.1955i 0.992482 0.122391i
\(501\) 0 0
\(502\) 239.895 264.009i 0.477878 0.525914i
\(503\) 550.015 1.09347 0.546735 0.837306i \(-0.315871\pi\)
0.546735 + 0.837306i \(0.315871\pi\)
\(504\) 0 0
\(505\) 259.384 458.774i 0.513631 0.908463i
\(506\) −6.18034 + 6.80159i −0.0122141 + 0.0134419i
\(507\) 0 0
\(508\) 54.6067 + 569.235i 0.107493 + 1.12054i
\(509\) 349.843i 0.687314i 0.939095 + 0.343657i \(0.111666\pi\)
−0.939095 + 0.343657i \(0.888334\pi\)
\(510\) 0 0
\(511\) 640.496i 1.25342i
\(512\) 177.981 480.070i 0.347619 0.937636i
\(513\) 0 0
\(514\) −670.800 609.530i −1.30506 1.18586i
\(515\) 443.358 + 250.668i 0.860888 + 0.486733i
\(516\) 0 0
\(517\) −4.13698 −0.00800189
\(518\) −534.330 + 588.041i −1.03153 + 1.13522i
\(519\) 0 0
\(520\) −66.1746 150.491i −0.127259 0.289406i
\(521\) −29.7771 −0.0571537 −0.0285769 0.999592i \(-0.509098\pi\)
−0.0285769 + 0.999592i \(0.509098\pi\)
\(522\) 0 0
\(523\) 603.023i 1.15301i 0.817094 + 0.576504i \(0.195584\pi\)
−0.817094 + 0.576504i \(0.804416\pi\)
\(524\) 42.0689 + 438.538i 0.0802841 + 0.836904i
\(525\) 0 0
\(526\) 28.3688 31.2205i 0.0539331 0.0593545i
\(527\) 49.7774 0.0944543
\(528\) 0 0
\(529\) −434.279 −0.820943
\(530\) −378.917 + 124.997i −0.714938 + 0.235843i
\(531\) 0 0
\(532\) −77.3040 805.839i −0.145308 1.51473i
\(533\) −61.8782 −0.116094
\(534\) 0 0
\(535\) 81.1985 143.616i 0.151773 0.268442i
\(536\) 363.272 485.939i 0.677747 0.906603i
\(537\) 0 0
\(538\) −136.792 124.298i −0.254260 0.231036i
\(539\) 4.69505 0.00871066
\(540\) 0 0
\(541\) 163.368i 0.301974i −0.988536 0.150987i \(-0.951755\pi\)
0.988536 0.150987i \(-0.0482451\pi\)
\(542\) −279.460 253.934i −0.515608 0.468513i
\(543\) 0 0
\(544\) −61.8359 37.5983i −0.113669 0.0691145i
\(545\) 446.774 790.212i 0.819769 1.44993i
\(546\) 0 0
\(547\) 524.218i 0.958350i 0.877719 + 0.479175i \(0.159064\pi\)
−0.877719 + 0.479175i \(0.840936\pi\)
\(548\) 897.471 86.0943i 1.63772 0.157106i
\(549\) 0 0
\(550\) 23.1551 + 4.59597i 0.0421002 + 0.00835631i
\(551\) 1099.16i 1.99485i
\(552\) 0 0
\(553\) 773.566i 1.39885i
\(554\) −94.3181 + 103.799i −0.170249 + 0.187363i
\(555\) 0 0
\(556\) −37.2098 387.885i −0.0669240 0.697635i
\(557\) 589.515 1.05837 0.529187 0.848505i \(-0.322497\pi\)
0.529187 + 0.848505i \(0.322497\pi\)
\(558\) 0 0
\(559\) 38.2763i 0.0684728i
\(560\) −582.380 195.132i −1.03996 0.348451i
\(561\) 0 0
\(562\) 680.931 749.378i 1.21162 1.33341i
\(563\) 557.763i 0.990698i −0.868694 0.495349i \(-0.835040\pi\)
0.868694 0.495349i \(-0.164960\pi\)
\(564\) 0 0
\(565\) −188.599 + 333.577i −0.333804 + 0.590402i
\(566\) −742.097 674.315i −1.31113 1.19137i
\(567\) 0 0
\(568\) 388.329 519.457i 0.683678 0.914538i
\(569\) 542.715 0.953805 0.476903 0.878956i \(-0.341759\pi\)
0.476903 + 0.878956i \(0.341759\pi\)
\(570\) 0 0
\(571\) −476.695 −0.834842 −0.417421 0.908713i \(-0.637066\pi\)
−0.417421 + 0.908713i \(0.637066\pi\)
\(572\) −0.741187 7.72634i −0.00129578 0.0135076i
\(573\) 0 0
\(574\) −155.469 + 171.097i −0.270852 + 0.298078i
\(575\) −125.438 208.486i −0.218152 0.362584i
\(576\) 0 0
\(577\) 865.659i 1.50027i −0.661282 0.750137i \(-0.729987\pi\)
0.661282 0.750137i \(-0.270013\pi\)
\(578\) 381.825 420.206i 0.660597 0.727001i
\(579\) 0 0
\(580\) −761.823 339.242i −1.31349 0.584900i
\(581\) 2.04943i 0.00352741i
\(582\) 0 0
\(583\) −18.8383 −0.0323127
\(584\) 399.607 534.543i 0.684258 0.915313i
\(585\) 0 0
\(586\) 435.813 479.622i 0.743709 0.818467i
\(587\) 567.091i 0.966083i 0.875597 + 0.483041i \(0.160468\pi\)
−0.875597 + 0.483041i \(0.839532\pi\)
\(588\) 0 0
\(589\) 580.209i 0.985075i
\(590\) 733.078 241.827i 1.24250 0.409876i
\(591\) 0 0
\(592\) 812.820 157.396i 1.37301 0.265871i
\(593\) 421.774i 0.711254i 0.934628 + 0.355627i \(0.115733\pi\)
−0.934628 + 0.355627i \(0.884267\pi\)
\(594\) 0 0
\(595\) −42.7276 + 75.5725i −0.0718110 + 0.127013i
\(596\) −762.089 + 73.1071i −1.27867 + 0.122663i
\(597\) 0 0
\(598\) −53.7999 + 59.2079i −0.0899664 + 0.0990098i
\(599\) 120.444i 0.201075i −0.994933 0.100538i \(-0.967944\pi\)
0.994933 0.100538i \(-0.0320563\pi\)
\(600\) 0 0
\(601\) 340.158 0.565986 0.282993 0.959122i \(-0.408673\pi\)
0.282993 + 0.959122i \(0.408673\pi\)
\(602\) −105.836 96.1693i −0.175808 0.159750i
\(603\) 0 0
\(604\) 272.170 26.1093i 0.450613 0.0432273i
\(605\) −525.682 297.213i −0.868897 0.491261i
\(606\) 0 0
\(607\) 115.621 0.190479 0.0952396 0.995454i \(-0.469638\pi\)
0.0952396 + 0.995454i \(0.469638\pi\)
\(608\) −438.248 + 720.764i −0.720803 + 1.18547i
\(609\) 0 0
\(610\) 46.2550 + 140.218i 0.0758279 + 0.229866i
\(611\) −36.0124 −0.0589401
\(612\) 0 0
\(613\) 1095.63 1.78733 0.893663 0.448738i \(-0.148126\pi\)
0.893663 + 0.448738i \(0.148126\pi\)
\(614\) −14.5755 13.2442i −0.0237385 0.0215703i
\(615\) 0 0
\(616\) −23.2260 17.3630i −0.0377046 0.0281867i
\(617\) 716.775i 1.16171i −0.814007 0.580855i \(-0.802718\pi\)
0.814007 0.580855i \(-0.197282\pi\)
\(618\) 0 0
\(619\) 118.584 0.191573 0.0957864 0.995402i \(-0.469463\pi\)
0.0957864 + 0.995402i \(0.469463\pi\)
\(620\) −402.139 179.074i −0.648612 0.288829i
\(621\) 0 0
\(622\) 296.657 + 269.561i 0.476941 + 0.433378i
\(623\) −656.844 −1.05432
\(624\) 0 0
\(625\) −292.771 + 552.187i −0.468433 + 0.883499i
\(626\) 387.193 + 351.828i 0.618520 + 0.562025i
\(627\) 0 0
\(628\) 59.2944 + 618.101i 0.0944178 + 0.984238i
\(629\) 117.023i 0.186046i
\(630\) 0 0
\(631\) 1168.62i 1.85201i −0.377515 0.926004i \(-0.623221\pi\)
0.377515 0.926004i \(-0.376779\pi\)
\(632\) 482.629 645.600i 0.763654 1.02152i
\(633\) 0 0
\(634\) 433.548 477.128i 0.683830 0.752569i
\(635\) −622.243 351.807i −0.979910 0.554026i
\(636\) 0 0
\(637\) 40.8704 0.0641608
\(638\) −29.1402 26.4786i −0.0456743 0.0415025i
\(639\) 0 0
\(640\) 364.297 + 526.201i 0.569215 + 0.822189i
\(641\) 244.158 0.380902 0.190451 0.981697i \(-0.439005\pi\)
0.190451 + 0.981697i \(0.439005\pi\)
\(642\) 0 0
\(643\) 868.847i 1.35124i −0.737250 0.675620i \(-0.763876\pi\)
0.737250 0.675620i \(-0.236124\pi\)
\(644\) 28.5410 + 297.520i 0.0443184 + 0.461987i
\(645\) 0 0
\(646\) 88.2430 + 80.1830i 0.136599 + 0.124122i
\(647\) 35.1333 0.0543019 0.0271510 0.999631i \(-0.491357\pi\)
0.0271510 + 0.999631i \(0.491357\pi\)
\(648\) 0 0
\(649\) 36.4458 0.0561569
\(650\) 201.565 + 40.0079i 0.310100 + 0.0615507i
\(651\) 0 0
\(652\) −360.252 + 34.5589i −0.552534 + 0.0530045i
\(653\) −580.068 −0.888313 −0.444157 0.895949i \(-0.646497\pi\)
−0.444157 + 0.895949i \(0.646497\pi\)
\(654\) 0 0
\(655\) −479.375 271.031i −0.731870 0.413788i
\(656\) 236.498 45.7960i 0.360516 0.0698109i
\(657\) 0 0
\(658\) −90.4812 + 99.5764i −0.137509 + 0.151332i
\(659\) 992.788 1.50651 0.753253 0.657731i \(-0.228483\pi\)
0.753253 + 0.657731i \(0.228483\pi\)
\(660\) 0 0
\(661\) 719.647i 1.08872i −0.838850 0.544362i \(-0.816772\pi\)
0.838850 0.544362i \(-0.183228\pi\)
\(662\) −82.1635 + 90.4226i −0.124114 + 0.136590i
\(663\) 0 0
\(664\) −1.27864 + 1.71040i −0.00192566 + 0.00257591i
\(665\) 880.879 + 498.036i 1.32463 + 0.748926i
\(666\) 0 0
\(667\) 405.817i 0.608421i
\(668\) −38.4938 401.270i −0.0576254 0.600703i
\(669\) 0 0
\(670\) 237.585 + 720.219i 0.354605 + 1.07495i
\(671\) 6.97110i 0.0103891i
\(672\) 0 0
\(673\) 189.591i 0.281711i 0.990030 + 0.140855i \(0.0449852\pi\)
−0.990030 + 0.140855i \(0.955015\pi\)
\(674\) 170.164 + 154.621i 0.252469 + 0.229409i
\(675\) 0 0
\(676\) 58.1002 + 605.653i 0.0859471 + 0.895936i
\(677\) −327.192 −0.483297 −0.241649 0.970364i \(-0.577688\pi\)
−0.241649 + 0.970364i \(0.577688\pi\)
\(678\) 0 0
\(679\) 761.070i 1.12087i
\(680\) 82.8093 36.4132i 0.121778 0.0535489i
\(681\) 0 0
\(682\) −15.3821 13.9771i −0.0225544 0.0204943i
\(683\) 673.539i 0.986148i −0.869987 0.493074i \(-0.835873\pi\)
0.869987 0.493074i \(-0.164127\pi\)
\(684\) 0 0
\(685\) −554.668 + 981.044i −0.809734 + 1.43218i
\(686\) −403.299 + 443.839i −0.587899 + 0.646995i
\(687\) 0 0
\(688\) 28.3282 + 146.292i 0.0411748 + 0.212634i
\(689\) −163.988 −0.238008
\(690\) 0 0
\(691\) 237.036 0.343033 0.171516 0.985181i \(-0.445133\pi\)
0.171516 + 0.985181i \(0.445133\pi\)
\(692\) 20.8766 + 217.623i 0.0301685 + 0.314485i
\(693\) 0 0
\(694\) −213.100 193.636i −0.307061 0.279014i
\(695\) 424.005 + 239.726i 0.610079 + 0.344930i
\(696\) 0 0
\(697\) 34.0491i 0.0488510i
\(698\) −53.2170 48.3562i −0.0762421 0.0692782i
\(699\) 0 0
\(700\) 617.057 456.819i 0.881509 0.652599i
\(701\) 476.306i 0.679466i −0.940522 0.339733i \(-0.889663\pi\)
0.940522 0.339733i \(-0.110337\pi\)
\(702\) 0 0
\(703\) −1364.03 −1.94030
\(704\) 8.55107 + 28.9815i 0.0121464 + 0.0411669i
\(705\) 0 0
\(706\) 373.803 + 339.661i 0.529467 + 0.481106i
\(707\) 809.246i 1.14462i
\(708\) 0 0
\(709\) 964.778i 1.36076i −0.732860 0.680380i \(-0.761815\pi\)
0.732860 0.680380i \(-0.238185\pi\)
\(710\) 253.973 + 769.897i 0.357708 + 1.08436i
\(711\) 0 0
\(712\) 548.186 + 409.806i 0.769924 + 0.575570i
\(713\) 214.216i 0.300443i
\(714\) 0 0
\(715\) 8.44582 + 4.77514i 0.0118123 + 0.00667852i
\(716\) −40.7965 425.274i −0.0569783 0.593958i
\(717\) 0 0
\(718\) −879.461 799.132i −1.22488 1.11300i
\(719\) 899.974i 1.25170i 0.779943 + 0.625851i \(0.215248\pi\)
−0.779943 + 0.625851i \(0.784752\pi\)
\(720\) 0 0
\(721\) 782.053 1.08468
\(722\) 449.075 494.216i 0.621987 0.684510i
\(723\) 0 0
\(724\) 576.466 55.3003i 0.796224 0.0763816i
\(725\) 893.220 537.415i 1.23203 0.741262i
\(726\) 0 0
\(727\) 908.888 1.25019 0.625095 0.780549i \(-0.285060\pi\)
0.625095 + 0.780549i \(0.285060\pi\)
\(728\) −202.183 151.145i −0.277723 0.207617i
\(729\) 0 0
\(730\) 261.348 + 792.255i 0.358012 + 1.08528i
\(731\) 21.0619 0.0288125
\(732\) 0 0
\(733\) 433.283 0.591109 0.295554 0.955326i \(-0.404496\pi\)
0.295554 + 0.955326i \(0.404496\pi\)
\(734\) 119.579 131.599i 0.162914 0.179290i
\(735\) 0 0
\(736\) 161.803 266.110i 0.219842 0.361562i
\(737\) 35.8065i 0.0485842i
\(738\) 0 0
\(739\) −886.138 −1.19910 −0.599552 0.800336i \(-0.704655\pi\)
−0.599552 + 0.800336i \(0.704655\pi\)
\(740\) −420.990 + 945.400i −0.568905 + 1.27757i
\(741\) 0 0
\(742\) −412.019 + 453.435i −0.555281 + 0.611099i
\(743\) −895.305 −1.20499 −0.602493 0.798124i \(-0.705826\pi\)
−0.602493 + 0.798124i \(0.705826\pi\)
\(744\) 0 0
\(745\) 470.997 833.055i 0.632211 1.11820i
\(746\) 112.515 123.825i 0.150824 0.165985i
\(747\) 0 0
\(748\) 4.25150 0.407846i 0.00568382 0.000545248i
\(749\) 253.329i 0.338223i
\(750\) 0 0
\(751\) 1297.13i 1.72720i 0.504176 + 0.863601i \(0.331796\pi\)
−0.504176 + 0.863601i \(0.668204\pi\)
\(752\) 137.639 26.6527i 0.183031 0.0354425i
\(753\) 0 0
\(754\) −253.666 230.496i −0.336427 0.305698i
\(755\) −168.210 + 297.515i −0.222795 + 0.394060i
\(756\) 0 0
\(757\) −421.694 −0.557060 −0.278530 0.960428i \(-0.589847\pi\)
−0.278530 + 0.960428i \(0.589847\pi\)
\(758\) −181.756 + 200.026i −0.239783 + 0.263886i
\(759\) 0 0
\(760\) −424.435 965.231i −0.558468 1.27004i
\(761\) −1415.76 −1.86039 −0.930196 0.367063i \(-0.880363\pi\)
−0.930196 + 0.367063i \(0.880363\pi\)
\(762\) 0 0
\(763\) 1393.88i 1.82684i
\(764\) 839.384 80.5220i 1.09867 0.105395i
\(765\) 0 0
\(766\) −670.517 + 737.917i −0.875348 + 0.963339i
\(767\) 317.261 0.413639
\(768\) 0 0
\(769\) −414.210 −0.538635 −0.269318 0.963051i \(-0.586798\pi\)
−0.269318 + 0.963051i \(0.586798\pi\)
\(770\) 34.4237 11.3557i 0.0447061 0.0147476i
\(771\) 0 0
\(772\) −430.726 + 41.3195i −0.557935 + 0.0535226i
\(773\) 727.056 0.940564 0.470282 0.882516i \(-0.344152\pi\)
0.470282 + 0.882516i \(0.344152\pi\)
\(774\) 0 0
\(775\) 471.498 283.682i 0.608385 0.366042i
\(776\) 474.833 635.171i 0.611898 0.818519i
\(777\) 0 0
\(778\) −456.522 414.824i −0.586790 0.533193i
\(779\) −396.879 −0.509473
\(780\) 0 0
\(781\) 38.2763i 0.0490094i
\(782\) −32.5797 29.6039i −0.0416621 0.0378567i
\(783\) 0 0
\(784\) −156.207 + 30.2481i −0.199243 + 0.0385818i
\(785\) −675.659 382.008i −0.860713 0.486634i
\(786\) 0 0
\(787\) 1030.11i 1.30890i −0.756104 0.654451i \(-0.772900\pi\)
0.756104 0.654451i \(-0.227100\pi\)
\(788\) 117.760 + 1227.56i 0.149442 + 1.55782i
\(789\) 0 0
\(790\) 315.646 + 956.854i 0.399552 + 1.21121i
\(791\) 588.407i 0.743878i
\(792\) 0 0
\(793\) 60.6835i 0.0765239i
\(794\) 400.381 440.627i 0.504258 0.554946i
\(795\) 0 0
\(796\) −986.906 + 94.6737i −1.23983 + 0.118937i
\(797\) 371.202 0.465750 0.232875 0.972507i \(-0.425187\pi\)
0.232875 + 0.972507i \(0.425187\pi\)
\(798\) 0 0
\(799\) 19.8162i 0.0248013i
\(800\) −799.991 3.73224i −0.999989 0.00466530i
\(801\) 0 0
\(802\) −199.951 + 220.050i −0.249315 + 0.274376i
\(803\) 39.3879i 0.0490509i
\(804\) 0 0
\(805\) −325.225 183.877i −0.404006 0.228419i
\(806\) −133.901 121.671i −0.166130 0.150956i
\(807\) 0 0
\(808\) −504.890 + 675.378i −0.624864 + 0.835863i
\(809\) −77.7771 −0.0961398 −0.0480699 0.998844i \(-0.515307\pi\)
−0.0480699 + 0.998844i \(0.515307\pi\)
\(810\) 0 0
\(811\) −1407.90 −1.73600 −0.868000 0.496564i \(-0.834595\pi\)
−0.868000 + 0.496564i \(0.834595\pi\)
\(812\) −1274.67 + 122.279i −1.56979 + 0.150590i
\(813\) 0 0
\(814\) −32.8591 + 36.1621i −0.0403675 + 0.0444252i
\(815\) 222.648 393.799i 0.273188 0.483189i
\(816\) 0 0
\(817\) 245.500i 0.300489i
\(818\) 595.009 654.820i 0.727395 0.800513i
\(819\) 0 0
\(820\) −122.491 + 275.074i −0.149380 + 0.335456i
\(821\) 820.275i 0.999116i 0.866280 + 0.499558i \(0.166504\pi\)
−0.866280 + 0.499558i \(0.833496\pi\)
\(822\) 0 0
\(823\) 1385.41 1.68336 0.841681 0.539976i \(-0.181567\pi\)
0.841681 + 0.539976i \(0.181567\pi\)
\(824\) −652.683 487.924i −0.792091 0.592141i
\(825\) 0 0
\(826\) 797.118 877.245i 0.965034 1.06204i
\(827\) 258.898i 0.313057i 0.987673 + 0.156529i \(0.0500303\pi\)
−0.987673 + 0.156529i \(0.949970\pi\)
\(828\) 0 0
\(829\) 1299.31i 1.56732i 0.621190 + 0.783660i \(0.286649\pi\)
−0.621190 + 0.783660i \(0.713351\pi\)
\(830\) −0.836249 2.53502i −0.00100753 0.00305424i
\(831\) 0 0
\(832\) 74.4371 + 252.284i 0.0894677 + 0.303226i
\(833\) 22.4894i 0.0269980i
\(834\) 0 0
\(835\) 438.636 + 247.998i 0.525313 + 0.297004i
\(836\) −4.75388 49.5558i −0.00568646 0.0592773i
\(837\) 0 0
\(838\) −721.166 + 793.658i −0.860580 + 0.947086i
\(839\) 804.961i 0.959429i 0.877425 + 0.479715i \(0.159260\pi\)
−0.877425 + 0.479715i \(0.840740\pi\)
\(840\) 0 0
\(841\) −897.650 −1.06736
\(842\) 761.683 + 692.111i 0.904611 + 0.821985i
\(843\) 0 0
\(844\) −88.0751 918.120i −0.104354 1.08782i
\(845\) −662.052 374.314i −0.783493 0.442975i
\(846\) 0 0
\(847\) −927.268 −1.09477
\(848\) 626.760 121.367i 0.739104 0.143121i
\(849\) 0 0
\(850\) −22.0148 + 110.913i −0.0258997 + 0.130486i
\(851\) 503.607 0.591782
\(852\) 0 0
\(853\) −470.811 −0.551948 −0.275974 0.961165i \(-0.589000\pi\)
−0.275974 + 0.961165i \(0.589000\pi\)
\(854\) 167.793 + 152.467i 0.196479 + 0.178533i
\(855\) 0 0
\(856\) −158.053 + 211.423i −0.184641 + 0.246989i
\(857\) 266.105i 0.310508i −0.987875 0.155254i \(-0.950380\pi\)
0.987875 0.155254i \(-0.0496196\pi\)
\(858\) 0 0
\(859\) 1442.02 1.67872 0.839360 0.543576i \(-0.182930\pi\)
0.839360 + 0.543576i \(0.182930\pi\)
\(860\) −170.154 75.7701i −0.197854 0.0881048i
\(861\) 0 0
\(862\) 128.503 + 116.766i 0.149076 + 0.135459i
\(863\) −364.495 −0.422358 −0.211179 0.977447i \(-0.567730\pi\)
−0.211179 + 0.977447i \(0.567730\pi\)
\(864\) 0 0
\(865\) −237.889 134.499i −0.275016 0.155490i
\(866\) 731.242 + 664.451i 0.844391 + 0.767265i
\(867\) 0 0
\(868\) −672.852 + 64.5466i −0.775176 + 0.0743625i
\(869\) 47.5711i 0.0547424i
\(870\) 0 0
\(871\) 311.696i 0.357860i
\(872\) −869.645 + 1163.30i −0.997299 + 1.33406i
\(873\) 0 0
\(874\) −345.066 + 379.752i −0.394812 + 0.434499i
\(875\) 25.9675 + 959.338i 0.0296771 + 1.09639i
\(876\) 0 0
\(877\) −77.4289 −0.0882883 −0.0441442 0.999025i \(-0.514056\pi\)
−0.0441442 + 0.999025i \(0.514056\pi\)
\(878\) −776.659 705.719i −0.884577 0.803781i
\(879\) 0 0
\(880\) −35.8140 11.9998i −0.0406977 0.0136362i
\(881\) −724.932 −0.822851 −0.411426 0.911443i \(-0.634969\pi\)
−0.411426 + 0.911443i \(0.634969\pi\)
\(882\) 0 0
\(883\) 493.342i 0.558711i −0.960188 0.279356i \(-0.909879\pi\)
0.960188 0.279356i \(-0.0901208\pi\)
\(884\) 37.0093 3.55030i 0.0418657 0.00401618i
\(885\) 0 0
\(886\) 735.029 + 667.892i 0.829604 + 0.753828i
\(887\) 1514.47 1.70741 0.853705 0.520758i \(-0.174351\pi\)
0.853705 + 0.520758i \(0.174351\pi\)
\(888\) 0 0
\(889\) −1097.59 −1.23464
\(890\) −812.476 + 268.019i −0.912895 + 0.301145i
\(891\) 0 0
\(892\) 67.9067 + 707.879i 0.0761286 + 0.793586i
\(893\) −230.979 −0.258655
\(894\) 0 0
\(895\) 464.876 + 262.834i 0.519414 + 0.293669i
\(896\) 884.604 + 428.041i 0.987281 + 0.477725i
\(897\) 0 0
\(898\) 446.751 491.659i 0.497496 0.547505i
\(899\) −917.771 −1.02088
\(900\) 0 0
\(901\) 90.2359i 0.100151i
\(902\) −9.56071 + 10.5218i −0.0105995 + 0.0116649i
\(903\) 0 0
\(904\) 367.108 491.071i 0.406093 0.543220i
\(905\) −356.276 + 630.147i −0.393675 + 0.696295i
\(906\) 0 0
\(907\) 851.570i 0.938887i −0.882963 0.469443i \(-0.844455\pi\)
0.882963 0.469443i \(-0.155545\pi\)
\(908\) 809.489 77.6542i 0.891508 0.0855223i
\(909\) 0 0
\(910\) 299.658 98.8510i 0.329295 0.108627i
\(911\) 517.728i 0.568308i −0.958779 0.284154i \(-0.908287\pi\)
0.958779 0.284154i \(-0.0917127\pi\)
\(912\) 0 0
\(913\) 0.126031i 0.000138041i
\(914\) −374.177 340.000i −0.409383 0.371991i
\(915\) 0 0
\(916\) −322.800 + 30.9662i −0.352402 + 0.0338059i
\(917\) −845.585 −0.922121
\(918\) 0 0
\(919\) 657.730i 0.715701i −0.933779 0.357851i \(-0.883510\pi\)
0.933779 0.357851i \(-0.116490\pi\)
\(920\) 156.704 + 356.368i 0.170330 + 0.387357i
\(921\) 0 0
\(922\) 1232.58 + 1120.00i 1.33686 + 1.21475i
\(923\) 333.195i 0.360992i
\(924\) 0 0
\(925\) −666.917 1108.46i −0.720991 1.19833i
\(926\) −1148.90 + 1264.39i −1.24072 + 1.36543i
\(927\) 0 0
\(928\) 1140.10 + 693.218i 1.22856 + 0.747002i
\(929\) −1206.28 −1.29847 −0.649237 0.760586i \(-0.724912\pi\)
−0.649237 + 0.760586i \(0.724912\pi\)
\(930\) 0 0
\(931\) 262.138 0.281566
\(932\) −224.117 + 21.4995i −0.240469 + 0.0230681i
\(933\) 0 0
\(934\) 152.055 + 138.166i 0.162799 + 0.147929i
\(935\) −2.62757 + 4.64740i −0.00281024 + 0.00497048i
\(936\) 0 0
\(937\) 216.730i 0.231302i 0.993290 + 0.115651i \(0.0368954\pi\)
−0.993290 + 0.115651i \(0.963105\pi\)
\(938\) 861.858 + 783.136i 0.918825 + 0.834900i
\(939\) 0 0
\(940\) −71.2886 + 160.090i −0.0758389 + 0.170309i
\(941\) 749.322i 0.796304i −0.917320 0.398152i \(-0.869652\pi\)
0.917320 0.398152i \(-0.130348\pi\)
\(942\) 0 0
\(943\) 146.530 0.155387
\(944\) −1212.57 + 234.804i −1.28450 + 0.248733i
\(945\) 0 0
\(946\) −6.50850 5.91402i −0.00688002 0.00625160i
\(947\) 114.160i 0.120549i −0.998182 0.0602743i \(-0.980802\pi\)
0.998182 0.0602743i \(-0.0191976\pi\)
\(948\) 0 0
\(949\) 342.872i 0.361298i
\(950\) 1292.81 + 256.606i 1.36086 + 0.270112i
\(951\) 0 0
\(952\) 83.1691 111.253i 0.0873625 0.116862i
\(953\) 820.680i 0.861154i −0.902554 0.430577i \(-0.858310\pi\)
0.902554 0.430577i \(-0.141690\pi\)
\(954\) 0 0
\(955\) −518.768 + 917.548i −0.543212 + 0.960783i
\(956\) −1434.35 + 137.597i −1.50037 + 0.143930i
\(957\) 0 0
\(958\) −397.836 361.498i −0.415278 0.377347i
\(959\) 1730.50i 1.80448i
\(960\) 0 0
\(961\) 476.542 0.495881
\(962\) −286.039 + 314.792i −0.297338 + 0.327226i
\(963\) 0 0
\(964\) 75.4365 + 786.371i 0.0782536 + 0.815738i
\(965\) 266.203 470.835i 0.275858 0.487912i
\(966\) 0 0
\(967\) 1108.56 1.14639 0.573194 0.819420i \(-0.305704\pi\)
0.573194 + 0.819420i \(0.305704\pi\)
\(968\) 773.876 + 578.524i 0.799459 + 0.597649i
\(969\) 0 0
\(970\) 310.547 + 941.397i 0.320152 + 0.970513i
\(971\) 1372.41 1.41340 0.706698 0.707516i \(-0.250184\pi\)
0.706698 + 0.707516i \(0.250184\pi\)
\(972\) 0 0
\(973\) 747.916 0.768670
\(974\) 677.966 746.115i 0.696063 0.766032i
\(975\) 0 0
\(976\) −44.9117 231.932i −0.0460161 0.237635i
\(977\) 927.224i 0.949052i −0.880241 0.474526i \(-0.842619\pi\)
0.880241 0.474526i \(-0.157381\pi\)
\(978\) 0 0
\(979\) −40.3932 −0.0412597
\(980\) 80.9053 181.686i 0.0825564 0.185394i
\(981\) 0 0
\(982\) −174.877 + 192.455i −0.178082 + 0.195983i
\(983\) 354.106 0.360230 0.180115 0.983646i \(-0.442353\pi\)
0.180115 + 0.983646i \(0.442353\pi\)
\(984\) 0 0
\(985\) −1341.88 758.677i −1.36231 0.770230i
\(986\) 126.833 139.582i 0.128634 0.141564i
\(987\) 0 0
\(988\) −41.3826 431.383i −0.0418852 0.436623i
\(989\) 90.6396i 0.0916478i
\(990\) 0 0
\(991\) 537.545i 0.542427i −0.962519 0.271213i \(-0.912575\pi\)
0.962519 0.271213i \(-0.0874249\pi\)
\(992\) 601.817 + 365.925i 0.606671 + 0.368876i
\(993\) 0 0
\(994\) 921.305 + 837.154i 0.926866 + 0.842207i
\(995\) 609.941 1078.81i 0.613006 1.08423i
\(996\) 0 0
\(997\) −441.759 −0.443088 −0.221544 0.975150i \(-0.571110\pi\)
−0.221544 + 0.975150i \(0.571110\pi\)
\(998\) 893.326 983.123i 0.895116 0.985094i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.3.p.g.19.7 8
3.2 odd 2 40.3.e.c.19.2 yes 8
4.3 odd 2 1440.3.p.g.559.8 8
5.4 even 2 inner 360.3.p.g.19.2 8
8.3 odd 2 inner 360.3.p.g.19.1 8
8.5 even 2 1440.3.p.g.559.1 8
12.11 even 2 160.3.e.c.79.7 8
15.2 even 4 200.3.g.h.51.3 8
15.8 even 4 200.3.g.h.51.6 8
15.14 odd 2 40.3.e.c.19.7 yes 8
20.19 odd 2 1440.3.p.g.559.2 8
24.5 odd 2 160.3.e.c.79.8 8
24.11 even 2 40.3.e.c.19.8 yes 8
40.19 odd 2 inner 360.3.p.g.19.8 8
40.29 even 2 1440.3.p.g.559.7 8
48.5 odd 4 1280.3.h.m.1279.3 16
48.11 even 4 1280.3.h.m.1279.15 16
48.29 odd 4 1280.3.h.m.1279.14 16
48.35 even 4 1280.3.h.m.1279.2 16
60.23 odd 4 800.3.g.h.751.2 8
60.47 odd 4 800.3.g.h.751.7 8
60.59 even 2 160.3.e.c.79.2 8
120.29 odd 2 160.3.e.c.79.1 8
120.53 even 4 800.3.g.h.751.1 8
120.59 even 2 40.3.e.c.19.1 8
120.77 even 4 800.3.g.h.751.8 8
120.83 odd 4 200.3.g.h.51.5 8
120.107 odd 4 200.3.g.h.51.4 8
240.29 odd 4 1280.3.h.m.1279.1 16
240.59 even 4 1280.3.h.m.1279.4 16
240.149 odd 4 1280.3.h.m.1279.16 16
240.179 even 4 1280.3.h.m.1279.13 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.e.c.19.1 8 120.59 even 2
40.3.e.c.19.2 yes 8 3.2 odd 2
40.3.e.c.19.7 yes 8 15.14 odd 2
40.3.e.c.19.8 yes 8 24.11 even 2
160.3.e.c.79.1 8 120.29 odd 2
160.3.e.c.79.2 8 60.59 even 2
160.3.e.c.79.7 8 12.11 even 2
160.3.e.c.79.8 8 24.5 odd 2
200.3.g.h.51.3 8 15.2 even 4
200.3.g.h.51.4 8 120.107 odd 4
200.3.g.h.51.5 8 120.83 odd 4
200.3.g.h.51.6 8 15.8 even 4
360.3.p.g.19.1 8 8.3 odd 2 inner
360.3.p.g.19.2 8 5.4 even 2 inner
360.3.p.g.19.7 8 1.1 even 1 trivial
360.3.p.g.19.8 8 40.19 odd 2 inner
800.3.g.h.751.1 8 120.53 even 4
800.3.g.h.751.2 8 60.23 odd 4
800.3.g.h.751.7 8 60.47 odd 4
800.3.g.h.751.8 8 120.77 even 4
1280.3.h.m.1279.1 16 240.29 odd 4
1280.3.h.m.1279.2 16 48.35 even 4
1280.3.h.m.1279.3 16 48.5 odd 4
1280.3.h.m.1279.4 16 240.59 even 4
1280.3.h.m.1279.13 16 240.179 even 4
1280.3.h.m.1279.14 16 48.29 odd 4
1280.3.h.m.1279.15 16 48.11 even 4
1280.3.h.m.1279.16 16 240.149 odd 4
1440.3.p.g.559.1 8 8.5 even 2
1440.3.p.g.559.2 8 20.19 odd 2
1440.3.p.g.559.7 8 40.29 even 2
1440.3.p.g.559.8 8 4.3 odd 2